University of Houston

COSC 3320: Algorithms and Data Structures Summer 2015

Homework 6

Due July 16, at the start of class

1. Consider the following graph, represented by its adjacency matrix.

[1	1	0	0	0	1	0
1	1	1	0			0
0	1	1	0	1	1	1
0	0	0	1	1	1	
0	0	1	1		1	0
1	0	1	1	1		
0		1	0	0	0	1

- (a) Draw the graph.
- (b) Run the DFS algorithm starting from vertex 1, and draw the final DFS tree.
- (c) Run the BFS algorithm starting from vertex 1, and draw the final BFS tree.
- 2. Let G = (V, E) be a connected graph where the degree of each node is c, where c > 2 is an integer constant. Consider the execution of the BFS algorithm, BFS(G, v), from a node $v \in V$. Prove by induction on i that the level L_i generated by BFS(G, v) contains at most c^i nodes, for each $i \ge 0$.
- 3. Let G = (V, E) be a graph with n nodes and m edges. Design and analyze an algorithm that returns, if it exists, a node $i \in V$ such that at least n/2 different nodes are reachable, via a path, from i. (Hint: Use the BFS algorithm, with a suitable modification.)
- 4. Consider the following weighted graph, represented by its adjacency matrix.

[0	3	0	0	0	4	1
$\begin{array}{c} 0\\ 3\\ 0\\ 0\\ 0\\ 0\\ \end{array}$	0	10	$\begin{array}{c} 0 \\ 7 \end{array}$	0	0	4
0	10	0	7	0	0	8
0	0	7	0	6	0	5
0	0	0	6	0	5	4
4	0	0	0	5	0	2
[1	4	8	5	4	2	0

List the edges of the minimum spanning tree in the order they are added by Kruskal's algorithm.