
Brief Announcement: Green Paging and Parallel Paging
Kunal Agrawal

Washington University in St. Louis
St. Louis, MO, USA
kunal@wustl.edu

Michael A. Bender
Stony Brook University
Stony Brook, NY, USA

bender@cs.stonybrook.edu

Rathish Das
Stony Brook University
Stony Brook, NY, USA

radas@cs.stonybrook.edu

William Kuszmaul
MIT

Cambridge, MA, USA
kuszmaul@mit.edu

Enoch Peserico
Univ. Padova
Padova, Italy

enoch@dei.unipd.it

Michele Scquizzato
University of Padova

Padova, Italy
scquizza@math.unipd.it

ABSTRACT
We study two fundamental variants of the classic paging problem:
green paging and parallel paging. In green paging one can choose
the exact memory capacity in use at any given instant, between a
maximum of k and a minimum of k/p pages; the goal is to minimize
the integral of this number over the time required to complete a
computation (note that running at lower capacity is not necessarily
better, since might disproportionately increase the total completion
time). In parallel paging, a memory of k pages is shared between p
processors, each carrying out a separate computation; the goal is
to minimize the respective completion times.

We show how these two different problems are strictly related:
any efficient solution to green paging can be converted into an
efficient solution to parallel paging, and any lower bound for green
paging can be converted into a lower bound for parallel paging—
in both cases in a black-box fashion. Exploiting this relation, we
provide tight upper and lower bounds ofΘ(logp) on the competitive
ratio with O(1) resource augmentation for both problems.

CCS CONCEPTS
• Theory of computation→ Caching and paging algorithms.

KEYWORDS
Paging; online algorithms; green computing; shared cache

ACM Reference Format:
Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch
Peserico, and Michele Scquizzato. 2020. Brief Announcement: Green Paging
and Parallel Paging. In Proceedings of the 32nd ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA ’20), July 15–17, 2020, Virtual
Event, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3350755.3400231

1 INTRODUCTION
The memory system of computing devices is typically organized
as multiple layers of progressively larger capacity but also higher

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6935-0/20/07.
https://doi.org/10.1145/3350755.3400231

access cost (in terms of both time and energy); efficiently orches-
trating the flow of information across memory layers is crucial for
performance. The most widely used model for studying this classic
paging problem is that of a two-layer system: a smaller memory
layer with a capacity of k pages, and a larger layer of infinite ca-
pacity whose pages can only be accessed by first copying them
into memory—an operation called (servicing a page) fault.1 Given
any sequence of pages that must be accessed in order, a paging
algorithm chooses which page(s) to evict from memory, whenever a
new page must be copied into it, so as to minimize the total number
of faults.

The simple algorithm LFD (Longest Forward Distance) that evicts
the page accessed furthest in the future has long been known to
be optimal [2, 16]. However, paging is often studied as an online
problem, i.e., an algorithm can decide evictions only on the basis
of past requests. The typical framework for evaluating the perfor-
mance of online algorithms is that of competitive analysis [21]. A
paging algorithm is said to have a competitive ratio of (no more
than) ρ if, for every request sequence, it incurs at most ρ times as
many faults as an optimal offline algorithm incurs with a mem-
ory of capacity h ≤ k (plus an additive constant independent of
the sequence length). The ratio k/h, called resource augmentation,
and competitive ratio can then be seen as the space and time over-
heads of servicing a sequence of page requests online, i.e. without
knowing the future.

In the competitive analysis framework, the classic paging prob-
lem is very well-understood: many simple algorithms including
LRU, FIFO, FWF, and CLOCK have a competitive ratio of k

k−h+1 [4,
21], optimal for deterministic algorithms. In the rest of this section
we present and motivate two extensions of classic paging, green
paging and parallel paging; we then follow with a brief overview
of our results and their implications.

1.1 Green Paging
In green paging we allow memory capacity to vary over time under
the control of the paging algorithm, between a maximum of k and a
minimum of k/p pages. Accessing a page in memory takes 1 unit of
time, while a page fault takes s ≫ 1 units (the full access cost model
of [25]). The goal is to minimize, rather than the total time/faults

1We follow the historical convention of using the terms “memory”, “pages”, and “fault”
to refer to a generic memory layer, its blocks, and an access whereby a block is
fetched from the next larger layer—e.g. the processor cache, its lines, and a cache
miss. Sometimes these two layers are referred to as fast memory and slow memory,
respectively.

https://doi.org/10.1145/3350755.3400231
https://doi.org/10.1145/3350755.3400231
https://doi.org/10.1145/3350755.3400231


taken to service a sequence of page requests, the integral of memory
capacity over that time.

The last decade has seen a surge in interest for paging models
where memory capacity can change over time. One basis for such
models lies in the popularity of virtualization/cloud computing ser-
vices, that allow one to rent computational resources on demand;
minimizing the integral of memory capacity “rented” for a computa-
tion minimizes monetary cost. Another basis for such models lies in
the increasing importance of energy consumption for both mobile
and supercomputing platforms: modern hardware can dynamically
turn off portions of the memory, both at the main memory and
processor cache layers, so that instantaneous power consumption
is proportional to the amount of active memory—and total energy
consumption is proportional to its integral over time. It is crucial
to observe that minimizing power by minimizing active memory
does not necessarily minimize energy, i.e. the integral of power
over time, since less memory may yield disproportionately longer
executions. Also, note that below a certain capacity, other costs
may become dominant; hence our choice of a minimum capacity
below which no substantial savings can be realized.

The first to address a similar problem was Chrobak [6], allow-
ing the paging algorithm to determine both the capacity and the
contents of the memory on any given request, with the goal of
minimizing a linear combination of the total number of faults and
the average capacity over all requests. This problem has been in-
vestigated by López-Ortiz and Salinger [14] and later, in the more
general version where pages have sizes and weights, by Gupta et
al. [10]. It turns out [3, 18, 19] that one can effectively decouple page
replacement from memory allocation: even if the latter is chosen
adversarially, LFD is still optimal, and a number of well-known
paging algorithms like LRU or FIFO sport O(1) competitive ratios
withO(1) resource augmentation (as in classic paging). Thus, green
paging is essentially a problem of memory allocation: once memory
is allocated, one can simply use LRU for page replacement, as it
will incur a cost within a factor of O(1) of what is achievable with
(half) that memory capacity.

1.2 Parallel Paging
Another crucial extension of classic paging involves p processors
sharing the same k-page memory. Each processor runs its own
application, and the set of pages accessed by different applications
are disjoint. Again, accessing a page in memory takes 1 unit of
time, while a page fault takes s ≫ 1 units. The goal is to service the
request sequences minimizing the average completion time, or the
completion time of all sequences but a fraction ϵ (with ϵ = 1/2 and
ϵ < 1/p yielding, respectively, median and maximum completion
time).

Parallel paging has been extensively studied within the sys-
tems community, particularly after multicore processors became
mainstream—starting from some pioneering work on heuristics
that dynamically adjust the sizes of the cache partitions dedicated
to each processor core (see, e.g., [22–24]). Parallel paging introduces
several challenges compared to the classic problem. Multiple proces-
sors compete for the same resource, and the paging algorithm must
decide, for each processor and each time, how many and which
of its pages to keep in cache [7, 11, 15]. The marginal benefit of

more memory may vary across processors and the resulting opti-
mization problem is in general non-convex; and since this benefit
can vary over time a paging algorithm should change the number
of memory pages allocated to the processors accordingly. Further-
more, providing more space to some processors might accelerate
the respective computations, and thus change how all computations
are synchronized and the respective accesses interleaved. This can
have a significant albeit often overlooked effect on performance:
intuitively, we would like to synchronize computations so that por-
tions with the most “compatible” memory usage run at the same
time.

Almost all previous theoretical work models the problem as a
straightforward variant of classic paging: given p disjoint request
sequences (one per processor) interleaved a priori into a single
sequence, one must service the latter choosing which pages to keep
in memory so as to minimize the total number of faults [1, 5, 9,
12, 13] or other metrics [17]. The only complication compared to
classic paging may be the choice of the interleave pattern, as in [8].
Crucially, this “fixed interleave” model effectively assumes that,
when a processor incurs a fault, all others remain idle until the fault
is resolved. But this negates the very premise on which parallel
processing is based: when a processor encounters a fault, the other
processors should continueworking. The recent [11, 15] are the only
two works assuming that, while a processor is blocked on a fault,
others can advance. They investigate the complexity of the offline
problem and show lower bounds for traditional paging algorithms
such as LRU. However, no competitive online algorithms are given,
leaving our understanding of parallel paging largely incomplete.

2 OUR RESULTS
This work (based partly on some preliminary results in [20]) ana-
lyzes both green paging and parallel paging: a surprisingly strict
relationship between the two allows us to translate results for one
problem into results for the other. In this sense we stress that the
use of the same variable p for apparently unrelated quantities in the
two problems is intentional, as it plays exactly the same role. This
tight relationship has a counter-intuitive implication. For decades,
little progress was made on parallel paging partly because it was
unclear how to handle the interleaving and interference between
different processors (see, e.g., [11]). Our equivalence results show
that each processor can in some sense be handled in isolation!

Two fundamental ingredients in our construction are worth
mentioning. The first is a simple but powerful technique to cut up
memory allocation into a sequence of boxes chosen from a small set
of “standard” sizes. While a similar technique was used e.g. in [3] as
a tool to simplify analysis, we actively use it to allocate memory –
our performance hinges crucially on the set of standard boxes being
small. The second ingredient, used in the translation from green to
parallel paging, is a way to pack these boxes so as to use available
space and time efficiently; note that standard packing techniques
cannot in general be used, in that memory boxes belonging to the
same processor must be allocated to disjoint time intervals.

2.1 From Green to Parallel, and Back
Good green paging yields good parallel paging. We show how
to translate any green paging algorithm into a parallel paging



algorithm in a black box fashion. If the former is online, so is the
latter. If the former is optimal within a factor α when servicing
request sequences from an arbitrary family, the latter sports average
completion time that is optimal within a factorO(α)when servicing
sequences from the same family, and it completes all sequences
save at most a fraction ϵ taking at most O(α log(ϵ−1)) more time
than what is strictly required to service all but a fraction ϵ/2.

We would stress two things. First, the same translation yields
simultaneously good average, median (ϵ = 1/2), and maximum
(ϵ < 1/p) times, i.e. there is no need to sacrifice good performance
under one metric for good performance under another. Second,
note that if a green paging sports particularly good performance
on a restricted family of request sequences of interest, perhaps
bypassing the lower bounds below, we automatically obtain good
performance for parallel paging on those same sequences.

The reverse is also true. We show how to translate any parallel
paging algorithm into a green paging algorithm in a black box
fashion. If the former is online, so is the latter. If the former has
average or median completion time optimal within a factor O(α),
so has the latter, provided the former is either a) offline or b) “fair”,
in the sense that if servicing identical request sequences it allots the
same amount of memory to each at the same point in the execution.

The fairness requirement makes efficient translation not as uni-
versal as in the previous case. In particular, it does not allow us
to translate lower bounds on green paging to lower bounds for
parallel paging (in principle they may not apply to “unfair” online
algorithms). However, we can show how to translate such lower
bounds directly: if any online algorithm for green paging has a
competitive ratio at least α even when restricted to servicing se-
quences from a particular family, then any online parallel paging
algorithm has competitive ratio at least Θ(α) even when restricted
to sequences from the same family.

2.2 Tight Bounds for Green and Parallel Paging
We derive tight lower and upper bounds for the competitive ratio of
green paging. We show that with O(1) resource augmentation, no
green paging can be better than O(logp)-competitive (in contrast
with classic paging, at least if p = ω(1)). And this lower bound can
be matched by a simple memory allocation algorithm that is not
only online, but also memoryless, i.e., it does not depend in any
way on the request sequence.

Note that the bounds above depend solely on the ratio p between
themaximum andminimummemory, and not on those two valuesk
and k/p. Thus, if p = O(1), we automatically haveO(1)-competitive
green paging (withO(1) resource augmentation). Also, note that the
lower bound is existential; for some restricted family of sequences
of practical interest it may well not apply.

The results from the previous subsection automatically allow
us to translate these bounds and algorithms to parallel paging. No
parallel paging algorithm can be better than O(logp)-competitive.
At the same time, we exhibit a simple strategy for dividing memory
between processors that is completely independent of the request
sequences to be serviced and that is nonetheless (optimally)O(logp)-
competitive in terms of average and median completion time, and
O(log2 p)-competitive in terms of maximum completion time.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants CCF-1725543, CSR-
1763680, CCF-1716252, CCF-1617618, CNS-1938709, CCF-1439084,
CCF-1733873, and CCF-1527692; by the US Air Force Research Labo-
ratory under cooperative agreement number FA8750-19-2-1000; and
by Univ. Padova under grant BIRD197859/19 and project “Internet
of Things” (MIUR grant L.232 “Dipartimenti di Eccellenza”).

REFERENCES
[1] Rakesh D. Barve, Edward F. Grove, and Jeffrey Scott Vitter. 2000. Application-

controlled paging for a shared cache. SIAM J. Comput. 29, 4 (2000), 1290–1303.
[2] Laszlo A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-Storage

Computer. IBM Systems Journal 5, 2 (1966), 78–101.
[3] Michael A. Bender, Roozbeh Ebrahimi, Jeremy T. Fineman, Golnaz Ghasemies-

feh, Rob Johnson, and Samuel McCauley. 2014. Cache-Adaptive Algorithms. In
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). 958–971.

[4] Allan Borodin, Nathan Linial, and Michael E. Saks. 1992. An Optimal On-Line
Algorithm for Metrical Task System. J. ACM 39, 4 (1992), 745–763.

[5] Pei Cao, Edward W. Felten, and Kai Li. 1994. Application-controlled file caching
policies. In Proceedings of the USENIX Summer 1994 Technical Conference (USTC)
(Boston, Massachusetts). 171–182.

[6] Marek Chrobak. 2010. SIGACT news online algorithms column 17. SIGACT News
41, 4 (2010), 114–121.

[7] Rathish Das, Kunal Agrawal, Michael Bender, Jonathan Berry, Benjamin Moseley,
and Cynthia Phillips. 2020. How to Manage High-Bandwidth Memory Automati-
cally. In Proceedings of the 32st ACM on Symposium on Parallelism in Algorithms
and Architectures (SPAA).

[8] Esteban Feuerstein and Alejandro Strejilevich de Loma. 2002. On-Line Multi-
Threaded Paging. Algorithmica 32, 1 (2002), 36–60.

[9] Amos Fiat and Anna R. Karlin. 1995. Randomized and multipointer paging with
locality of reference. In Proceedings of the 27th annual ACM Symposium on Theory
of Computing (STOC). 626–634.

[10] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Pan-
igrahi. 2019. Elastic Caching. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 143–156.

[11] AvinatanHassidim. 2010. Cache Replacement Policies forMulticore Processors. In
Proceedings of 1st Symposium on Innovations in Computer Science (ICS). 501–509.

[12] Anil Kumar Katti and Vijaya Ramachandran. 2012. Competitive Cache Replace-
ment Strategies for Shared Cache Environments. In Proceedings of the 26th IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 215–226.

[13] Ravi Kumar, Manish Purohit, Zoya Svitkina, and Erik Vee. 2020. Interleaved
Caching with Access Graphs. In Proceedings of the 31st Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA). 1846–1858.

[14] Alejandro López-Ortiz and Alejandro Salinger. 2012. Minimizing Cache Usage
in Paging. In Proceedings of the 10th Workshop on Approximation and Online
Algorithms (WAOA). 145–158.

[15] Alejandro López-Ortiz and Alejandro Salinger. 2012. Paging for Multi-Core
Shared Caches. In Proceedings of the 3rd Innovations in Theoretical Computer
Science conference (ITCS). 113–127.

[16] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. 1970.
Evaluation Techniques for Storage Hierarchies. IBM Systems Journal 9, 2 (1970),
78–117.

[17] Ishai Menache and Mohit Singh. 2015. Online Caching with Convex Costs.
In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 46–54.

[18] Enoch Peserico. 2013. Elastic paging. In Proceedings of the ACM SIGMETRICS
/ International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS). 349–350.

[19] Enoch Peserico. 2019. Paging with dynamic memory capacity. In Proceedings
of the 36th International Symposium on Theoretical Aspects of Computer Science
(STACS). 56:1–56:18.

[20] Michele Scquizzato. 2013. Paging on Complex Architectures. Ph.D. Dissertation.
University of Padova.

[21] Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Amortized Efficiency of
List Update and Paging Rules. Commun. ACM 28, 2 (1985), 202–208.

[22] Harold S. Stone, John Turek, and Joel L. Wolf. 1992. Optimal Partitioning of
Cache Memory. IEEE Trans. Comput. 41 (1992), 1054–1068. Issue 9.

[23] G. Edward Suh, Larry Rudolph, and Srinivas Devadas. 2004. Dynamic Partitioning
of Shared Cache Memory. The Journal of Supercomputing 28, 1 (2004), 7–26.

[24] Dominique Thiébaut, Harold S. Stone, and Joel L. Wolf. 1992. Improving Disk
Cache Hit-Ratios Through Cache Partitioning. IEEE Trans. Comput. 41 (1992).

[25] Eric Torng. 1998. A Unified Analysis of Paging and Caching. Algorithmica 20, 2
(1998), 175–200.


	Abstract
	1 Introduction
	1.1 Green Paging
	1.2 Parallel Paging

	2 Our Results
	2.1 From Green to Parallel, and Back
	2.2 Tight Bounds for Green and Parallel Paging

	Acknowledgments
	References

