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Abstract. We consider three related online problems: Online Convex
Optimization, Convex Body Chasing, and Lazy Convex Body Chasing.
In Online Convex Optimization the input is an online sequence of convex
functions over some Euclidean space. In response to a function, the on-
line algorithm can move to any destination point in the Euclidean space.
The cost is the total distance moved plus the sum of the function costs
at the destination points. Lazy Convex Body Chasing is a special case of
Online Convex Optimization where the function is zero in some convex
region, and grows linearly with the distance from this region. And Con-
vex Body Chasing is a special case of Lazy Convex Body Chasing where
the destination point has to be in the convex region. We show that these
problems are equivalent in the sense that if any of these problems have
an O(1)-competitive algorithm then all of the problems have an O(1)-
competitive algorithm. By leveraging these results we then obtain the
first O(1)-competitive algorithm for Online Convex Optimization in two
dimensions, and give the first O(1)-competitive algorithm for chasing lin-
ear subspaces. We also give a simple algorithm and O(1)-competitiveness
analysis for chasing lines.

1 Introduction

We consider the following three related online problems, all set in a d-dimensional
Euclidean space S, with some distance function ρ.

Convex Body Chasing: The input consists of an online sequence F1,F2, . . . ,Fn
of convex bodies in S. In response to the convex body Fi, the online algorithm
has to move to any destination/point pi ∈ Fi. The cost of such a feasible solution
is the total distance traveled by the online algorithm, namely

∑n
i=1 ρ(pi−1, pi).

The objective is to minimize the cost. If the convex bodies are restricted to be of
a particular type T , then we refer to the problem as T Chasing. So for example,
Line Chasing means that the convex bodies are restricted to being lines.
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Lazy Convex Body Chasing: The input consists of an online sequence of lazy
convex bodies (F1, ε1), (F2, ε2), . . . , (Fn, εn), where each Fi is a convex body
in S, and each slope εi is a nonnegative real number. In response to the pair
(Fi, εi), the online algorithm can move to any destination/point in the metric
space S. The cost of such a feasible solution is

n∑
i=1

(ρ(pi−1, pi) + εiρ(pi,Fi)) ,

where ρ(pi,Fi) is the minimal distance of a point in Fi to pi. So the online
algorithm need not move inside each convex body, but if it is outside the convex
body, in addition to paying the distance traveled, the online algorithm pays an
additional cost that is linear in the distance to the convex body. The objective
is to minimize the cost. Again if the convex bodies are restricted to be of a
particular type T , then we refer to the problem as Lazy T Chasing.

Online Convex Optimization: The input is an online sequence F1, F2, . . . , Fn
of convex functions from S to R+. In response to the function Fi, the online
algorithm can move to any destination/point in the metric space S. The cost of
such a feasible solution is

n∑
i=1

(ρ(pi−1, pi) + Fi(pi)) .

So the algorithm pays the distance traveled plus the value of the convex functions
at the destinations points. The objective is to minimize the cost.

It is easy to see that a c-competitive algorithm for Online Convex Optimiza-
tion implies a c-competitive algorithm for Lazy Convex Body Chasing, and a
c-competitive algorithm for Lazy Convex Body Chasing implies a c-competitive
algorithm for Convex Body Chasing. To see this, note that Convex Body Chas-
ing is a special case of Lazy Convex Body Chasing where each εi is infinite (or,
more formally, so large that any competitive algorithm would essentially have
to move inside each convex body). Similarly, Lazy Convex Body Chasing is a
special case of Online Convex Optimization in which the convex functions are
zero on some convex set, and that grow linearly as one moves away from this
convex set.

1.1 The History

Our initial interest in Online Convex Optimization arose from applications in-
volving right-sizing data centers [1, 14–18, 21]. In these applications, there is a
collection of d centrally-managed data centers, where each data center consists
of a homogeneous collection of servers/processors which may be powered down.
We represent the state of the data centers by a point in a d-dimensional space
where coordinate i represents how many servers are currently powered-on in data
center i (the assumption is that there are enough servers in each data center so
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that one may reasonably treat the number of servers as a real number instead of
an integer). In response to a change in load, the number of servers powered-on
in various data centers can be changed. Under the standard assumption that
there is some fixed cost for powering a server on, or powering the server off,
the Manhattan-distance between states represents the costs for powering on/off
servers. The function costs represent the cost for operating the data-centers with
the specified number of servers in each data center. The standard models of op-
erating costs, such as those based on either queuing theoretic costs, and those
based on energy costs for speed-scalable processors, are convex functions of the
state.

Online Convex Optimization for d = 1: Essentially all the results in the litera-
ture for Online Convex Optimization are restricted to the case that the dimen-
sion is d = 1. [16] observed that the offline problem can be modeled as a convex
program, which is solvable in polynomial time, and that if the line/states are dis-
cretized, then the offline problem can be solved by a straight-forward dynamic
program. [16] also gave a 3-competitive deterministic algorithm that solves a
(progressively larger) convex program at each time. [1] shows that there is an
algorithm with sublinear regret, but that O(1)-competitiveness and sublinear re-
gret cannot be simultaneously achieved. [1] gave a randomized online algorithm,
RBG, and a 2-competitiveness analysis, but there is a bug in the analysis [22].
A revised 2-competitiveness analysis can be found in [2]. Independently, [4] gave
a randomized algorithm and showed that it is 2-competitive. [4] also observed
that any randomized algorithm can be derandomized, without any loss in the
competitive ratio. [4] also gave a simple 3-competitive memoryless algorithm,
and showed that this is optimally competitive for memoryless algorithms.

Convex Body Chasing: Convex Body Chasing and Lazy Convex Body Chasing
were introduced in [10]. [10] assumed the standard Euclidean distance func-
tion, and observed that the optimal competitive ratio is Ω(

√
d), where d is the

dimension of the space. [10] gave a somewhat complicated algorithm and O(1)-
competitiveness analysis for chasing lines in two dimensions, and observe that
any O(1)-competitive line chasing algorithm for two dimensions can be extended
to an O(1)-competitive line chasing algorithm for an arbitrary number of dimen-
sions. [10] gave an even more complicated algorithm and O(1)-competitiveness
analysis for chasing arbitrary convex bodies in two dimensions. [10] also observed
that plane chasing in three dimensions is equivalent to lazy line chasing in two
dimensions in the sense that one of these problems has an O(1)-competitive
algorithm if and only if the other one does. [20] showed in a complicated anal-
ysis that the work function algorithm is O(1)-competitive for chasing lines and
line segments in any dimension. [11] showed that the greedy algorithm is O(1)-
competitive if d = 2 and the convex bodies are regular polygons with a constant
number of sides.

Classic Online Problems: Online Convex Optimization is also related to sev-
eral classic online optimization problems. It is a special case of the metrical task
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system problem in which the metric space is restricted to be a d-dimensional Eu-
clidean space and the costs are restricted to be convex functions on that space.
The optimal deterministic competitive ratio for a general metrical task system
is 2n−1, where n is the number of points in the metric [7], and the optimal ran-
domized competitive ratio is Ω(log n/ log log n) [5, 6] and O(log2 n log log n) [9].
Online Convex Optimization is related to the allocation problem defined in [3],
which arises when developing a randomized algorithm for the classic k-server
problem using tree embeddings of the underlying metric space [3,8]. In fact, the
algorithm RBG in [1] is derived from a similar algorithm in [8] for this allocation
problem. The classic ski rental problem, where randomized algorithms are al-
lowed, is a special case of Online Convex Optimization. The optimal competitive
ratio for randomized algorithms for the ski rental problem is e/(e − 1) [12]. [4]
showed that the optimal competitive ratio for Online Convex Optimization
for d = 1 is strictly greater than the one for online ski rental. The k-server
and CNN problems [13] can be viewed as chasing nonconvex sets.

1.2 Our Results

In Section 2 we show that all three of the problems that we consider are equiva-
lent in the sense that if one of the problems has an O(1)-competitive algorithm,
then they all have O(1)-competitive algorithms. More specifically, we show that
if there is an O(1)-competitive algorithm for Lazy Convex Body Chasing in d
dimensions then there is an O(1)-competitive algorithm for Online Convex Opti-
mization in d dimensions. The crux of this reduction is to show that any convex
function can be approximated to within a constant factor by a finite collection of
lazy convex bodies. We then show that if there is an O(1)-competitive algorithm
for Convex Body Chasing in d dimensions, then there is an O(1)-competitive
algorithm for Lazy Convex Body Chasing (objects of the same type) in d dimen-
sions. Intuitively in this reduction, each lazy convex body (Fi, εi) is fed to the
Convex Body Chasing algorithm with probability εi. As in [4], this algorithm
can be derandomized by deterministically moving to the expected location of the
randomized algorithm. The equivalence of these problems follows by combining
these reductions with the obvious reductions in the other direction. Combining
these reductions with the results in [10], most notably the O(1)-competitive al-
gorithm for chasing halfspaces in two dimensions, we obtain an O(1)-competitive
algorithm for Online Convex Optimization in two dimensions.

In Section 3 we give an online algorithm for Convex Body Chasing when the
convex bodies are subspaces, in any dimension, and an O(1)-competitiveness
analysis. In this context, subspace means a linear subspace closed under vector
addition and scalar multiplication; So a point, a line, a plane, etc. The two main
components of the algorithm are (1) A reduction from hyperplane chasing in d
dimensions to lazy hyperplane chasing in d−1 dimensions, and (2) our reduction
from Lazy Convex Body Chasing to Convex Body Chasing. The first reduction is
the natural generalization of the continuous reduction from plane chasing in three
dimesions to lazy line chasing in two dimensions given in [10]. Combining these
two components gives an O(1)-approximation reduction from subspace chasing
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in d dimensions to subspace chasing in d−1 dimensions. One then obtains a 2O(d)-
competitive algorithm by repeated applications of these reductions, and the use
of any of the O(1)-competitive algorithms for Online Convex Optimization in
one dimension. Within the context of right-sizing data centers, it is reasonable
to assume that the number of data centers is a smallish constant, and thus this
algorithm would be O(1)-competitive under this assumption.

In Section 4 we give an online algorithm for chasing lines and line segments
in any dimension, and show that it is O(1)-competitive. The underlying insight
of our online algorithm is the same as in [10], to be greedy with occasional
adjustments toward the area where the adversary might have cheaply handled
recent requests. However, our algorithm is cleaner/simpler than the algorithm
in [10]. In particular our algorithm is essentially memoryless as the movement is
based solely on the last two lines, instead of an unbounded number of lines as
in [10]. Our analysis is based on a simple potential function: the distance between
the location for the online algorithm and for the adversary, and is arguably
cleaner than the analysis in [10], and is certainly cleaner than the analysis of the
work function algorithm in [20].

While our results are not that technically deep, they do provide a much
clearer picture of the algorithmic relationship of the various online problems in
this area. Our results also suggest that the “right” problem to attack in this area
is finding (if it exists) an O(1)-competitive algorithm for half-space chasing, as
this is the simplest problem that would give an O(1)-competitive algorithm for
all of these problems.

For concreteness we will assume ρ is the standard Euclidean distance func-
tion. Although as our focus is on O(1)-approximation, without being too con-
cerned about the exact constant, our results will also hold for the Manhattan
distance, and other standard normed distances.

2 Reductions

In this section we show in Lemma 1 that Lazy Convex Body Chasing is re-
ducible to Convex Body Chasing, in Lemma 2 that Online Convex Optimization
is reducible to Lazy Convex Body Chasing, and in Corollary 1 that these re-
ductions give an O(1)-competitive algorithm for Online Convex Optimization in
two dimensions.

Lemma 1. If there is an O(1)-competitive algorithm AC for Convex Body Chas-
ing in d dimensions, then there is an O(1)-competitive algorithm AL for Lazy
Convex Body Chasing in d dimensions. The same result holds if the convex bodies
in both problems are restricted to be of a particular type.

Proof. We build a randomized algorithm AL from AC and then explain how to
derandomize it. We first modify the input instance by replacing each lazy convex
body (Fi, εi) whose slope εi is greater than 1 by dεie lazy convex bodies, each
having Fi as the convex body. The first bεic of these lazy convex bodies will have
slope 1, and the potentially remaining convex body will have slope εi−bεic. This
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modification does not affect the optimal cost, and will not decrease the online
cost. From now on, we will assume that any input instance for Lazy Convex Body
Chasing is of this modified form. It is easy to see how one can go back from a
solution to the modified input to one to the original input without increasing the
cost, since our algorithm will never “move away” from the line that just arrived.

Algorithm AL: Upon the arrival of a new lazy convex body (Fi, εi), the algorithm
with (independent) probability 1 − εi does not move, and with probability εi
passes Fi to AC and moves to the location to which AC moves.

Notice that in the modified input instance every slope is a real number
in [0, 1], and thus probabilities εi and 1− εi are all well defined.

Analysis: Consider a particular input instance IL of Lazy Convex Body Chasing,
as defined before. Let IC denote the random variable representing the sequence of
convex bodies passed to AC . Let OptL be the optimal solution for Lazy Convex
Body Chasing on IL. Let OptC be a random variable equal to the optimal
solution for Convex Body Chasing on IC . Let OptT be a random variable equal
to the optimal solution for the Lazy Convex Body Chasing instance IT derived
from IC by replacing each Fi ∈ IC by the lazy convex body (Fi, 1). We will use
absolute value signs to denote the cost of a solution.

The O(1)-competitiveness of AL then follows from the following sequence of
inequalities:

E[|AL(IL)|] =
∑
i

P[Fi ∈ IC ] E[Cost of AC on Fi | Fi ∈ IC ]

+
∑
i

P[Fi /∈ IC ] E[Cost of AL on Fi | Fi /∈ IC ] (1)

=
∑
i

εi E[Cost of AC on Fi | Fi ∈ IC ]

+
∑
i

(1− εi) E[εi ρ(pi−1,Fi)] (2)

≤
∑
i

εi E[Cost of AC on Fi | Fi ∈ IC ]

+
∑
i

εi E[ρ(pi−1,Fi)] (3)

≤ 2
∑
i

εi E[Cost of AC on Fi | Fi ∈ IC ] (4)

= 2
∑
i

P[Fi ∈ IC ] E[Cost of AC on Fi | Fi ∈ IC ] (5)

= 2 E[|AC(IC)|] (6)

= O(E[|OptC |]) (7)

= O(E[|OptT |]) (8)

= O(|OptL|). (9)
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Equality (1) follows from the definitions of expectation and conditional ex-
pectation, and linearity of expectation. Notice that all expectations involving Fi
only depend upon the history up until Fi arrives. Equality (2) follows from the
fact that Fi is added to IC with probability εi, and if Fi is not added then AL
pays εi times the distance to Fi. Inequality (3) follows from the linearity of ex-
pectation and since 1−εi ≤ 1. Inequality (4) holds since AC has to move to each
Fi ∈ IC and thus in expectation has to pay at least E[ρ(pi−1,Fi)] (note that only
by independence of the coin flips the expected position of AC in case Fi ∈ IC is
identical to the expected position of AL). Equality (5) holds since Fi ∈ IC with
probability εi. Equality (6) follows by linearity of expectation and the definition
of conditional expectation. Inequality (7) follows by the assumption that AC is
O(1)-competitive. To prove Inequality (8) it is sufficient to construct a solution
S for each possible instantiation of IC that is at most a constant times more
expensive than OptT . In response to a convex body Fi ∈ IC , S moves to the
same destination point pi as OptT , then moves to the closest point on Fi, and
then back to pi. Thus the movement cost for S is at most the movement cost
for OptT plus twice the function costs for OptT . To prove Inequality (9) it is
sufficient to construct an algorithm B to solve Lazy Convex Body Chasing on
IT with expected cost O(|OptL|). For each convex body in Fi ∈ IC , Algorithm
B first moves to the destination point pi that OptL moves to after Fi. Call this
a basic move. Then algorithm B moves to the closest point in Fi, and then back
to pi. Call this a detour move. Then by the triangle inequality the expected total
cost of the basic moves for algorithm B is at most the movement cost of OptL.
The probability that algorithm B incurs a detour cost for convex body Fi is εi,
and when it incurs a detour cost, this detour cost is 2/εi times the function cost
incurred by OptL. Thus the expected cost for algorithm B on IT is at most
3|OptL|.

Derandomization: As in [4], we can derandomize AL to get a deterministic al-
gorithm AD with the same competitive ratio as AL. AD always resides in the
expected position of AL. More specifically, let xi be a random variable denoting
the position of AL directly after the arrival of Fi. Then AD sets its position
to µi := E[xi].

Then, we have that for each step i, AL’s expected cost is E[ρ(xi−1, xi)] +
εiE[ρ(xi,Fi)]. On the other hand, AD’s cost is ρ(E[xi],E[xi−1]) + εiρ(E[xi],Fi).
By a generalization of Jensen’s inequality (see for example Proposition B.1,
page 343 in the book by Marshall and Olkin [19]), and by the convexity of our
distance function ρ (the distance function is a norm, and therefore convexity
follows by triangle inequality and absolute homogeneity), we have, for each i,

E[ρ(xi, xi−1)] ≥ ρ(E[xi],E[xi−1])

and

E[ρ(xi,Fi)] ≥ ρ(E[xi],Fi).

Summing over all i completes the analysis. ut
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Lemma 2. If there is an O(1)-competitive algorithm AL for Lazy Convex Body
Chasing in d dimensions, then there is an O(1)-competitive algorithm AO for
Online Convex Optimization in d dimensions.

Proof. Consider an arbitrary instance IO of the convex optimization problem.
We can without loss of generality ignore the prefix of the sequence of functions
that can be handled with zero cost. So let L > 0 be the optimal cost for chasing
function F1. The algorithm will use L as a lower bound for the optimal cost.

For each function Fi that it sees, the algorithm AO feeds the algorithm AL a
finite collection Ci of lazy convex bodies, and then moves to the final destination
point that AL moved to. Let IL be the resulting instance of Lazy Convex Body
Chasing. To define Ci assume without loss of generality that the minimum of Fi
occurs at the origin. We can also assume without loss of generality that the
minimum of Fi is zero.

Define F ′i (x) to be the partial derivative of Fi at the point x ∈ S = Rd in the
direction away from the origin. Now let Cj be the curve in Rd+1 corresponding
to the points (x, F ′i (x)) where F ′i (x) = 2j for integer j ∈ (−∞,+∞). (Or more
technically where the F ′i (x) transitions from being less than 2j to more than 2j .)
Let Dj be the projection of Cj onto S. Note that Dj is convex.

Let u be the minimum integer such that the location of AO just before Fi is
inside of Du. Let ` be the maximum integer such that:

– the diameter of D` is less than L/8i,
– the maximum value of Fi(x) for an x ∈ D` is less than L/8i, and
– ` < u− 10.

Then Ci consists of the lazy convex bodies (Dj , 2
j) for j ∈ [`, u].

Let Gj(x) be the function that is zero within Dj and grows linearly at
a rate 2j as one moves away from Dj . Now what we want to prove is that∑
j Gj(x) = Θ(Fi(x)) for all x outside of D`+2. To do this consider moving to-

ward x from the origin. Consider the region between Dj and Dj+1 for j ≥ `+ 2,
and a point y in this region that lies on the line segment between the origin
and x. Then we know that 2j ≤ F ′i (y) ≤ 2j+1. Thus as we are moving toward x,
the rate of increase of

∑
j Gj(x) is within a constant factor of the rate of increase

of Fi(x), and thus
∑
j Gj(x) = Θ(Fi(x)).

Let OptL be the optimal solution for the Lazy Line Chasing instance IL
and Let OptO be the optimal solution for the Online Convex Optimization
instance IO. Now the claim follows via the following inequalities:

|AO(IO)| = O(|AL(IL)|) (10)

= O(|OptL|) (11)

= O(|OptO|). (12)

Inequality (10) holds since the movement cost for AL and AO are identical, and
the function costs are within a constant of each other by the observation that∑
j Gj(x) = Θ(Fi(x)). Inequality (11) holds by the assumption that AL is O(1)-

competitive. Inequality (12) holds by the observation that
∑
j Gj(x) = Θ(Fi(x))
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and the observation that the maximum savings that OptL can obtain from being
inside of each D` is at most L/2. ut

Corollary 1. There is an O(1)-competitive algorithm for Online Convex Opti-
mization in two dimensions.

Proof. This follows from the reduction from Online Convex Optimization to
Lazy Convex Body Chasing in Lemma 2, the reduction from Lazy Convex Body
Chasing to Convex Body Chasing in Lemma 1, and the O(1)-competitive algo-
rithm for Convex Body Chasing in two dimensions in [10]. ut

3 Subspace Chasing

In this section we describe a 2O(d)-competitive algorithm for chasing subspaces
in any dimension d. As noticed in [10], it suffices to give such an algorithm for
chasing (d− 1)-dimensional subspaces (hyperplanes). Essentially this is because
every f ≤ d − 1-dimensional subspace is the intersection of d − f hyperplanes,
and by repeating these d−f hyperplanes many times, any competitive algorithm
can be forced arbitrarily close to their intersection.

Algorithm for chasing hyperplanes: The two main components of our algorithm
for chasing hyperplanes in d dimensions are:

– A reduction from hyperplane chasing in d dimensions to lazy hyperplane
chasing in d − 1 dimensions. This is a discretized version of the continuous
reduction given in [10] for d = 3. In this section we give an overview of the
reduction, and the analysis, but defer the formal proof to the full version of
the paper.

– Our reduction from Lazy Convex Body Chasing to Convex Body Chasing in
the previous section.

Combining these two components gives a reduction from subspace chasing in d
dimensions to subspace chasing in d − 1 dimensions. One then obtains a 2O(d)-
competitive algorithm by repeated applications of these reductions, and the use
of any of the O(1)-competitive algorithms for lazy point chasing (or online convex
optimization) when d = 1 [2,4, 16].

Description of reduction from hyperplane chasing in dimension d to lazy hyper-
plane chasing in dimension d−1: Let ALHC be the algorithm for lazy hyperplane
chasing in dimension d−1. We maintain a bijective mapping from the Rd−1 space
S that the algorithm ALHC moves in to the last hyperplane in Rd. Initially, this
mapping is an arbitrary one that maps the origin of Rd−1 to the origin of Rd.
Call this hyperplane F0.

Each time a new hyperplane Fi in Rd arrives, the algorithm moves in the
following way:

– If Fi is parallel to Fi−1, then the algorithm moves to the nearest position in
Fi.
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– If Fi is not parallel to Fi−1, the two hyperplanes intersect in a (d − 2)-
dimensional subspace Ii. Let αi ≤ π/2 radians be the angle between hyper-
planes Fi−1 and Fi. The algorithm then calls ALHC with (Ii, αi). Let pi be
the point within Fi−1 that ALHC moves to. The bijection between Fi and S
is obtained from the bijection between Fi−1 and S by rotating αi radians
around Ii. The algorithm then moves to the location of pi in Fi.

Analysis overview: Consecutive parallel hyperplanes is the easy case. In this case,
one can assume, at a loss of a factor of

√
2 in competitive ratio, that the optimal

solution moves to the closest point on the new parallel hyperplane. Thus any
competitive ratio c that one can prove under the assumption that consecutive
hyperplanes are not parallel will hold in general as long as c ≥

√
2.

When there are no two consecutive non-parallel hyperplanes, we show that
the cost for the reduction algorithm and the cost for ALHC are within a constant
of each other, and similarly the optimal cost for hyperplane chasing in d dimen-
sions and the optimal cost for lazy hyperplane chasing are within a constant of
each other. Intuitively this is because the additional movement costs incurred in
(non-lazy) hyperplane chasing can be related to the angle between the last two
hyperplanes, and thus to the distance cost (for not being on the hyperplane)
that has to be paid in lazy hyperplane chasing. From this we can conclude that:

Theorem 1. There is a 2O(d)-competitive algorithm for subspace chasing in d
dimensions.

We note that our algorithm can be implemented to run in time polynomial
in d and n.

4 Line Chasing

We give an online algorithm for chasing lines and line segments in any dimen-
sion, and show that it is O(1)-competitive. Let Ei be the unique line that is an
extension of the line segment Fi.

Algorithm Description: Let Pi be a plane containing the line Ei that is parallel
to the line Ei−1 (note this is uniquely defined when Ei and Ei−1 are not parallel).
The algorithm first moves to the closest point hi ∈ Pi. The algorithm then moves
to the closest point gi in Ei.

– If Ei−1 and Ei are parallel, then the algorithm stays at gi.
– If Ei−1 and Ei are not parallel, let mi be the intersection of Ei and the

projection of Ei−1 onto Pi. Let β ∈ (0, 1) be some constant that we shall set
later. The algorithm makes an adjustment by moving toward mi along Ei
until it has traveled a distance of β · ρ(hi, gi), or until it reaches mi.

– Finally, the algorithm moves to the closest point pi in Fi.

Theorem 2. This algorithm is O(1)-competitive for Line Chasing in any di-
mension.
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Proof. Initially assume that all the line segments are lines. Let h?i be the projec-
tion of the adversary’s position, just before Fi arrives, onto Pi. We will assume
that the adversary first moves to h?i , and then to the nearest point g?i on Fi,
and then to some arbitrary final point p?i on Fi. This assumption increases the
adversary’s movement cost by at most a factor of

√
3 (a similar observation is

made in [10]). We will charge the algorithm’s cost for moving to Pi to the ad-
versary’s cost of moving to Pi. Thus by losing at most a factor of

√
3 in the

competitive ratio, we can assume that the adversary and the algorithm are at
positions h?i and hi right before Fi arrives.

Let Algi and Opti denote the movement cost of the algorithm and the
adversary, respectively, in response to Fi. Let the potential function Φi be δ ·
ρ(pi, p

?
i ) for some to be determined constant δ > 1. To show that the algorithm

is c-competitive it will be sufficient to show that, for each i,

Algi + Φi − Φi−1 ≤ c ·Opti. (13)

We will only initially consider the adversary’s movement cost until it reaches g?i .
Equation (13) will continue to hold for any adversary’s movement after g?i if

c ≥ δ. (14)

We consider three cases. The notation that we will use is illustrated in Figure 1.

mi

Ei

projection
of Ei−1

onto Pi

hi

h?
i

gi

g?ipi p?i

x

y
αx

βx

Fig. 1. An overview of the used points and distances in Pi.

In the first case assume ρ(h?i , g
?
i ) ≥ γx, where x = ρ(hi, gi), and γ > 0 is a

constant that we define later. Intuitively, this is the easiest case as the adversary’s
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cost will pay for both the algorithm’s movement cost and the increase in the
potential due to this movement. For Equation (13) to hold, it is sufficient that

(1 + β)x+ δ((1 + β)x+ γx) ≤ cγx,

or equivalently

c ≥ (1 + β) + δ((1 + β) + γ)

γ
. (15)

In the remaining two cases assume that ρ(h?i , g
?
i ) = αx ≤ γx, and let y =

ρ(mi, gi).
In the second case assume that x ≤ y. Intuitively in this case the decrease

in the potential due to the algorithm’s adjustment on Fi decreases the potential
enough to pay for the algorithm’s movement costs. Since β < 1 and x ≤ y, the
algorithm will not have to stop at mi when moving a distance of βx on Fi toward
mi. If

γ ≤ 1− β, (16)

the algorithm will also not cross g?i while adjusting on Fi, as this would contradict
the assumption that ρ(h?i , g

?
i ) ≤ γx. Equation (13) will be hardest to satisfy when

Φi − Φi−1 is maximal. This will occur when g?i is maximally far from gi, which
in turn occurs when the points g?i , mi, and gi lie on Fi in that order. In that
case, Equation (13) evaluates to

(1 + β)x+ δ((1 + α)y − βx− (1 + α)
√
x2 + y2) ≤ cαx.

Setting L = 1+β−δβ−cα
δ(1+α) , this is equivalent to

Lx+ y ≤
√
x2 + y2. (17)

When x ≤ y, Equation (17) holds if L ≤ 0. This in turn holds when

δ ≥ 1 + β

β
. (18)

Finally we consider the third case that x ≥ y. Intuitively in this case the
decrease in the potential due to the algorithm’s movement toward Fi decreases
the potential enough to pay for the algorithms movement costs. First consider
the algorithm’s move from pi−1 to gi. Again, the value of Φi−Φi−1 is maximized
when g?i is on the other side of mi as is gi. In that case, the value of Φi − Φi−1
due to this move is at most

δ((1 + α)y − (1 + α)
√
x2 + y2).

Note that the maximum possible increase in the potential due to the algorithm
moving from gi to pi is δβx. Thus for Equation (13) to hold, it is sufficient that

(1 + β)x+ δβx+ δ((1 + α)y − (1 + α)
√
x2 + y2) ≤ cαx.
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Setting L = 1+β+δβ−cα
δ(1+α) , this is equivalent to

Lx+ y ≤
√
x2 + y2. (19)

When x ≥ y, Equation (19) holds if L ≤
√

2− 1. This in turn holds when

δ ≥ 1 + β√
2− 1− β

. (20)

We now need to find a feasible setting of β, γ, δ, and compute the resulting

competitive ratio. Setting β =
√
2−1
2 and γ = 3−

√
2

2 , and δ =
√
2+1√
2−1 one can

see that equations (16), (18), and (20) hold. The minimum c satisfying (15) is
c ≈ 16.22 and also satisfies (14). Then given that we overestimate the adversary’s
cost by a most a factor of

√
3, this gives us a competitive ratio for lines of

approximately 28.1, approximately the same competitive ratio as obtained in
[10].

If Fi is a line segment, then we need to account for the additional movement
along Ei to reach Fi. However, as we set δ > 1, the decrease in the potential can
pay for this movement cost. ut
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