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Abstract We give a polynomial time algorithm to compute an optimal energy
and fractional weighted flow trade-off schedule for a speed-scalable processor
with discrete speeds. Our algorithm uses a geometric approach that is based on
structural properties obtained from a primal-dual formulation of the problem.
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1 Introduction

It seems to be a universal law of technology in general, and information
technology in particular, that higher performance comes at the cost of energy
efficiency. Thus a common theme of green computing research is how to manage
information technologies so as to obtain the proper balance between these

A preliminary version of this work appeared in the Proceedings of the 31st Symposium on
Theoretical Aspects of Computer Science (STACS), 2014 (see [4]).

A. Antoniadis
Max-Planck Institut für Informatik, Saarbrücken, Germany
E-mail: aantonia@mpi-inf.mpg.de

N. Barcelo · M. Nugent · K. Pruhs
Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA

M. Consuegra
Google (work done while at Florida International University)
E-mail: marioecd@google.com

P. Kling
School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
E-mail: pkling@sfu.ca

M. Scquizzato
Department of Computer Science, University of Houston, Houston, TX, USA
E-mail: michele@cs.uh.edu



2 A. Antoniadis et al.

conflicting goals of performance and energy efficiency. Here the technology we
consider is a speed-scalable processor, as manufactured by the likes of Intel and
AMD, that can operate in different modes. Each mode has a different speed
and power consumption, with the higher speed modes being less energy-efficient
in that they consume more energy per unit of computation. The management
problem that we consider is how to schedule jobs on such a speed-scalable
processor in order to obtain an optimal trade-off between a natural performance
measure (fractional weighted flow) and the energy consumption. Our main
result is a polynomial time algorithm to compute such an optimal trade-off
schedule.

Intuition and Significance of Trade-off Schedules. We want to informally elab-
orate on the statement of our main result. Fully formal definitions are given
in Section 3. We need to explain how we model the processors, the jobs, a
schedule, our performance measure, and the energy-performance trade-off:

The Speed-Scalable Processor: We assume that the processor can operate in
any of a discrete set of modes, each with a specified speed and corresponding
power consumption.

The Jobs: Each job has a release time when the job arrives in the system, a
volume of work (think of a unit of work as being an infinitesimally small
instruction to be executed), and a total importance or weight. The ratio of
the weight to the volume of work specifies the density of the job, which is
the importance per unit of work of that job.

A Schedule: A schedule specifies the job that is being processed and the mode
of the processor at any point in time.

Our Performance Measure: The fractional weighted flow of a schedule is the
total over all units of work (instructions) of how much time that work had
to wait from its release time until its execution on the processor, times the
weight (aggregate importance) of that unit of work. So work with higher
weight is considered to be more important. Presumably the weights are
specified by higher-level applications that have knowledge of the relative
importance of various jobs.

Optimal Trade-off Schedule: An optimal trade-off schedule minimizes the frac-
tional weighted flow plus the energy used by the processor (energy is just
power integrated over time). To gain intuition, assume that at time zero
a volume p of work of weight w is released. Intuitively/Heuristically one
might think that the processor should operate in the mode i that minimizes
w p

2si
+Pi

p
si

, where si and Pi are the speed and power of mode i respectively,
until all the work is completed; In this schedule the time to finish all the
work is p

si
, the fractional weighted flow is w p

2si
, and the total energy usage

is Pi
p
si

. So the larger the weight w, the faster the mode that the processor
will operate in. Thus intuitively the application-provided weights inform
the system scheduler as to which mode to operate in so as to obtain the
best trade-off between energy and performance. (The true optimal trade-
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off schedule for the above instance is more complicated as the speed will
decrease as the work is completed.)

Outline of the Article. In Section 2 we explain the relationship of our result
to related results in the literature. In Section 3 we introduce a formal model
and notation. Unfortunately both the design and analysis of our algorithm are
complicated, so in Section 4 we give an overview of the main conceptual ideas
before launching into details in the subsequent sections. In Section 5 we present
the obvious linear programming formulation of the problem, and discuss our
interpretation of information that can be gained about optimal schedules from
both the primal and dual linear programs. Section 6 formalizes this structural
information we gain from the primal-dual interpretation. In Section 7 we use
this information to develop our algorithm. Finally, in Section 8 we analyze the
running time of our algorithm and finish with a short conclusion in Section 9.

2 Related Results

To the best of our knowledge there are three papers in the algorithmic literature
that study computing optimal energy trade-off schedules. All of these papers
assume that the processor can run at any non-negative real speed, and that the
power used by the processor is some nice function of the speed. Most commonly
the power is equal to the speed raised to some constant α. Essentially both [2, 15]
give polynomial time algorithms for the special case of our problem where
the densities of all units of work are the same. In [15], Pruhs et al. give a
homotopic optimization algorithm that, intuitively, traces out all schedules that
are Pareto-optimal with respect to energy and fractional flow, one of which must
obviously be the optimal energy trade-off schedule. Albers and Fujiwara [2]
give a dynamic programming algorithm and deserve credit for introducing the
notion of trade-off schedules. Barcelo et al. [8] give a polynomial-time algorithm
for recognizing an optimal schedule. They also showed that the optimal schedule
evolves continuously as a function of the importance of energy, implying that a
continuous homotopic algorithm is, at least in principle, possible. However, [8]
was not able to provide any bound, even exponential, on the time of this
algorithm, nor was [8] able to provide any way to discretize this algorithm.

To reemphasize, the prior literature [2, 8, 15] on our problem assumes that
the set of allowable speeds is continuous. Our setting of discrete speeds both
more closely models the current technology, and seems to be algorithmically
more challenging. In [8] the recognition of an optimal trade-off schedule in the
continuous setting is essentially a direct consequence of the KKT conditions
of the natural convex program, as it is observed that there is essentially only
one degree of freedom for each job in any plausibly optimal schedule, and this
degree of freedom can be recovered from the candidate schedule by looking at
the speed that the job is run at. In the discrete setting, we shall see that there
is again essentially only one degree of freedom for each job. But, unfortunately,
one cannot easily recover the value of this degree of freedom by examining the
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candidate schedule. Thus we do not know of any simple way to even recognize
an optimal trade-off schedule in the discrete setting.

In a recent work, Barcelo et al. [9] map out the problem space that results
from varying some of our problem parameters. More specifically, they give
polynomial-time algorithms and NP-hardness results for various formulations
of the speed scaling problem, depending on how one models the processor (e.g.,
discrete vs. continuous speeds or the nature of relationship between speed and
power), the performance objective (e.g., whether jobs are of equal or unequal
importance, and whether one is interested in minimizing waiting times of jobs
or of work), and how one handles the dual objective (e.g., whether they are
combined in a single objective, or whether one objective is transformed into a
constraint).

One might also reasonably consider the performance measure of the ag-
gregate weighted flow over jobs (instead of work), where the flow of a job is
the amount of time between when the job is released and when the last bit of
its work is finished. In the context that the jobs are flight queries to a travel
site, aggregating over the delay of jobs is probably more appropriate in the
case of Orbitz, as Orbitz does not present the querier with any information
until all the possible flights are available, while aggregating over the delay
of work may be more appropriate in the case of Kayak, as Kayak presents
the querier with flight options as they are found. Also, often the aggregate
flow of work is used as a surrogate measure for the aggregate flow of jobs as
it tends to be more mathematically tractable. In particular, for the trade-off
problem that we consider here, the problem is NP-hard if we were to consider
the performance measure of the aggregate weighted flow of jobs, instead of the
aggregate weighted flow of work. The hardness follows immediately from the
well known fact that minimizing the weighted flow time of jobs on a unit speed
processor is NP-hard [12], or from the fact that minimizing total weighted flow,
without release times, subject to an energy budget is NP-hard [14].

Given the above mentioned hardness result, it is not surprising that there is
a fair number of papers that study approximately computing optimal trade-off
schedules, both offline and online. [14] also gives PTASs for minimizing total
flow without release times subject to an energy budget in both the continuous
and discrete speed settings. [2, 3, 5–7, 10, 11, 13] consider online algorithms for
optimal total flow and energy, [5, 7] consider online algorithms for fractional
flow and energy. See the survey by Albers [1] for a more detailed overview of
energy-efficient algorithms.

3 Model & Preliminaries

We consider the problem of scheduling a set J := { 1, 2, . . . , n } of n jobs on a
single processor featuring k different speeds 0 < s1 < s2 < · · · < sk. The power
consumption of the processor while running at speed si is Pi ≥ 0. We use
S := { s1, s2, . . . , sk } to denote the set of speeds and P := {P1, P2, . . . , Pk } to



Optimal Energy and Fractional Weighted Flow Trade-off Schedules 5

denote the set of powers. While running at speed si, the processor performs si
units of work per time unit and consumes energy at a rate of Pi.

Each job j ∈ J has a release time rj , a processing volume (or work) pj ,
and a weight wj . Moreover, we denote the value dj :=

wj
pj

as the density of job

j. For each time t, a schedule S must decide which job to process and at what
speed. Preemption is allowed, that is, a job may be suspended at any point in
time and resumed later on. We model a schedule S by a (measurable) speed
function V : R≥0 → S and a scheduling policy J : R≥0 → J . Here, V (t) denotes
the speed at time t, and J(t) the job that is scheduled at time t. Jobs can be
processed only after they have been released. For job j let Ij = J−1(j)∩

[
rj ,∞

)
be the set of times during which it is processed. A feasible schedule must finish
the work of all jobs. That is, the inequality

∫
Ij
V (t) dt ≥ pj must hold for all

jobs j.
We measure the quality of a given schedule S by means of its energy

consumption and its fractional flow. The speed function V induces a power
function P : R≥0 → P, such that P (t) is the power consumed at time t. The
energy consumption of schedule S is E(S) :=

∫∞
0
P (t) dt. The flow time (also

called response time) of a job j is the difference between its completion time
and release time. If Fj denotes the flow time of job j, the weighted flow of
schedule S is

∑
j∈J wjFj . However, we are interested in the fractional flow,

which takes into account that different parts of a job j finish at different times.
More formally, if vj(t) denotes the work of job j that is processed at time t
(i.e., vj(t) = V (t) if J(t) = j, and vj(t) = 0 otherwise), the fractional flow time

of job j is F̃ j :=
∫∞
rj

(t− rj) vj(t)pj
dt. The fractional weighted flow of schedule S

is F̃ (S) :=
∑
j∈J wjF̃ j . The objective function is E(S) + F̃ (S). Our goal is to

find a feasible schedule that minimizes this objective.
We define s0 := 0, P0 := 0, sk+1 := sk, and Pk+1 :=∞ to simplify notation.

Note that, without loss of generality, we can assume Pi−Pi−1

si−si−1
< Pi+1−Pi

si+1−si ;

Otherwise, any schedule using si could be improved by linearly interpolating
the speeds si−1 and si+1. Most of the time, our analysis assumes all densities
to be distinct. This is without loss of generality, and we explain at the end
of our analysis section (see Section 7.3) how the algorithm can be changed to
handle jobs of equal densities.

4 Overview

In this section we give an overview of our algorithm design and analysis. We first
outline how we extract geometric information from the primal-dual formulation
of the problem, and then give an example of this geometric information,
providing insight into how this yields an optimality condition. Finally, we give
a first overview of how to leverage this condition when designing our algorithm.

From Primal-Dual to Dual Lines. We start by considering a natural linear
programming formulation of the problem. We then consider the dual linear
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Fig. 1: The dual lines for a 4-job instance, and the associated schedule.

program. Using complementary slackness we find necessary and sufficient
conditions for a candidate schedule to be optimal. Reminiscent of the approach
used in the case of continuous speeds in [8], we then interpret these conditions in
the following geometric manner. Each job j is associated with a linear function
D
αj
j (t), which we call a dual line. This dual line has a slope of −dj and passes

through point (rj , αj), for some αj > 0. Here t is time, αj is the dual variable
associated with the primal constraint that all the work from job j must be
completed, rj is the release time of job j, and dj is the density of job j. Given
such an αj for each job j, one can obtain an associated schedule as follows: At
every time t, the job j being processed is the one whose dual line is the highest
at that time, and the speed of the processor depends solely on the height of
this dual line at that time.

Example Schedule & Dual Lines. The left picture in Figure 1 shows the dual
lines for four different jobs on a processor with three modes. The horizontal
axis is time. The two horizontal dashed lines labeled by C2 and C3 represent
the heights where the speed will transition between the lowest speed mode and
the middle speed mode, and the middle speed mode and the highest speed
mode, respectively (these lines only depend on the speeds and powers of the
modes and not on the jobs). The right picture in Figure 1 shows the associated
schedule.

Optimality Condition. By complementary slackness, a schedule corresponding
to a collection of αj ’s is optimal if and only if it processes exactly pj units of
work for each job j. Thus we can reduce finding an optimal schedule to finding
values for these dual variables satisfying this property.

Algorithmic Idea. Our algorithm is a primal-dual algorithm that raises the
dual αj variables in an organized way. We iteratively consider the jobs by
decreasing density. In iteration i, we construct the optimal schedule Si for the
i most dense jobs from the optimal schedule Si−1 for the i − 1 most dense
jobs. We raise the new dual variable αi from 0 until the associated schedule
processes pi units of work from job i. At some point raising the dual variable
αi may cause the dual line for i to “affect” the dual line for a previous job j
in the sense that αj must be raised as αi is raised in order to maintain the
invariant that the right amount of work is processed on job j. Intuitively one
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might think of “affection” as meaning that the dual lines intersect (this is
not strictly correct, but it is a useful initial geometric interpretation to gain
intuition). More generally this affection relation can be transitive in the sense
that raising the dual variable αj may in turn affect another job, etc.

The algorithm maintains an affection tree rooted at i that describes the
affection relationship between jobs, and maintains for each edge in the tree
a variable describing the relative rates that the two incident jobs must be
raised in order to maintain the invariant that the proper amount of work is
processed for each job. Thus this tree describes the rates that the dual variables
of previously added jobs must be raised as the new dual variable αi is raised
at a unit rate.

In order to discretize the raising of the dual lines, we define four types of
events that cause a modification to the affection tree:

– a pair of jobs either begin or cease to affect each other,
– a job either starts using a new mode or stops using some mode,
– the rightmost point on a dual line crosses the release time of another job, or
– enough work is processed on the new job i.

During an iteration, the algorithm repeatedly computes when the next such
event will occur, raises the dual lines until this event, and then computes the
new affection tree. Iteration i completes when job i has processed enough work.
Its correctness follows from the facts that (a) the affection graph is a tree,
(b) this affection tree is correctly computed, (c) the four aforementioned events
are exactly the ones that change the affection tree, and (d) the next such
event is correctly computed by the algorithm. We bound the running time by
bounding the number of events that can occur, the time required to calculate
the next event of each type, and the time required to recompute the affection
tree after each event.

5 Structural Properties via Primal-Dual Formulation

This section derives the structural optimality condition (Theorem 1) on which
our algorithm is based. We do so by means of an integer linear programming
(ILP) description of our problem. Before we give the ILP and derive the
condition, we show how to divide time into discrete time slots with certain
properties.

Discretizing Time. We define time slots in which the processor runs at constant
speed and processes at most one job. Note that, in general, these time slots
may be arbitrarily small, yielding an ILP with many variables. At first glance,
this seems problematic, as it renders a direct solution approach less attractive.
However, we are actually not interested in solving the resulting ILP directly.
Instead, we merely strive to use it and its dual in order to obtain some simple
structural properties of an optimal schedule.
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min
∑
j∈J

T∑
t=rj

k∑
i=1

xjti
(
Pi + sidj(t− rj + 1/2)

)

s.t.

T∑
t=rj

k∑
i=1

xjti · si ≥ pj ∀j

∑
j∈J

k∑
i=1

xjti ≤ 1 ∀t

xjti ∈ { 0, 1 } ∀j, t, i

(a) ILP formulation of our problem.

max
∑
j∈J

pjαj −
T∑
t=1

βt

s.t. βt ≥ αjsi − Pi
−sidj(t− rj + 1/2)

∀j, t, i : t ≥ rj
αj ≥ 0 ∀j
βt ≥ 0 ∀t

(b) Dual program of the ILP’s relaxation.

Fig. 2: Primal-dual formulation of our problem.

To this end, consider ε > 0 and let T ∈ N be such that Tε is an upper
bound on the completion time of non-trivial1 schedules (e.g., Tε ≥ maxj(rj +∑
j
pj/s1)). Given a fixed problem instance, there is only a finite number of

jobs and, without loss of generality, an optimal schedule performs only a finite
number of speed switches and preemptions2. Thus, we can choose ε > 0 such
that

(a) any release time rj is a multiple of ε,
(b) an optimal schedule can use constant speed during

[
(t− 1)ε, tε

)
, and

(c) there is at most one job processed during
[
(t− 1)ε, tε

)
.

We refer to an interval
[
(t− 1)ε, tε

)
as the t-th time slot. By rescaling the

problem instance we can assume that time slots are of unit size (scale rj by
1/ε and scale si as well as Pi by ε).

ILP & Dual Program. Let the indicator variable xjti denote whether job j is
processed in slot t at speed si. Note that T as defined above is an upper bound
on the total number of time slots. This allows us to model our scheduling
problem via the ILP given in Figure 2a. The first set of constraints ensures
that all jobs are completed, while the second set of constraints ensures that
the processor runs at constant speed and processes at most one job in each
time slot.

In order to use properties of duality, we consider the relaxation of the
above ILP. It can easily be shown that an optimal schedule can use highest

1 A non-trivial schedule is one that never runs at speed 0 when there is work remaining.
2 For the finite number of preemptions, note that any schedule can be transformed to

a highest density first (HDF) schedule (see also next paragraph), in which the number of
preemptions is bounded by the number of release times. For the finite number of speed
switches, consider the average speed s in any maximal execution interval of some job j
(where it runs at possible different speeds). If s lies between discrete speeds si and si+1, the
schedule can be changed to run first for some time at speed si+1 and then for some time at
speed si without increasing the energy cost or the flow time.
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density first (HDF) as its scheduling policy3. Therefore, there is no advantage
to scheduling partial jobs in any time slot. It follows that by considering small
enough time slots, the value of an optimal solution to the LP will be no less than
the value of the optimal solution to the ILP. After considering this relaxation
and taking the dual, we get the dual program shown in Figure 2b.

The complementary slackness conditions of our primal-dual program are

αj > 0 ⇒
T∑

t=rj

k∑
i=1

xjti · si = pj , (1)

βt > 0 ⇒
∑
j∈J

k∑
i=1

xjti = 1, (2)

xjti > 0 ⇒ βt = αjsi − Pi − sidj(t− rj + 1/2). (3)

By complementary slackness, any pair of feasible primal-dual solutions that
fulfills these conditions is optimal. We will use this in the following to find a
simple way to characterize optimal schedules.

Dual Lines. A simple but important observation is that we can write the last
complementary slackness condition as βt = si

(
αj − dj(t− rj + 1

2 )
)
− Pi. Using

the complementary slackness conditions, the function t 7→ αj − dj(t− rj) can
be used to characterize optimal schedules. The following definitions capture
a parameterized version of these job-dependent functions and state how they
imply a corresponding (not necessarily feasible) schedule.

Definition 1 (Dual Lines & Upper Envelope) For a value a ≥ 0 and a
job j we define the linear function Da

j : [rj ,∞)→ R, t 7→ a− dj(t− rj) as the
dual line of j with offset a.

Given a job set H ⊆ J and corresponding dual lines D
aj
j , we define the

upper envelope of H by the upper envelope of its dual lines. That is, the upper
envelope of H is the function UEH : R≥0 → R≥0, t 7→ maxj∈H

(
D
aj
j (t), 0

)
. We

omit the job set from the index if it is clear from the context.

For technical reasons, we will have to consider the discontinuities in the upper
envelope separately.

Definition 2 (Left Upper Envelope & Discontinuity) Given a job set
H ⊆ J and upper envelope of H, UEH , we define the left upper envelope at a
point t as the limit of UEH as we approach t from the left. That is, the left upper
envelope of H is the function LUEH : R≥0 → R≥0, t 7→ limt′→t− UEH(t′).
Note that an equivalent definition of the left upper envelope is LUEH(t) =
maxj∈H:rj<t

(
D
aj
j (t), 0

)
.

We say that a point t is a discontinuity if UE has a discontinuity at t. Note
that this implies that UE(t) 6= LUE(t).

3 Given any non-HDF schedule, one can swap two (arbitrarily small) portions of jobs that
violate HDF. By definition of the cost function, this results in a strictly better schedule.
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For the following definition, let us denote Ci := Pi−Pi−1

si−si−1
for i ∈ [k + 1] as

the i-th speed threshold. We use it to define the speeds at which jobs are to be
scheduled. It will also be useful to define Ĉ(x) = mini∈[k+1] {Ci | Ci > x } and

Č(x) = maxi∈[k+1] {Ci | Ci ≤ x }.

Definition 3 (Line Schedule) Consider dual lines D
aj
j for all jobs. The

corresponding line schedule schedules job j in all intervals I ⊆ [rj ,∞) of
maximal length in which j’s dual line is on the upper envelope of all jobs (i.e.,
∀t ∈ I : D

aj
j (t) = UE(t)). The speed of a job j scheduled at time t is si, with i

such that Ci = Č(D
aj
j (t)).

See Figure 1 for an example of a line schedule. Together with the complementary
slackness conditions, we can now easily characterize optimal line schedules.

Theorem 1 Consider dual lines D
aj
j for all jobs. The corresponding line

schedule is optimal with respect to fractional weighted flow plus energy if it
schedules exactly pj units of work for each job j.

Proof Consider the solution x to the ILP induced by the line schedule. We use
the offsets aj of the dual lines to define the dual variables αj := aj + 1

2dj . For
t ∈ N, set βt := 0 if no job is scheduled in the t-th slot and βt := siD

αj
j (t)−Pi

if job j is scheduled at speed si during slot t. It is easy to check that x, α, and
β are feasible and that they satisfy the complementary slackness conditions.
Thus, the line schedule must be optimal. ut

6 Affection & Raising Process

Recall the algorithmic idea sketched in Section 4: We aim to develop a primal-
dual algorithm that raises dual variables in a structured fashion. Theorem 1
provides us with some motivation for how to organize this raising. A first
approach might be to raise the dual line of a new job i, leaving the dual lines
of previously scheduled jobs untouched. At some point, its dual line will claim
enough time on the upper envelope to be fully processed. However, in doing so
we may affect (i.e., reduce) the time windows of other (already scheduled) jobs.
Thus, while raising i’s dual line, we must keep track of any affected jobs and
ensure that they remain fully scheduled. This section formalizes this idea by
defining affections and by structuring them in such a way that we can efficiently
keep track of them.

Notation for the Raising Process. Within iteration i of the algorithm, τ will
represent how much we have raised αi. We can think of τ as the time parameter
for this iteration of the algorithm (not time as described in the original problem
description, but time with respect to raising dual-lines). To simplify notation,
we do not index variables by the current iteration of the algorithm. In fact,
note that every variable in our description of the algorithm may be different at
each iteration of the algorithm, e.g., for some job j, αj(τ) may be different at
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r1 r2 rι̂ t = rι̌

(a) Affections: { 1, 2, ι̂ } → { ι̌ }, { 1, 2 } →
{ ι̂ }, and { 1, 2, ι̂, ι̌ } 6→ { 1, 2 }.

r1 rι̂ t = r3 = r4

(b) Affections: 1→ ι̂ and { 1, ι̂, 3 } 6→ { 1, 3 }.
(Job 3 is denoted by the thick line.)

Fig. 3: Illustration of (a) Observation 3 and (b) Observation 4.

the i-th iteration than at the (i+ 1)-st iteration. To further simplify notation,
we use Dτ

j to denote the dual line of job j with offset αj(τ). Similarly, we use
UEτ to denote the upper envelope of all dual lines Dτ

j for j ∈ [i] and Sτi to
denote the corresponding line schedule. Prime notation generally refers to the
rate of change of a variable with respect to τ . To lighten notation further, we
drop τ from variables when its value is clear from the context.

6.1 Affected Jobs

Let us define a relation capturing the idea of jobs affecting each other while
being raised.

Definition 4 (Affection) Consider two different jobs j and j′. We say that
job j affects job j′ at time τ if raising (only) the dual line Dτ

j would decrease
the processing time of j′ in the corresponding line schedule.

We write j → j′ to indicate that j affects j′ (and refer to the parameter τ
separately, if not clear from the context). Similarly, we write j 6→ j′ to state
that j does not affect j′. Before we show how to structure the affection between
different jobs, let us collect some simple observations on when and how jobs
can actually affect each other. We start with observing that jobs can affect
each other only if their dual lines intersect on the upper envelope (Figure 3(a))
or left upper envelope (Figure 3(b)).

Observation 2 Given jobs j and j′ with j → j′, their dual lines must intersect
on the upper envelope, or on the left upper envelope at a discontinuity. That is, if
t is the intersection point of j and j′, we have either Dτ

j (t) = Dτ
j′(t) = UEτ (t),

or Dτ
j (t) = Dτ

j′(t) = LUEτ (t) and t is a discontinuity. Further there must be
some ε > 0 such that j′ is run in either (t− ε, t) or (t, t+ ε).

The following two observations are the counterpart of Observation 2. More
precisely, Observation 3 states that only the most and least dense jobs intersect-
ing at the upper envelope can be affected (Figure 3(a)). Similarly, Observation 4
states that only the highest density job intersecting at the left upper envelope
can be affected (Figure 3(b)).
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r0 r1 t2 = r3t1 r2 r4

Fig. 4: Observation 6. Both the upper envelope and the left upper envelope
cases: note that Dτ

0 (t′) < LUEτ (t′) ≤ UEτ (t′) for all t′ > t1, and Dτ
2 (t′) <

LUEτ (t′) ≤ UEτ (t′) for all t′ > t2.

Observation 3 For t ∈ R≥0 consider the maximal set Ht of jobs that intersect
the upper envelope at t and define H−t := Ht ∩ { j | rj < t }. Let ι̌ ∈ Ht denote
the job of lowest density and let ι̂ ∈ H−t denote the job of highest density in
the corresponding sets (assuming the sets are nonempty). The following hold:

(a) For all j ∈ Ht \ { ι̌ } we have j → ι̌.
(b) For all j ∈ H−t \ { ι̂ } we have j → ι̂.
(c) For all j ∈ Ht and j′ ∈ Ht \ { ι̌, ι̂ } we have j 6→ j′.

Observation 4 For t ∈ R≥0 consider the maximal set Ht of jobs that intersect
the left upper envelope at t where t is a discontinuity. Define H−t := Ht ∩
{ j | rj < t }. Let ι̂ ∈ H−t denote the job of highest density in H−t (assuming it
is nonempty). The following hold:

(a) For all j ∈ H−t \ { ι̂ } we have j → ι̂.
(b) For all j ∈ Ht and j′ ∈ Ht \ { ι̂ } we have j 6→ j′.

The final two observations are based on the fact that once the dual lines of a
higher density job and a lower density job intersect, the higher density job is
“dominated” by the lower density job (Figure 4).

Observation 5 No job j ∈ [i− 1] can intersect a job j′ of lower density at its
own release time rj.

Observation 6 Given jobs j and j′ with dj > dj′ that intersect on the upper
envelope or left upper envelope at point t, we have that UEτ (t′) ≥ LUEτ (t′) ≥
Dτ
j′(t
′) > Dτ

j (t′), for all t′ > t.

The following proposition is used to prove several lemmas in the next section.
It characterizes a situation in which three jobs intersect at the same point on
the (left) upper envelope.

Proposition 1 Consider three jobs j1, j2, j3 with j1 → j2 or j2 → j1, and
j2 → j3 or j3 → j2 (we say j2 is the connecting job of j1 and j3). If dj2 >
max(dj1 , dj3), then all three jobs intersect on the upper (or left upper) envelope
at the same point t.
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Proof Due to Observation 2, the dual line of j2 intersects the dual lines of j1
and j3 somewhere on the upper (or left upper) envelope. Let t1 denote the
intersection point of j1 and j2 on the upper (or left upper) envelope. Similarly, let
t2 denote the intersection point of j2 and j3 on the upper (or left upper) envelope.
For the sake of a contradiction, assume t1 6= t2. Without loss of generality,
let t1 < t2. Since dj2 > dj1 , by Observation 6 we have Dτ

j2
(t′) < LUEτ (t′) ≤

UEτ (t′) for all t′ > t1. In particular, Dτ
j2

(t2) < LUEτ (t2) ≤ UEτ (t2). This
contradicts Observation 2, which states that j2 and j3 must intersect on the
upper (or left upper) envelope. ut

6.2 Structuring the Affection

Equipped with these observations, we provide additional structural properties
about how different jobs can affect each other. Assume jobs to be ordered by
decreasing density and fix a job i. In the following, we study how the raising
of job i can affect the already scheduled jobs in { 1, 2, . . . , i− 1 }.

Define level sets L0 := { i } and Ll := { j | ∃j− ∈ Ll−1 : j− → j } \
⋃l−1
l′=0 Ll′

for an integer l ≥ 1. That is, a job j is in level set Ll if and only if the shortest
path from i to j in the graph induced by the affection relation is of length
l. Lemma 1 shows that densities are monotonously increasing along affection
relations. Lemma 2 proves that no two jobs of the same level can affect each
other, and Lemma 3 shows that each job can be affected by at most one
lower-level job. Finally, Lemma 4 and Lemma 5 show that there are no circles
or backward edges in the graph. We use these insights in Lemma 6 to prove
that the graph induced by the affection relations forms a tree.

Lemma 1 Consider two jobs j0 ∈ Ll and j+ ∈ Ll+1 with j0 → j+. Then job
j+ has a larger density than job j0. That is, dj+ > dj0 .

Proof We prove the statement of the lemma by induction. The base case l = 0
is trivial, as i has the lowest density of all jobs and, by construction, L0 = { i }.
Now consider the case l ≥ 1 and let j− ∈ Ll−1 be such that j− → j0. By the
induction hypothesis, we have dj0 > dj− (remember that, w.l.o.g., densities are
assumed to be distinct; cf. Section 7.3). For the sake of a contradiction, assume
dj+ < dj0 . By Proposition 1, all three jobs intersect on the upper (or left upper)
envelope at the same point t. Note that this intersection point must lie on the
upper envelope, since otherwise it would lie on the left upper envelope at a
discontinuity and, by Observation 4, j0 6→ j+. Further, because j0 6= i and
dj0 > dj+ , Observation 5 implies rj0 < t. Together with dj+ < dj0 and j0 → j+,
this implies that j+ has minimal density among all jobs intersecting the upper
envelope in t (by Observation 3). We get j− → j+ and, thus, j+ ∈ Ll. This
contradicts j+ being a level l + 1 node. ut

Lemma 2 Given two level l jobs j1, j2 ∈ Ll, we have j1 6→ j2 and j2 6→ j1.

Proof The statement is trivial for l = 0, as L0 = { i }. For l ≥ 1 consider
j1, j2 ∈ Ll and assume, for the sake of a contradiction, that j1 → j2 (the
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case j2 → j1 is symmetrical). Let ι1, ι2 ∈ Ll−1 with ι1 → j1 and ι2 → j2. By
Lemma 1 we have dι1 < dj1 and dι2 < dj2 . Let t0 denote the intersection point
of j1 and j2, t1 the intersection point of j1 and ι1, and t2 the intersection
point of j2 and ι2. Analogously to the proof of Lemma 1, one can see that
t0 = min { t1, t2 } (as otherwise at least one of these intersection points would
not lie on the (left) upper envelope). We distinguish the following cases:

Case t0 = t1 < t2: First note that t1 and t0 cannot lie on the left upper envelope
at a discontinuity, since by Observation 4 either j1 6→ j2 or ι1 6→ j1. So,
by Observation 2, t0 and t1 lie on the upper envelope. Job j2 must have
minimal density among all jobs intersecting the upper envelope at t1, as
otherwise its intersection point with ι2 cannot lie on the upper envelope.
But then, by Observation 3, we have ι1 → j2. Together with Lemma 1 this
implies dj2 > dι1 , contradicting the minimality of j2’s density.

Case t0 = t2 < t1: By Observation 2 j1, j2 and ι2 either lie on the left upper
envelope or the upper envelope. Assume they are on the left upper envelope.
Note that since ι2 and j1 intersect at t0, and t1 > t0, it must be that ι1 6= ι2
and therefore l ≥ 2 in this case. Also, since t1 > t0 is a point where j1 is
on the upper envelope, it must be that j1 is less dense than ι2. However
this implies that ι2 is not on the left upper envelope or upper envelope to
the right of t0. Since it is not the root (l ≥ 2) there must be some point
t < t0 such that ι2 intersects a less dense job on the (left) upper envelope
(its parent). This contradicts ι2 being on the left upper envelope at t0. If
instead j1, j2 and ι2 lie on the upper envelope the same argument used in
the first case applies.

Case t0 = t1 = t2: The same argument as in the first case shows that these
points do not lie on the left upper envelope at a discontinuity but must lie
on the upper envelope. Without loss of generality, assume dj1 > dj2 . We
get rj1 < t1 (Observation 5). With dj2 > dι2 and Observation 3 this implies
ι2 6→ j2, contradicting the definition of ι2. ut

Lemma 3 A level l job cannot be affected by more than one job of a lower
level.

Proof The statement is trivial for l ∈ { 0, 1 }. Thus, consider a job j ∈ Ll
for l ≥ 2 and let j1 and j2 be two different lower level jobs with j1 → j and
j2 → j. By definition, both j1 and j2 must be level l − 1 jobs (otherwise, j
would be a job of level < l). Thus, by Lemma 1, dj > max(dj1 , dj2). Applying
Proposition 1 yields that all three jobs intersect on the upper envelope or on
the left upper envelope (at a discontinuity) at the same point t. Let us first
assume they intersect at the upper envelope. Observation 3 implies that j has
maximal density of all jobs intersecting the upper envelope at t (as otherwise j
can be affected by neither j1 nor j2, both having a lower density). Consider
the lowest density job ι̌ intersecting the upper envelope at t. By Observation 3,
at least one among j1 and j2 must affect ι̌. Assume, without loss of generality,
it is j1. This implies that ι̌ has level l′ ≤ l. Actually, we must have l′ < l,
because otherwise dι̌ < dj1 would contradict Lemma 1. Similarly, l′ = l − 1
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would contradict Lemma 2. Thus, we have l′ ≤ l − 2. But since we have ι̌→ j,
we get a contradiction to j being a level l node.

Now assume that all three jobs intersect at a discontinuity of the left upper
envelope. Observation 4 tells us that j must be the job of highest density
intersecting at t. Assume without loss of generality that dj1 < dj2 . Then, by
Observation 6, j2 is not on the (left) upper envelope to the right of t. However,
since it is not the root (l ≥ 2), there must be some job ι̌ of smaller density
that intersects j2 on the (left) upper envelope to the left of t (its parent). This
contradicts that j2 would be on the left upper envelope at t. ut

Lemma 4 Consider two jobs j1 ∈ Ll1 and j2 ∈ Ll2 with l2 − l1 ≥ 2. Then, we
must have j2 6→ j1.

Proof For the sake of a contradiction, assume j2 → j1. By Observation 2 j1 and
j2 intersect at a point t on the (left) upper envelope. By Observations 3 and 4,
j1 must have either minimal or maximal density among all jobs that intersect
at t on the (left) upper envelope (or we could not have j2 → j1). Consider first
the case that j1 has minimal density. In particular, dj1 < dj2 . Let j′2 be the
job of level l2 − 1 ≥ 1 with j′2 → j2. By Lemma 1 we have dj′2 < dj2 . Thus,
we can apply Proposition 1 to see that the intersection of j′2 and j2 is also at
t. But then, j2 must be the job of maximal density that intersects the (left)
upper envelope at t (by Observations 3 and 4). Then again we have j1 → j2
(also by Observations 3 and 4), which implies that j2 is of level l1 + 1 < l2, a
contradiction.

So consider the second case, where j1 has maximal density. In particular,
note that j1 cannot be of level 0 (the only job at level 0 is i, and by choice
of our algorithm we have di < dj2 < dj1). For i ∈ { 1, 2 } let j′i be the level
li − 1 ≥ 0 job with l′i → li. Let ti be the point where ji and j′i intersect
on the (left) upper envelope. By Observation 6 we have ti ≥ t (otherwise
Dτ
ji

(t) < LUEτ (t) ≤ UEτ (t), contradicting that ji is on the (left) upper
envelope at t). In fact, for i = 1 we have t1 = t by Proposition 1. Now
we consider two subcases. If t2 = t, Observations 3 and 4 imply j′1 → j2
(j2 must be the minimal density job intersecting the (left) upper envelope
at t) and, thus, that j2 is of level l1 − 1 + 1 = l1 < l2, a contradiction.
Otherwise, if t2 > t, there is a job j′ 6= j2 of minimal density intersecting the
upper envelope at t. In particular, dj′ < dj2 and Observation 6 implies that
Dτ
j2

(t2) < LUEτ (t2) ≤ UEτ (t2), contradicting that j2 is at the (left) upper
envelope at t2. ut

Lemma 5 Consider two jobs j1 ∈ Ll1 and j2 ∈ Ll2 with l2 = l1 + 1, and
j1 → j2. Then, if there exists a job j3 ∈ Ll1 such that j2 → j3, it must be that
j3 = j1.

Proof For the sake of contradiction, assume there exists a job j3 6= j1 such that
j3 ∈ Ll1 and j2 → j3. First, note that by Lemma 1 we have dj1 < dj2 . Let t1
be the intersection of j1 and j2, and t2 be the intersection of j2 and j3. There
are two cases to consider. In the first case, assume t1 = t2 and note that the
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Fig. 5: Affection tree example, rooted at the blue job.

intersection must lie on the upper envelope: if it were on the left upper envelope
at a discontinuity, j1 → j2 and j2 → j3 would contradict Observation 4. Since
dj1 < dj2 , either j1 or j3 is the job with lowest density. Then, since t1 = t2, by
Observation 3 either j1 → j3 or j3 → j1. Both cases contradict Lemma 2 since
j1, j3 ∈ Ll1 .

In the second case, assume t1 6= t2. If t1 < t2, then, since dj1 < dj2 by
Observation 6, Dτ

j2
(t′) < LUEτ (t′) ≤ UEτ (t′) for all t′ > t1 which contradicts

j2 being on the (left) upper envelope at t2. For the case t1 > t2, a similar
argument shows that j2 must be the least dense job that intersects the upper
envelope at t2, as otherwise Dτ

j2
(t1) < LUEτ (t1) ≤ UEτ (t1). If the jobs meet

on the upper envelope at t2, Observation 3 yields j3 → j2. Together with
j1 → j2 and j3 6= j1, this contradicts Lemma 3. If the jobs meet on the left
upper envelope at t2, we see similarly to previous proofs that j3 is not the root,
cannot be processed to the right of t2 (since j2 is less dense), and its less dense
parent muss intersect it to the left of t2. But then, j2 cannot be on the left
upper envelope at t2, a contradiction. ut

6.3 Affection Tree

We will now formally define and study the graph defined by the affection
relation. Using the lemmas from Section 6.2, we will show that this graph is a
tree (Lemma 6).

Definition 5 (Affection Tree) Let Gi(τ) be the directed graph induced by
the affection relation on jobs 1, 2, . . . , i. The affection tree is an undirected
graph Ai(τ) = (Vi(τ), Ei(τ)) where j ∈ Vi(τ) if and only if j is reachable from i
in Gi(τ), and for j1, j2 ∈ Vi(τ) we have { j1, j2 } ∈ Ei(τ) if and only if j1 → j2
or j2 → j1.

See Figure 5 for an illustration of this definition.

Lemma 1 to Lemma 5 imply that, if we omit edge directions, this subgraph
indeed forms a tree rooted at i such that all children of a node j are of higher
density. We state and prove this in the next lemma.
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Lemma 6 Let Ai be the (affection) graph of Definition 5. Then Ai is a tree,
and if we root Ai at i, then for any parent and child pair (ιj , j) ∈ G it holds
that dιj < dj.

Proof Assume, for the sake of contradiction, that there exists a cycle C in G.
Let v be a node in C that belongs to the highest level set, say Ll1 . Note that
such a v is unique since otherwise there would be two nodes in the same level
with at least one having an affection to the other contradicting Lemma 2. Let
v1, v2 be the neighbors of v in C and v3 ∈ Ll1−1 be the node such that v3 → v
(note that it may be v3 = v1 or v3 = v2). Note that by Lemma 4 we also have
v1, v2 ∈ Ll1−1. By Lemma 3, either v1 6→ v or v2 6→ v. Assume without loss
of generality this is v1. Since v1 is a neighbor of v in C and v1 6→ v, we have
v → v1. However, this contradicts Lemma 5. ut

For the remainder of the paper, we will always assume Ai(τ) is rooted at
i and use the notation (j, j′) ∈ Ai(τ) to indicate that j′ is a child of j. The
proven tree structure of the affection graph will allow us to easily compute
how fast to raise the different dual lines of jobs in Ai (as long as the connected
component does not change).

7 Computing an Optimal Schedule

In this section we describe and analyze the algorithm for computing an optimal
schedule. We introduce the necessary notation and provide a formal definition
of the algorithm in Section 7.1. In Section 7.2, we prove the correctness of the
algorithm. Finally, Section 7.3 explains how the algorithm and the analysis
need to be adapted to allow for arbitrary (not pairwise different) densities.

7.1 Preliminaries and Formal Algorithm Description

Our algorithm will use the affection tree to track the jobs affected by the raising
of the current job i and compute corresponding raising rates. The raising will
continue until job i is completely scheduled, or there is some structural change
causing us to recompute the rates at which we are raising dual lines. For
example a change in the structure of the affection tree when new nodes are
affected will cause us to pause and recompute. The intuition for each event
is comparatively simple (see Definition 6), but their formalization is quite
technical, requiring us to explicitly label the start and ending points of each
single execution interval of each job. To do so, we introduce the following
interval notation. See Figure 6 for a corresponding illustration.

Interval Notation. Let r̂1, r̂2, . . . , r̂n denote the jobs’ release times in non-
decreasing order. We define Ψj as a set of indices with q ∈ Ψj if and only if
job j is run between r̂q and r̂q+1 (or after r̂n for q = n). Job j must run in a
(sub-) interval of

[
r̂q, r̂q+1

)
. Let x−,q,j denote the left and x+,q,j denote the
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C1

C2

C3

r̂1 r̂2 r̂3
x−,3,jx+,3,j

r̂4 x−,4,j x+,4,j

Fig. 6: Let j be the green job. The set Ψj := { 3, 4 } corresponds to the 2
execution intervals of j. The speeds at the border of the first execution interval,
s−,3,j and s+,3,j , are both equal to s2. Similarly, the border speeds in the second
execution interval, s−,4,j and s+,4,j , are both equal to s1. The value q−,j = 3
refers to the first and q+,j = 4 to the last execution interval of j. Finally, the
indicator variables for j in the depicted example have the following values:
y+,j(3) = y−,j(3) = 1 (borders at some release time), y+,j(4) = y−,j(4) = 0
(borders not at some release time), χj(3) = 1 (not j’s last execution interval),
and χj(4) = 0 (last execution interval of j).

right border of this execution interval. Let s−,q,j denote the speed at which j
is running at the left endpoint corresponding to q and s+,q,j denote the speed
j is running at the right endpoint. Let q−,j be the smallest and q+,j be the
largest indices of Ψj (i.e., the indices of the first and last execution intervals of
job j).

Let the indicator variable y+,j(q) denote whether x+,q,j occurs at a release
point. Another indicator variable y−,j(q) denotes whether x−,q,j occurs at rj .
Lastly, χj(q) is 1 if q is not the last interval in which j is run, and 0 otherwise.

We define ρj(q) to be the last interval of the uninterrupted block of intervals
starting at q, i.e., for all q′ ∈ { q + 1, . . . , ρj(q) }, we have that q′ ∈ Ψj and
x+,q′−1,j = x−,q′,j , and either ρj(q) + 1 6∈ Ψj or x+,ρj(q),j 6= x−,ρj(q)+1,j .

Note that, as the line schedule changes with τ , so does the set of intervals
corresponding to it. Therefore we consider variables relating to intervals to be
functions of τ as well (e.g., Ψj(τ), x−,q,j(τ), etc.).

Events & Algorithm. Given this notation, we now define four different types
of events which intuitively represent the situations in which we must change
the rate at which we are raising the dual line. We assume that from τ until an
event we raise each dual line at a constant rate. More formally, we fix τ and
for j ∈ [i] and u ≥ τ let αj(u) = αj(τ) + (u− τ)α′j(τ).

Definition 6 (Event) For τ0 > τ , we say that an event occurs at τ0 if there
exists ε > 0 such that at least one of the following holds for all u ∈ (τ, τ0) and
v ∈ (τ0, τ0 + ε):
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1 for each job i from 1 to n:
2 while pi(τ) < pi: {job i not yet fully processed in current schedule}
3 for each job j ∈ Ai(τ):
4 calculate δj,i(τ) {see Equation (5)}
5 let ∆τ be the smallest ∆τ returned by any of the subroutines below:
6 (a) JobCompletion(S(τ), i, [α′1, α

′
2, . . . , α

′
i]) {time to job completion}

7 (b) AffectionChange(S(τ), Ai(τ), [α′1, α
′
2, . . . , α

′
i]) {time to affection change}

8 (c) SpeedChange(S(τ), [α′1, α
′
2, . . . , α

′
i]) {time to speed change}

9 (d) RateChange(S(τ), i, [α′1, α
′
2, . . . , α

′
i]) {time to rate change}

10 for each job j ∈ Ai(τ):
11 raise αj by ∆τ · δj,i
12 set τ = τ +∆τ
13 update Ai(τ) if needed {only if Case (b) returns the smallest ∆τ}

Algorithm 1: Algorithm to compute an optimal schedule. Here, δj,i(τ) describes
how fast j’s dual line is raised with respect to i’s dual line (see Section 7.2).

– The affection tree changes, i.e., Ai(u) 6= Ai(v). This is called an affection
change event.

– The speed at the border of some job’s interval changes. That is, there
exists j ∈ [i] and q ∈ Ψj(τ) such that either s−,q,j(u) 6= s−,q,j(v) or
s+,q,j(u) 6= s+,q,j(v). This is called a speed change event.

– The last interval in which job i is run changes from ending before the
release time of some other job to ending at the release time of that job.
That is, there exists a j ∈ [i− 1] and a q ∈ Ψi(τ) such that x+,q,i(u) < rj
and x+,q,i(v) = rj . This is called a simple rate change event.

– Job i completes enough work, i.e., pi(u) < pi < pi(v). This is called a job
completion event.

A formal description of the algorithm can be found in Algorithm 1.

7.2 Correctness of the Algorithm

In this subsection we focus on proving the correctness of the algorithm. Through-
out this subsection, we assume that the iteration and value of τ are fixed. Recall
that we have to raise the dual lines such that the total work done for any job
j ∈ [i− 1] is preserved. To calculate the work processed for j in an interval, we
must take into account the different speeds at which j is run in that interval.
Note that the intersection of j’s dual line with the i-th speed threshold Ci
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occurs at t =
αj−Ci
dj

+ rj . Therefore, the work done by a job j ∈ [i] is given by

pj =
∑
q∈Ψj

[
s−,q,j

(
αj − Č(Dτ

j (x−,q,j))

dj
+ rj − x−,q,j

)

+
∑

a : s−,q,j>sa>s+,q,j

sa

αj − Ca
dj

+ rj −

(
αj − Ca+1

dj
+ rj

)
+ s+,q,j

x+,q,j −

(
αj − Ĉ(Dτ

j (x+,q,j))

dj
+ rj

)].
It follows that the change in the work of job j with respect to τ is

p′j =
∑
q∈Ψj

s−,q,j (α′j
dj
− x′−,q,j

)
+ s+,q,j

(
x′+,q,j −

α′j
dj

) . (4)

For some child j′ of j in Ai, let qj,j′ be the index of the interval of Ψj that
begins with the completion of j′. Recall that Dτ

i is raised at a rate of 1 with
respect to τ , and for a parent and child (ιj , j) in the affection tree, the rate of
change for αj with respect to αιj used by the algorithm is:

δj,ιj :=

(
1 + y−,j(q−,j)

dj − dιj
dj

s−,q−,j ,j − s+,ρj(q−,j),j

s+,q+,j ,j

+
∑

(j,j′)∈Ai

(
(1− δj′,j)

dj − dιj
dj′ − dj

s−,qj,j′ ,j

s+,q+,j ,j
+
dj − dιj
dj

s−,qj,j′ ,j − s+,ρj(qj,j′ ),j

s+,q+,j ,j

))−1

.

(5)

We will prove in Lemma 9 that these rates are work-preserving for all jobs
j ∈ [i− 1]. Note that the algorithm actually uses δj,i which we can compute
by taking the product of the δa,b over all edges (a, b) on the path from j to i.
Similarly we can compute δj,j′ for all j, j′ ∈ Ai.

Lemma 7 Intersection points on the upper envelope cannot move towards the
right when τ is increased.

Proof Since, by Lemma 6, parents in the affection tree are always of lower-
density than their children, and since dual lines are monotonically decreasing,
we have that διj ,j ≤ 1. This implies the claim. ut

The following lemma states how fast the borders of the various intervals change
with respect to the change in τ .

Lemma 8 Consider any job j ∈ Ai whose dual line gets raised at a rate δj,i.

(a) For an interval q ∈ Ψj, if y−,j(q) = 1, then x′−,q,j = 0.
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(b) For an interval q ∈ Ψj, if χj(q) = 1, then x′+,q,j = 0.
(c) Let (j, j′) be an edge in the affection tree and let qj and qj′ denote the

corresponding intervals for j and j′. Then, x′−,qj ,j = x′+,qj′ ,j′ = −α
′
j−α

′
j′

dj′−dj
.

Note that this captures the case q ∈ Ψj′ with χj′(q) = 0 and j′ 6= i.
(d) For an interval q ∈ Ψi, if χi(q) = 0, then x′+,q,i = 0 or x′+,q,i = 1/di.

Proof

(a) Note that since y−,j(q) = 1, this implies that x−,q,r = rj . Since by Lemma 7
intersection points can only move towards the left and by definition Dτ

j is

defined in
[
rj ,∞

)
the statement follows.

(b) Set t = x+,q,j and let us consider two subcases. In the first case, assume
that there exists an ε > 0 such that j is run in (t, t + ε). Then, we must
have that t = x+,q,j = rj′ for some j′ 6= j, as otherwise q would not be
maximal. This implies x′+,q,j = 0.
In the second subcase, assume that there does not exist any ε > 0 such
that j is run in (t, t+ ε). This implies there is some change in the upper
envelope at t, which can happen only in the following three cases:
(i) The dual line crosses 0 at t. That is, αj − dj(t− rj) = 0.
(ii) The dual line crosses a dual line of smaller slope at t.
(iii) A release time causes a discontinuity on the upper envelope at t.

Note that (i) and (ii) can only happen at the last execution interval of a
job, but since χj(q) = 1, q is not the last interval in which j is run. In (iii),
since x+,q,j = rj′ at a discontinuity, x′+,q,j = 0 and the statement holds.

(c) Note that since (j, j′) is an edge in the affection tree, by Observation 2 we
have that Dτ

j′ and Dτ
j must intersect on the (left) upper envelope. Since

Dτ
j′(t) = αj′ − dj′(t− rj′) and Dτ

j (t) = αj − dj(t− rj), the dual lines for j
and j′ intersect at

t =
αj′ + dj′ · rj′ − αj − dj · rj

dj′ − dj
, and its derivative is −

α′j − α′j′
dj′ − dj

.

Since j is a parent of j′, x−,qj ,j = x+,qj′ ,j
′ = t and the result follows.

(d) Note that since job i has the lowest density of all jobs currently considered,
its rightmost interval can only stop at a release time of a denser job, or at
a point t such that Dτ

i = 0. In the first case x′+,q,i = 0. In the second case
note that Dτ

i (t) = αi − di(t− ri) intersects 0 at t = αi/di + ri. Taking the
derivative with respect to τ yields x′+,q,i = α′i/di = 1/di, as desired. ut

Equation 4 defines a system of differential equations. In the following, we
first show how to compute a work-preserving solution for this system (in which
p′j = 0 for all j ∈ [i − 1]) if α′i = 1, and then show that the corresponding τ
values can be easily computed.

Lemma 9 For a parent and child (ιj , j) ∈ Ai, set α′j = δj,ιjα
′
ιj , and for

j′ 6∈ Ai set α′j′ = 0. Then p′j = 0 for j ∈ [i− 1].
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Proof Clearly, by the definition of affection and construction of the affection
tree, if j′ 6∈ Ai, then by setting α′j′ = 0 we have that p′j′ = 0.

For a parent and child (ιj , j) ∈ Ai, we set p′j = 0 in Equation 4 and
solve for α′j/α′ιj = δj,ιj . Let Iq,j = { q, . . . , ρj(q) } if q ∈ Ψj and ∅ otherwise.
We call Iq,j a maximal execution interval of j if Iq−1,j ∩ Iq,j = ∅. Let M =
{ q ∈ Ψj | Iq,j is max. execution interval of j }. We have that

⋃
q∈M Iq,j = Ψj .

Let p′j,S where S ⊆ Ψj be the rate of change of pj due to the rate of change
of the endpoints of the intervals in S. If j is run at its release time, then
y−,j(q−,j) = 1 and by, Observation 3, j cannot intersect any of its children at
its release time, so by Lemma 8

p′j,Iq−,j ,j
= (s−,q−,j ,j − s+,ρj(q−,j),j)

(
α′j
dj

)
+ s+,ρj(q−,j),j

(
x′+,ρj(q−,j),j

)
.

For any other q ∈ M (including q−,j if y−,j(q−,j) = 0), q must begin at the
intersection point of j and one of its children. That is, there exists a unique
(j, j′) ∈ Ai such that q = qj,j′ . Therefore, by Lemma 8

p′j,Iq
j,j′ ,j

= (s−,qj,j′ ,j − s+,ρj(qj,j′ ),j
)

(
α′j
dj

)
+ s−,qj,j′ ,j

(
α′j − α′j′
dj′ − dj

)
+ s+,ρj(qj,j′ ),j

(
x′+,ρj(qj,j′ ),j

)
.

For any q ∈ M , we have (Lemma 8) that x′+,ρj(q),j = 0 if ρj(q) 6= q+,j and

x′+,q+,j ,j = −
α′ιj
−α′j

dj−dιj
. The lemma follows by observing that p′j =

∑
q∈M p′j,Iq,j ,

the fact that j must intersect each of its children exactly once on the (left)
upper envelope, and that for (j, j′) ∈ Ai, we have that αj′/αj = δj′,j . ut

Although it is simple to identify the next occurrence of job completion,
speed change, or simple rate change events, it is more involved to identify
the next affection change event. Therefore, we provide the following lemma to
account for this case.

Lemma 10 An affection change event occurs at time τ0 if and only if at least
one of the following occurs.

(a) An intersection point t between a parent and child (j, j′) ∈ Ai becomes equal
to rj. That is, at τ0 > τ such that Dτ0

j (rj) = Dτ0
j′ (rj) = UEτ0(rj).

(b) Two intersection points t1 and t2 on the upper envelope become equal. That
is, for (j1, j2) ∈ Ai and (j2, j3) ∈ Ai, at τ0 > τ such that there is a t with
Dτ0
j1

(t) = Dτ0
j2

(t) = Dτ0
j3

(t) = UEτ0(t).
(c) An intersection point between j and j′ meets the (left) upper envelope at

the right endpoint of an interval in which j′ was being run. Furthermore,
there exists ε > 0 so that for all τ̃ ∈ (τ0 − ε, τ0), j′ was not in the affection
tree.
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Proof It is straightforward to see that whenever (a), (b), or (c) occurs, an
affection change event has to take place. Therefore we focus the rest of the
proof on showing the other direction, i.e., any affection change event is always
a consequence of one of the aforementioned cases.

By definition, any change in the affection tree is built from a sequence of
edge additions and edge removals. We therefore will separately consider the
cases where an edge is removed or added.

Case: An edge between j and j′ is removed.
Let τ0 be a time when an edge between j and j′ is removed, and assume
that j and j′ had an intersection point t. Assume furthermore, without
loss of generality, that j is a parent of j′. Therefore the affection j → j′

ceases to exist at τ0 (perhaps also j′ → j if it existed). First note that at t,
Dτ0
j (t) = Dτ0

j′ (t) must be on the upper envelope or left upper envelope at a
discontinuity, otherwise there exists some ε > 0 such that at time τ0 − ε
their intersection was not on the upper envelope or the left upper envelope
but the edge j → j′ existed, contradicting Observation 2. We handle these
two cases separately.
Subcase: Dτ0

j (t) = Dτ0
j′ (t) lies on upper envelope.

By Lemma 6, we know that it must be the case that dj′ > dj . Further-
more, by Observation 3, since now it is the first time that j 6→ j′, either
rj = t (which is covered in statement (a) of the lemma), or at least
three jobs intersect at t. If this is the case, let j′′ be the highest density
job among the jobs that intersect at t. Note that j′′ cannot be j (since
dj′ > dj) and it can also not be j′ (since j 6→ j′).
By Observation 3, just before τ0, j′ does work to the left of the intersec-
tion point (between j and j′) and j to the right. But at τ0, j′ cannot
do any work directly to the left of t, because of j′′. It follows that the
interval of j′ has disappeared, since to the left of t, j′′ is run and to
the right of t, j is run. This case is covered in the statement (b) of the
lemma.

Subcase: Dτ0
j (t) = Dτ0

j′ (t) lies on left upper envelope at discontinuity t.
Note that since the intersection points do not move towards the right
as τ increases (by Lemma 7), the intersection of j and j′ was either at t
or it was moving to the left towards t for all times during which j → j′.
However, since there is a discontinuity at t, there is some job j′′ on the
upper envelope that is not on the left upper envelope. If the intersection
was at t then j → j′ would not be possible. Therefore, there must exist
some ε > 0 such that at τ0− ε the intersection of j and j′ was below the
curve of j′′. This contradicts Observation 2. It follows that this subcase
cannot occur.

Case: A new edge is added to the affection tree.
Let τ0 be the time when a new edge is added to the affection tree. First note
that, without loss of generality, at least one new edge is between two nodes
j and j′ with (a) j is in the affection tree immediately before τ0, (b) j′

is not in the affection tree immediately before τ0, and (c) j becomes the
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parent of j′ at τ0. Indeed, obviously at least one old node j of the affection
tree must be involved as a parent in one of the new edges. Note that in
the above cases “immediately before” may refer to either some interval
(τ0 − ε, τ0), for an appropriate ε > 0, or to the situation directly after some
edge is removed at τ0, and before adding the new edge.
If all new children j′ of such old nodes were in the affection tree immediately
before τ0, there would also be some edge removal at τ0 (as an additional
edge would break the tree property, contradicting Lemma 6). This would
reduce this case to the previous one, i.e., we consider edge removals at τ0
before edge additions at τ0.
From the above we get dj < dj′ (j being a parent of j′). Moreover, by
Observation 2, at τ0 the intersection point t of j and j′ is on the (left)
upper envelope and j′ is run either to the left or right of t. Since j has a
lower density, it must be run to the left of t. This is the case covered by
statement (c) of the lemma. ut

7.2.1 The Subroutines

There are four types of events that cause the algorithm to recalculate the
rates at which it is raising the dual lines. In Lemma 10 we gave necessary and
sufficient conditions for affection change events to occur. The conditions for the
remaining event types to occur follow easily from Lemma 7 and Lemma 8. Given
the rates at which the algorithm raises the dual lines, we can easily calculate
the time until the next event. This subsection gives a formal description of
these subroutines and their correctness proofs.

Job Completion Event. Job completion events, which capture when the current
job i is finished, are the easiest events to handle. As long as no other event
occurs, the work of job i is processed at a constant rate p′i, which can be
computed by Equation (4) (using Lemma 8 to compute x′l,q,i and x′+,q,i). With
pi(τ) denoting the work of i processed at the current time τ , we define

∆τ :=
pi − pi(τ)∑

q∈Ψi(τ)

[
s−,q,i

(
α′i(τ)

di
− x′−,q,i(τ)

)
+ s+,q,i

(
x′+,q,i(τ)− α′i(τ)

di

)] . (6)

With the above discussion, we immediately get the following lemma.

Lemma 11 Assume the next event is a job completion event. Then this event
occurs at τ +∆τ , with ∆τ as computed by our job completion subroutine via
Equation 6.

Simple Rate Change Event. Simple rate change events are similarly easy to
compute. These occur when the right side of i’s last execution interval reaches
the release time of some job. By Lemma 8(d), this happens only when the
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rate at which this interval border changes jumps from 1/di to 0. Thus, the
corresponding time is computed as

∆τ := (r̂q+,i(τ)+1(τ)− x+,q+,i(τ),i(τ)) · di. (7)

This yields the following lemma.

Lemma 12 Assume the next event is a simple rate change event. Then this
event occurs at τ + ∆τ , with ∆τ as computed by our simple rate change
subroutine via Equation 7.

Speed Change Event. While the basic idea is the same as for the previous
events, computations for speed change events are a bit more tedious. For each
execution interval of each job, we have to check when the job’s dual function
value at the interval borders crosses a speed threshold. See Algorithm 2 for the
actual computations. We prove its correctness in Lemma 13.

Lemma 13 Assume the next event is a speed change event. Then this event
occurs at τ +∆τ , with ∆τ as computed by our speed change subroutine shown
in Algorithm 2.

Proof Consider the innermost “for loop” of Algorithm 2. It computes the time
until the left or right border of the q-th execution interval of j reaches a speed
threshold, assuming that no other event occurs before. To see this, note that if
the interval has length 0 and not increasing in size (the else branch), no work
will be done in this interval until the next event. Thus, in this case q cannot
cause the next event. Otherwise (the if branch), we know that x′−,q,j(τ) ≤ 0 and
α′j(τ) ≥ 0, and these rates remain constant until the next event. Thus, the dual

function value Dτ ′

j (x−,q,j(τ
′)) at the left border of q is always non-decreasing

for τ ′ > τ (until the next event). Thus, the speed s−,q,j at this interval border

remains constant until τ ′ > τ with Dτ ′

j (x−,q,j(τ
′)) = Ĉ(Dτ

j (x−,q,j(τ))). With
∆τ−,q,j = τ ′ − τ , we can write

Dτ ′

j (x−,q,j(τ
′)) = αj(τ

′)− dj(x−,q,j(τ ′)− rj)
= αj(τ) +∆τ−,q,jα

′
j(τ)− dj

(
x−,q,j(τ) +∆τ−,q,jx

′
−,q,j(τ)− rj

)
= Dτ

j (x−,q,j(τ)) +∆τ−,q,j
(
α′j(τ)− djx′−,q,j(τ)

)
.

If we set this equal to Ĉ(Dτ
j (x−,q,j(τ))) and solve for ∆τ−,q,j , we get exactly

the value computed by Algorithm 2. Analogously, we see that ∆τ+,q,j are
computed correctly. Finally, the algorithm set ∆τ to the first of all these
computed events. ut
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1 for each job j ∈ [i]:
2 for each q ∈ Ψj(τ):
3 if x+,q,j 6= x−,q,j or x′+,q,j − x′−,q,j > 0:

4 ∆τ−,q,j =
Ĉ(Dτj (x−,q,j(τ)))−D

τ
j (x−,q,j(τ))

−x′−,q,j(τ)dj+α
′
j(τ)

5 ∆τ+,q,j =
Ĉ(Dτj (x+,q,j(τ)))−D

τ
j (x+,q,j(τ))

−x′+,q,j(τ)dj+α
′
j(τ)

6 else:
7 ∆τ−,q,j = ∆τ+,q,j =∞
8 ∆τ = minj∈[i],q∈Ψj(τ)(min(∆τ−,q,j ,∆τ+,q,j))

9 return ∆τ

Algorithm 2: SpeedChange(S(τ),
[
α′1, α

′
2, . . . , α

′
i

]
).

Affection Change Event. The last event type is the most involved. However,
Lemma 10 gives the exact conditions for when and why an affection change
event can occur. More precisely, Lemma 10(a) and 10(b) correspond to edge
removals in the affection tree, while Lemma 10(c) corresponds to an addition
of an edge. The computations of all such possible events is formalized in
Algorithm 3. Lemma 14 states and proves its correctness.

Lemma 14 Assume the next event is an affection change event. Then this
event occurs at τ+∆τ , with ∆τ as computed by our affection change subroutine
shown in Algorithm 3.

Proof By Lemma 10, an edge (and hence a job) is removed from the affection
tree only when a nonzero interval becomes 0. Thus for any job j in the tree
and nonzero interval q of it, the rate of change of the size of that interval
is v = x′+,q,j(τ) − x′−,q,j(τ), which is negative if the size of the interval is
decreasing. The size of the interval is x+,q,j(τ) − x−,q,j(τ), thus at rate v it
will become zero at ∆τj,q.

By Lemma 10, an edge (and hence job) is added to the affection tree only
when a job j not in the affection tree intersects a job a in the affection tree at
the right endpoint of a nonzero interval of j. Since j is not in the affection tree,
its endpoints do not change as τ increases. For some interval q, the distance
between Dτ

a and Dτ
j at the right endpoint of q is Dτ

j (x+,q,j(τ))−Dτ
a(x+,q,j(τ)),

and Dτ
a increases at a rate of α′a. ut

7.2.2 Completing the Correctness Proof

We are now ready to prove the correctness of the algorithm. We handle
termination in Theorem 8, where we prove a polynomial running time for our
algorithm.

Theorem 7 Assuming that Algorithm 1 terminates, it computes an optimal
schedule.
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1 {all τj,q and τj,q,a initialized with ∞}
2 for j ∈ Ai(τ): {calculate affection tree removals}
3 for q ∈ Ψj(τ):
4 if x−,q,j(τ) 6= x+,q,j(τ) and x′+,q,j(τ)− x′−,q,j(τ) < 0: {q shrinks}
5 ∆τj,q =

x+,q,j(τ)−x−,q,j(τ)
x′−,q,j(τ)−x

′
+,q,j(τ)

6 ∆τ1 = minj∈Ai(τ),q∈Ψj(τ)(∆τj,q)

7
8 for j ∈ [i] \Ai(τ): {calculate affection tree additions}
9 for q ∈ Ψj(τ):

10 for a ∈ Ai(τ):
11 if x−,q,j 6= x+,q,j and ra < x+,q,j :

12 ∆τj,q,a =
Dτj (x+,q,j(τ))−D

τ
a(x+,q,j(τ))

α′a
13
14 ∆τ2 = minj∈[i]\Ai(τ),q∈Ψj(τ),a∈Ai(τ)(∆τj,q,a)

15 ∆τ = min(∆τ1,∆τ2)
16 return ∆τ

Algorithm 3: AffectionChange(S(τ), Ai(τ),
[
α′1, α

′
2, . . . , α

′
i

]
).

Proof The algorithm outputs a line schedule S, so by Theorem 1, S is optimal
if for all jobs j the schedule does exactly pj work on j. We now show that this
is indeed the case.

For a fixed iteration i, we argue that a change in the rate at which work is
increasing for j (i.e., a change in p′j) may occur only when an event occurs. This
follows from Equation 4, since the rate only changes when there is a change
in the rate at which the endpoints of intervals move, when there is a change
in the speed levels employed in each interval, or when there is an affection
change (and hence a change in the intervals of a job or a change in α′j). These
are exactly the events we have defined. The lemmas from Section 7.2.1 state
that all these events are recognized (which causes the algorithm to recalculate
the rates). By Lemma 9 it calculates the correct rates such that p′j(τ) = 0
for j ∈ [i − 1] and for every τ until some τ0 such that pi(τ0) = pi, which
the algorithm recognizes by Lemma 11. Thus we get the invariant that after
iteration i we have a line schedule for the first i jobs that does pj work for
every job j ∈ [i]. The theorem follows. ut

7.3 A Note on Density Uniqueness

For two jobs i and j with different densities di 6= dj , the dual lines Dai
i and

D
aj
j intersect in at most one point t∗. Therefore the only time they can both

be on the upper envelope (or left upper envelope) is t∗. However, if di = dj
and Dai

i and D
aj
j intersect once, then they intersect at every time after both

i and j have been released, and thus both may be on the upper envelope for
entire intervals. We resolve any ambiguity by imposing the rule that if di = dj ,
ri < rj , and Dai

i and D
aj
j intersect, then i must complete all its work before

j completes any work (if ri = rj , we arbitrarily pick one to complete first).
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Let J = { j1, . . . , jz } be the largest set of jobs that all have some density dj
and intersect, ordered by release time. We say that the intersection between
D
aji
ji

and D
aji+1

ji+1
occurs at the time at which ji has completed pji work, if

such a time exists. For any other pair of jobs ji, j` ∈ J such that |i− `| > 1,
we say that D

aji
ji

and D
aj`
j`

do not intersect. Thus for the purpose of having
a well-defined upper envelope, we consider a job j` ∈ J to be on the upper
envelope at t only when Da`

j`
is the highest curve at t, every other job ji ∈ J

with i ∈ [` − 1] has completed by t, and either j` has not completed by t or
` = z.

We now discuss how the algorithm must be modified when there exist jobs
with equal densities. Fix an iteration i of the algorithm and a τ . If (j, ιj) ∈ Ai
with dj = dιj , we set δj,ιj = 1. All that remains is to show how the rate of
change of the intersection point between j and ιj (as defined above) can be
computed, i.e., x′−,qj,ιj ,j

, since now Lemma 8(c) calculates a value that is not

well-defined. This is calculated such that p′j = 0. In other words, by Equation 4
and Lemma 8(b) we have that

x′−,qj,ιj ,j
= − 1

s+,q+,j ,j

∑
q∈Ψj

(s−,q,j − s+,q,j)
α′j
dj
− s−,q,jx′−,q,j

 . (8)

Thus if we know the rates of change of the intersection points for j and its
children, we can calculate the rate of change of j’s intersection with ιj . If
(ιj , u) ∈ Ai and dιj > du, then διj ,u will be calculated differently than shown
in Equation 5, but the necessary change is a simple replacement of the term
(1− δj,ιj )/(dj − dιj ) with the term x′−,qj,ιj ,j

/α′ιj .

8 The Running Time

The purpose of this section is to analyze the running time of Algorithm 1 by
proving the following theorem.

Theorem 8 Algorithm 1 takes O
(
n4k

)
time.

We use the following approach in order to prove Theorem 8. Details follow
below.

– We give upper bounds on the total number of events that can occur in
Lemma 16. This is relatively straightforward for job completion, simple
rate change, and speed change events, which can occur O (n), O

(
n2
)
, and

O
(
n2k

)
times, respectively. However, bounding the number of times an

affection change event can occur is more involved: One can show that
whenever an edge is removed from the affection tree, there exists an edge
which will never again be in the affection tree. This implies that the total
number of affection change events is upper bounded by O

(
n2
)

as well.
– We show in Lemma 17 that the next event can always be calculated in
O
(
n2
)

time.
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– We show in Lemma 18 that the affection tree can be updated in O (n) time
after each affection change event.

The above results imply that our algorithm has a running time of O
(
n4k

)
,

and therefore Theorem 8 follows.
We start with an auxiliary lemma that will be useful for bounding the

number of affection change events in Lemma 16.

Lemma 15 Consider some time τ0 where an edge (j, j′) is removed from the
affection tree. Then, there exists some edge (u, v) that is also being removed
at τ0 such that (u, v) will not be present for all remaining iterations of the
algorithm.

Proof First note that by the definition of the affection tree, it must be that
the affection j → j′ is being removed. Since j is a parent of j′, by Lemma 6 we
have dj < dj′ . Also, by Lemma 10, this edge can be removed because either the
intersection between j and j′ becomes equal to rj or two intersection points
become equal. We handle these cases separately.

In the first case we show that the affection edge j → j′ cannot be present
again. To do this, we show that the invariant of j′ not being processed on
the (left) upper envelope to the right of rj is always maintained. This implies
that the edge j → j′ is never present again. It is clearly true for τ0 (say, in
iteration i). Assume that for some iteration i′ ≥ i this invariant is true. If j′ is
not being raised the invariant will remain true since curves can only be raised
and not lowered. If j′ is being raised, since it is not the lowest density job it
must intersect some lower density job j

′′
(its parent) that is also being raised.

Further, since the invariant is true to this point, the intersection is not to the
right of rj . However, while j′ is being raised, by Lemma 7 the intersection

between j′ and j
′′

moves only to the left. Since dj′′ < dj′ , j
′ will not be on the

upper envelope or left upper envelope to the right of this intersection and the
result follows.

In the second case, assume that the intersection between j1 and j2 becomes
equal to the intersection between j2 and j3 and assume without loss of generality
that dj1 < dj2 < dj3 . This implies the edges (j1, j2) and (j2, j3) will be removed.
We show that the edge (j2, j3) will not be present again. First note that rj2 < rj3
since otherwise j2 would not be processed anywhere, contradicting that the
rates at which we raise curves are work-preserving. Similar to the previous
argument, we show that j2 will not be processed on the upper envelope or
left upper envelope to the right of rj3 again. This is clearly true at τ0 (say,
in iteration i). Assume for some iteration i′ ≥ i this invariant is true. Again,
if j2 is not being raised the invariant remains true. If j2 is being raised, it
must intersect a lower density job (its parent) to the left of rj3 . Since this
intersection point will move only to the left the result follows. ut

Lemma 16 The total number of events throughout the execution of the algo-
rithm is O

(
n2k

)
.

Proof To show this we show that the number of events is O
(
n2k

)
for each

single type.
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Job completion event: Note that a job completion event occurs exactly once
per iteration: After a job completion event occurs on iteration i, we have
that pi(τ) = pi and in turn the algorithm moves to the next iteration.
Therefore, the total number of job completion events that occur is exactly
n.

Simple rate change event: Consider iteration i. A simple rate change event can
occur, if and only if, the last interval of job i changes from ending before the
release time of some job to ending at the release time of the job. Note that
since dual lines are never lowered during the execution of the algorithm
this can occur at most once for each release time and therefore at most
n times. As we have n iterations the total number of simple rate change
events is O

(
n2
)

Affection change event: These events happen when an edge is either added or
removed in the tree. Note that the number of edge additions is bounded by
2 times the number of edge removals, so it suffices to bound the number
of removals. By Lemma 15, for each (possibly temporarily) removed edge
at least one edge is removed permanently. Thus, the total number of such
events is O

(
n2
)
.

Speed change event: A speed change event occurs when the right or left end-
point of an interval for a job j crosses a speed threshold. We first show
that each speed threshold can be crossed at most twice per interval, once
by the left and once by the right endpoint of the interval. Consider an
interval I for job j. If I is never removed, then each endpoint of I can only
cross each speed threshold at most once, since by Lemma 7 the endpoints
of intervals only move towards left, and furthermore no dual line is ever
lowered during the execution of the algorithm. Else, if I is removed then
the left and right endpoints of I coincide on the upper envelope at some
point t (by Lemma 10) and there must be some other job j′ of lower-density
whose dual-line also intersects at t. However, by Lemma 7, the left endpoint
of j′ (in case more than two dual-lines intersect at t let j′ be the job
corresponding to such a dual line of lowest-density) will only move to the
left while this interval is not present. Therefore, even if interval I does
reappear, the left and right endpoints will not be at lower speeds.
Finally, since each job has at most n intervals and each such interval can
cause at most 2k speed change events, the total number of speed change
events is O

(
n2k

)
. ut

Lemma 17 Calculating the next event takes O
(
n2
)

time.

Proof We start by noting that the total number of different intervals during the
execution of the algorithm is O (n). This follows by the fact that a new interval
can only be introduced when a new job gets released, or a job completes its
execution.

To calculate the next event, we look at each event type and calculate how
far in the future the next event of this type will occur. Then we just choose the
event of the type that will happen sooner. Therefore it suffices to give bounds
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on the time required to calculate the next event of each type (cf. subroutines
in Section 7.2.1).

Affection change event: An affection change event has to be either a removal
or an addition (see Lemma 14). If it is a removal, then by the observation
on the number of intervals, it can be calculated in O (n) time. On the other
hand if the next affection change event is an addition, then again by the
above observation on the number of intervals O

(
n2
)
-time is required.

Speed change event: For any fixed interval the next speed change event can be
calculated in constant time. Therefore, by the observation on the number
of intervals, we have that the next such event over all jobs can be computed
in time O (n),

Simple rate change event: O (n)-time is sufficient in order to identify q+,i and
r̂q+,i+1, and therefore also to calculate this type of event as well.

Job completion event: We have to calculate y+,j , y−,j for each of the O (n)
intervals, identify i′ and calculate δi,i′ . Therefore we can calculate the next
job completion event in time O (n).

Combining the above, we can calculate the next event in O
(
n2
)

time. ut

Lemma 18 Updating the affection tree takes O (n) time.

Proof A simple way to update the affection tree is by recomputing it from
scratch at each update. By Lemma 1, jobs in the tree always have a higher
density than their parents. Further, by Observations 3 and 4, if a job j is on
the upper envelope (or left upper envelope) at some time t and has release
time before t, and j′ 6= j is the highest-density job on the upper envelope (left
upper envelope) at time t, then j → j′, and for any other job j′′ 6= j′ of higher
density than j on the upper envelope (left upper envelope), j 6→ j′′. Therefore,
for any job j, its children in the affection tree are those highest-density jobs
that intersect it on the left endpoint of any of its intervals that begin after
j’s release. Thus, to compute the affection tree, we can iterate through each
interval I of job i that begins after its release, add as i’s children the highest
density jobs that intersect it at I’s left endpoint, and recursively do the same
for i’s children. By the observation that there are at most 2n intervals, this
takes at most O (n) time. ut

9 Conclusion

We introduced an algorithm to find an optimal energy and fractional weighted
flow trade-off schedule. Our approach is new in that it uses a geometric
interpretation of optimality conditions obtained via a primal-dual formulation of
the problem. This geometric interpretation allows for a very intuitive algorithm,
and we believe that this approach might help to solve other, related problems.
The most interesting open question left is to consider our problem for arbitrary,
non-discrete speeds. In particular, it would be interesting whether a similar
geometric interpretation can be used to guide an optimization algorithm for
arbitrary speeds.
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