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Abstract—In the traditional approach to circuit design the
supply voltages for each transistor/gate are set sufficiently high
so that with sufficiently high probability no transistor fails.
One potential method to attain more energy-efficient circuits is
Near-Threshold Computing, which simply means that the supply
voltages are designed to be closer to the threshold voltage.
However, this energy saving comes at a cost of a greater
probability of functional failure, which necessitates that the
circuits must be more fault tolerant, and thus contain more gates.
Thus achieving energy savings with Near-Threshold Computing
involves properly balancing the energy used per gate with the
number of gates used. We show that if there is a better (in terms
of worst-case relative error with respect to energy) method than
the traditional approach then P = NP , and thus there is a
complexity theoretic obstacle to achieving energy savings with
Near-Threshold Computing.

I. INTRODUCTION

The threshold voltage of a transistor is the minimum supply
voltage at which the transistor starts to conduct current.
However, if the designed supply voltage was exactly the
ideal threshold voltage, some transistors would likely fail to
operate as designed due to manufacturing and environmental
variations. In the traditional approach to circuit design the
supply voltages for each transistor/gate are set sufficiently
high so that with sufficiently high probability no transistor
fails, and thus the designed circuits need not be fault-tolerant.
One potential method to attain more energy-efficient circuits
is Near-Threshold Computing, which simply means that the
supply voltages are designed to be closer to the threshold
voltage. As the power used by a transistor/gate is roughly
proportional to the square of the supply voltage [4], Near-
Threshold Computing can potentially significantly decrease
the energy used per gate. However, this energy savings comes
at a cost of a greater probability of functional failure, which
necessitates that the circuits must be more fault-tolerant, and
thus contain more gates. As an example from [8], the circuit
shown in Figure 1 is the traditional 6-transistor design for an
SRAM cell, while the circuit shown in Figure 2 is a more fault-
tolerant, and thus more suited for Near-Threshold Computing,
10-transistor design for an SRAM cell.
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Fig. 1: Standard 6-transistor SRAM cell design.
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Fig. 2: A more fault-tolerant 10-transistor SRAM cell design
from [5].

To understand the relationship between the supply voltage,
energy/power, and error probability, consider the semi-log plot
of voltage-to-failure for an SRAM cell from [8] in Figure 3.
Since the relationship between voltage and the logarithm of
the failure rate is approximately linear, we conclude that the
error as a function of supply voltage v is approximately of the
form of ε(v) = c−v , for some positive constant c. Using the
fact that the energy is proportional to the square of the supply
voltage [4], we conclude that the failure-to-energy function for
a 65nm SRAM cell is approximately f(ε) = Θ(log2(1/ε)).1

To be a bit more general, we will assume in this paper that
f(ε) = Θ(logα(1/ε)) for some constant α > 1. In particular,
note that error and energy are inversely related.

As the total energy used by a circuit is approximately the
energy used per gate times the number of gates, achieving
energy savings with Near-Threshold Computing involves prop-

1Throughout this paper, and unless otherwise specified, log denotes the
natural logarithm.978-1-4799-6177-1/14/$31.00 c© 2013 IEEE



Fig. 3: Semi-log plot of voltage-to-failure for an SRAM cell
from [8].

erly balancing the energy used per gate with the number of
gates used. The optimization problem that a circuit designer
most naturally would like to solve is:

Definition 1. Minimum Energy Circuit Problem: Given a
function F , and an error bound δ, output a circuit C and
a setting v of the supply voltage such that C uses minimal
energy, subject to the constraint that C computes F with
probability at least 1− δ.

But the ability to even approximately bound optimal circuit
sizes is essentially at least as hard as the P vs. NP question,2

and is untouchable with current mathematical knowledge.
Thus in this paper we consider the following more limited
optimization problem:

Definition 2. Minimum Circuit Energy Problem (MCE):
Given a circuit C, and an error bound δ, output a setting v of
the supply voltage such that C uses minimal energy, subject
to the constraint that C computes correctly (what C would
compute if there were no errors) with probability at least 1−δ.

We show in Section V that this problem is NP-hard, even
in the special case that the input to the circuit is fixed.
Thus if P 6= NP then there is no efficient method for
computing the optimal supply voltage setting. The standard
fallback approach for NP-hard optimization problems is to
seek algorithms that are guaranteed to produce solutions with
optimal/good relative error compared to the optimal solution.
In our case, an algorithm A has approximation ratio c (or
equivalently worst-case relative error c − 1) if for all inputs
the energy used by the circuit with the supply voltage setting
given by A is at most c times the optimal minimum energy.
We show in Section III that the approximation ratio of the
traditional algorithm, which sets the supply voltages for each
gate sufficiently high so that with the desired probability no

2If one could prove that your favorite NP-complete problem required super-
polynomially many gates to compute, this would prove P 6= NP .

gate fails, is O(logα n). In contrast, we show in Section IV
that it is NP-hard to approximate the energy within a factor
of O(logα−γ n) for any constant γ > 0. Putting these two
results together, we can see that there is a complexity-theoretic
obstacle to achieving more energy-efficient circuits by using
lower supply voltages than one obtains by the traditional high
supply voltage approach. More precisely, if one could find a
computationally efficient algorithm for setting supply voltages
that has better worst-case relative error than the traditional
approach, then P = NP . Hence, assuming P 6= NP , any
proposed algorithm would either not have worst-case relative
error better than the traditional approach, or would take super-
polynomial time on some circuits. But of course the standard
caveat applies here: as NP-hardness is a worst-case concept,
this does not mean that one can not beat the energy used by
the traditional approach for particular circuits of interest.

A natural question is whether one can restrict the type of
circuits to some class that both contains the type of circuits
that one cares about in practice, and for which (maybe nearly)
energy optimal supply voltages can be efficiently computed.
As a small step in this direction, we show in Section VI that
there is an efficient algorithm to verify whether a particular
setting of the supply voltage achieves the desired error bound if
the circuit is a tree. This hints at the hardness of the Minimum
Circuit Energy problem coming from “cycles” in the circuit.
Finally, in Section VII we make the curious observation that
there are circuits where the reliability of the output is not
monotone in the reliability of the gates. Understanding this
non-monotonicity seems to be the key to being able to solve
the Minimum Energy Circuit problem for circuits that are
trees.

We next briefly discuss related theoretical work, and then
in Section II we introduce the formal models and defini-
tions necessary to make the above discussion mathematically
rigorous. It is important to note that our conclusion, that
there is a complexity-theoretic obstacles to achieving energy
savings with Near-Threshold Computing, does not seem to be
particularly sensitive to our modeling choices. In particular,
these results hold for several natural ways to model faults,
and for all failure-to-energy functions that are roughly of the
same form as those observed in current technologies.

A. Related Work

The paper [8] gives an excellent survey on Near-Threshold
Computing.

Some of our formal models are inherited from [1]. The
four main results in [1] are: (1) to compute a function with
sensitivity s requires a circuit that uses energy Ω(s log s), (2)
if a function can be computed by a circuit with n reliable
gates, then it can be computed by a circuit with energy
O(n log n), (3) there are circuits where there is a feasible
heterogeneous setting of the supply voltages which uses much
less energy than any feasible homogeneous setting of the
supply voltages, and (4) there are functions where there are
nearly optimal energy circuits that have a homogeneous setting



of the supply voltages. A recent paper shows that almost all
functions require exponential-energy circuits [3].

The study of fault-tolerant circuits started with the seminal
paper by von Neumann [17]. Several subsequent papers [6],
[7], [14], [15], [16], [10], [9], [12] have considered the ques-
tion of how many faulty gates, each (independently) having a
(small) fixed probability of failure, are required to mimic the
computation of an ideal circuit with some desired probability
of correctness.

II. MODELS AND DEFINITIONS

A. Models

In this subsection we formally define the models that we
will use throughout the paper. The difference in the two models
described is how we model functional failures in a circuit. We
first formally define Boolean functions and circuits.

A Boolean function h is a function from {0, 1}n to {0, 1}.
A gate is a function g : {0, 1}ng → {0, 1}, where ng is the
number of inputs (i.e., the fan-in) of the gate. We assume that
the maximum fan-in of the circuit, maxg∈C ng , is at most
a constant. A Boolean circuit C with n inputs is a directed
acyclic graph in which every node is a gate. A wire is an edge
of this graph. Every circuit has n gates with fan-in zero, each
of which outputs one of the n inputs of the circuit. One gate is
designated as the output gate, which has out-degree zero. Any
Boolean function can be represented by a Boolean circuit, and
every Boolean circuit computes a unique Boolean function. For
any I ∈ {0, 1}n, we denote by C(I) the output of the Boolean
function computed by circuit C. The circuit is supplied with a
voltage v. A voltage-to-failure function ε(v) : R+ → (0, 1/2)
maps a supply voltage to a probability of functional failure.
We study two models of functional failures in circuits.

von Neumann Failure Model: In the von Neumann failure
model each non-input gate g fails independently with some
probability ε(v). When a gate fails on input x ∈ {0, 1}ng , the
output of the gate is the complement of g(x), and otherwise
it is g(x). Equivalently, if g receives input x then with proba-
bility 1− ε the output of g is g(x), and with probability ε the
output of g is the complement of g(x), and these probabilities
are independent of any other gate failures in the circuit.
There is a voltage-to-energy function E(v) mapping the supply
voltage to the energy used by a gate with that supply voltage.
The energy required by a circuit C is simply the aggregate
energy used by the gates,

∑
g∈C E(v). For convenience, we

define a failure-to-energy function f(q) := E(ε−1(q)), where
ε−1 denotes the inverse of the function ε. Thus the energy of
a circuit C can be rewritten as

∑
g∈C f(ε(v)).

0-default Failure Model: In the 0-default failure model
each input wire to a gate g is associated with a probability
of failure ε, and when a wire fails it sends the default value
of 0 (e.g., the wire by default carries a low voltage). More
formally, for a given input x = (b1, b2, . . . , bng ) ∈ {0, 1}ng ,
the ith input wire carries bit bi. If bi = 0, then with probability
1 gate g receives 0 as the ith input bit. If bi = 1, then with
probability ε the wire fails and g receives 0 as the ith input
bit, and with probability 1 − ε gate g receives 1 as the ith

input bit. (Note that a failure can only change a wire from
carrying a 1 to carrying a 0.) There is a voltage-to-energy
function E(v) mapping the supply voltage to the energy used
by a wire with that supply voltage. The energy required by a
circuit C is simply the aggregate energy used by the wires,∑
w∈C E(v). For convenience, we define a failure-to-energy

function f(q) := E(ε−1(q)), where ε−1 denotes the inverse of
the function ε. Thus the energy of a circuit C can be rewritten
as
∑
w∈C f(ε(v)).

Since the two quantities we are most interested in are failure
probability and energy, and the failure-to-energy function
describes a direct relationship between the two, henceforth
we drop all reference to the supply voltage (e.g., we denote
ε(v) by ε).

B. Definitions

We now formally define what it means for a circuit to
reliably compute a function. Note that this definition could
apply to either failure model described above.

Definition 3. Given a circuit C, a probability of failure
ε ∈ (0, 1/2), a value δ ∈ (0, 1), and an input I , C is said
to be (ε, δ)-reliable on input I in the von Neumann failure
model (resp., 0-default failure model) if the probability that it
computes the correct output C(I) for input I , when each of
its gates (resp., wires) fails with probability ε, is at least 1−δ.
A circuit C is said to be (ε, δ)-reliable if it is (ε, δ)-reliable
on every input I .

Since gate error and voltage are inversely related, we can
restate the Minimum Circuit Energy problem in terms of
reliability as follows.

Definition 4. Minimum Circuit Energy Problem (MCE): Given
a circuit C and δ ∈ (0, 1), output the maximum ε such that C
is (ε, δ)-reliable.

We will also consider bi-criteria approximations on energy
and circuit failure.

Definition 5. For any circuit C and δ ∈ (0, 1), let ε∗C,δ be the
solution to MCE(C,δ). An algorithm is a (c, d)-approximation
for MCE if on any input (C, δ) it outputs a value ε such that
C is (ε, dδ)-reliable and f(ε) ≤ c · f(ε∗C,δ).

Note that a (c, 1)-approximation for MCE means that the
approximation is only on energy, i.e., the algorithm outputs an
ε such that the circuit is (ε-δ)-reliable and the circuit uses at
most c times the energy of the circuit with the optimal choice
of ε.

III. POLYNOMIAL-TIME APPROXIMATION OF THE
MINIMUM CIRCUIT ENERGY PROBLEM

In this section we show in Theorem 6 that the approxi-
mation ratio achievable by the traditional algorithm, which
sets ε ≈ δ/n, is O(logα n). We can actually prove a slightly
more general bi-criteria approximation bound, in Theorem 7,
that shows the trade-off on approximation between energy and
reliability for a generalization of the traditional approach. For



the 0-default failure model, we require that the circuit is non-
trivial in the sense that there is at least one input that causes
the output to be 0, and at least one input that causes the output
to be 1.

Theorem 6. In both the von Neumann and 0-default fail-
ure models, the traditional approach is an (O(logα n), 1)-
approximation for the MCE problem on non-trivial circuits.

Theorem 7. Let w denote the total number of wires of
the circuit C, that is, w =

∑
g∈C ng , and let ϕ denote

the fan-in of the output gate of the circuit. In the 0-default
failure model, setting ε = δ/(βw), for any β ≥ 1, yields
a ((2ϕ2/ log 2)α logα(βw), 3/(2β))-approximate solution for
the MCE problem on non-trivial circuits. In the von Neumann
failure model, setting ε = δ/(βn), for any β ≥ 1, yields
a ((2/ log 2)α logα(βn), 3/(2β))-approximate solution for the
MCE problem.

Proof. We first prove Theorem 7 for the 0-default failure
model. We will choose a “high” value of ε for which we
can prove that the probability that no wire in the circuit C
fails is at least 1−3δ/(2β). Since the probability that no wire
in the circuit fails is (1 − ε)w, it is sufficient to set ε such

that (1 − ε)w ≥ 1 − 3
2β δ, that is, log(1 − ε) ≥ log(1− 3

2β δ)
w .

This inequality is satisfied by setting ε = δ/βw, since we can

obtain log(1 − ε) = log
(

1− δ
βw

)
> − 3

2
δ
βw >

log(1− 3
2β δ)

w

by applying the standard calculus inequalities log(1 − x) >
− 3

2x for 0 < x ≤ 0.5828, and log(1 − x) < −x for x <
1 and x 6= 0.

Now we have to show that with this choice of ε the
energy E used by the circuit is at most a factor of
(2ϕ2/ log 2)α logα(βw) of the energy E∗ used in an optimal
solution. As for the preceding theorem, to do this we determine
an upper bound to the optimal solution ε∗, that is the maximum
value of ε for which the circuit is (ε, δ)-reliable, from which
it follows a lower bound for the energy used in an optimal
solution. We have two cases, depending on whether the output
gate go of the circuit outputs 0 or 1 on input (0, 0, . . . , 0).
Consider first the case, that is, go(0, 0, . . . , 0) = 0. The other
case is symmetric. Since by hypothesis the circuit is non-
trivial, then the circuit does not represent the constant function
f ′ = 0. Hence, there must be at least one input I to the circuit
C for which C(I) = 1. Let q denote the probability that all
the ϕ wires entering the output gate go receive value 0 when
the input to the circuit is I . If we denote with p the probability
that the circuit outputs the correct bit when each of its wires
fails with probability ε, then it holds that

1− p = Pr[circuit C outputs the wrong bit]
≥ Pr[circuit C outputs the wrong bit on input I]

= Pr[circuit C outputs 0 on input I]

= q · 1 + (1− q)·
·Pr[go receives an input x s.t. go(x) = 0]

≥ q + (1− q)Pr[go receives input x = (0, 0, . . . , 0)]

≥ q + (1− q)Pr[all the ϕ input wires of gate go fail]
= q + (1− q)εϕ

≥ εϕ,

and therefore, p ≤ 1−εϕ. In an optimal solution it must be that
p ≥ 1− δ, and thus, combining the two previous inequalities,
it must hold that 1 − δ ≤ 1 − (ε∗)ϕ, that is, ε∗ ≤ δ1/ϕ.
This implies a lower bound of n logα(1/δ1/ϕ) for the optimal
energy consumption E∗.

For the same reason, the energy consumption E of our
approximate solution is n logα(βw/δ). Since δ < 1/2 and
β ≥ 1, we have

E = n

(
log(βw) + log

1

δ

)α
≤ n2α−1

(
logα(βw) + logα

1

δ

)
≤
(

2ϕ2

log 2

)α
logα(βw) · E∗,

where the first inequality follows from Jensen’s inequality.
The proof for the von Neumann failure model is similar.

We can then prove Theorem 6, showing that the traditional
approach is a (O(logα n), 1)-approximation, by using the same
analysis with β = 3/2,

IV. HARDNESS OF APPROXIMATION FOR THE MINIMUM
CIRCUIT ENERGY PROBLEM

In this section we essentially prove that it is NP-hard to
obtain a better approximation than the O(logα n) obtained
from the traditional approach.

Theorem 8. In both the von Neumann and 0-default failure
models, it is NP-hard to (logα−γ n, 1)-approximate the MCE
problem for any constant γ > 0.

Proof. The main idea of the proof is to show that for a
satisfiable circuit and an unsatisfiable circuit there is a large
gap between the probability they correctly compute their input.
In particular, in the case of a satisfiable input, we show that
it is very unlikely for the output of the circuit to be a 1. For
technical reasons we restrict γ to γ ∈ (0, α). It is clear that
the problem is only computationally harder as γ increases.
The proof makes use of some technical facts stated after this
proof.

Assume by contradiction that there exists a (logα−γ n, 1)-
approximate algorithm A. For notational convenience, let c =
logα−γ n. Furthermore, let φ be an arbitrary 3SAT formula
with m clauses and n variables. Let Sφ be the natural circuit
for φ that uses at most 3m NOT gates to represent the negated
variables, m OR gates of fan-in 3 to represent the clauses,
and a tree of m− 1 AND gates of fan-in 2 that computes the
conjunction of all clauses. See Figure 4 for an example.

We choose ε such that(
1− ε α

√
c
)m+1

+ 4ε
α
√
c < 1− 8ε (1)
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Fig. 4: The circuit Sφ where φ = (x1 ∨ x̄2 ∨ x4)∧ (x1 ∨ x2 ∨
x3) ∧ (x̄3 ∨ x6 ∨ x5) ∧ (x3 ∨ x̄5 ∨ x̄6).

and let δ = 8ε. We will show later that such an ε must exist.
Now, consider the output of A, εA on Sφ with input δ. We
claim that φ is satisfiable if and only if f(εA) > c logα( 1

ε ).
In the first case, assume φ is satisfiable. Consider Sφ where
each gate fails independently with probability εA (or wire in
the 0-default model), and the input x such that φ(x) = 1. Let
E0 be the event that each of the OR gates receives at least 1
positive input, E1 be the event that all of the OR gates output
a 1 and E2 be the event that Sφ outputs a 1. By Lemma 11,
we know that Pr[E2] ≤ (1− εA)m+1 + 4εA. Furthermore, by
Inequality 1, if εA = ε

α
√
c we have

Pr[E2] ≤ (1− ε α
√
c)m+1 + 4ε

α
√
c < 1− 8ε = 1− δ. (2)

Note that for εA ∈ [ε
α
√
c, 1/2), the quantity (1 − εA)m+1 +

4εA is maximized at εA = ε
α
√
c. Therefore, we must have

εA < ε
α
√
c, otherwise by Inequality 2 the probability that Sφ

is correct would not be within 1− δ, contradicting that A is a
(logα−γ(n), 1)−approximation. Further since f is decreasing,
f(εA) > f(ε

α
√
c) = c logα( 1

ε ).
Now, assume that φ is unsatisfiable. Consider Sφ with an

arbitrary input x where each gate fails independently with
probability εA (or wire in the 0-default model). Note since
φ is unsatisfiable, φ(x) = 0. Let the events E0, E1 and E2

be defined in the same way as before. Using the bounds on
Pr[E2|E1] and Pr[E2|¬E1] from the proof of Lemma 11 we
have,

Pr[E2] = Pr[E2|E1]Pr[E1] + Pr[E2|¬E1]Pr[¬E1]

= (1− εA)Pr[E1] + (4εA)Pr[¬E1]

= (1− εA)(Pr[E1|E0]Pr[E0]

+ Pr[E1|¬E0]Pr[¬E0]) + (4εA)Pr[¬E1]

≤ (1− εA)
(
(1− εA)m(3εA) + (1− ε)m−1(εA) · 1

)
+ (4εA)Pr[¬E1]

≤ 8εA.

Therefore for all inputs, the probability that Sφ is correct is
at least 1 − 8εA. So note that if εA = ε, the probability
Sφ is correct is at least 1 − δ. This shows that ε∗ ≥ ε.
By the definition of A being (c, 1) approximate this means
that f(εA) ≤ cf(ε) = c logα( 1

ε ). This shows that we can
determine the satisfiability of φ using A. If f(εA) > c logα( 1

ε ),
φ is satisfiable, and otherwise if f(εA) ≤ c logα( 1

ε ), φ is
not satisfiable. The last thing to do is show the existence

of an ε satisfying Inequality 1. Consider ε =
(

1
m+1

) 1
α√c

.

Then, (1 − ε
α
√
c)m+1 + 4ε

α
√
c ≤ e−ε

α√c(m+1) + 4ε
α
√
c =

e−1 + 4
m+1 . Also, 1 − 8ε = 1 − 8

(
1

m+1

) 1
α√c

. Note that

e−1+ 4
m+1 < 1−8

(
1

m+1

) 1
α√c

since limm→∞ 8
(

1
m+1

) 1
α√c ≤

limm→∞ 8
(
1
n

) 1

log
1− γ

α n → 0.

We now state some technical lemmas used in the above
proof.

Lemma 9. The recurrence pi = p2i−1(1 − ε) + (1 − p2i−1)ε,
p0 = 1 satisfies pi ≤ pi−1 for all i.

Lemma 10. Let ε = (1/(m + 1))1/
α
√

logα−γ(n) and let pi =
p2i−1(1 − ε) + (1 − p2i−1)ε, with p0 = 1. Then, for m bigger
than some constant M0, plog2m ≤ 3ε.

Lemma 11. Let φ be some satisfiable 3SAT formula with n
variables and x be the input such that φ(x) = 1. Then, in
both the von Neumann model and the 0-default model, the
probability that Sφ outputs a 1 is bounded above by (1 −
ε)m+1 + 4ε, where ε = (1/(m+ 1))

1/ α
√

logα−γ(n).

Proof. We first show this holds in the von Neumann failure
model. Let go be the output gate of C (the root of the tree of
AND gates). Further, let E0 be the event that each of the OR
gates receives at least 1 positive input, E1 be the event that all
of the OR gates output a 1 and E2 be the event that go outputs
a 1. We first calculate Pr[E2|E1]. This is the probability that
the tree of n− 1 AND gates outputs a 1 when all the inputs
to the leaves are 1. Let pi be the probability that a gate on the
ith level outputs a 1. We define the input to the leaves to be
at level 0. Note that p0 = 1, and for i > 0, we can write pi
as a recurrence in the form, pi = p2i−1(1− ε) + (1 − p2i−1)ε.
Further, since p1 = (1− ε), and by Lemma 9, the sequence pi
is decreasing as i → ∞ we have that Pr[E2|E1] ≤ (1 − ε).
Next, we bound Pr[E2|¬E1]. Let A denote the event that go
receives two 1′s as input. We have,

Pr[E2|¬E1] = Pr[E2|¬E1 ∧A]Pr[A|¬E1]

+ Pr[E2|¬E1 ∧ ¬A]Pr[¬A|¬E1]

≤ (1− ε)Pr[A|¬E1] + ε.

The last thing to do is bound Pr[A|¬E1]. Informally, we
first argue that the probability of getting a 1 to the root of
the tree is only increased if E1 occurs, that is all leaves have
value 1. After that, we can use the recurrence to show that for
sufficiently large trees this probability is O(ε). More formally,



for some fixed gate g′, let pL be the probability the left input
is 1 and pR be the probability the right input is 1. Then, if
pg′ denotes the probability g′ outputs a 1, we have pg′ =
(pLpR)(1 − ε) + (1 − pLpR)ε. Taking the partial derivative
with respect to pL or pR shows that pg′ will increase as pL
or pR increase. This implies that Pr[A|¬E1] ≤ Pr[A|E1],
since for every leaf, the probability of having a 1 will not
decrease, and therefore by induction on the levels of the tree,
every gate will have an increased probability of outputting a
1. Let h be the height of the tree. Then, note that Pr[A|E1] =
p2h ≤ ph as defined by the recurrence in Lemma 9. However,
since h = log2m by Lemma 10 plog2m ≤ 3ε and therefore
Pr[A|¬E1] ≤ 3ε and futher, Pr[E2|¬E1] ≤ 4ε. We are now
ready to calculate the probability that Sφ(x) outputs a 1. We
have,

Pr[E2] = Pr[E2|E1]Pr[E1] + Pr[E2|¬E1]Pr[¬E1]

= (1− ε)Pr[E1] + 4εPr[¬E1]

= (1− ε)(Pr[E1|E0]Pr[E0]

+ Pr[E1|¬E0]Pr[¬E0]) + 4εPr[¬E1]

≤ (1− ε)
(
(1− ε)m · 1 + (1− ε)m−1(ε) · 1

)
+ 4ε

≤ (1− ε)m+1 + 4ε.

To see that this holds in the 0-default model, note that
Pr[E2|¬E1] = 0 ≤ 4ε since a 0 wire will never flip to a 1.
Using this we can make an identical calculation to the above
to get that Pr[E2] ≤ (1− ε)m+1 + 4ε.

We end by noting that a slight modification of the proof of
Theorem 8 can be used to prove the following more general
theorem.

Theorem 12. It is NP-hard to (c, d)-approximate the MCE
problem in both the von Neumann and 0-default failure models

for all c > 1 and d such that limm→∞ 8d
(

1
m+1

) 1
α√c → 0.

V. HARDNESS OF DETERMINING (ε, δ)-RELIABILITY ON
FIXED INPUTS

In this section we prove the following theorem.

Theorem 13. In the 0-default failure model, given ε, δ, C, and
I , it is NP-hard to determine if C is (ε, δ)-reliable on I .

The section proceeds as follows. Our reduction is from the
gap-3SAT problem, which is known to be NP-hard for certain
parameters, so we begin by formally defining this problem.
We then bound the probability that the natural 3SAT circuit,
Sφ, outputs a 1 when given a random input both when φ is
satisfiable, and when at most 15/16 fraction of the clauses of
φ are satisfiable. Finally, we introduce a circuit Nk that, in the
presence of failures, can be used to randomize our input.

First we must introduce the gap-3SAT[α, β] problem (with
α ≤ β), as the NP-hardness reduction will be from this
problem. The problem is as follows: Given a 3SAT instance,
output “YES” if at least a β fraction of the clauses are
satisfiable, “NO” if at most an α fraction of the clauses are
satisfiable, and either “YES” or “NO” otherwise (i.e., such

inputs are not given). The hardness of this problem for certain
values of α and β follows from the PCP Theorem [2], and
in particular, Håstad proved the following theorem, giving the
best possible values for α and β.

Theorem 14 (Håstad [11]). Gap-3SAT[7/8+ε, 1] is NP-hard
for all ε > 0.

The reduction is from the hardness of gap-3SAT[15/16,1].
We use as our main circuit the standard 3SAT circuit Sφ
used elsewhere in this paper (see Figure 4 and the related
discussion). As we have seen, if the tree of AND gates does
not receive all 1’s, then with probability 1 the output is 0.
Thus, intuitively, if we could give Sφ a random input, then
(i) if φ is satisfiable, on the satisfying input Sφ is much more
likely to output a 1 than on any other input, and (ii) if φ is
not satisfiable, then any assignment satisfies a fraction of at
most 15/16 of the clauses, so a large number (for example, at
least a n/16) of wires would have to fail for Sφ to be likely
to output a 1. We first bound the probability that Sφ outputs
a 1 when receiving an almost random input in the two cases
when there exists a satisfying assignment and when at most a
15/16 fraction of the clauses can be satisfied. We then show
that it is possible with a polynomially sized circuit to create
an almost random input from a fixed input, and use this to
complete the reduction.

Lemma 15. Let φ be a 3SAT formula and Sφ be the circuit
for φ, where each wire fails independently with probability ε.
Suppose that each input to Sφ is a 1 with probability at least
1/2 − γ and at most 1/2 + γ. Then, in the 0-default failure
model:

1) If φ is satisfiable, then Pr[Sφ outputs a 1] ≥(
1
2 − γ

)n
(1− ε)5m.

2) If at most a 15/16 fraction of the clauses of φ are
satisfiable, then Pr[Sφ outputs a 1] ≤ (3ε)m/16.

Proof. Let O be the random output of the circuit Sφ and A be
the random event that the tree of AND gates of Sφ receives
all 1’s as input. Then clearly O = 1 if A occurs and none
of the wires within the tree of AND gates fail, and O = 0
otherwise. Therefore, Pr[O = 1] = (1− ε)2m−1 Pr[A].

1) φ is satisfiable. Let E be the event that Sφ receives a
satisfying assignment as input. The probability E occurs
is at is at least ( 1

2 −γ)n, since this is a lower bound on Sφ
recieving any fixed input. Further, if none of the wires in
entering the OR gates fail (the wires entering NOT gates in
the clauses can only fail and output 1, which only increases
the probability thatO = 1), then A occurs, so

Pr[A|E ∧ φ is satisfiable] ≥ (1− ε)3m.

Clearly, the probability that A occurs if Sφ does not receive
satisfying assignment as input is at least 0, so the first
statement of the lemma follows since

Pr[O = 1|φ is satisfiable] ≥
(1− ε)2m−1 Pr[A|φ is satisfiable] ≥



(1− ε)2m−1 Pr[E|φ is satisfiable]·
Pr[A|E ∧ φ is satisfiable] ≥(

1

2
− γ
)

(1− ε)5m−1.

2) At most a 15/16 fraction of the clauses of φ are
satisfiable. For this case, every assignment satisfies at most
a 15/16 fraction of the clauses. Thus we have that an
upper bound on A occurring is if at least one of the wires
associated with not gates in every clause that is not satisfied
fails (if a wire entering an OR gate fails the gate will
output 0), and all other gates do not fail. Thus we have
that Pr[A|φ is not satisfiable] ≤ (3ε)m/16, and therefore
Pr[O = 1|φ is not satisfiable] ≤ (3ε)m/16.

The following circuit will be useful in the reduction.

Definition 16. Nk is the circuit consisting of one input bit
connected to a single line of k NOT gates, i.e., the output of
the ith NOT gate is the input to the i + 1st NOT gate, for
i ∈ [k − 1].

If no gate in Nk fails, the output on input bit b is (b +
k) mod 2. However, if each of these gates fail independently
with probability ε, then the output is random and, for k large
enough, will be b with probability very close to 1

2 . Consider the
Markov chain M with two states that correspond to the output
bit after a certain number of NOT gates, and transitions with
probabilities based on whether or not the wire entering the
current NOT gate fails. If we label one state “1” and the other
“0”, then the output of Nk is identical to the output of starting
M in state b and running for k steps. The transition from the
0 state to the 1 state happens with probability 1, since the
wire cannot fail in this case. On the other hand, the transition
from the 1 state to the 0 state only happens with probability
1− ε, and the chain stays in the 1 state with probability ε. It
is easy to verify that this chain is irreducible, aperiodic, and
reversible. The transition matrix is

M =

[
0 1− ε
1 ε

]
.

The eigenvalues of M are 1 and ε − 1, and the stationary
distribution of M is 1−ε

2−ε in state 0, and 1
2−ε in state 1, so the

number of steps k(ρ) until we are ρ away from the stationary
distribution is k(ρ) ≤ 1

ε log
(

2−ε
ρ(1−ε)

)
. For a more in depth

discussion of Markov chains and mixing times, see, e.g., [13].
By setting ρ = 0.05, we obtain the following observation.

Observation 17. Suppose each wire of Nk fails independently
with probability ε < 1/10. Then in the 0-default failure model
if k ≥ log(44)/ε, we have that 0.4 ≤ Pr[Nk(b) = b] ≤ 0.6.

We can now finish the reduction.

Proof of Theorem 13. The reduction is from gap-
3SAT[15/16,1]. Let φ be a 3SAT formula that is either
satisfiable or at most a 15/16 fraction of the clauses can
be satisfied. Without loss of generality, we can assume the
assignments of all 1’s and all 0’s do not satisfy φ, and that

there are at least n clauses in φ. We set ε = 1.4 × 10−7

(a constant). Construct a circuit S′φ that is Sφ except
that each input first passes through a Nk circuit, where
k = dlog(44)/εe, and thus S′φ is polynomial in size and
logarithmic in depth. We fix the input to this circuit to be
the input of all 1’s, so the correct output of S′φ is 0. By
Observation 17, the output of each Nk circuit is 1 with
probability at least 1

2 − γ and at most 1
2 + γ for γ = 0.1. We

set δ = (3ε)m/16. By Lemma 15 (since S′φ is incorrect if it
outputs 1), if we show that (3ε)m/16 < (0.4)n(1− ε)5m then
it is NP-hard to determine whether or not S′φ outputs correctly
with probability at least 1− δ. Rearranging the exponents and
noting that n ≤ m, we obtain that 3ε < (0.4)16(1− ε)80, and
it is easy to verify that this inequality holds for our choice of
ε.

In the von Neumann failure model, we were unable to
prove that determining if a circuit is (ε, δ)-reliable is NP-
hard. Intuitively, the difficulty stems from the fact that, in
the von Neumann model, a tree of AND gates has a higher
probability of outputting a 1 if it has high probability of
recieving a 15/16 fraction of 1’s as input, than if it has high
probability of recieving very few 1’s and low probability of
recieving all 1’s as input.

VI. TREE CIRCUITS

There are classes of circuits for which the problems dis-
cussed in this paper are much easier, namely circuits whose
graph representation is a tree. The hardness results in this
paper stem from the fact that, in general, the undirected version
of the DAG representing a circuit C may contain cycles.
When this is not the case, then the probability that a gate
g outputs a 1 or a 0 is dependent only on the outcomes of
the immediate predecessors of g in C, and thus the situation
is much simpler. Given a circuit C that is a tree and where
each gate has bounded fan-in, we describe below how to, in
both the von Neumann and 0-default failure models, answer
the question of whether C is (ε, δ)-reliable in time polynomial
in the size of C (it can be seen that polynomial complexity
can be achieved also in slightly more general settings, e.g.,
when the circuit’s structure is “close to” a tree).

The algorithm is as follows: Each gate g stores four prob-
abilities:

1) The highest probability that g is correct given that its
correct output is 1.

2) The lowest probability that g is correct given that its
correct output is 1.

3) The highest probability that g is correct given that its
correct output is 0.

4) The lowest probability that g is correct given that its
correct output is 0.

Let ϕ be the fan-in of g, and let g1, . . . , gϕ be the parents of
g. By choosing one of the stored probabilities from each of g’s
parents, we can in O(2ϕ) steps calculate the probability that g
outputs a 1 in that case, and the correct output of g in that case
can be computed from the correct outputs for the probabilities



chosen from g’s parents. Since there are 4ϕ ways to choose one
stored probability from each of g’s parents, we calculate all of
these probabilities. Of those where the correct output of g is a
1, we find and store the highest and lowest probabilities that g
does output a 1, and do the same for those where the correct
output of g is a 0. At the output gate, we find the minimum
of the lowest probability that g is correct given that its correct
output is 1, and the lowest probability that g is correct given
that its correct output is 0. This value determines the minimum
value for δ given that functional failures occur with probability
ε. It is straightforward to see how this algorithm could be
modified slightly to find the input to the circuit that minimizes
the probability of correctness when functional failures occur
with probability ε.

To see why this algorithm is correct, consider the situation
where all but the ith parent, gi, of some gate g output a 1 with
fixed probability. In this case, the probability that g outputs a
1 is linear in the probability that gi outputs a 1, and thus
this probability is monotonically increasing, monotonically
decreasing, or constant, as the probability that gi outputs a 1
increases. Further, since the circuit is a tree, changing the input
to the subtree rooted at gi does not affect the probability that
any of the other parents of g output a 1. Thus we can compute
the highest and lowest probabilities that g will output a 1 by
some combination of the highest and lowest probabilities that
its parents will output a 1. Since we do not know what the
correct output for g should be on the input that causes the
circuit to be incorrect with highest probability, we store these
probabilities in the cases when the correct output of g is either
1 or 0.

VII. NON-MONOTONICITY OF δ IN ε

For any circuit C, let δ∗(ε) be the smallest value such that C
is (ε, δ∗(ε))-reliable. A question that one might ask is whether
δ∗(ε) is, in general, a non-decreasing function of ε. In both
the von Neumann and 0-default failure models, this is not the
case. The circuit depicted in Figure 5 provides an example for
the von Neumann failure model. For this circuit, it is easy to
see that for ε ≤ 1/2, δ∗(ε) = 3ε(1 − ε)2 + ε2(1 − ε), which
is strictly decreasing on (a, 1), where a = (5 −

√
7)/6 ≈

0.39. Intuitively, this happens because in such a circuit, when
ε increases, it is more likely that the errors occurring at the
two gates cancel out each other.

x1
x2

x3
x4

y = (x1 ∨ x2) ∧ (x3 ∨ x4)

Fig. 5: A simple circuit where δ∗(ε) is not monotone in ε in
the von Neumann failure model, consisting of two OR gates
and one AND gate.

x1
x2

y = ¬(¬(x1 ∧ x2))

Fig. 6: A simple circuit where δ∗(ε) is not monotone in ε in
the 0-default failure model, consisting of an AND gate and
two NOT gates.

Figure 6 depicts an example where δ∗(ε) is not monotone
in the 0-default failure model. For this circuit, we have that for
ε ≤ 0.45, δ∗(ε) = 1−ε−(1−ε)4, which is strictly decreasing
on (b, 1), where b = 1− 4−1/3 ≈ 0.37.
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