University of Houston

COSC 3320: Algorithms and Data Structures Spring 2017

Homework 7 Due April 27, at the start of class

- 1. Given two strings X and Y, a third string Z is a common superstring of X and Y if X and Y are both subsequences of Z. (Example: if X = sos and Y = soft, then Z = sosft is a common superstring of X and Y.) Design a dynamic programming algorithm which, given as input two strings X and Y, returns the length of the shortest common superstring (SCS) of X and Y. Specifically, you have to write a recurrence relation $\ell(i,j) = |SCS(X_i,Y_j)|$ that defines the length of a shortest common superstring of X_i and Y_j , and the pseudocode. The algorithm, which has to return $\ell(n,m)$, must run in time $\Theta(n \cdot m)$, where n = |X| and m = |Y|. (Hint: use an approach similar to the one used to compute the length of a LCS of two strings.)
- 2. Let G be an undirected graph with n vertices and m edges. Argue that
 - (a) If G is connected, then $m \ge n 1$.
 - (b) If G is a tree, then m = n 1.
- 3. Consider the following simple graph, represented by its adjacency matrix.

	$\mid a \mid$	b	c	d	e	f	g
\overline{a}	0	0	1	0	1	1	0
b	0	0	0	0	0	0	1
c	1	0	0	1	0	0	0
d	0	0	1	0	1	0	1
e	1	0	0	1	0	1	0
f	1	0	0	0	1	0	1
g	0	1	0	1	0	1 0 0 0 1 0	0

- (a) Draw the graph.
- (b) Run the DFS algorithm starting from vertex a, and draw the final DFS tree.
- (c) Run the BFS algorithm starting from vertex a, and draw the final BFS tree.
- 4. Let G = (V, E) be a (possibly not connected) graph with n vertices and m edges. Design and analyze an algorithm that returns, if it exists, a vertex $v \in V$ such that at least n/2 different vertices are reachable, via a path, from v. (Hint: Use the BFS algorithm.)
- 5. Consider the following weighted graph, represented by its adjacency matrix, where x_i is

the i-th digit of your 7-digit UH ID.

	a	b	c	d	e	f	g
\overline{a}	-	x_3	-	-	-	x_5	1
b	x_3	-	10	-	9	-	4
c	-	10	-	x_1	-	-	x_6
d	-	-	x_1	-	6	-	x_7
e	-	9	-	6	-	5	x_2
f	x_5	-	-	-	5	-	2
g	1	4	x_6	x_7	x_2	2	-

- (a) List the edges of the minimum spanning tree in the order they are added by Kruskal's algorithm.
- (b) List the edges of the minimum spanning tree in the order they are added by Prim's algorithm starting from vertex a.