
Online Parallel Paging with Optimal Makespan
Kunal Agrawal

Washington University in St. Louis

St. Louis, USA

kunal@wustl.edu

Michael A. Bender

Stony Brook University

Stony Brook, USA

bender@cs.stonybrook.edu

Rathish Das

University of Waterloo

Waterloo, Canada

rathish.das@uwaterloo.ca

William Kuszmaul

MIT

Cambridge, USA

kuszmaul@mit.edu

Enoch Peserico

Università degli Studi di Padova

Padova, Italy

enoch@dei.unipd.it

Michele Scquizzato

Università degli Studi di Padova

Padova, Italy

scquizza@math.unipd.it

ABSTRACT
The classical paging problem can be described as follows: given

a cache that can hold up to 𝑘 pages (or blocks) and a sequence

of requests to pages, how should we manage the cache so as to

maximize performance—or, in other words, complete the sequence

as quickly as possible. Whereas this sequential paging problem has

been well understood for decades, the parallel version, where the

cache is shared among 𝑝 processors each issuing its own sequence

of page requests, has been much more resistant. In this problem

we are given 𝑝 request sequences 𝑅1, 𝑅2, . . . , 𝑅𝑝 , each of which

accesses a disjoint set of pages, and we ask the question: how

should the paging algorithm manage the cache to optimize the

completion time of all sequences (i.e., the makespan). As for the

classical sequential problem, the goal is to design an online paging

algorithm that achieves an optimal competitive ratio, using 𝑂 (1)
resource augmentation.

In a recent breakthrough, Agrawal et al. [SODA ’21] showed that

the optimal (deterministic) competitive ratio 𝐶 for this problem

is in the range Ω(log𝑝) ≤ 𝐶 ≤ 𝑂 (log2 𝑝). This paper closes that
gap, showing how to achieve a competitive ratio𝐶 = 𝑂 (log 𝑝). Our
techniques reveal surprising combinatorial differences between the

problem of optimizing makespan and that of optimizing the closely

related metric of mean completion time; and yet our algorithm

manages to be simultaneously asymptotically optimal for both

tasks.

CCS CONCEPTS
• Theory of computation → Caching and paging algorithms.

KEYWORDS
Paging; parallel paging; multicores; online algorithms

ACM Reference Format:
Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch

Peserico, and Michele Scquizzato. 2022. Online Parallel Paging with Optimal

Makespan. In Proceedings of the 34th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA ’22), July 11–14, 2022, Philadelphia, PA,

This work is licensed under a Creative Commons Attribution

International 4.0 License.

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9146-7/22/07.

https://doi.org/10.1145/3490148.3538577

USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3490148.

3538577

1 INTRODUCTION
This paper considers the problem of parallel paging [2, 12, 14,

16, 19]: 𝑝 processors share a fast memory (or cache) that can hold

up to 𝑘 pages. When a processor accesses a location contained

in a page that is in cache, the access cost is small (the access is a

hit); when it accesses a location contained in a page that is not in

cache, the access cost is large (the access is amiss or a fault). As
with prior work on parallel paging [2, 14, 19], we assume that all 𝑝

processors access distinct sets of memory locations.
1
The paging

algorithm decides which pages (or blocks) remain in cache at any

point in time or, in other words, which page(s) to evict when a new

page is brought into cache. The goal is to share the cache among

the processors in a way that minimizes some objective function of

processors’ completion times.

Sequential vs. parallel paging.Whereas sequential paging (i.e.,

the paging problem with one processor) has been well understood

for decades [4, 5, 20, 24], the problem of obtaining tight bounds for

parallel paging has proved to be much more elusive [3, 6, 11, 12, 15–

17, 21]. The goal is to determine the best possible online competitive

ratio achievable using 𝑂 (1) resource augmentation.
2

Part of what makes parallel paging difficult is that the scheduler

must predict dynamically which processors are going to benefit

more from having more/less cache and then must solve the on-

line optimization problem of allocating memory optimally based

on those predictions. Some processors may benefit greatly from

having access to additional memory, while others might not. For

each individual processor, the marginal benefit of having access to

𝑖 + 1 space of cache, rather than 𝑖 space, may be a non-monotonic

function in 𝑖; and these marginal benefits may also fluctuate unpre-

dictably over time as processors go through their respective request

sequences. The parallel-paging algorithm must also be careful to

not be too “sporadic” in its memory allocations; if a processor is

allocated a large amount of cache, but only for a short period of

time, that cache may be useless to the processor.

1
This restriction represents the condition where each processor is running a distinct

program and these programs do not share pages with each other.

2
Constant-factor resource augmentationmeans that the algorithm’s cache is a constant-

factor larger than the cache given to the optimal offline algorithm OPT. Even in the

sequential setting, resource augmentation is necessary, since otherwise any determin-

istic algorithm has competitive ratio Θ(𝑘) [24].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3490148.3538577
https://doi.org/10.1145/3490148.3538577
https://doi.org/10.1145/3490148.3538577

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Agrawal et al.

A second challenge is that the decisions made by the scheduler

can have unpredictable downstream effects on how the processors

interact later in their access sequences. If some processor 𝑥 is given

more cache now, then it will proceed through its accesses faster

than another processor 𝑦 that is given less cache now. This means

that, later on, the alignment between the two processors and their

respective access sequences will be shifted due to allocation deci-

sions that were made earlier. Even if an allocation decision seems

beneficial in the short term, it is difficult to assess whether it will

be a competitive decision in the long run.

The interactions between these two challenges make it so that

even the offline version of this problem is difficult—in fact, it is

NP-hard [19].

Finally, an interesting feature of the parallel paging problem

(as opposed to the sequential version) is that there is no single

best objective function. In the language of traditional scheduling

metrics, there are two natural objective functions: makespan (i.e.,

maximum completion time) and mean completion time. Some

applications must wait on every processor to complete (e.g., parallel

threads with a synchronization barrier) before the application can

be considered finished, meaning that the objective is to minimize

makespan; other applications are more concerned with how long

the average processor spends on its task, meaning that the objective

to minimize is mean completion time. What makes these two objec-

tive functions especially interesting is that they yield fundamentally

different notions of what it means to allocate cache efficiently to

processors.

Past work on parallel paging. First articulated by Fiat and Karlin
in 1995 [12], the problem of achieving optimal competitive ratios

for parallel paging has remained open for nearly three decades [2,

14, 16, 19]. In the online setting, most of the early work focused

on simplifications of the problem [3, 6, 11, 12, 16, 17, 21] in which

the rate at which each processor progresses is fixed, rather than

being affected by how many hits and misses the processor incurs;

that is, a processor that incurs all hits is treated as progressing

through its access sequence at the same rate as if it incurred all

misses. The downside of this assumption is that it “sequentializes”

the interleaving between the access sequences, thereby removing

the interactions that occur between the scheduler’s decisions and

the interleavings between the processors.

Recent work has focused on understanding the more com-

plete version of the paging model in which the speed at which

a processor progresses is affected by whether it incurs hits or

misses [9, 10, 14, 19]. Agrawal et al. [1, 2, 8] achieved the first

general-purpose results in the online setting: for mean completion

time, they deterministically achieved a competitive ratio of𝑂 (log𝑝)
and showed that no deterministic algorithm can do better.

The problem of determining the optimal deterministic compet-

itive ratio 𝐶 for makespan has continued to be elusive, however,

with the best asymptotic bounds establishing that Ω(log 𝑝) ≤ 𝐶 ≤
𝑂 (log2 𝑝) [1, 2]. The current paper closes this gap, introducing a

new parallel-paging algorithm that achieves an optimal ratio of

𝐶 = 𝑂 (log𝑝).
Before we describe our technical results in detail, it is helpful to

understand the structure of the recent results on mean completion

time [1, 2]. Indeed, a key technical element of this paper will be to

study the (somewhat surprising) ways in which these ideas do (and

do not!) extend to the makespan setting.

Understanding the recent progress onmean completion time.
The significant insight by [1, 2] was that the parallel paging prob-

lem is tightly connected to the seemingly unrelated green paging
problem.

3
In green paging, there is a single processor, and there

is a paging algorithm that decides the amount of cache allocated

to the processor over time. The goal is to service the processor’s

request sequence while minimizing the integral of the processor’s

cache capacity over time—a quantity known asmemory impact.
(Notice that it is not optimal to minimize the cache size at all times,

since this can increase cache misses, which increases the integral

of cache size over time.)

There turns out to be an intimate connection between parallel

paging and green paging. Indeed, [1, 2] proved via reductions that

the best achievable deterministic competitive ratio for green paging

is asymptotically the same as that for parallel-paging mean comple-

tion time. By analyzing green paging, they were able to then deduce

that the optimal competitive ratio for both problems is Θ(log 𝑝).
The main algorithmic takeaway from [1, 2] is that, if one wishes

to optimize parallel-paging mean completion time, one should in-

stead focus on optimizing the green-paging performance of each

individual processor: the competitive ratio that one achieves for

the latter problem directly translates to the former.

This paper: Obtaining tight bounds for makespan. Our first
result establishes a counter-intuitive lower bound—that green pag-

ing algorithms cannot, in general, be transformed into optimal

parallel-paging makespan algorithms without a loss in competitive

ratio. Specifically, Theorem 4 establishes that, even if we are given

an omniscient green paging algorithm that is constant-competitive,
then any black-box construction of a parallel-paging algorithm that

allocates cache using this green paging algorithm must incur a

competitive ratio of Ω(log𝑝/log log𝑝).4
This lower bound establishes that, when we consider makespan,

there are two separate sources that individually force a roughly

logarithmic loss in competitiveness—the first source is the lower

bound of Ω(log𝑝) for green paging [2], and the second source is the
conversion of green paging to parallel paging, which contributes a

factor of Ω(log𝑝/log log𝑝).
The main result of this paper is that it is possible to design a

parallel-paging algorithm in which these two logarithmic factors

add, instead of multiplying (as in [1, 2]).

We begin by constructing a randomized parallel-paging algo-

rithm with competitive ratio 𝑂 (log 𝑝). This algorithm uses ran-

domization to “hide” any vulnerabilities that the parallel-paging

algorithm might have based on when it gives which processors

large/small amounts of cache. Each individual processor is allo-

cated cache using a specially-designed randomized green paging

3
We remark that, although this paper studies green paging primarily for its relationship

to parallel paging, green paging has also been studied as a problem of independent

interest [7, 13, 18, 22, 23], since it closely relates to the amount of energy that a

processor consumes in its cache usage.

4
This result requires a more careful definition of what an omniscient green paging

algorithm is able to do—Section 4 provides a natural definition.

Online Parallel Paging with Optimal Makespan SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

algorithm, and then the allocations are interleaved in such a way

that we do not pay an additional log 𝑝 factor in competitive ratio.

Finally, we show that it is possible to deterministically emulate

our randomized algorithm in such a way that we still achieve a

competitive ratio of𝑂 (log𝑝). Rather than being a direct derandom-

ization, our deterministic algorithm is instead obtained by formally

capturing the properties of the randomized algorithm that enable its

analysis, and showing how to achieve the same properties determin-

istically. Our deterministic competitive ratio of 𝑂 (log𝑝) matches a

lower bound by [1, 2].

Perhaps surprisingly, our 𝑂 (log 𝑝) competitive ratio for

makespan is achieved without any loss of competitive ratio on

average completion time. This results in a single algorithm that si-

multaneously achieves the optimal deterministic competitive ratio

of 𝑂 (log𝑝) for both objectives.

An interesting feature of all of the algorithms in this paper (as

well as those in [1, 2]) is that they are oblivious, meaning that

they do not adapt to the specific request sequences given to them,

but instead use a “universal” strategy for how to allocate cache to

processors efficiently (each processor individually uses LRU on the

cache that it is allocated). This means that, rather than predicting

the behavior of individual processors, the algorithm must allocate

cache in such a way that it is𝑂 (log 𝑝)-competitive regardless of the
processors’ access sequences. The fact that such an algorithm can

achieve a competitive ratio of 𝑂 (log𝑝) (and that this is optimal) is

perhaps the most surprising takeaway of this line of work.

Outline. Section 2 presents preliminary definitions and modeling.

Section 3 presents our upper bounds for online parallel paging.

Finally, Section 4 presents our lower bound for parallel-paging

algorithms that make use of green paging as a black-box primitive.

2 PRELIMINARIES
This paper follows the same set of conventions and definitions as

in recent previous work [1, 2]. For completeness, we give a brief

overview of those definitions here.

The parallel paging model. The parallel paging model features 𝑝

processors connected to a shared cache of size𝑘 > 𝑝 . Each processor

has a dedicated channel to the cache and to a main memory of

unlimited size. Each processor 𝑖 issues a sequence of requests for

pages 𝑅𝑖 = 𝑟 𝑖
0
, 𝑟 𝑖
1
, 𝑟 𝑖
2
, . . . , where 𝑟 𝑖

𝑗
is the 𝑗-th page request by the

𝑖-th processor. The requests of each processor are served in order,

that is, request 𝑟 𝑖
𝑗+1 can be requested only after 𝑟 𝑖

𝑗
has been served.

The request sequences are assumed to be disjoint, that is, for all

𝑖 ≠ 𝑗 and ∀𝑞, 𝑠, 𝑟 𝑖𝑞 ≠ 𝑟
𝑗
𝑠 .

When a processor requests a page, if that page is in cache then

it takes 1 unit of time to service this request. That is, if a page is

requested at time 𝑡 and it is in cache, then the request is served at

time 𝑡 + 1. If the requested page is not in cache, then it takes 𝑠 > 1

units of time to transfer this page from main memory to cache.

Therefore, this request is served at time 𝑡 + 𝑠 + 1 or later. Note that

the paging algorithm does not necessarily serve the block exactly
at time 𝑡 + 𝑠 + 1 because the paging algorithm can choose to hold off

retrieving the block from memory if it deems that the cache should

be used to hold other blocks.

Parallel paging. A parallel-paging algorithm controls when

pages are evicted from cache—that is, whenever a new page is

brought into cache, the paging algorithm chooses which of the

pages currently in cache must be evicted (unless the cache is under-

full). The algorithm is also permitted to stall a processor if it wishes,

that is it can refuse to serve a page request until a later time.

The choices made by the parallel-paging algorithm determine

which processors incur hits/misses on their requests, and how long

each processor takes to complete. In this paper, the goal of a paging

algorithm will be to minimize makespan, which is the amount

of time that it takes for all of the processors to complete their

request sequences. We will use 𝑇𝑂𝑃𝑇 (𝑘) to denote the optimal

offline makespan on a cache of size 𝑘 , and 𝑇A (ℓ) to denote the

makespan of a given algorithm A on a cache of size ℓ . We will be

interested in online algorithms, meaning that the algorithm does

not get to know what pages each processor will access until the

requests are made.

To analyze an online parallel-paging algorithm, we use competi-

tive analysis: an online algorithm A is said to achieve competitive
ratio 𝐶 with resource-augmentation 𝜉 if for all request sequences

𝑅1, . . . , 𝑅𝑝 such that max𝑖 |𝑅𝑖 | is sufficiently large as a function of

𝑝, 𝑘 , we have that𝑇A (𝜉𝑘) ≤ 𝐶 ·𝑇𝑂𝑃𝑇 (𝑘). In general, when proving

upper bounds, we will assume the resource-augmentation parame-

ter 𝜉 to be𝑂 (1). In this context, we will use as a shorthand𝑇𝑂𝑃𝑇 to

denote 𝑇𝑂𝑃𝑇 (𝑘) and 𝑇A to denote 𝑇A (𝜉𝑘). We remark that, even

in the setting of 𝑝 = 1, resource augmentation is needed if one

wishes to achieve a competitive ratio better than the trivial Θ(𝑘)
for deterministic algorithms [24].

A useful tool: Compartmentalized box profiles. Past work [1,

2] has shown that several simplifying assumptions can be made

without loss of generality about how the optimal parallel-paging

algorithm OPT behaves. Each individual processor can be assumed

to use LRU-eviction (i.e., evict the least-recently-accessed page)

on the portion of the cache that it is allocated, meaning that the

parallel paging problem is fundamentally about choosing how much
cache to allocate each processor at a time.

One can further assume that each individual processor is allo-

cated memory in boxes, where a box of height 𝒋 ≤ 𝒌 means that

the processor has access to 𝑗 pages in cache for 𝑠 · 𝑗 time steps (recall

that 𝑠 is the time to transfer a page from main memory to cache

in the event of a cache miss). Moreover, without loss of generality,

every box can be assumed to have a power-of-two height. Finally,

boxes can also be assumed to be compartmentalized, meaning

that whenever a processor is first allocated a box of height 𝑗 , any

pages that were formerly in those 𝑗 positions in cache are initially

evicted (even if they would have been useful to keep around). As we

shall see, the assumption that each processor is allocated cache in

compartmentalized boxes significantly streamlines the discussion

of parallel-paging algorithms.

Green paging. Finally, we conclude the section by briefly defining

the related problem of green paging. In the green paging problem,

a single processor must service a single request sequence 𝑅 using a

cache whose size changes dynamically over time within the range

[𝑘/𝑝, 𝑘], where 𝑝 is a given parameter. A green-paging algorithm
dictates how the cache size evolves, as well as the replacement

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Agrawal et al.

policy. The goal of the algorithm is to minimize the integral of the

cache size over time—a quantity calledmemory impact. That is,
if 𝑐𝑖 is the amount of cache allocated at time 𝑖 , then we wish to

complete the request sequence 𝑅 while minimizing

∑
𝑖 𝑐𝑖 .

As for parallel paging, one can analyze an online green-paging

algorithm using competitive analysis with 𝜉 = 𝑂 (1) resource

augmentation—this means that the algorithm allocates a cache

with size between 𝜉𝑘/𝑝 and 𝜉𝑘 and is compared to an optimal of-

fline algorithm OPT that allocates a cache with size between 𝑘/𝑝
and 𝑘 . Also like parallel paging, one can assume without loss of

generality [1, 2] that the processor manages its cache with LRU;

that OPT allocates memory to the processor using compartmental-

ized boxes; and that the boxes have normalized sizes, so that each

box has a height of the form 𝑘/𝑝 · 2𝑗 for 𝑗 ∈ [log 𝑝].
We will be interested in green paging primarily for its use as a

tool to solve parallel paging. We study this relationship in depth in

Section 4, where we also extend the definition of green paging to

the setting where 𝑘 and 𝑝 evolve over time.

3 UPPER BOUNDS
In this section we present a online parallel-paging algorithms that

achieves an 𝑂 (log𝑝)-competitive makespan. We break the section

into three parts. As a motivation, we begin by constructing a new

green-paging algorithm which uses a very simple random process

to generate a memory profile that is 𝑂 (log𝑝)-competitive with

optimal. We then show how to use a similar random process for

parallel paging without any additional loss in the competitive ratio.

Finally, we show how to derandomize our algorithm to obtain

optimal deterministic online parallel paging, with a competitive

ratio of 𝑂 (log𝑝) for makespan.

3.1 Randomized Online Green Paging
As a warm-up, we present a new algorithm for the closely related

problem of green paging. This algorithm, which we call RAND-

GREEN, achieves the same 𝑂 (log𝑝) competitive ratio as in past

work [2], but with a remarkably simple randomized approach—

this same approach will play an important role in our strategy for

parallel paging in subsequent sections.

Consider a green-paging instance with minimum memory

size 𝑘/𝑝 and maximum memory size 𝑘 . Recall that, without loss

of generality (and with 𝑂 (1) resource augmentation), we can as-

sume that 𝑘 and 𝑝 are powers of two and that boxes have heights

𝑘/𝑝, 2𝑘/𝑝, 4𝑘/𝑝, . . . , 𝑘 .
The RAND-GREEN algorithm generates a sequence of boxes,

where the height of each box is selected independently from a

fixed probability distribution D designed so that the probability

of a given box-height 𝑗 being selected is inversely proportional to

the memory impact 𝑠 𝑗2 of that box. In more detail, whenever it

is time to select a new box, the algorithm randomly selects a box

height 𝑗 ∈ {𝑘/𝑝, 2𝑘/𝑝, 4𝑘/𝑝, . . . , 𝑘} so that each 𝑗 has probability

Θ
(
𝑘2/ 𝑗2𝑝2

)
.

The intuition behind the algorithm is as follows. If a box has

height 𝑗 , then it will contribute 𝑠 𝑗2 to the memory impact incurred

by the algorithm. By selecting each box height 𝑗 to occur with prob-

ability ∼ 1/ 𝑗2, we equalize the expected contribution to memory

impact of all the different box heights. The result is that, if some

part of the request sequence requires a box of some height 𝑗 , then

the expected memory impact that we will incur until we get a box

of that size 𝑗 is only𝑂 (log𝑝) · 𝑗2. We now prove this formally, and

analyze the competitive ratio of the algorithm.

Lemma 1. Let 𝑗 ∈ {𝑘/𝑝, 2𝑘/𝑝, 4𝑘/𝑝, . . . , 𝑘}, and consider a box
whose height is 𝑗 with probability Θ

(
𝑘2/ 𝑗2𝑝2

)
. Let𝑋 be the indicator

random variable for the event that the box has height 𝑗 , and let 𝑌 be
the memory impact of the box. Then

E[𝑋𝑌] = Θ

(
𝑘2𝑠

𝑝2

)
.

Proof.

E[𝑋𝑌] = Pr[𝑋] · E[𝑌 | 𝑋] = Θ

(
𝑘2

𝑗2𝑝2

)
· 𝑗2𝑠 = Θ

(
𝑘2𝑠

𝑝2

)
. □

Theorem 1. With 𝑂 (1) resource augmentation, RAND-GREEN
is 𝑂 (log 𝑝)-competitive in expectation.

Proof. With𝑂 (1) resource augmentation, we can assume with-

out loss of generality that OPT uses a compartmentalized box pro-

file with power-of-two sized boxes, and that 𝑘 and 𝑝 are powers

of two. Let 𝑆 be the sequence of boxes that OPT uses, and let 𝑅

be the sequence of boxes that RAND-GREEN uses. Observe that

RAND-GREEN finishes the request sequence if 𝑆 is a subsequence

of 𝑅.

At each time 𝑡 , let 𝑧 be the dynamically changing variable that

specifies the height of the next box in 𝑆 . That is, at time 𝑡 = 0, 𝑧 is

the height of the first box in 𝑆 . Once RAND-GREEN allocates a box

of height 𝑧, the value 𝑧 changes to the height of the next box in 𝑆 ,

and so on. The box that was allocated prior to 𝑧 changing (i.e., the

box of height 𝑧) is called a useful box, and the memory impact of

any useful box is said to be useful memory impact.
We now calculate the expectedmemory impact of RAND-GREEN

until RAND-GREEN finishes the request sequence. Let 𝑗 be the

height of a box chosen randomly by RAND-GREEN. If 𝑗 = 𝑧, then

the box is useful. Lemma 1 (with 𝑗 = 𝑧) tells us that the expected

useful memory impact of a randomly chosen box is Θ(𝑘2𝑠/𝑝2). On
the other hand, the expected (useful and wasted) memory impact of

a given box chosen by RAND-GREEN is Θ(𝑘2𝑠/𝑝2 · log 𝑝)—which
can be seen by summing Lemma 1 across all Θ(log𝑝) options for 𝑗 .

Thus the expected memory impact that a given box contributes

is precisely a Θ(log𝑝)-factor larger than the expected useful mem-

ory impact that the box contributes. By linearity of expectation, it

follows that the expected total memory impact of RAND-GREEN

is at most an 𝑂 (log 𝑝)-factor larger than the total useful memory

impact of RAND-GREEN. However, the latter quantity is determin-

istically at most the cost of OPT, implying that RAND-GREEN is

𝑂 (log𝑝)-competitive in expectation. □

3.2 Randomized Online Parallel Paging
We now give a randomized online parallel-paging algorithm RAND-

PAR that achieves an𝑂 (log𝑝) competitive ratio. Algorithm RAND-

PAR has at most log𝑝 phases, where phase 𝑖 ends and phase 𝑖 +
1 begins once half of the processors that were active (i.e., still

running) at the start of phase 𝑖 finish.

Online Parallel Paging with Optimal Makespan SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

Breaking each phase into algorithmic chunks. Let 𝑟 be the

number of active processors at the start of a chunk. Each phase pro-

ceeds in chunks, where each chunk has a primary part followed
by a secondary part. The length ℓ1 of the primary part is fixed,

and only depends on 𝑟 . In particular, the length of the primary part

of the chunk is Θ(𝑠𝑘 log 𝑟/𝑟) and in the primary part of the chunk,

RAND-PAR gives each active processor exactly 𝑘/𝑟 memory for

for its entire length ℓ1. Another way of thinking about it is that

𝑅𝐴𝑁𝐷 − 𝑃𝐴𝑅 gives each processor log 𝑟 the minimum size boxes

of height 𝑘/𝑟 .
In the secondary part, RAND-PAR randomly chooses a box size

according to the randomized online green-paging algorithm RAND-

GREEN, that is, the box’s area (i.e., memory impact) is inversely

proportional to the probability of it being chosen. Thus the probabil-

ity that the box has height 𝑗 ∈ {𝑘/𝑟, 2𝑘/𝑟, 4𝑘/𝑟, . . . , 𝑘} (where each
of the heights is rounded up to the next power of two) is Θ

(
𝑘2

𝑗2𝑟 2

)
.

Then RAND-PAR allocates a box of this size to each processor. That

is, if 𝑗 is the randomly selected box height, then the secondary part

of each chunk consists of one height- 𝑗 box for each of the Θ(𝑟)
processors that remain. Note that the total memory impact of these

boxes is Θ(𝑠𝑟 𝑗2). The length of the secondary part of the chunk is

thus ℓ2 = Θ(𝑠𝑟 𝑗2/𝑘).
Based on the way the primary and secondary parts of the algo-

rithm are designed, we can make the following observation which

simply states that the primary and secondary parts of each chunk

have the same length and the same cache impact (in expectation).

Observation 1. For any chunk Π the length of the primary part of
each chunk ℓ1 is equal to the expected length of the secondary part of
the chunk 𝐸 [ℓ2]. In addition, since RAND-PAR always makes use of
at least a constant fraction of memory, the cache impact of its primary
part is the same as the expected cache impact of its secondary part.

Intuition for why the algorithm does well.We now describe

the intuition for why RAND-PAR achieves a good competitive ratio.

We shall argue that there are essentially two possible modes that

a given processor can be in at any given moment: the first mode

is when the processor is time-bound, and any size box will suffice

for the processor to make progress; the second mode is when the

processor is memory-impact bound, and it needs a relatively large

box in order to continue making substantial progress.

If most of the processes are in the first mode (i.e., time-bound),

then we want to assign every process the minimum box size (this

is what the primary part of each chunk does). On the other hand, if

most of the processes are in the second mode (i.e., memory-impact

bound) then we want to assign boxes to them using a green-paging

algorithm (this is what the secondary part of each chunk does).

Whenever a chunk is in the former case, we call it time-efficient,
and whenever a chunk is in the latter case, we call it impact-
efficient. Time-efficient chunks benefit from their primary parts,

and impact-efficient chunks benefit from their secondary parts.

In other words, each chunk has one part (out of its primary and

secondary parts) that is “useful” and one part that is not. This is

why we design the two parts to have the same expected lengths as

each other, that way the time spent on the non-useful part can be

amortized to the time spent on the useful part.

Before we perform the formal analysis, let us remark on the

important role that randomization plays in this algorithm. There

are certain points in time when a parallel-paging algorithm should

be viewed as “vulnerable”, in particular, these are the times when

the parallel-paging algorithm has selected a large box size for some

processor. If the processor doesn’t need that large box size, then

the parallel-paging algorithm has just wasted a large amount of

resources. In the context of our algorithm, if an adversary knew

which chunks were going to allocate (very) large boxes within their

secondary parts, then the adversary could choose those specific

chunks to be time-efficient (rather than impact-efficient), thereby

rendering the large boxes wasted. The purpose of randomization is

to make it so that the adversary cannot predict which chunks will

contain large boxes until it is too late for the adversary to exploit

that knowledge. That is, randomization prevents the adversary

from strategically choosing which chunks are time-efficient versus

which chunks are impact-efficient in any way that could thwart

the parallel-paging algorithm’s effectiveness. As we shall see in

the next section, this randomization can actually be eliminated by

designing a paging algorithm with the property that it is never “too

vulnerable”.

Analysis. We now prove that RAND-PAR is 𝑂 (log𝑝) competitive.

First, we give some notation. With 𝑂 (1) resource augmentation,

we can assume without loss of generality that OPT uses a compart-

mentalized box profile for each processor (and that the box sizes are

powers of two). Let 𝑆𝑖 be the sequence of boxes that OPT uses for

processor 𝑖 . Let 𝑅𝑖 be the sequence of boxes that RAND-PAR uses

for processor 𝑖 . By construction, up until the time when processor 𝑖

or processor 𝑗 finishes, the box sequences for 𝑅𝑖 and 𝑅 𝑗 are the

same. Observe that RAND-PAR finishes the request sequence for

processor 𝑖 if 𝑆𝑖 is a subsequence of 𝑅𝑖 . In this case, some boxes in

sequence 𝑅𝑖 correspond to boxes in sequence 𝑆𝑖—these are called

useful boxes. The rest are called wasted boxes. As in the previous

subsection, we say that the memory impact from a useful box is

useful memory impact; the memory impact from a wasted box is

wasted memory impact.
At each time 𝑡 , let 𝑧𝑖 be the dynamically changing variable that

specifies the height of the next box in sequence 𝑆𝑖 . That is, at time

𝑡 = 0, 𝑧𝑖 is the height of the first box in 𝑆𝑖 . Once RAND-PAR

allocates a box of height 𝑧𝑖 , the value 𝑧𝑖 changes to the height of

the next box in 𝑆𝑖 , and so on.

We now divide the algorithm’s chunks into two categories,

namely, time-efficient and impact-efficient, as defined next. Con-

sider a time-step in the primary part of a chunk. If more than 𝑟/4
of the processors 𝑖 satisfy 𝑧𝑖 ≤ 𝑘/𝑟 , then we call the step time-
efficient. Otherwise, we call the step impact-efficient. A chunk

is time-efficient if all the time steps in its entire primary part are

time-efficient; otherwise the chunk is impact-efficient. Note here
that the primary part of a chunk contains several boxes (in particu-

lar, Θ(log 𝑟) boxes, each of size 𝑘/𝑟) — therefore, it is possible for

some steps in a chunk to be time-efficient while others are not. It

is important to note that even if only some, but not all, steps are

time-efficient, the chunk can still be impact efficient.

Since every chunk is either time-efficient or impact-efficient, we

can bound the makespan of RAND-PAR by separately analyzing

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Agrawal et al.

the total length of the time-efficient and impact-efficient chunks.

We first bound the total length of time-efficient chunks.

Lemma 2. Let 𝑇OPT be the makespan of the optimal algorithm OPT.
Then the total length of all the time-efficient chunks of RAND-PAR is
𝑂 (log𝑝 ·𝑇OPT) in expectation.

Proof. Each time-efficient step in RAND-PAR can be viewed as

making one time-step of progress on each of at least 𝑟/4 processors
in OPT. It follows that each phase can have at most 4𝑇OPT time-

efficient steps. The total number of time-efficient steps in the full

algorithm is therefore 𝑂 (log 𝑝 · 𝑇OPT). This means that the sum

of the lengths of the primary parts of the time-efficient chunks is

at most 𝑂 (log𝑝 · 𝑇OPT). On the other hand, the expected length

of the secondary part of each time-efficient chunk is equal to the

length of the primary part. Thus the expected total length of all the

time-efficient chunks is 𝑂 (log 𝑝 ·𝑇OPT). □

We now bound the total length of the impact-efficient chunks.

We first show that in any impact-efficient chunk Π, in expectation,

the total usefulmemory impact that RAND-PARmakes in the chunk

is at least a Θ(1/log𝑝)-factor of the total memory impact.

Lemma 3. Let Π be an impact-efficient chunk, and let 𝑟 be the
number of active processors at the start of the chunk. Then the ex-
pected useful memory impact that RAND-PAR makes in chunk Π is
a Θ(1/log 𝑟)-factor of the expected total memory impact that RAND-
PAR makes in chunk Π.

Proof. The proof is similar to that of Theorem 1 in the way it

compares useful memory impact to wasted memory impact. Con-

sider an impact-efficient chunk, and let 𝑗 be the height of the random

boxes used by (all) the active processors in the secondary part of

the chunk. Since the chunk is impact-efficient, at some point in the

primary part of the chunk there is an impact-efficient time step,

which means that there are at least 𝑟/2 − 𝑟/4 = Ω(𝑟) processors 𝑖
that all satisfy 𝑧𝑖 > 𝑘/𝑟 in that time step.

For each of those Ω(𝑟) processors, if 𝑗 = 𝑧𝑖 then the box con-

tributes 𝑠𝑧2
𝑖
useful memory impact. By Lemma 1 (with 𝑗 = 𝑧𝑖),

the expected useful memory impact that a given box makes for

processor 𝑖 is Θ(𝑘2𝑠/𝑟2). Since there are Ω(𝑟) processors, the to-
tal expected useful memory impact of a randomly chosen box is

Θ(𝑘2/𝑟).
Since there are log 𝑟 different box sizes, and each box size con-

tributes expected memory impact Θ(𝑘2𝑠/𝑟2) to each processor

(by Lemma 1), the expected memory impact (whether useful or

wasted) of a randomly chosen box for a particular processor is

Θ(log 𝑟 · (𝑘/𝑟)2). Hence, the total expected memory impact of all 𝑟

processors in the (secondary part of the) chunk is Θ(log 𝑟 · 𝑘2/𝑟).
From Observation 1, the impact of the primary part of a chunk

is the same as the expected impact of its secondary part. Thus the

expected total memory impact incurred by the algorithm across all

processors is Θ(log 𝑟 · 𝑘2/𝑟). □

Lemma 4. Let 𝑇OPT be the makespan of the optimal algorithm OPT.
Then the total length of all the impact-efficient chunks of RAND-PAR
is 𝑂 (log 𝑝 ·𝑇OPT) in expectation.

Proof. From Lemma 3, in any impact-efficient chunk Π, in ex-

pectation the total useful memory impact that RAND-PAR makes

in the chunk is a Θ(1/log 𝑝)-factor of the total expected memory

impact (whether useful or wasted). Summing over all the impact-

efficient chunks, we get the expected total useful memory impact𝐴

that RAND-PAR makes is a Θ(1/log 𝑝)-factor of the total expected
memory impact 𝐵 that RAND-PAR makes. Notice, however, that 𝐴

is deterministically equal to the memory impact of OPT, which is

𝑂 (𝑘𝑠 ·𝑇OPT). On the other hand, 𝐵 is Θ(𝑘𝑠 ·𝑇𝑅𝐴𝑁𝐷−𝑃𝐴𝑅). Thus the
total length of all the impact-efficient chunks is𝑂 (log𝑝 ·𝑇OPT). □

Theorem 2. Assuming 𝑂 (1) resource augmentation, the expected
makespan of RAND-PAR is 𝑂 (log𝑝 ·𝑇OPT).

Proof. It follows immediately from Lemmas 2 and 4, since each

chunk of RAND-PAR is either time-efficient or impact-efficient. □

An interesting feature of our algorithm is that, although it

achieves competitive ratio 𝑂 (log 𝑝), it also fits into the mold de-

scribed by Theorem 4, i.e., our algorithm uses a green-paging algo-

rithm as a black box. Thus we have:

Corollary 1. RAND-PAR is a randomized parallel paging algo-
rithm that assigns boxes to each processor using a black-boxΘ(log 𝑝)-
competitive green paging algorithm, that uses a factor of 𝑂 (1) re-
source augmentation, and that achieves competitive ratio 𝑂 (log𝑝)
for makespan.

This corollary comes as a surprising complement to Theorem 4.

Recall that Theorem 4 says that the use of a black-box green paging

algorithm (even a clairvoyant 𝑂 (1)-competitive green-paging al-

gorithm) forces a competitive ratio of Ω̃(log 𝑝), where notation Ω̃
hides a 1/polyloglog(𝑝) factor. Given that we are using a Θ(log𝑝)-
competitive green-paging algorithm (which in past work [2] has

been shown to be the best possible online green-paging algorithm),

it is tempting to assume that we must incur a competitive ratio of

Ω̃(log2 𝑝). Remarkably, this intuition ends up being wrong, and as

shown by the previous corollary, the two Ω̃(log𝑝) factors can be

made to add rather than multiply.

3.3 Deterministic Online Parallel Paging
In this section, we give a deterministic parallel-paging algorithm,

called DET-PAR, that achieves competitive ratio 𝑂 (log𝑝) for

makespan. The basic idea behind our algorithm is to derandomize

the construction from the previous subsection, by first formalizing

the necessary set of properties that the parallel-paging algorithm

must satisfy in order to for it to deterministically achieve the same

results as the randomized algorithm RAND-PAR, and by then show-

ing how to achieve those properties deterministically.

As before, we will break our parallel-paging algorithm into

phases such that the number of processors that are active at the

end of each phase is half as large as the number of processors that

are active at the beginning of each phase. Within each phase 𝑄 ,

define 𝑝𝑄 to be the number of processors active at the end of the

phase, and define 𝑏𝑄 = 𝑘/𝑝𝑄 to be the base height for the phase.
A parallel-paging algorithm using 𝑂 (𝑘) memory is well-

rounded if two properties hold. The first is that, at any given

moment in any given phase 𝑄 , every processor that is active is

currently allocated a box with height at least 𝑏𝑄 . The second is that,

at any given moment in time 𝑡 , for any given processor 𝑥 that is

Online Parallel Paging with Optimal Makespan SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

still active, and for any given box height 𝑧 ≥ 𝑏𝑄 , at least one of the

following holds:

• we are within the final 𝑂 (𝑧2𝑠/𝑏𝑄 log𝑝) time steps of the

current phase;

• we are within the final𝑂 (𝑧2𝑠/𝑏𝑄 log𝑝) time steps of 𝑥 ’s life;

• 𝑥 is currently allocated a box with height at least 𝑧;

• 𝑥 will be allocated a new box with height at least 𝑧 within

the next 𝑂 (𝑧2𝑠/𝑏𝑄 log 𝑝) time steps.

A key insight is that, if an algorithm is well-rounded, then we

can analyze the algorithm’s makespan in a similar way to how we

analyzed RAND-PAR in the previous subsection.

Lemma 5. Any well-rounded parallel-paging algorithm A is
𝑂 (log𝑝)-competitive for makespan.

Proof. For each processor 𝑥 , let 𝜎𝑥 be the box sequence that

the optimal parallel-paging algorithm OPT allocates to 𝑥 . For each

box in 𝜎𝑥 (we refer to these as the OPT-boxes), there is some set 𝑆

of paging requests that OPT processes with that box. We say that

A has completed an OPT-box once A has completed all of the

paging requests associated with that box. We say that processor

𝑥 is working on an OPT-box if some partial subset of the paging

requests associated with the box are complete.

Note that if a processor 𝑥 is working on an OPT-box of some

height 𝑧, and if the processor spends 𝑠𝑧 steps with a memory of

size 𝑧 or larger, then the processor is guaranteed to complete the

OPT-Box. One consequence of this is that, if an algorithm A is

well-rounded, then the maximum amount of time that it can spend

working on any given OPT-box of some height 𝑧 is at most

𝑂 (𝑧2𝑠/𝑏𝑄 log 𝑝 + 𝑠𝑧) . (1)

We will make use of this fact later in the proof.

Say that a processor is time-efficient during a given time step of

a phase 𝑄 if, during that time step, the processor works exclusively

on OPT-boxes with heights 𝑏𝑄 or smaller. Say that a time step is

time-efficient if at least half of the remaining processors are time-

efficient during that time step. Say that a phase is time-efficient if
for at least half of the time steps in the phase are time efficient.

We will now argue that each time-efficient phase 𝑄 can take

time at most 8𝑇𝑂𝑃𝑇 . Since A is well-rounded, it must always allo-

cate every processor a box with height at least 𝑏𝑄 . It follows that,

whenever a processor 𝑥 is working on an OPT-box with height

𝑏𝑄 or smaller, the processor is guaranteed to complete that box

within the same amount of time that OPT completed it. Thus each

processor 𝑥 can be time-efficient during at most𝑇𝑂𝑃𝑇 time steps in

𝑄 . If 2𝑝𝑄 is the number of processors active at the beginning of 𝑄 ,

then each time-efficient time step in 𝑄 requires at least a 𝑝𝑄/2 of
them to be time-efficient. The number of time-efficient time steps

in 𝑄 is therefore at most 4𝑇𝑂𝑃𝑇 . Since 𝑄 is itself time-efficient, at

least half of its time steps must be time-efficient. Thus the length

of 𝑄 is at most 8𝑇𝑂𝑃𝑇 .

The total length of all time-efficient phases is therefore at most

8𝑇𝑂𝑃𝑇 log𝑝 . To complete the proof, we turn our attention to the

phases 𝑄 that are not time-efficient.

For each processor 𝑥 , and each time-inefficient phase 𝑄 , let 𝐼𝑥,𝑄
be the total memory impact across all OPT-boxes that 𝑥 works on

during 𝑄 . A key claim is that, if 𝑥 is time-inefficient for 𝑠𝑥,𝑄 steps

of some phase 𝑄 , then

𝑠𝑥,𝑄 ≤
𝐼𝑥,𝑄 log 𝑝

𝑏𝑄
. (2)

We can prove (2) using (1). In particular, for each OPT-box of some

height 𝑧 that 𝑥 works on, it spends time at most{
0 if 𝑧 < 𝑏𝑄

𝑂 (𝑧2𝑠/𝑏𝑄 log 𝑝) + ℎ𝑠 if 𝑧 ≥ 𝑏𝑄
= 𝑂 (𝑧2𝑠/𝑏𝑄 log𝑝)

on that box. On the other hand, that same box contributes 𝑧2𝑠 to

𝐼𝑥,𝑄 , hence (2).

We now use (2) to relate the length of each time-inefficient phase

𝑄 to the sum

∑
𝑥 𝐼𝑥,𝑄 . During any time-inefficient phase𝑄 of some

length 𝑡𝑄 , we have that
∑
𝑥 𝑠𝑥,𝑄 = Θ(𝑝𝑄𝑡𝑄). It follows by (2) that

𝑝𝑄𝑡𝑄 = 𝑂

(∑︁
𝑥

𝐼𝑥,𝑄 log 𝑝

𝑏𝑄

)
,

which, using that 𝑏𝑄 = 𝑘/𝑝𝑄 , means that

𝑡𝑄 = 𝑂

(∑︁
𝑥

𝐼𝑥,𝑄 log𝑝

𝑘

)
.

Summing over all time-inefficient phases, we get that their total

length is at most

𝑂
©­«
∑︁
𝑥,𝑄

𝐼𝑥,𝑄 log 𝑝

𝑘

ª®¬ .
Now let 𝐼𝑥 be the total memory impact of all boxes in OPT’s box

sequence 𝜎𝑥 for processor 𝑥 . Then,∑︁
𝑥,𝑄

𝐼𝑥,𝑄/𝑘 ≤
∑︁
𝑥

𝐼𝑥/𝑘 + poly(𝑝𝑘),

where the final term accounts for the fact that adjacent phases may

overlap on up to 𝑝 boxes that they work on. Notice, however, that∑
𝑥 𝐼𝑥/𝑘 ≤ 𝑇𝑂𝑃𝑇 . So, assuming that 𝑇𝑂𝑃𝑇 is sufficiently large as a

function of 𝑝 and 𝑘 ,∑︁
𝑥,𝑄

𝐼𝑥,𝑞/𝑘 ≤ 𝑇𝑂𝑃𝑇 + poly(𝑝𝑘) = 𝑂 (𝑇𝑂𝑃𝑇).

Since the total length of A’s time-inefficient phases is

𝑂 (∑𝑥,𝑄 𝐼𝑥,𝑄 log 𝑝/𝑘), the proof is complete. □

Next we construct a well-rounded parallel-paging algorithm.

Lemma 6. There exists a deterministic well-rounded parallel-paging
algorithm using 𝑂 (𝑘) memory.

Proof. Without loss of generality, we can focus on the task of

constructing a single phase 𝑄 in which the number of processors

falls from 2𝑝𝑄 to 𝑝𝑄 .

Since we are only interested in a single phase, we will simplify

the discussion by using 𝑝 to denote 𝑝𝑄 and 𝑏 to denote 𝑏𝑄 .

Our new task is the following. We wish to assign boxes with

heights 𝑏, 2𝑏, 4𝑏, 8𝑏, . . . , 𝑝𝑏 = 𝑘 to 𝑝 processors so that, at any given

moment, the total height of all assigned boxes is at most 𝑂 (𝑝𝑏).
Once a box of height 𝑧 is assigned, it sticks around for time 𝑧. (Note

that we can also feel free to allocate multiple boxes to a given

processor if we want, while still assuming that OPT only allocates

one at a time.) In order so that our algorithm is well-rounded, we

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Agrawal et al.

need two properties: (1) that every processor is always assigned a

box (this is trivial, since we can use 𝑝𝑏 = 𝑘 extra memory to give

out boxes of size 𝑏 to whomever needs them); and (2) that, for each

box height 𝑧 ≥ 𝑏, for each processor 𝑥 , and for any point in time,

𝑥 is guaranteed to be allocated a box of height ≥ 𝑧 at some point

within the next 𝑂 (𝑧2𝑠/𝑏 log 𝑝) time steps (unless, of course, 𝑥 is

currently allocated such a box). We will ignore the first property,

since it is trivial to achieve, and focus on achieving the second.

The boxes of heights 𝑧 > 𝑘/log 𝑝 = 𝑝𝑏/log 𝑝 are easy to handle.

Indeed, for each such height 𝑧, we only need a box of height 𝑧 every

𝑠𝑧2 (log 𝑝)/𝑏 > 𝑠 (𝑝𝑏/log𝑝)𝑧 (log𝑝)/𝑏 = 𝑠𝑧𝑝

time steps. So we can just allocate one box of height 𝑧 at a time,

and cycle through which processor is allocated that box. The boxes

of heights 𝑧 ≥ 𝑘/log𝑝 therefore contribute at most 𝑘 + 𝑘/2 + · · · +
𝑘/log𝑝 = 𝑂 (𝑘) total allocated height at any given moment.

The boxes of heights 𝑧 ≤ 𝑘/log 𝑝 = 𝑝𝑏/log𝑝 require a dif-

ferent approach. We cannot get away with allocating only one

box of each height at a time. For each of the 𝑂 (log 𝑝) heights
𝑧 ∈ {𝑏, 2𝑏, 4𝑏, . . . , 𝑝𝑏/log 𝑝}, we allocate 𝑘/log 𝑝 memory to boxes

of that height 𝑧. We refer to this memory as the 𝒛-strip of memory.
We use the 𝑧-strip of memory as follows: using the fact that

𝑧 ≤ 𝑘/log𝑝 , we allocate 𝑘
𝑧 log𝑝

boxes of height 𝑧 at a time, so that

the total time needed to allocate 𝑝 boxes is

𝑠𝑝𝑧

𝑘/(𝑧 log 𝑝) =
𝑠𝑧2 log 𝑝

𝑏
.

The boxes allocated in the 𝑧-strip are assigned in a round-robin

fashion to the 𝑝 processors, so each processor gets a box of height

𝑧 every 𝑠𝑧2/𝑏 log𝑝 time steps.

In summary, it is possible to allocate 𝑂 (𝑘) memory at a time

while ensuring that for each box size 𝑧 ∈ {𝑏, 2𝑏, 4𝑏, . . . , 𝑘}, each
processor gets a box of size 𝑧 every 𝑠𝑧2/𝑏 log𝑝 time steps. This

completes the proof of the lemma. □

We define DET-PAR to be the deterministic well-rounded al-

gorithm from the previous lemma. We remark that DET-PAR is

oblivious, meaning that it does not adapt to the specific access

sequence of processor: the only information that it uses is how

many processors are present at any given moment.

Combining the previous two lemmas, we obtain the following:

Theorem 3. DET-PAR is a deterministic parallel-paging algo-
rithm that uses a factor of 𝑂 (1) resource augmentation and that
achieves competitive ratio 𝑂 (log 𝑝) for makespan.

Connections to green paging, and other implications. We

conclude the section by proving an interesting relationship between

arbitrary well-rounded paging algorithms and the green-paging

problem. This relationship will then allow us to obtain several

interesting corollaries.

Call an algorithm balanced if (1) the parallel-paging algorithm

always allocates at least a constant fraction of memory to proces-

sors; and (2) within each phase 𝑄 , the total amount of memory

impact allocated to each of the (remaining) processors is always

equal up to ±poly(𝑝𝑘). We now observe that any balanced well-

rounded algorithm is necessarily green:

Lemma 7. Any well-rounded balanced parallel paging algorithm A
must have the following property: the box sequence allocated by A to
a given processor 𝑥 during a given phase 𝑄 is 𝑂 (log𝑝)-competitive
for green paging (with 𝑂 (1) resource augmentation).

Proof. Consider a processor 𝑥 during a phase 𝑄 , and assume

that the length 𝑇𝑄 of 𝑄 is at least poly(𝑝𝑘). Let us compare to

a paging algorithm OPT that assigns each processor an optimal

green-paging box sequence during phase 𝑄 (rather than optimiz-

ing for parallel paging). Because A is well-rounded, the total

amount of time that 𝑥 spends working on a given OPT-box of some

height 𝑧 ∈ {𝑘/𝑝𝑄 , 2𝑘/𝑝𝑄 , . . . , 𝑘} is at most 𝑂 (𝑧2𝑠/𝑏𝑄 log𝑝 + 𝑠𝑧) =
𝑂 (𝑧2𝑠/𝑏𝑄 log𝑝). On the other hand, the box of height 𝑧 incurs a

memory impact of Θ(𝑧2𝑠). Thus, if we let 𝐼𝑥,𝑄 be the total memory

impact across all OPT-boxes that 𝑥 works on during 𝑄 , then

𝐼𝑥,𝑄 = Ω(𝑏𝑄𝑇𝑄/log 𝑝).
Since A is balanced, the total amount of memory impact 𝜙 that

𝑥 incurs in phase 𝑄 is 𝑂 (𝑇𝑄𝑘/𝑝𝑄). Thus

𝑇𝑄 = Ω
(
𝜙𝑝𝑄/𝑘

)
.

Chaining together the inequalities,

𝐼𝑥,𝑄 = Ω

(
𝑏𝑄𝜙𝑝𝑄

𝑘 log 𝑝

)
= Ω(𝜙/log𝑝).

This implies that the box sequence allocated byA to 𝑥 during phase

𝑄 is 𝑂 (log 𝑝)-competitive for green paging. □

As an immediate consequence, we get a deterministic analogue

of Corollary 1.

Corollary 2. DET-PAR is a deterministic parallel-paging algorithm
that assigns boxes to each processor using a black-box Θ(log𝑝)-
competitive green paging algorithm, that uses a factor of 𝑂 (1) re-
source augmentation, and that achieves competitive ratio 𝑂 (log𝑝)
for makespan.

A second corollary of Lemma 7 is that we can analyze the compet-

itive ratio that DET-PAR incurs with respect to average completion
time. Indeed, [2] showed that, in order for a deterministic parallel-

paging algorithm (with 1 +Θ(1) resource augmentation) to achieve

an optimal competitive ratio of 𝑂 (log 𝑝) for average completion

time, it needs only to satisfy two requirements: (1) that it is bal-

anced, as defined above; and (2) that it is green, meaning that within

each phase it allocates memory to processors using an 𝑂 (log𝑝)-
competitive green-paging algorithm. On the other hand, Lemma

7 tells us that, if a parallel-paging algorithm is well-rounded and

balanced, then green-ness is automatic. Thus we can conclude that

DET-PAR achieves the same (optimal) competitive ratio for average

completion time as it achieves for makespan.

Corollary 3. DET-PAR achieves a competitive ratio of 𝑂 (log 𝑝) for
average-completion-time using 𝑂 (1) resource augmentation.

4 A LOWER BOUND ON BLACK-BOX
APPLICATIONS OF GREEN PAGING

In [2], the authors show how “good” green paging algorithms can

be transformed into parallel paging algorithms with good perfor-

mance under several metrics. In particular, starting from any green

Online Parallel Paging with Optimal Makespan SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

paging algorithm that is 𝑐-competitive (including an algorithm e.g.

1-competitive because it is offline, or because it is only required to

service “easy” request sequences) one can obtain a parallel paging

algorithm with comparable resource augmentation that is 𝑂 (𝑐)-
competitive for mean completion time. The black-box transforma-

tion involves using the green paging algorithm for each of the 𝑝

sequences in the parallel paging problem. Without loss of gener-

ality, this produces for each processor a sequence of boxes. Any

parallel paging algorithm that packs these boxes fairly (with no

request sequence having had, at any point in time, more than 𝑂 (1)
times the memory impact of any other uncompleted sequence) and

efficiently (with boxes taking an Ω(1) fraction of the “available”

impact) yields the requisite result.

This result does not apply to makespan. In general, to complete

a fraction greater than (1 − 𝜀) of all sequences, the black-box trans-
formation yields a competitive ratio with an upper bound no better

than 𝑂 (𝑐 log 1/𝜀). Therefore the additional overhead is not a con-

stant if 𝜀 = 𝑜 (1); in particular, for makespan 𝜀 = 1/𝑛, yielding a

multiplicative ≈ log𝑛 overhead on top of that stemming from the

suboptimality of online green paging. We now show that a signifi-

cant portion of this overhead is inherent to using such a black-box

approach: roughly speaking, if each processor is allotted any opti-

mally or almost optimally green memory profile, then makespan

on some sequences is inevitably suboptimal by a factor Ω̃(log𝑛).

A deeper look at green paging. To state more formally the lower

bound we must first make the definition of green paging more

precise. In general, the green paging problem is well defined only

when we specify the maximum and minimum memory to service a

sequence. Intuitively, the closer the two thresholds are, the fewer

choices the algorithm has, and thus the more easily it can be optimal

or almost optimal. Indeed, the competitive ratio achievable by a

deterministic online green paging algorithm with constant resource

augmentation is logarithmic in the ratio between the two thresholds

[2]. Crucially, if the ratio is small because the minimum threshold

is high, an algorithm can achieve better relative performance not

because it can have lower impact, but because there are fewer

possible choices – in other words, because the optimal strategy is

forced to have higher impact.

When using green paging black-box to allocate memory to each

sequence in a parallel paging algorithm, the threshold for the mini-

mum memory allotted to each sequence grows over time – since

when 𝑣 sequences remain uncompleted, an extra factor 2 of resource

augmentation allows each sequence to receive 𝑘/𝑣 memory at all

times. In practice, this is easily addressed (both in previous sec-

tions and in earlier work [2]) with yet another factor 2 of resource

augmentation by simply “rebooting” the green paging algorithm

whenever the minimum threshold doubles – so that it is always

effectively running with fixed thresholds.

Note that the memory thresholds encountered when servicing

one sequence might be influenced by the choices of the algorithm

for other sequences. Thus, one might in principle encounter a green

paging algorithm used for parallel paging that appears greener

by “cheating” as follows: it allots excessive memory early on to

some sequences so as to end them as soon as possible, and thus

becomes comparatively greener on the suffixes of the remaining

sequences (and in aggregate over the whole execution) – not by

being intrinsically greener on those suffixes, but simply by making

the lowest-impact allocations not viable. As we are trying to prove

that employing “really” green paging algorithms in parallel paging

is a source of a logarithmic overhead, we would like to rule out this

“greenwashing”.

We stress that this issue is not present if considering green paging

in isolation, when (ignoring constant factors) servicing a prefix of

a sequence with higher impact can never lower the impact of the

remaining suffix and thus of the sequence in its entirety; so that

being greedily green is always the most efficient strategy. This is

true even if the memory thresholds can change over time, as long

as the changes do not depend on the algorithm’s choices. Thus,

even in the context of parallel paging we would like to consider

only “greedily green” allocations – which is also the only option

when dealing with online algorithms, which cannot know when a

sequence might end.

Thus, we refine our definition of green paging as follows:

Definition 1. A green paging algorithm ALG is 𝑔-greedily com-
petitive for green paging if for some 𝑔′ (which might depend on the
minimum and maximum memory thresholds, and on the relative
overhead 𝑠 of faults), for any sequence 𝜎 , it services 𝜎 incurring on
any prefix 𝜋 of 𝜎 an impact no larger than 𝑔 · 𝑐𝑂𝑃𝑇 (𝜋) + 𝑔′, where
𝑐𝑂𝑃𝑇 (𝜋) is the minimum offline cost to service 𝜋 .

Note that this is a very general definition. A green paging online

algorithm that is 𝑐-competitive is necessarily greedily 𝑐-competitive

since a sequence can end at any time (and thus the algorithms in [2]

are exactly of this type). But a greedily competitive algorithm is not

necessarily online: it can make decisions taking the entire sequence

into consideration – in fact, in the context of parallel paging base

its decisions on the entirety of all 𝑝 sequences.

Being green forces a logarithmic makespan overhead. Con-
sider a parallel paging algorithm PAR that uses a greedily green

paging algorithm GREEN as a black box. As mentioned before,

we can assume without loss of generality GREEN is simply a nor-

malized and compartmentalized memory allocation strategy, that

given a sequence of requests produces a sequence of boxes and

services the sequence within those boxes e.g. with LRU (which is

2-competitive with resource augmentation 2). At any time PAR

can allocate a memory box for one or more sequences not under

execution, it does so (prioritizing among the possible choices, if nec-

essary, in some fashion), and begins servicing those sequences until
the end of the respective boxes, or of the sequences. In fact, with

𝑂 (1) resource augmentation, we can simply assume PAR keeps

every sequence constantly in execution by simply allocating, to any

that would receive no memory, a box of capacity 𝑘/𝑣 where 𝑣 is the
(smallest power of 2 at least as large as the) number of surviving

sequences. Note that the parallel paging algorithms obtained in [2]

are exactly of this type. We can then prove:

Theorem 4. For any 𝑐 ≥ 1, and for any arbitrarily large number
of request sequences 𝑝 and memory size 𝑘 ≥ 𝑝 , there exist sequences
𝜎0, . . . , 𝜎𝑝−1 and a parallel paging algorithm OPT that can serve these
sequences with memory 𝑘 which has the following property.

If PAR is greedily competitive within a factor 𝑐 , then for any 𝜀 > 0,
𝑠 > 𝑐𝑘 , the time necessary for PAR to complete more than a fraction
(1 − 𝜀) of all sequences, even with memory 𝐾 = 𝑐𝑘 , is a factor Ω(1 +

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Agrawal et al.

log(1/𝜀)/log log𝑝) larger than that necessary for OPT to complete
all sequences.

Let us briefly examine the theorem’s statement. First, if 𝑐 is a

constant (i.e. GREEN is 𝑂 (1)-competitive), PAR’s competitive ra-

tio for makespan is Ω(log𝑝/log log𝑝). Second, note the order of
quantifiers in Theorem 4, and in particular how the adversarial

request sequences depend (obviously) on the memory and number

of processors, and on the maximum “slack” we allow the green

paging algorithm – but not on the green paging algorithm itself or

its parallel scheduler. Thus, the sequences are universally bad even

against offline (but sufficiently green) algorithms; i.e. the subopti-

mality factor stems not from ignorance of future requests, but from

being green. We then have:

Corollary 4. Any parallel paging algorithm with constant resource
augmentation 𝑐 , exploiting black-box a 𝑐−greedily competitive green
paging algorithm, has a competitive ratio Ω(1 + log𝑝/log log𝑝).

Proof idea. The theorem’s proof is short, but requires careful

coordination of many parameters; so we first try to provide an

intuition of where we are going and why. For simplicity, we focus

on the case 𝜀 = 1/𝑛, i.e. makespan.

Our generic sequence 𝜎𝑖 is the concatenation of a possibly empty

prefix 𝜋𝑖 and of a suffix 𝜓𝑖 . Suffixes of all sequences have the same

length; each of their pages is requested only once, so they run at the

same speed however little memory they are given. And since even

with minimal memory suffixes are designed to consume the bulk

of impact, the key to optimality lies in executing them in parallel.

Prefixes of different sequences vary in length and are designed

to achieve two goals. First, any “sufficiently green” memory alloca-

tion must be an almost minimal one: i.e. GREEN can allocate only

few boxes of size ≫ 𝐾/𝑣 when 𝑣 sequences are still uncompleted.

Second, it is only slightly less green to execute a prefix with the

largest possible memory (the size 𝐾 box) than with the minimal

one (the size 𝐾/𝑣 box). OPT takes advantage of this by allocating

large boxes to prefixes so as to complete each very quickly without

being too wasteful; it can then execute all suffixes in parallel. PAR,

on the other hand, to be green must give roughly the same memory

(the minimal one) to each executing prefix; since prefixes are of

different length, this prevents PAR from executing all suffixes in

parallel.

Let us now have a first look at the sequences. The generic prefix

𝜋𝑖 accesses two types of pages: repeaters and polluters. Polluters
are pages that are accessed only once; thus, they replace in memory

potentially useful data with data that will never be accessed again.

Repeaters are 𝑘 − 1 pages that we keep cycling over — except that,

every so often, instead of a repeater we access a polluter. Note that

these are common access patterns, and not at all pathological.

If we had no polluters, for a sufficiently large 𝑠 and sufficiently

long prefixes, the greenest strategy would obviously be to allocate

a ≈ 𝑘 memory and only incur a negligible fraction of misses (on the

very first cycle). By adding a fraction of polluters, we can increase

themiss rate incurred by this allocation so that it is just high enough

to have GREEN reject it. More specifically, denoting by 𝑣 the number

of sequences not yet completed by GREEN at a point in time, we

want roughly every 𝑣/𝑐th page to be a polluter. Then, the minimum

memory GREEN can assign to a sequence is ≈ 𝐾/𝑣 – forcing a miss

on most accesses, for a total impact on 𝐿 requests of 𝑠𝐾𝐿/𝑣 . With

memory 𝑘 or larger, every 𝑣/𝑐th access (involving a polluter) is a

miss, for a total impact slightly larger than 𝑐𝑠𝑘𝐿/𝑝 . Since GREEN
must be optimal within a factor 𝑐 in terms of impact, it cannot

choose the large boxes (nor mid-sized boxes that incur almost as

many misses as the small box, but more impact).

OPT can then complete the prefixes one at a time with boxes

of size 𝑘 . Once all prefixes are completed, all suffixes can be exe-

cuted in parallel. Suffixes involve roughly 𝛼𝑘2 log log𝑝 requests,

with a sufficiently large 𝛼 that the suffix cost dominates the entire

computation, so OPT finishes in time 𝑂 (𝛼𝑠𝑘2 log log𝑝).
We want PAR to take significantly more time, which leads us to

the next insight. Prefixes are of different lengths so that the follow-

ing property (approximately) always holds: PAR runs over ≈ log𝑝

eras of roughly the same duration, with the number of uncom-

pleted prefixes halving each era until only suffixes remain. Roughly

speaking, if ≈ 𝑣 sequences remain uncompleted during an era, then

at most a fraction 1/log𝑝 of them are executing prefixes and all

others are executing suffixes. Our sequences will force each era to

take approximately ≈ 𝛼𝑠𝑘2 time, for a total time of ≈ 𝛼𝑠𝑘2 log 𝑝 .

This is a factor ≈ log𝑝/log log𝑝 larger than OPT – due to the fact

that suffixes, the dominant cost in both cases, for PAR spread over

≈ log 𝑝 eras rather than over log log𝑝 .

How do we design sequences to make the above happen?
We divide all sequences into phases, such that, in general, each

alive sequence executes one phase in each era. Each phase has

about 𝑋 = Θ(𝛼𝑘2) requests. All suffixes have the same number

Θ(log log𝑝) of phases; so every suffix hasΘ(𝛼𝑘2 log log𝑝) requests,
all to polluters.

As for prefixes, those of most sequences are empty and only

𝑝/log𝑝 sequences are prefixed. The prefixed sequences are divided
into roughly log𝑝 − log log𝑝 families 𝐹0, 𝐹1, ... where sequences

in a family are isomorphic. Family 𝐹𝑖 has 2
𝑖
sequences, but each

sequence in this family has log 𝑝 − log log𝑝 − 𝑖 phases. That is, the
number of sequences in the family increases geometrically with

𝑖 but the number of phases that the sequences in the family have

decreases linearly with 𝑖 . Therefore, family 𝐹0 has 1 sequence, but

is very long — it has approximately log𝑛 − log log𝑛 phases. On

the other hand, the last prefixed family has about half the prefixed

sequences, but each of these prefixes has only 1 phase.

Remember that we are designing sequences so that GREEN (and

therefore PAR) is forced to choose mostly small boxes for all the

sequences that are in their prefix phases. To do so, we must ensure

first, that there are at least 𝑝/2𝑗 sequences in the 𝑗th phase, and

second, that the pollution level of the sequences executing their

prefix in the 𝑗th phase is just high enough — in particular, the 𝑗th

prefixed phase for all sequences (where it exists) has a pollution level

of approximately ≈ 2
𝑗𝑐/𝑝 . Now consider PAR’s execution. In the

first era, all sequences are alive. 𝑝−𝑝/log 𝑝 prefix-free sequences are
executing their first suffixes and the remaining 𝑝/log𝑝 sequences

are executing their first prefix phase. At this point, the smallest

available box size is 𝐾/𝑝 and the pollution level is high enough

that GREEN should choose small boxes for all the 𝑝/log 𝑝 prefixed

sequences. The first phase takes 𝑂 (𝛼𝑠𝑘2) time since each sequence

always misses with small boxes. After the first phase, about half the

prefixed sequences enter their suffix phases, but all sequences are

Online Parallel Paging with Optimal Makespan SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

still alive. The pollution level keeps doubling in each phase over the

next log log𝑛 phases, so GREEN must keep choosing small boxes.

At this point, the prefix-free sequences start completing. How-

ever, most of the prefixed sequences are now in their suffix phases

— in particular, only a 1/log 𝑝 fraction of the originally prefixed

sequences are still executing their prefixes, since suffixes last for

about log log𝑝 phases, and during each of those the number of

surviving prefixes roughly halved. Also, the pollution level has

increased enough by this time (for prefixed phases) that GREEN

must keep choosing smallest available boxes (which are size about

𝐾/(𝑝/log𝑝) by now since only 𝑝/log 𝑝 sequences are now alive. By

carefully picking constants, we keep increasing the pollution level

just enough as sequences complete so that GREEN keeps picking

small boxes and each phase keeps taking ≈ 𝛼𝑠𝑘2 time to complete.

Since there are a total of Θ(log𝑝) phases, PAR takes Θ(𝛼𝑠𝑘2 log𝑝)
time to finish all sequences.

Let us go back to OPT now. It executes all the prefixed sequences

one at a time giving it a box of size 𝑘 . Therefore, its miss rate in

the 𝑗th phase is about 𝑐2𝑗/𝑝 , and the 𝑗th phase only takes time

𝑂 (𝛼2𝑗𝑠𝑘2/𝑝). Adding over all sequences, it can finish all the prefixes
in only 𝑂 (𝛼𝑠𝑘2) time. It can then execute all suffixes together and

complete all sequences in 𝑂 (𝛼𝑠𝑘2 log log𝑝) time.

The actual proof requires us to carefully pick constants so that

it all works exactly as needed. The details can be found in the

appendix.

5 CONCLUSIONS
We settled the problem of minimizing makespan for online paral-

lel paging when 𝑝 processors access distinct sets of pages, with a

single algorithm that simultaneously achieves the optimal deter-

ministic competitive ratio of𝑂 (log𝑝) for both makespan and mean

completion time.

An obvious open question is whether our result can be improved

(for either metric) via randomization; we conjecture this is not the

case. Another direction for future research is to consider scenarios

where the 𝑝 sequences running on different processors can share

pages (in the resource-augmentation framework). This problem

appears to be difficult to solve in the general case; however, it

may be tractable under limited conditions of sharing. An even more

difficult problemwould be that of sharing a cache among processors

executing a parallel program with inter-thread dependencies, so

that paging decisions interact with scheduling decisions.

Acknowledgments
The authors gratefully acknowledge support from the following

grants.

Agrawal was supported by the Department of Computer Science

and Engineering at Washington University in St. Louis as well as

the NSF grants CCF-2106699, CCF-1733873, and SPX-1725647.

Bender was supported by NSF grants CCF-2118832, CCF-2106827,

CSR-1763680, CCF-1716252, CNS-1938709, and CCF-1725543.

Das was supported by the Canada Research Chairs Programme

and NSERC Discovery Grants.

Kuszmaul was funded by an NSF GRFP fellowship, a Fannie and

John Hertz Fellowship; the research was also funded by the United

States Air Force Research Laboratory and the United States Air

Force Artificial Intelligence Accelerator and was accomplished un-

der Cooperative Agreement Number FA8750-19-2-1000. The views

and conclusions contained in this document are those of the authors

and should not be interpreted as representing the official policies,

either expressed or implied, of the United States Air Force or the

U.S. Government. The U.S. Government is authorized to reproduce

and distribute reprints for Government purposes notwithstanding

any copyright notation herein.

Peserico was supported, in part, by the University of Padova

project “Internet of Things” (MIUR grant “Dipartimenti di Eccel-

lenza” L. 232/2016).

Scquizzato was supported, in part, by the University of Padova

under grant BIRD197859/19.

REFERENCES
[1] Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch

Peserico, and Michele Scquizzato. Brief announcement: Green paging and parallel

paging. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 493–495, 2020.

[2] Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch

Peserico, and Michele Scquizzato. Tight bounds for parallel paging and green

paging. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3022–3041, 2021.

[3] Rakesh D. Barve, Edward F. Grove, and Jeffrey Scott Vitter. Application-controlled

paging for a shared cache. SIAM Journal on Computing, 29(4):1290–1303, 2000.
[4] Laszlo A. Belady. A study of replacement algorithms for a virtual-storage com-

puter. IBM Systems Journal, 5(2):78–101, 1966.
[5] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.

Cambridge University Press, 1998.

[6] Pei Cao, EdwardW. Felten, and Kai Li. Application-controlled file caching policies.

In Proceedings of the USENIX Summer 1994 Technical Conference (USTC), pages
171–182, 1994.

[7] Marek Chrobak. SIGACT news online algorithms column 17. SIGACT News,
41(4):114–121, 2010.

[8] Rathish Das. Algorithmic Foundation of Parallel Paging and Scheduling under
Memory Constraints. PhD thesis, State University of New York at Stony Brook,

2021.

[9] Rathish Das, Kunal Agrawal, Michael A Bender, Jonathan Berry, Benjamin Mose-

ley, and Cynthia A Phillips. How to manage high-bandwidth memory automati-

cally. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 187–199, 2020.

[10] Daniel DeLayo, Kenny Zhang, Kunal Agrawal, Michael A Bender, Jonathan

Berry, Rathish Das, Benjamin Moseley, and Cynthia A Phillips. Automatic hbm

management: Models and algorithms. In Proceedings of the 34th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), 2022.

[11] Esteban Feuerstein and Alejandro Strejilevich de Loma. On-line multi-threaded

paging. Algorithmica, 32(1):36–60, 2002.
[12] Amos Fiat and Anna R. Karlin. Randomized and multipointer paging with locality

of reference. In Proceedings of the 27th annual ACM Symposium on Theory of
Computing (STOC), pages 626–634, 1995.

[13] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Pani-

grahi. Elastic caching. In Proceedings of the 30th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 143–156, 2019.

[14] Avinatan Hassidim. Cache replacement policies for multicore processors. In

Proceedings of 1st Symposium on Innovations in Computer Science (ICS), pages
501–509, 2010.

[15] Shahin Kamali and Helen Xu. Beyond worst-case analysis of multicore caching

strategies. In Symposium on Algorithmic Principles of Computer Systems (APOCS),
pages 1–15, 2021.

[16] Anil Kumar Katti and Vijaya Ramachandran. Competitive cache replacement

strategies for shared cache environments. In Proceedings of the 26th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pages 215–226,
2012.

[17] Ravi Kumar, Manish Purohit, Zoya Svitkina, and Erik Vee. Interleaved caching

with access graphs. In Proceedings of the 31st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1846–1858, 2020.

[18] Alejandro López-Ortiz and Alejandro Salinger. Minimizing cache usage in paging.

In Proceedings of the 10th Workshop on Approximation and Online Algorithms
(WAOA), pages 145–158, 2012.

[19] Alejandro López-Ortiz and Alejandro Salinger. Paging for multi-core shared

caches. In Proceedings of the 3rd Innovations in Theoretical Computer Science
conference (ITCS), pages 113–127, 2012.

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Agrawal et al.

[20] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. Evaluation

techniques for storage hierarchies. IBM Systems Journal, 9(2):78–117, 1970.
[21] Ishai Menache andMohit Singh. Online caching with convex costs. In Proceedings

of the 27th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 46–54, 2015.

[22] Enoch Peserico. Paging with dynamic memory capacity. In Proceedings of the
36th International Symposium on Theoretical Aspects of Computer Science (STACS),
pages 56:1–56:18, 2019.

[23] Michele Scquizzato. Paging on Complex Architectures. PhD thesis, University of

Padova, 2013.

[24] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list

update and paging rules. Communications of the ACM, 28(2):202–208, 1985.

APPENDIX
Let us now provide all the missing details of the proof of Theorem 4;

in particular considering all the constants. Assume without loss

of generality that 𝑝 = 2
ℓ+1 − 1, 𝜀 = 2

−𝑡
, and 𝑘 = 𝑝2𝑎−1 for some

positive integers ℓ, 𝑡, 𝑎. In addition, assume 𝛾 = 2𝑘𝛼 . Each suffix has

4 log ℓ phases, each in turn consisting of (𝑘 − 1)𝛾 requests, all for

new pages for a total number of requests equal to 4𝛾 (𝑘 − 1) log ℓ .
The prefixed sequences are divided into ℓ − log ℓ families

𝐹0, . . . , 𝐹ℓ−log ℓ , with 𝐹𝑖 containing 2
𝑖
isomorphic sequences (i.e.

identical in structure but requesting different pages). The generic

sequence in family 𝐹𝑖 has ℓ − log ℓ − 𝑖 + 1 phases, namely,

𝜎0
𝑖
, . . . , 𝜎

ℓ−log ℓ−𝑖
𝑖

— as 𝑖 increases, the number of phases that the

sequences in the family contain decreases. That is, family 𝐹0 has

only one sequence, but this sequence is long, while family 𝐹ℓ−log ℓ
has almost 𝑝/log 𝑝 sequences, but the sequences have only one

phase.

For all 𝑖 , all 𝜎
𝑗
𝑖
are isomorphic to a single subsequence 𝜎 𝑗 . The

latter is formed by 𝛾 = 2𝑘𝛼 cycles of requesets for the same 𝑘 − 1

repeater pages 𝜌1, . . . , 𝜌𝑘−1, replacing every 𝑛 𝑗 = 𝑝/2𝑗 th request

with one to a polluter. Note that the level of pollution increases

as the computation advances. Thus, phase 0 sequence 𝜎0 for all

prefixes sequences (for which it exists) requests a polluter page

every 𝑝 requests, 𝜎1 every 𝑝/2 requests, and 𝜎ℓ−log ℓ – the last

subsequence of the longest prefix – every 𝑝2−(ℓ−log ℓ) = ℓ requests.

Lemma 8. OPT can complete all 𝑝 sequences in 𝑂 (𝑠𝑘2 log ℓ) =

𝑂 (𝛼𝑠𝑘2 log log𝑝) time.

Proof. Phase 𝑗 of any sequence (for which it exists), 𝜎 𝑗 , can

then be completed in isolation by first bringing the cycle’s 𝑘 − 1

pages into memory (at cost 𝑠 (𝑘 − 1)), so that the subsequent 𝛾 − 1

cycles incur at most one fault every 𝑛 𝑗 requests. Remembering that

𝑠 ≥ 𝛾 ≥ 𝑝 , then 𝜎 𝑗 can be completed in time no larger than

𝑇 𝑗 = 𝛾 (𝑘 − 1) + (𝑠 − 1) (𝑘 − 1) + (𝑠 − 1) (𝑘 − 1)𝛾/𝑛 𝑗
≤ 𝑘 (𝛾 + 𝑠 + 𝑠𝛾/𝑛 𝑗) ≤ 𝑠𝑘 (2𝑗𝛾/𝑝 + 2) = 𝑂 (2𝑗𝑠𝑘𝛾/𝑝).

Recall that2
ℓ−log ℓ−𝑗

sequences have 𝜎 𝑗 in the first place (all

prefixed sequences have 𝜎0, but only about half have 𝜎1, and so on).

Therefore, the total time for prefix 𝑗 to complete for all sequences

is 2
ℓ−log ℓ−𝑗𝑇𝑗 . Also, all suffixes can execute in parallel in time

4 log ℓ𝑠 (𝑘 − 1)𝛾 since they don’t reuse any pages. Therefore, the

total cost to complete all prefixes one after the other, followed by

all suffixes in parallel, is at most

𝑇𝑂𝑃𝑇 =

ℓ−log ℓ∑︁
𝑗=0

2
ℓ−log ℓ−𝑗𝑇𝑗 + 4 log ℓ𝑠 (𝑘 − 1)𝛾

≤ (ℓ − log ℓ + 1) (𝑝/ℓ)𝑠𝑘 (𝛾/𝑝) + 4𝑠𝑘 + 4 log ℓ𝑠 (𝑘 − 1)𝛾
= 𝑂 (𝑠𝑘𝛾 log ℓ). □

Lemma 9. PAR takes time Ω(log ℓ + log(1/𝜀)𝑠𝑘𝛾) to complete a
fraction at least 1 − 𝜀 of all sequences.

Proof. Intuitively, in PAR, there are always at least ≈ ℓ times

as many active suffixes as prefixes; this guarantees that any “suf-

ficiently green” memory allocation must have service a fraction

bounded away from 0 of each prefix’s requests with minimal mem-

ory, causing each phase to take time Ω(𝑠𝑘𝛾) time.

More formally, say 𝑆 𝑗 = 𝑗𝑠 (𝑘 − 1)𝛾/4. We can easily prove by

simultaneous induction on 𝑗 that:

(1) No sequence serviced by PAR completes its (𝑗 − 1)𝑡ℎ stage

and enters its 𝑗𝑡ℎ before 𝑆 𝑗 .

(2) There are at least 𝑝2−𝑗 uncompleted sequences at all times

before 𝑆 𝑗+1.
(3) For any sequence, at any given point in time before 𝑆 𝑗+1,

PAR must have serviced at least half the requests with the

minimum available memory at that time.

(4) For any sequence, at any given point in time before 𝑆 𝑗+1,
PAR has incurred at least 1 page fault every 4 requests.

Note that (1) is trivially true for 𝑗 = 0, and (for any given 𝑗)

(2) follows immediately from (1), since there are at least 𝑝2−𝑗

sequences with at least 𝑗 stages.

(3) follows from (2) since, as long as 𝑢 𝑗 = 4𝑐2𝑛 𝑗 sequences

remain unfinished, with memory 𝐾 ≤ 𝑐𝑘 GREEN must service at

least half the requests of any prefix in 𝐹𝑖 with blocks of capacity at

most 2𝑐𝑘/𝑢𝑖 . To see how this is the case, note that theminimum-cost

green strategy is the one servicing the sequence with the strictly

minimal blocks of size (at most) 𝑘/𝑢𝑖 , with a per-request cost of

at most 𝑠𝑘/𝑢𝑖 ≤ 𝑠𝑐𝑘/𝑢𝑖 . Larger blocks smaller than 𝑘/2 do not

reduce faults by more than a factor of two, since cycles involve

𝑘 − 1 distinct pages. Blocks of size at least 𝑘/2 can incur fewer

faults, but at least 1/𝑛 𝑗 times as many as with minimal memory

(due to new page requests); then, the per-request cost of any block

with capacity at least 𝑘/2 is still at least (𝑘/2) (1 + (𝑠 − 1)/𝑛 𝑗) ≥
𝑠𝑘/(2𝑛 𝑗) ≥ (2𝑐)𝑠𝑐𝑘/𝑢 𝑗 , and thus no more than half of all requests

can be serviced via such large blocks.

Then (4) immediately follows, and from it (1) follows for 𝑗 + 1

since 𝑆 𝑗+1−𝑆 𝑗 = 𝑠 (𝑘−1)𝛾/4 and every stage sports (𝑘−1)𝛾 requests,
at least half of which incur faults and thus take time 𝑠 to service. □

Theorem 4 is implied from Lemmas 8 and 9.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Upper Bounds
	3.1 Randomized Online Green Paging
	3.2 Randomized Online Parallel Paging
	3.3 Deterministic Online Parallel Paging

	4 A Lower Bound on Black-Box Applications of Green Paging
	5 Conclusions
	References

