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ABSTRACT
We initiate the theoretical investigation of energy-efficient
circuit design. We assume that the circuit design speci-
fies the circuit layout as well as the supply voltages for the
gates. To obtain maximum energy efficiency, the circuit de-
sign must balance the conflicting demands of minimizing the
energy used per gate, and minimizing the number of gates in
the circuit; If the energy supplied to the gates is small, then
functional failures are likely, necessitating a circuit layout
that is more fault-tolerant, and thus that has more gates.
By leveraging previous work on fault-tolerant circuit design,
we show general upper and lower bounds on the amount
of energy required by a circuit to compute a given rela-
tion. We show that some circuits would be asymptotically
more energy-efficient if heterogeneous supply voltages were
allowed, and show that for some circuits the most energy-
efficient supply voltages are homogeneous over all gates.
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1. INTRODUCTION
The number of transistors per unit volume on a chip con-

tinues to double about every two years. However, about a
decade ago chip makers hit a thermal wall as the cost of cool-
ing chips with these transistor densities became prohibitive.
This has resulted in Moore’s gap, namely that increased
transistor density no longer directly translates into a similar
increase in performance, and in energy becoming the first
order design constraint in CMOS-based technologies.

One promising technique to attain more energy-efficient
circuits is Near-Threshold Computing (NTC). The thresh-
old voltage of a transistor is the minimum voltage at which
the transistor starts to conduct current, around 0.2-0.3V for
modern processors. Of course, even for identically-designed
transistors, there can be variations in the actual threshold
voltage due to manufacturing variations; And even for the
same transistor, the actual threshold voltage will vary with
environmental conditions. Further, actual supply voltages
may differ from the designed voltage due to manufacturing
and environmental variance. Thus if the designed supply
voltage was exactly the ideal threshold voltage, some tran-
sistors would likely fail to conduct current as designed. For
example, for a typical 65 nm SRAM circuit, halving the sup-
ply voltage from the nominal level to 0.5V typically increases
the failure rate by about 5 orders of magnitude [6]. The tra-
ditional design approach to achieving fault tolerance is to set
the supply voltage to be sufficiently high so that with suffi-
ciently high probability no transistor fails. Near-Threshold
Computing simply means that the supply voltages are de-
signed to be closer to the threshold voltage. As the power
used by a transistor is roughly proportional to the square of
the supply voltage [2], Near-Threshold Computing can po-
tentially offer orders of magnitude improvements in energy
efficiency, provided another, more energy-efficient, solution
for the fault-tolerance issue can be found.

One strategy to achieve fault-tolerance is to design fault-
tolerant circuits, namely circuits that correctly compute the
desired output if the number of failures is not significantly
higher than the expected number of failures. The study of
fault-tolerant circuits is not new. Starting with the seminal
paper by von Neumann [14], several papers [4, 5, 10, 11,
12, 8, 7] have considered the question of how many faulty
gates, each (independently) having a (small) fixed proba-
bility of failure, are required to mimic the computation of
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(a) Standard 6-transistor design.
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(b) A more fault-tolerant 10-transistor design from [3].

Figure 1: Two SRAM circuits with the same functionality.

an ideal circuit with some desired probability of correctness.
In general, as the probability of gate failure increases one
would expect that more gates will be required to achieve a
fixed probability of failure for the circuit. As an example
from [6], the circuit shown in Figure 1a is the traditional 6-
transistor design for an SRAM cell, while the circuit shown
in Figure 1b is a more fault-tolerant, and thus more suited
for Near-Threshold Computing, 10-transistor design for an
SRAM cell.

Our goal here is to initiate the study of the design of
energy-efficient circuits. We assume that the design of the
circuit specifies both the circuit layout as well as the supply
voltages for the gates. To obtain maximum energy efficiency,
the circuit design must balance the conflicting demands of
minimizing the energy used per gate, and minimizing the
number of gates in the circuit; If the energy supplied to the
gates is small, then functional failures are likely, necessi-
tating a circuit layout that is more fault-tolerant, and thus
that has more gates. Thus the design should find a “sweet
spot” for the supply voltages that balances the competing
demands of small circuit size and low per-gate energy. In
Section 2 we formalize this in the natural way.

The paper [6] gives an excellent survey on Near-Threshold
Computing. As an example of a technology that has at least
the spirit of Near-Threshold Computing, IBM’s production
POWER7 servers use a technique called Guardband to save
energy by dynamically lowering operating voltage [1].

1.1 Our Contribution
We give four main results, which we discuss in the follow-

ing four paragraphs.
We show in Section 3 that the classic lower bound on cir-

cuit size from the fault-tolerant circuit literature can be ex-
tended to give a lower bound for energy. Gács and Gál [8],
and independently Reischuk and Schmeltz [12], show that
any Boolean function f with sensitivity s (roughly the num-
ber of input bits which affect the output) requires a cir-
cuit of size Ω (s log s) to be reliably computed when the
gates of the circuit fail independently with a fixed posi-
tive probability. We modify the techniques in [8] to prove

an Ω
(

s log
(

s(1− 2
√
δ)/δ

))

lower bound on the energy re-

quired by any circuit that computes a relation with sensi-
tivity s correctly with probability at least (1− δ).

We show in Section 4 that the classic upper bound on
circuit size from the fault-tolerant circuit literature can be
extended to give an upper bound on circuit energy consump-
tion. Von Neumann [14] showed that given a Boolean func-

tion f and a circuit of size c which computes f , a circuit
of size O (c log c) is sufficient for computing f correctly with
high probability. Using techniques from [14] and from [10,
7], we show that a relation h that is computable by a circuit
of size c can, with probability at least (1− δ), be computed
by a circuit of faulty gates using O (c log(c/δ)) energy. In
our construction, the supply voltages are homogeneous (that
is, the same for all gates).

While it may not currently be practical, in principle the
supply voltages need not be homogeneous over all gates,
that is, different gates could be supplied with different volt-
ages. This naturally leads to the question of whether allow-
ing heterogeneous supply voltages might yield lower-energy
circuits than is possible if the supply voltages are required
to be homogeneous. In Section 5 we observe that there are
relations, namely the parity function, for which allowing het-
erogeneous supply voltages will not allow one to achieve a
circuit design that uses asymptotically less energy than is
achievable with a circuit design with homogeneous supply
voltages. Intuitively, the parity function has such high sen-
sitivity that every gate in any reasonable circuit will be of
equal importance, so nothing can be gained by heteroge-
neous supply voltages. Formally, the proof is essentially a
corollary of our lower bounds from Section 3.

In contrast, in Section 6 we give a natural example where
allowing heterogeneous supply voltages allows one to use
asymptotically less energy than would be achievable using
homogeneous supply voltages. In particular, we consider a
natural super-majority relation, which outputs the majority
of the input bits if this majority is sufficiently large, and the
most natural circuit that computes this relation, a balanced
tree of majority gates. We show that for homogeneous sup-
ply voltages the energy required by this circuit to compute
this relation is Ω(nP (δ)), where n is the number of input
bits, δ is the maximum probability of failure for the cir-
cuit that one is willing to tolerate, and P (x) is the power
required in order for one majority gate to fail with proba-
bility at most x. We then show that if supply voltages can
be heterogeneous then this circuit can compute this relation
using energy O(n + 31/δP (δ/10)), which is asymptotically
less than nP (δ) for functions P observed in current circuits.
Intuitively, the gates closer to the output are more impor-
tant, and one can obtain a greater increase in probability
of correctness by investing more energy in these gates. In
some sense this is our main result as the proof is not based
on proofs in the fault-tolerant circuit literature.



2. PROBLEM DESCRIPTION AND
NOTATION

We now formally define the problem. A Boolean relation h
is a map from {0, 1}n to {0, 1}, where each input is mapped
to 0, 1, or both 0 and 1. If x is mapped to both 0 and 1, this
can be thought of as “don’t care” (for example because the
input x should not occur in a correctly functioning system).
Note that a Boolean function is a Boolean relation where
each input is uniquely mapped to either 0 or 1. For any
input x ∈ {0, 1}n, denote by xℓ the input that has the same
bits as x, except for the ℓ-th bit, which is flipped. A Boolean
relation h is sensitive on the ℓ-th bit of x if neither h(x) nor
h(xℓ) is mapped to both 0 and 1, and h(x) 6= h(xℓ). The
sensitivity of h on x is the number of bits of x that h is
sensitive on. The sensitivity of h is the maximum over all
x of the sensitivity of h on x.

A gate is a function g : {0, 1}ng → {0, 1}, where ng is
the number of inputs (i.e., the fan-in) of the gate. We say
that a gate fails when it produces an incorrect output, that
is, when given an input x it produces an output other than
g(x). Every gate has some independent probability of failure
ǫ. A gate that never fails is said to be reliable. A Boolean
circuit C with n inputs is a directed acyclic graph in which
every node is a gate. Among them there are n gates with
fan-in zero, each of which outputs one of the n inputs of
the circuit, i.e., the input gates are assumed to be reliable.
One gate is designated as the output gate, which has out-
degree zero. The size of a circuit is the number of gates
it contains. Any Boolean relation can be represented by a
Boolean circuit. Given a value δ ∈ (0, 1/2) (δ may not be
constant), a circuit that computes a Boolean relation h is
said to be (1− δ)-reliable if for every input x on which h(x)
is not both 0 and 1 it outputs h(x) with probability at least
1− δ. We say that a circuit is reliable if it is 1-reliable (for
example, because all its gates are reliable).

Every gate g is supplied with a voltage vg. We say that
the supply voltages are homogeneous when every gate of the
circuit is supplied with the same voltage, and heterogeneous
otherwise. A voltage-to-failure function ǫ(v) : R+ → (0, 1/2)
maps a supply voltage to a probability of functional failure,
that is, the probability that the gate fails when supplied with
voltage v. For convenience, we refer to the probability of fail-
ure with ǫ when the supply voltage is implied by the context.
Hence, every gate has a probability of failure of ǫ(vg) which,
to lighten notation, we denote as ǫg. There is also a voltage-
to-energy function E(v) mapping the supply voltage to the
energy used by a gate with that supply voltage. The energy
required by a circuit C is simply the aggregate energy used
by the gates,

∑

g∈C E(vg) in our notation. For convenience,

we define a failure-to-energy function P (q) := E(ǫ−1(q)),
where ǫ−1 denotes the inverse of the function ǫ. Thus the
energy of a circuit C can be rewritten as

∑

g∈C P (ǫg).
By observing a semi-log plot of voltage-to-failure for a

current 65nm SRAM cell from [6] we can see that the re-
lationship between voltage and the log of the failure is ap-
proximately linear. Hence, the error as a function of voltage
is of the form of ǫ(v) = c−v, for some positive constant c.
Thus using the fact that the energy is proportional to the
square of the supply voltage, we conclude that the failure-
to-energy function for a 65nm SRAM cell is approximately
P (ǫ) = Θ(log2(1/ǫ)).

3. A GENERAL ENERGY LOWER BOUND
Our main goal in this section is to prove Theorem 1, which

roughly states that Ω(s log s) energy is necessary to compute
a relation with sensitivity s.

Theorem 1. Let δ < 1/4, and let C be a circuit that (1−
δ)-reliably computes a relation h of sensitivity s. If each gate
g of C fails independently with probability ǫg, and incurs an
energy consumption of P (ǫg), with P being a proper failure-
to-energy function, then C requires

Ω

(

s log

(

s
1− 2

√
δ

δ

))

energy in order to (1− δ)-reliably compute h.

The outline of this section is as follows. First, we de-
fine proper failure-to-energy functions (Definition 2), and
discuss why proper functions are natural. Then, similarly
to [8], we show how to translate our problem to an equiva-
lent problem where the failures occur not only on gates, but
on wires as well. This is formalized in Statement 3, which
is implied by the proof of Lemma 3.1 in [4], and is also used
in [8]. Lemma 6 then gives a lower bound on the energy
necessary for (1− δ)-reliable circuits within this new model
with wire failures. The proof is based on the proof of Theo-
rem 3.1 in [8], and uses a series of inequalities that relate the
probability of an input being incorrectly transmitted to the
probability of the circuit being incorrect. Using this, we can
write the problem as a single-variable optimization problem
and use standard techniques to give the desired lower bound.
Finally, to prove Theorem 1 we show that given a (1 − δ)-
reliable circuit C in our original model without wire failures,
we can create a (1− δ)-reliable circuit C′ in the new model
with wire failures, where the energy consumptions of C and
C′ differ only by a constant.

Definition 2. A failure-to-energy function P is called
proper when it satisfies the four following properties:

1. P is nonincreasing,

2. limǫ→0+ P (ǫ)/(log 1/ǫ) > 0,

3. limǫ→1/2− P (ǫ) > 0,

4. P (ǫ1) + P (ǫ2) ≥ 2P (
√
ǫ1ǫ2) for all ǫ1, ǫ2 ∈ (0, 1/2).

The first and third restrictions are natural, since they just
require that the energy used decreases, but never becomes
zero, as the probability of failure of a gate increases. The sec-
ond property states that the energy must increase “quickly
enough” as the probability of a gate’s failure tends to 0,
which is necessary in order to have any energy saving over
gates that never (or almost never) fail. The last property
provides a convexity constraint on the function P . We point
out that failure-to-energy functions typically observed in real
gates fall within this class of proper failure-to-energy func-
tions [9, 6].

Statement 3 ([4]). Let g be a gate with fan-in ng, in a
circuit C where both gates and wires may fail. Furthermore,
let ǫ ∈ (0, 1/2), ζg ∈ [0, ǫ/ng ] and let g(t) be the output of
gate g assuming that its input-wires receive input t, and both
g and g’s input-wires are reliable. Then there exists a unique
value ηg(y, ζg) ∈ [0, 1] such that if



• the input wires of g fail independently with probability
ζg, and

• gate g fails with probability ηg(y, ζg) when the gate re-
ceives input y,

then the probability that g does not output g(t) is equal to ǫ.

Note that in Statement 3, since we can now have failures
on wires, the input y received by a gate g may be different
than the input t received by the corresponding wires.

We need the following definition and technical lemma.

Definition 4. Given x1,1, x1,2, . . . , x1,n ∈ R, we recur-
sively define a sequence of numbers as follows. Let mu

j =

argmaxi xj,i and ml
j = argmini xj,i. Then, for all i 6=

{mu
j ,m

l
j}, let x(j+1),i = xj,i, and let x(j+1),mu

j
= x(j+1),ml

j
=

√xj,mu
j
xj,ml

j
.

Lemma 5. Let a1, a2, . . . be a sequence of numbers such
that aj = xj,mu

j
− xj,ml

j
, with the terms xj,mu

j
and xj,ml

j
as

defined above. Then,

lim
j→∞

aj = 0.

Lemma 6. Let f be a proper failure-to-energy function,
and let C be a circuit that (1−δ)-reliably computes a relation
h of sensitivity s. If (i) each gate g of C fails independently
with probability ηg(y, ζg) when receiving input y, (ii) g incurs
an energy consumption of zero, and (iii) each wire i entering
g fails independently with probability ζg ∈ (0, 1/4) and incurs
an energy usage of f(ζg), then C requires

Ω

(

s log

(

s
1− 2

√
δ

δ

))

energy in order to (1− δ)-reliably compute h.

Proof. We start by rephrasing our problem after bor-
rowing a constraint on the number of wires and some nota-
tion from [8]. Specifically, let z be an input such that h has
maximum sensitivity on z. Let S ⊂ {1, 2, . . . , n} be the set
of indexes so that ℓ ∈ S if and only if h is sensitive to the ℓ-th
bit on input z. Then |S| = s, where s is the sensitivity of h.
For each ℓ ∈ S denote by Bℓ the set of all wires originating
from the ℓ-th input of the circuit. Let mℓ = |Bℓ|. For any
set β ⊂ Bℓ, let H(β) be the event that the wires belonging
to β fail and the other wires of Bℓ are correct. Denote by
βℓ the subset of Bℓ where

max
β⊂Bℓ

Pr[C(zℓ) = h(zℓ) s.t.H(β)]

is obtained, where C(zℓ) is a random variable for the output
of the circuit given input zℓ. Finally, let Hℓ = H(Bℓ \ βℓ).
Note that since wires can now fail with different probabili-
ties, we have that,

Pr[Hℓ] =
∏

i∈βℓ

(1− ζi)
∏

i/∈βℓ

ζi ≥
∏

i∈Bℓ

ζi.

It follows from Inequalities (5) and (6) of [8] that

δ

1− 2
√
δ
≥
∑

ℓ∈S

∏

i∈Bℓ

ζi

and as in [8], using the inequality of arithmetic and geomet-
ric means, we have

δ

1− 2
√
δ
≥ s





∏

ℓ∈S,i∈Bℓ

ζi





1/s

.

Rewriting this to isolate the product term, we have

∏

ℓ∈S,i∈Bℓ

ζi ≤
(

δ

s(1− 2
√
δ)

)s

.

Therefore, minimizing the energy consumption, is equivalent
to the following optimization problem,

minimize
∑

ℓ∈S,i∈Bℓ

f(ζi)

subject to
∏

ℓ∈S,i∈Bℓ

ζi ≤
(

δ

s(1− 2
√
δ)

)s

.

Now, take some feasible solution ζ∗ to the above opti-
mization problem. Let ζ∗1 and ζ∗2 denote the minimum and
maximum ζ∗i respectively, and M denote the total number
of wires, i.e., M =

∑

ℓ∈S mℓ. Note that since we assume
that f(p1) + f(p2) ≥ 2f(

√
p1p2) for all p1, p2 ∈ (0, 1/2), we

can set ζ∗1 = ζ∗2 =
√

ζ∗1 ζ
∗
2 , without increasing the value of

the objective, and further the constraint remains feasible.
By Lemma 5 this process, if repeated, will converge to a so-
lution where all ζi are equal. Therefore, we can rewrite the
optimization problem as

minimize Mf(x)

subject to xM ≤
(

δ

s(1− 2
√
δ)

)s

.

Isolating M in the constraint above, the problem is equiva-
lent to that of minimizing

(

s

log 1/x
log

(

s
1− 2

√
δ

δ

))

f(x).

Since the function satisfies properties 1, 2, and 3 of Defini-
tion 2, the above expression will be minimized either at some
constant x ∈ (0, 1/4), in which case f(x)/ log(1/x) > 0, or
in the limit as x approaches 0, in which case

lim
x→0+

f(x)/ log(1/x) > 0,

or in the limit as x approaches 1/4, in which case

f(x)/ log(1/x) > 0.

The lemma follows.

We are now ready to prove Theorem 1.

Proof of Theorem 1. We start by constructing a new
circuit C′ for computing h, which is identical to C except
that both wires and gates may fail, wires of C′ incur some
non-zero energy consumption (as a function of their proba-
bility of failure), and the gates in C′ do not consume energy.
First we argue that this can be done such that C′ is (1− δ)-
reliable. Observe that if for each wire i entering gate g we
set its probability of failure to ζg = ǫg/ng , we can apply



Statement 3 and set the failure probability on gate g when
receiving input y to ηg(y, ζg). The result is that when the
input wires of gate g in C′ receive input t, the probability
that g does not output g(t) is ǫg (the same as the probabil-
ity of failure of g in the original circuit C). Thus by setting
these failure probabilities for each gate and wire in C′ we
have that, for any input x, C and C′ output h(x) with the
same probability, and so C′ is (1− δ)-reliable.

Now we set the energy consumption of the wires such that
the energy of C′ is at most the energy of C. First observe
that if for each gate g we set the failure-to-energy function
of the wires that are inputs to g to be P̃g(ζ) = P (ng · ζ)/ng ,
then since ζg = ǫg/ng , the total energy of the wires en-

tering g would be ngP̃g(ζg) = P (ǫg) and the energy of C
and C′ would be equal. However, to apply Lemma 6, all
wires must have the same failure-to-energy function. There-
fore, let n∗

g be the maximum fan-in of any gate of C, i.e.,
n∗
g = maxg∈C ng. We set the failure-to-energy function of

all wires in C′ to be

P̃ (ζ) =

{

P (n∗
g · ζ)/n∗

g if ζ < 1
2n∗

g
,

limǫ→1/2− P (ǫ)/n∗
g if ζ ≥ 1

2n∗

g
.

First observe that P̃g(ζ) ≥ P̃ (ζ) for all ζ ∈ (0, 1/2) since P
is nonincreasing so P (ngζ) ≥ P (n∗

gζ). This implies that the
energy of C′ is at most the energy of C.

In order to apply Lemma 6, we need to verify that P̃ is a
proper failure-to-energy function. The first property follows
directly from the definition of P̃ . For the second property,
observe that

lim
ζ→0+

P̃ (ζ)

log
(

1
ζ

) =
1

n∗
g

lim
ζ→0+

P (n∗
gζ)

log
(

1
n∗

gζ

) · lim
ζ→0+

log
(

1
n∗

gζ

)

log
(

1
ζ

)

= lim
ζ→0+

P (n∗
gζ)

log
(

1
n∗

gζ

) > 0.

The third property follows from the fact that

lim
ζ→1/2−

P̃ (ζ) = lim
ǫ→1/2−

P (ǫ)/n∗
g > 0,

where we exploited the definition of P̃ and the fact that, by
hypothesis, P is a proper failure-to-energy function. For the
fourth property, let ζ1, ζ2 ∈ (0, 1/2), and, w.l.o.g., ζ1 < ζ2.
There are four cases, depending on the relationship between
ζ1, ζ2, and n∗

g . When ζ1 < ζ2 < 1/2n∗
g , by applying the

definition of P̃ and since P by hypothesis is a proper failure-
to-energy function, we have

P̃ (ζ1) + P̃ (ζ2) =
P (n∗

gζ1)

n∗
g

+
P (n∗

gζ2)

n∗
g

≥ 2
P
(√

n∗
gζ1n∗

gζ2
)

n∗
g

= 2P̃
(

√

ζ1ζ2
)

.

When ζ1 < ζ2 = 1/2n∗
g , by the previous case we have that

lim
ζ2→(1/(2n∗

g))
−

(

P̃ (ζ1) + P̃ (ζ2)− 2P̃
(

√

ζ1ζ2
))

≥ 0,

and so in this case the property holds. When ζ1 < 1/2n∗
g <

ζ2, we have that

P̃ (ζ1) + P̃ (ζ2) = P̃ (ζ1) + P̃

(

1

2n∗
g

)

≥ 2P̃

(√

ζ1
2n∗

g

)

≥ 2P̃
(

√

ζ1ζ2
)

,

where the first equality holds by definition of P̃ , the first
inequality follows by the preceding case, and the second in-
equality holds since P̃ is nonincreasing ans since, in this case,
√

ζ1/2n∗
g ≤ √

ζ1ζ2. Finally, when 1/2n∗
g ≤ ζ1 < ζ2,

√
ζ1ζ2 >

ζ1 and thus, by definition, P̃ (ζ1) = P̃ (ζ2) = P̃
(√

ζ1ζ2
)

. We

conclude that P̃ is a proper failure-to-energy function. The
theorem then directly follows by applying Lemma 6 to C′

and P̃ .

4. A GENERAL ENERGY UPPER BOUND
Our main goal in this section is to prove Theorem 7, which

roughly states that O(N logN) energy is sufficient to simu-
late a circuit of size N .

Theorem 7. Given a reliable circuit C of size N and a
non-trivial failure-to-energy function, it is possible to con-
struct a circuit C′ with homogeneous voltage supply that uses
O (N log(N/δ)) units of energy and that (1−δ)-reliably com-
putes the same function computed by C.

To prove Theorem 7 we use an upper bound on the number
of gates for fault-tolerant circuits originally stated by Pip-
penger [10] and later proved in full generality by Gács [7].
This upper bound is stated in Theorem 8. The energy upper
bound follows by choosing the voltage supply that minimizes
the product of the total number of gates in the circuit con-
structed in Theorem 8, and the energy used by each gate.
More specifically, we want to set the gate failure probability
ǫ so as to minimize P (ǫ)/(log(1/ǫ) − r0) for some constant
r0. As long as P is non-trivial, i.e., if for any p∗ ∈ (0, 1/2)
it holds that P (p∗) < +∞, one can find an ǫ such that
P (ǫ) = O(1). This setting of ǫ then implies the upper bound
of O (N log(N/δ)) on the energy used by this construction
using homogeneous supply voltages.

Theorem 8 ([7]). There are constants R0, ǫ0, r0 > 0
such that for all ǫ < ǫ0 and δ ≥ 3ǫ, for every reliable circuit

C of size N there is a circuit of size R0
N log(N/δ)

log(1/ǫ∗)−r0
that

computes the same result as C with probability at least 1− δ
if gates fail independently with probability at most ǫ, where
ǫ∗ = max{ǫ, δ/N}.

Proof. The main idea of this construction is to replace
each gate of the reliable circuit with a gadget in the fault-
tolerant circuit. A constant k is chosen as the level of re-
dundancy for the circuit, meaning that each gadget has k
outputs and each input to a gate in the reliable circuit is re-
placed by k inputs to a gadget. Another constant θ ∈ (0, 1)
is chosen such that, with high probability, θk wires exiting
each gadget carry the same value as the corresponding gate
in the reliable circuit. Each gadget contains k copies of the
corresponding gate from the reliable circuit, as well as an
additional circuit that ensures that at least a θ fraction of
the wires exiting the gadget are correct.



5. SUPPLY VOLTAGE HETEROGENEITY
MAY NOT HELP

In this section we observe in Theorem 9 that there are
relations, namely the parity function, where heterogeneous
supply voltages do not allow for an asymptotic reduction in
energy.

Theorem 9. Let δ < 1/4. The energy used by any circuit
to (1−δ)-reliably compute the parity function is Ω (n log(n/δ)),
and this is achievable by a circuit with homogeneous supply
voltages.

Proof. The parity function can be reliably computed by
a perfect binary tree of 2n − 1 XOR reliable gates. Thus,
by Theorem 7 there exists a (1 − δ)-reliable circuit for the
parity function that uses homogeneous voltage supplies and
that incurs O (n log(n/δ)) energy consumption. Since the
sensitivity of the parity function is n, by Theorem 1 this is
the best possible to within a constant factor.

6. SUPPLY VOLTAGE HETEROGENEITY
CAN HELP

The goal of this section is to prove Theorem 13, which
roughly states that heterogeneous supply voltages allow the
natural majority circuit to compute a super-majority with
asymptotically less energy than is possible with homoge-
neous supply voltages.

We start by defining the circuit and the logarithmic super-
majority relation (LSR). Lemma 17 shows that Ω (n · P (δ))
energy is required to (1− δ)-reliably compute the LSR with
homogeneous voltage supplies. The intuition behind the
proof is that the output gate of any (1 − δ)-reliable circuit
cannot have a probability of failure greater than δ and, since
the voltage supplies are homogeneous, neither can any other
gate. Then in Lemma 18 we show that there is a heteroge-
neous setting of the supply voltages so that this circuit (1−δ)

-reliably computes LSR with energy O
(

n+ 31/δP (δ/10)
)

.

Intuitively, we split the circuit into an “upper” part consist-
ing of gates close to the output gate, and a “lower” part
consisting of gates close to the input gates: Each gate in the
lower part has a constant probability of failure and thus a
small energy consumption which results in non-constant sav-
ings compared to the optimal homogeneous setting. With
the help of technical Lemmas 14 and 15, we are able to show
that although there exist gates in the lower part of the circuit
that fail with a probability higher than δ, no such gate fails
with a probability o(1). This preserves enough information
for the upper part of the circuit to still (1− δ)-reliably com-
pute LSR. In other words, in the upper part of the circuit
we use a much smaller probability of failure for each gate in
order to ensure that the circuit will “autocorrect” itself and
output the correct result (see Lemma 16).

Definition 10. The Logarithmic Supermajority Relation
(LSR) is the following Boolean relation:

LSR(x) =



























0 if the number of 0′s in x is at

least n− 1
2
log3 n,

1 if the number of 1′s in x is at

least n− 1
2
log3 n, and

0 and 1 otherwise,

where x is the input and |x| = n.

This relation outputs 1 when the input contains at least
n − (1/2) log3 n ones, 0 when the input contains at least
n− (1/2) log3 n zeros, and otherwise we “don’t care”.

Definition 11. A majority tree is a Boolean circuit where
the gates form a perfect ternary tree in which the leaves rep-
resent the inputs, and each internal gate, called majority
gate, outputs the majority of its three children.

Definition 12. A failure-to-energy function P is called
easy-going when the following hold:

• limx→0 P (x) = +∞

• There exists a constant c > 0 such that P (x/10)
P (x)

≤ c for

all x ∈ (0, 1/2).

Note that this class of failure-to-energy functions contains
many natural functions. For example P (x) = 1/xα and
P (x) = (log 1/x)α are both easy-going.

Theorem 13. Let P be an easy-going failure-to-energy
function, and let c ∈ (0, 1) be a constant. Furthermore,
let E1(δ) be the optimal energy consumption of the (1− δ)-
reliable majority tree on n leaves where all the gates must
have the same failure probability, and E2(δ) be the optimal
energy consumption of the same (1 − δ)-reliable majority
tree when each gate can have an arbitrary failure probability.
Then, for δ′ = 1

(1−c) log3 n
, there holds

E1(δ
′)

E2(δ′)
= ω(1).

Let pi be the probability that a gate of height i in a ma-
jority tree outputs 1. Notice that

pi+1 = p3i (1− ǫ) + 3p2i (1− pi)(1− ǫ) + 3pi(1− pi)
2ǫ

+ (1− pi)
3ǫ = (3p2i − 2p3i )(1− 2ǫ) + ǫ.

Also, let R(pi) := pi+1, and let ℓ∗(ǫ) be the largest real
number such that R(ℓ∗(ǫ)) = ℓ∗(ǫ). Note that ℓ∗(ǫ) only
exists when ǫ < 1/6. Therefore for the following we assume
that ǫ < 1/6.

Lemma 14. It holds that ℓ∗(ǫ) = 1
2
+ 1

2

√

1−6ǫ
1−2ǫ

. Further-

more, if 1/2 ≤ pi ≤ ℓ∗(ǫ) then pi ≤ pi+1 ≤ ℓ∗(ǫ), and if pi ≥
ℓ∗(ǫ) then pi ≥ pi+1 ≥ ℓ∗(ǫ), for all i ∈ {1, 2, . . . , log3 n}.

Note that the above technical lemma implies that ℓ∗(ǫ)
is a stable fixed point. The next two lemmas will be useful
for setting the failure probabilities and analyzing the upper
part of the tree.

Lemma 15. Let G be a majority gate with input gates
g1, g2 and g3 which output 1 with probability q1 > 1/2, q2 >
1/2, and q3 > 1/2, respectively. Furthermore let qG be the
probability that G outputs 1 (for the given probabilities of
the inputs to output 1). If we alter g1, g2, and g3 to have
probabilities q′1 > q1, q

′
2 > q2, and q′3 > q3 of outputting 1,

then for the new probability q′G of G outputting 1 it holds
that q′G ≥ qG.

Lemma 16. Consider a majority tree T of height ⌊1/δ⌋
(for δ small enough) where each input of T is 1 with prob-
ability at least 0.79, and suppose that each gate of T has a
failure probability of δ/10. Then T outputs 1 with probability
at least 1− δ.
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Figure 2: (a) Pr[r outputs 1] ≥ 1− p. (b) The path from b to g. The input gates bi receive input 0.

With the help of the above lemmas, we are now ready to
bound E1 and E2.

Lemma 17. It holds that E1(δ) = Ω (n · P (δ)).

Proof. In order to lower bound E1, we will consider the
case where each input bit is 1. Note that the root cannot
have a probability of failure greater than δ, since then even
with all its inputs being correct it would not give the right
output with the desired probability, and by Lemma 15 this
probability can only decrease as the probability that the
input gates are correct decreases. Because all gates must
have the same probability, we have that each of the O(n)
gates has an energy consumption of at least P (δ), and the
lemma follows.

Lemma 18. It holds that E2(δ) = O
(

n+ 31/δP (δ/10)
)

.

Proof. Assume without loss of generality that the input
contains at least n − (1/2) log3 n 1’s, so that the desired
output is 1. We assign a failure probability of δ/10 to each
gate located at a height of at least log3 n−1/δ, and a failure
probability of 0.12 to each gate at a height strictly less than
log3 n − 1/δ. By Lemma 16, it suffices to show that each
gate at height ⌊log3 n− 1/δ⌋ outputs 1 independently with
probability at least 0.79.

Let p = 0.36. Consider a majority tree where each gate
has a failure probability of 0.12. Then, by Lemma 14, and
since for this tree p0 = 0.88 > ℓ∗(0.12), we have that the root
of the tree outputs 1 with probability at least ℓ∗(0.12) > 0.8.
Thus, a reliable majority gate whose inputs are one 0 and the
outputs of two arbitrarily sized majority trees whose inputs
are all 1’s outputs 0 with probability at most 1 − 0.82 = p.
See Figure 2a.

Consider a majority tree of height h rooted at gate g,
and fix an input to this tree that contains exactly d zeros as
input, with 0 < d < h. Let b be any of the input gates of the
tree that was assigned a zero for this input. We first show
that the probability that the path from b to gate g contains
only 0’s after each gate has computed is at most ph−d. Let
bi for i = 1, 2, . . . , d − 1 be the other input gates that were
assigned 0’s. We may assume that the path from each bi
to g intersects the path from b to g, at a distinct gate xi.

Furthermore we may assume that each such xi outputs a 0.
See Figure 2b for an example. The probability of such a path
from b to g to contain only 0’s is equal to the probability
that the h − d − 1 non-xi gates on the path from b to g
output a 0. Note that these non-xi gates either receive a
0 and two inputs from majority subtrees whose inputs are
all 1, or three inputs from majority subtrees whose inputs
are all 1. Therefore, by the above observation about p and
Lemma 15, the probability of such a path of all 0’s is at most
ph−d.

Let T be any full (but not necessarily complete) majority
tree of some height hT . For any hA ≥ hT , we can“complete”
a copy of tree T by adding extra gates in order to obtain a
perfect majority tree A of height hA. We associate each gate
in T with the corresponding gate in A. We claim that if the
input at the leaves of both T and A consists of only 1’s,
then each gate of T is at least as likely to output 1 as the
corresponding gate in A. We prove this claim by induction
over the heights of gates in T . The base case, i.e., if a gate
in T is a leaf, is straightforward. Assume now that each
gate of T up to some height h′, has a higher probability of
outputting 1 than its corresponding gate in A, and consider
a non-leaf gate g′ of T at height h′ + 1. Since T is a full
tree, and g′ is not a leaf, g′ must have three children. The
inductive step now directly follows from Lemma 15.

Next, consider any subtree B of our original majority tree
that is rooted at a gate g of height ⌊log3 n− 1/δ⌋. Since we
assumed that the input to the original tree contains at most
(1/2) log3 n 0’s, clearly this holds for B as well. See Figure 3
for an example of a tree B.

Now we want to lower bound the probability that g out-
puts a 1 when there is no path of all 0’s from a leaf to g. We
note that if there is no path of all 0’s from a leaf to g then
there exists a full subtree T ′ of B that is also rooted at g
and whose inputs can be assumed to be all 1’s. The subtree
T ′ can be constructed by truncating each leaf-to-root path
in B at the first node that outputs 1. The existence of T ′

follows from the fact that there is no path of all 0’s from a
leaf in B to g, but the structure T ′ depends on the random
events occurring at each gate in B \T ′ and the leaves of T ′.
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Figure 3: A subtree B. The solid edges denote the full ternary subtree T ∈ Γ. Note that T has 1’s as inputs on its leafs. The
dashed edges denote the edges in B \ T . The gray nodes denote gates that failed.

Conditioning on those random events, we have that B and
T ′ output a 1 with the same probability.

Let Γ be the set of all full ternary trees of height at most
⌊log3 n − 1/δ⌋, and for T ∈ Γ let XT be the event that the
truncated tree described above is T . We have that:

Pr[B outputs 1] ≥
Pr[B outputs 1|∄ path of all 0’s] Pr[∄ path of all 0’s] ≥

Pr[∄ path of all 0’s] Pr[A outputs 1].

The second inequality follows because

Pr[B outputs 1|∄ path of all 0’s] =
∑

T∈Γ

Pr[XT ] Pr[T outputs 1 when given only 1’s as input] ≥

∑

T∈Γ

Pr[XT ] Pr[A outputs 1] =

Pr[A outputs 1].

It follows by the union bound over all possible leaf-to-root
paths of all 0’s that g, and therefore every gate of height
⌊log3 n− 1/δ⌋, outputs 1 independently with probability at

least ℓ∗(ǫ)·(1− 1
2
(log3 n)p

1
2
log3 n− 1

δ ). For n large enough this
is at least 0.79. By Lemma 16, the upper part of the majority
tree outputs 1 with probability at least 1 − δ. The total
energy of the circuit is at most P (0.12)n+31/δP (δ/10).

Proof of Theorem 13. By Lemmas 17 and 18, we have
that for δ′ = 1

(n−c) log3 n
,

E1(δ
′)

E2(δ′)
= Ω

(

n · P (δ′)

n+ 31/δ′P (δ′/10)

)

= Ω





n · P
(

1
(1−c) log n

)

n+ n1−cP
(

1
(1−c) log n

)





= ω(1),

where the second equality follows by the second property of
easy-going functions, and the third equality by the first prop-
erty of easy-going functions when taking n large enough.

We note that there are more trivial examples where het-
erogeneous supply voltages help. For example, consider a
circuit that is a balanced binary tree of gates that each out-
put the first bit, and the relation that outputs the first input
bit. As most gates in this circuit are irrelevant to comput-
ing the desired relation, one can get an asymptotic energy
saving by setting the supply voltages of the irrelevant gates
to zero. Our example is more natural as one cannot simply
power-off most of the gates. Although one might argue that
our example is still not fully satisfactory as a more energy-
efficient way to compute the super-majority relation is to
use the majority circuit from [13] to compute the majority
of the first log n bits with the supply voltages on each gate
set so that the probability that any gate fails is at most
δ. So a natural question is, “For every relation, is there is
an asymptotically energy-optimal circuit for computing this
relation that uses homogeneous supply voltages?”

7. CONCLUSIONS
This paper initiated the theoretical study of energy-efficient

circuits. At this point, it seems that there are many inter-
esting research lines in this area. Perhaps the most natural
direction is to look at circuit design, namely determining
the most energy-efficient circuit to compute a particular re-
lation. But this design question is probably too difficult as
a special case of this problem is the problem of designing
a circuit with the least number of gates to compute a par-
ticular relation, which is a known hard problem. Perhaps
questions related to circuit analysis are more amenable. A
natural circuit analysis question would be: given a (perhaps
special type of) relation, and (perhaps a special type of)
circuit, how does one set the supply voltage, or voltages, so
that the circuit (1− δ)-reliably computes the relation using
approximately minimal energy. Another natural direction is
to try to better understand which relations and circuits can
benefit from heterogeneous supply voltages. An additional
natural direction is to study the effect of switching delays of
gates, which increase as the supply voltage decreases.
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