University of Houston

COSC 3320: Algorithms and Data Structures Spring 2016

Homework 2

Due February 11, at the start of class

- 1. (a) Prove that the function $f(n) = na^{\log n}$, where a is a constant greater than 1, is $\Theta(n^c)$ for some constant c.
 - (b) Prove that the function $f(n) = n^{1/\log n}$ is O(1).
 - (c) Prove that for any constant a > 0, $f(n) = \log n$ is $o(n^a)$.
 - (d) Order the following functions by order of growth, that is, find an arrangement f_1, f_2, \ldots, f_{20} of the functions such that $f_1 = O(f_2), f_2 = O(f_3), \ldots, f_{19} = O(f_{20})$. (Here $\log n$ means $\log_2 n$.)

$$\begin{array}{cccc} n^2 & \displaystyle \frac{1}{\log n} & n^{4/5} & 1.5^n & \displaystyle \frac{2^{\log n}}{2} \\ n \log \log n & \sqrt{\log n} & n^{\log_2 3} & 8 & \log \log \log n \\ \sqrt{n^5} & \log^{11/6} n & e^{\sqrt{n}} & \log \log n^3 & \log n! \\ 2^{\sqrt{\log n}} & \displaystyle \frac{n}{\log n} & \log \left(\frac{n}{\log n}\right) & \displaystyle \frac{\log n}{n} & n! \end{array}$$

- 2. Design recursive algorithms for the following problems:
 - (a) Compute the *n*-th Fibonacci number F_n . Recall that the *n*-th Fibonacci number is defined as follows.

$$F_n = \begin{cases} 1 & \text{if } n = 0, 1, \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

- (b) Compute the *n*-th power of a number x, x^n , with *n* non-negative integer. The algorithm should be designed in such a way that it is possible to write a recurrence relation for the total number of multiplications executed by the algorithm for which the Master Theorem applies. Write such a recurrence and apply the Master Theorem to obtain an asymptotic bound for it.
- 3. When possible, apply the Master Theorem to give asymptotic bounds for T(n) for the following recurrences:

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ 3T(n/3) + n/2 & \text{if } n > 1. \end{cases}$$

(b)

(a)

$$T(n) = \begin{cases} 4 & \text{if } n = 1, \\ 4T(n/2) + 16n^{15/7} & \text{if } n > 1. \end{cases}$$

(c)

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ T(n/2 + 2) + n^2 & \text{if } n > 1. \end{cases}$$
(d)

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ 4T(n/2) + n/\log n & \text{if } n > 1. \end{cases}$$
(e)

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ \log n \cdot T(n/2) + n^2 & \text{if } n > 1. \end{cases}$$
(f)

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ 2T(n/2) + n/\log n & \text{if } n > 1. \end{cases}$$