Matematica 3, a.a. 2002/03

Corso di laurea in Ingegneria Meccanica, 2^a Squadra Prof. C. Sartori

Padova 5/9/2003

Tema A

1) Si consideri la funzione

$$f(x,y) = \sin x \sin(x+y).$$

Si calcolino i punti critici di f in $D = \{(x, y) \in \mathbf{R}^2 : -\pi < x < \pi, -\pi < y < \pi\}$ e se ne determini la loro natura.

Sol. I punti critici sono dati dalle soluzioni del sistema

$$\begin{cases} f_x = \cos x \sin(x+y) + \sin x \cos(x+y) \\ f_y = \sin x \cos(x+y) \end{cases}$$

che sono (0,0) e $\left(\pm\frac{\pi}{2},0\right)$. Senza studiare l'Hessiano si vede che il segno della funzione cambia in un intorno di (0,0) ed essendo f(0,0)=0 il punto (0,0) è di sella. Inoltre essendo $-1 \le f(x,y) \le 1$ e $f\left(\pm\frac{\pi}{2},0\right)=1$ i due punti $\left(\pm\frac{\pi}{2},0\right)$ sono punti di massimo.

2) Determinare l'equazione del piano tangente alla superficie definita implicitamente da

$$\operatorname{arctang}^4 z + x + y^2 - e^{x+y-1} = 0$$

nel punto (1,0,0).

Sol. Detta $f(x, y, z) = \operatorname{arctang}^4 z + x + y^2 - \operatorname{e}^{x+y-1} \operatorname{e} P = (1, 0, 0)$, si vede subito che f ha derivate parziali continue, quindi ammette piano tangente che ha equazione

$$f_x(P)(x-1) + f_y(P)y + f_z(P)z = 0$$

purchè grad $f(P) \neq 0$. Si ha $f_x(P) = 0$, $f_y(P) = -1$ e $f_z(P) = 0$. Quindi il paiano tangente è y = 0.

3) Determinare il flusso del campo

$$F(x,y) = (x^2, yx)$$

uscente dalla frontiera della regione $D = \{(x, y) : y \ge x^2, x^2 + y^2 \le 2\}.$

Sol. Uso il teorema della divergenza

Flusso =
$$\int_D \operatorname{div} F \, dx \, dy = \int_D 3x \, dx \, dy = 0$$

data la simmetria del dominio e della funzione rispetto all'asse y.

4) Determinare la soluzione $x_{\alpha}(t)$ dell'equazione

$$x''(t) - \alpha^2 x(t) = e^{2t}, \quad t \in \mathbf{R}$$

al variare di $\alpha \in \mathbf{R}$.

Sol. La soluzione per $\alpha \neq \pm 2$ è

$$x_{\alpha}(t) = c_1 e^{\alpha t} + c_2 e^{-\alpha t} + \frac{1}{4 - \alpha^2} e^{2t},$$

se $\alpha = \pm 2$ la soluzione è

$$x_{\alpha}(t) = c_1 e^{\alpha t} + c_2 e^{-\alpha t} + \frac{1}{4} t e^{2t}.$$

- 5) Enunciare e dimostrare il teorema di Guldino per ilvolume di un solido di rotazione.
- Sol Vedasi Complementi nella Home Page dell'insegnante.