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Abstract. The most commonly studied energy management technique is speed scaling,
which involves operating the processor in a slow, energy-efficient mode at non-critical
times, and in a fast, energy-inefficient mode at critical times. The natural resulting
optimization problems involve scheduling jobs on a speed-scalable processor and
have conflicting dual objectives of minimizing energy usage and minimizing waiting
times. One can formulate many different optimization problems depending on how
one models the processor (e.g., whether allowed speeds are discrete or continuous,
and the nature of relationship between speed and power), the performance objective
(e.g., whether jobs are of equal or unequal importance, and whether one is interested in
minimizing waiting times of jobs or of work), and how one handles the dual objective
(e.g., whether they are combined in a single objective, or whether one objective is
transformed into a constraint). There are a handful of papers in the algorithmic literature
that each give an efficient algorithm for a particular formulation. In contrast, the goal of
this paper is to look at a reasonably full landscape of all the possible formulations. We
give several general reductions which, in some sense, reduce the number of problems
that are distinct in a complexity theoretic sense. We show that some of the problems,
for which there are efficient algorithms for a fixed speed processor, turn out to be
NP-hard. We give efficient algorithms for some of the other problems. Finally, we
identify those problems that appear to not be resolvable by standard techniques or by
the techniques that we develop in this paper for the other problems.

1 Introduction
The most commonly studied energy management technique is speed scaling. It involves
operating the processor in a slow, energy-efficient mode at non-critical times, and in a fast,
energy-inefficient mode at critical times. The natural resulting optimization problems involve
scheduling jobs on such a processor and have conflicting dual objectives of minimizing
both energy usage and waiting times. This leads to many different optimization problems,
depending on how one models the processor, the performance objective, and how one handles
the dual objectives. There are several papers in algorithmic literature that give an efficient
algorithm for a particular formulation. In contrast, we strive to look at a reasonably full
landscape of all the possible formulations. We give several general reductions which reduce
the number of problems that are distinct in a complexity theoretic sense. We show that some
of the problems, for which there are efficient algorithms for a fixed speed processor, turn
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out to be NP-hard. We give efficient algorithms for some of the other problems. Finally, we
identify those problems that appear to not be resolvable by standard techniques or by the
techniques that we develop in this paper for the other problems.

Models. We now describe the different models that have been considered in the literature.
Given the multitude of problems, we use a succinct representation, which we introduce in
parenthesis.
– Energy Budget (B) vs. Flow plus Energy (FE): In an energy budget problem, the energy
objective is turned into a constraint that the total energy used is at most some budgetB. This
setting is most appropriate when the energy is limited to some finite supply, such as the battery
of a laptop. In a flow plus energy problem, the performance and energy objectives are linearly
combined into a single objective. We use a constant coefficient β for the energy objective
that, intuitively, represents the desired trade-off between the value of energy and the value
of performance.
– Integral Flow (I) vs. Fractional Flow (F): In an integral flow problem, the objective is total
(weighted) flow/waiting time of the jobs. In a fractional flow problem, the objective is total
(weighted) flow of the work (job parts). If there is no benefit in partially completing a job,
then integral flow is the right performance metric. Otherwise, fractional flow may be more
appropriate.
– Continuous Speeds (C) vs. Discrete Speeds (D): In the discrete speed setting, the processor
has a finite collection of allowable speeds and corresponding powers at which it may run. In
the continuous speed setting, the allowable speeds are the nonnegative real numbers. While
the discrete speed model is more realistic, it is often mathematically convenient to assume
continuous speeds.
– Weighted (W) vs. Unweighted (U): In the unweighted setting, each job is of equal impor-
tance and is weighted equally in the performance objective. However, the raison d’être for
power heterogeneous technologies, such as speed-scalable processors, is ubiquity of hetero-
geneity in the jobs. In the weighted case, the flow of jobs/work is weighted by their importance.
– Arbitrary Size (A) vs. Unit Size (U): In the unit size setting, each job has the same amount
of work. Similar sized jobs occur in many information technology settings (e.g., for name
servers). In the arbitrary size setting, the jobs may have different sizes.
– Power Function: In the continuous speed setting, one needs to model how a speed smaps
to power. There are two common assumptions: Most commonly one assumes P(s)=sα for
a constant α, slightly generalizing the well-known cube-root rule that speed is approximately
the cube-root of dynamic power. The second common assumption is that P(s) is a general
“nice” convex function. Intuitively, the complexity of speed scaling should not come from the
power function’s complexity. Foreshadowing slightly, our results support this intuition.

Previous Results. We now summarize the known complexity theoretic and offline algo-
rithmic results using the succinct notation we just introduced. The format of our description
is essentially a 5-tuple of the form *-****. The first entry captures the objective (Budget
or Flow plus Energy). The remaining entries are Integral or Fractional flow, Continuous
or Discrete speed, Weighted or Unweighted, and Arbitrary or Unit size. A * represents a
“don’t care” entry. See Table 1 for an overview that puts all these results into the context of
the full range of possible problems.
– B-ICUU: [17] gave a polynomial-time homotopic optimization algorithm for the prob-
lem of minimizing integral flow (I) with continuous speeds (C) subject to an energy budget (B)
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for unweighted jobs (U) of unit size (U). They also used the assumption that P(s)=sα. The
key insights were that jobs should be scheduled in FIFO order and that the KKT conditions
for the natural convex program can be used to guide the homotopic search.
– FE-ICUU: [2] gave a polynomial-time dynamic programming algorithm for the problem
of minimizing integral flow (I) with continuous speeds (C) for unweighted jobs (U) of unit
size (U) and the objective of flow plus β energy (FE). Again, they were under the assumption
that the power function was P(s)= sα, and again the key insight was that jobs should be
scheduled in FIFO order.
– FE-FCWA: [10] gave a (not necessarily polynomial-time) homotopic optimization al-
gorithm for the problem of minimizing fractional flow (F) with continuous speeds (C) for
weighted jobs (W) of arbitrary size (A) and the objective of flow plus β energy (FE). The
algorithm guides its search via the KKT conditions of the natural convex program.
– FE-FDWA: [4] gave a polynomial-time algorithm for the problem of minimizing frac-
tional flow (F) with discrete speeds (D) for weighted jobs (W) of arbitrary size (A) and the
objective of flow plus β energy (FE). The algorithm constructed an optimal schedule job by
job, using the duality conditions of the natural linear program to find a new optimal schedule
when a new job is added.
– *-I*WA: NP-hardness for integral flow (I) and weighted jobs (W) of arbitrary size (A)
for the objective of flow plus β energy (FE) follows from NP-hardness of weighted integral
flow for fixed speed processors [14] (via a suitable power function). The same holds for
weighted integral flow (I) for weighted jobs (W) of arbitrary size (A) subject to a budget (B).

Our Results. The goal in this paper is to more fully map out the landscape of complexity
and algorithmic results for the range of problems reflected in Table 1. In particular, for each
setting our aim is to either give a combinatorial algorithm (i.e., without the use of a convex
program) or show it is NP-hard. Let us summarize our results:
Hardness Results:

– B-IDUA is NP-hard: The reduction is from the subset sum problem. The basic idea
is to associate several high density and low density jobs with each number in the subset
sum instance, and show that for certain parameter settings, there are only two possible
choices for this set of jobs, with the difference in energy consumption being this number.

– B-IDWU is NP-hard: A reduction similar to B-IDUA, but more technical.
These results are a bit surprising as, unlike the previous NP-hardness results for speed scaling
in Table 1, these problems are either open or can be solved in polynomial time on a fixed
speed processor.
Polynomial Time Algorithms:

– FE-ICUU is in P: We extend [2] to general power functions. This follows by noticing
that a certain set of equations can be solved for general “nice” power functions.

– FE-IDUU is in P: The algorithm utilizes the structure of the unit size unweighted case.
Here, discrete speeds allow for a much simpler algorithm than for FE-ICUU.

– FE-FCWA is in P: We generalize [4]’s algorithm to continuous speeds. The main hurdle
is a more complicated equation system at certain points in the algorithm.

Equivalence Reductions:
– Reduction from B-FC** to FE-FC**: We reduce any energy budget problem with

fractional flow and continuous speeds to the corresponding flow plus β energy problem
using binary search.
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– Reduction from B-ICUU to FE-ICUU: The difficulty here stems from the fact that
there may be multiple optimal flow plus energy schedules for a β (so binary search over
β does not suffice).

– Reduction from *-*D** to *-*C**: We give a reduction from any discrete speed
problem to the corresponding continuous speed problem.

While not explicitly needed for our main results, we also provide the other directions for the
first two reductions, in order to improve the understanding of structural similarities.
Table 1 summarizes our results and sets them into context of previous work. Note that for
some of the problems shown to be solvable in polynomial time we give a direct algorithm,
while others follow by one of our reductions. For problems that are solvable by reduction to
linear/convex programming, our algorithms are faster and simpler than general linear/convex
programming algorithms. The key takeaways from this more holistic view of the complexity
of speed scaling problems are:
Certain parameters are sufficient for determining complexity:

– Fractional Flow: Looking at the first two rows, we see that any problem involving frac-
tional flow can be solved in polynomial time. This generally follows from the ability to
write the problem as a convex program, although we can give simpler and more efficient
algorithms.

– Integral Flow: For integral flow there is a more fine grained distinction:
• Weighted & Arbitrary Size: Everything with these settings is NP-hard. Given the

NP-hardness of weighted flow for a fixed speed processor, this is not surprising.
• Unweighted & Unit Size: Everything with these settings can be solved in polynomial

time largely because FIFO is the optimal ordering of the jobs.
• Unweighted & Arbitrary or Weighted & Unit size: These seem to be the most interesting

settings (w.r.t. complexity). We show their hardness for a budget, but flow plus energy
remains open.

Complexity of budget problem vs. flow plus energy: For every setting for which the complex-
ity of each is known, the complexities (in terms of membership in P or NP-hardness) match.
This might be seen as circumstantial evidence that the resolution to the remaining open
complexity questions is that they are NP-hard. If these open problems do indeed have poly-
nomial algorithms, it will require new insights as there are clear barriers to applying known
techniques to these problems.

Other Related Work. There is a fair number of papers that study approximately comput-
ing optimal trade-off schedules, both offline and online. [16] also gives PTAS’s for minimizing
total flow without release times subject to an energy budget in both the continuous and discrete
speed settings. [2, 3, 5–7, 11, 12, 15] consider online algorithms for optimal total flow and
energy, [5, 7, 12] considers online algorithms for fractional flow and energy. In particular, [7]
show that there areO(1)-competitive algorithms for all of the flow plus β energy problems
that we consider (with arbitrary power functions). For a survey on energy-efficient algorithms,
see [1]. For a fixed speed processor, all the fractional problems can be solved by running the
job with highest density (=weight/size). Turning to integral flow, if all jobs are unit size, then
always running the job of highest weight is optimal. The complexity of the problem if all jobs
have the same (not unit) size is open [8, 9]. The complexity of FE-I*WU seems at least
as hard (but perhaps not much harder) than this problem. If all jobs have unit weight, then
Shortest Remaining Processing Time is optimal for total flow.
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Unweighted Weighted
Jobs Jobs

Unit Arbitrary Unit Arbitrary
Sizes Sizes Sizes Sizes

Fractional
Flow

Discrete
Speeds

P [4]

≡

P [?]

P [4]

≡

P [?]

P [4]

≡

P [?]

P [4]
≡

P [?]

Continuous
Speeds

P [?]

≡

P [?]

P [?]

≡

P [?]

P [?]

≡
P [?]

P [?]

≡

P [?]

Integral
Flow

Discrete
Speeds

P [?]

≡

P [?]

?

NP-hard [?]

?

NP-hard [?]

NP-hard [14]

NP-hard [16]

Continuous
Speeds

P [2][?]

≡

P [17][?]

?

NP-hard [?]

?

NP-hard [?]

NP-hard [14]

NP-hard [16]

Table 1. Summary of known and new results. Each cell’s upper-half refers to the flow+β ·energy
objective and the lower-half refers to flow minimization subject to an energy constraint. Results of this
paper are indicated by [?], and ≡ indicates that two problems are computationally equivalent.

Outline of the Paper. Section 2 provides basic definitions. In Section 3 we show that
B-IDWU and B-IDUA are NP-hard. In Section 4 we give several polynomial time algo-
rithms. Finally, in Section 5, we give the reductions between budget and flow plus β energy
problems. Due to space constraints, omitted proofs are left to the full version of the paper.

2 Model & Notation
We consider n jobs J={1,2,...,n} to be processed on a single, speed-scalable processor. In
the continuous setting, the processor’s energy consumption is modeled by a power function
P : R≥0 → R≥0 mapping a speed s to a power P(s). We require P to be continuous,
convex, and non-decreasing. Other than that, we merely assume P to be “nice” in the
sense that we can solve basic equations involving the power function and, in particular, its
derivative and inverse. In the discrete setting, the processor features only k distinct speeds
0<s1<s2< ···<sk, where a speed si consumes energy at the rate Pi≥ 0. Even in the
discrete case, we will often use P(s) to refer to the power consumption when “running at a
speed s∈(si,si+1)” in between the discrete speeds. This is to be understood as interpolating
the speed s=si+γ(si+1−si) (running for a γ fraction at speed si+1 and a 1−γ fraction
at speed si), yielding an equivalent discrete schedule. Each job j∈J has a release time rj, a
processing volume pj, and a weightwj. The density of j iswj/pj. For each time t, a schedule
S must decide which job to process at what speed. Preemption is allowed, so that a job may be
suspended and resumed later on. We model a schedule S by a speed function V : R≥0→R≥0
and a scheduling policyJ : R≥0→J. Here,V(t) denotes the speed at time t, andJ (t) the job
that is scheduled at time t. Jobs can be processed only after they have been released. For job j
let Ij=J−1(j)∩[rj,∞) be the set of times during which it is processed. A feasible schedule
must finish the work of all jobs. That is, the inequality

∫
Ij
V(t)dt≥pj must hold for all jobs j.

We measure the quality of a given schedule S by means of its energy consumption and
its fractional or integral flow. The energy consumption of a job j isEj=

∫
Ij
P(V(t))dt, and



6 Neal Barcelo, Peter Kling, Michael Nugent, Kirk Pruhs, and Michele Scquizzato

the energy consumption of schedule S is
∑
j∈JEj. The integral flow Fj=wj(Cj−rj) of

a job j is the weighted difference between its completion time Cj and release time rj. The
integral flow of schedule S is F(S)=

∑
j∈JFj. In contrast, the fractional flow can be seen

as the flow on a per workload basis (instead of per job). More formally, if pj(t) denotes the
work remaining on job j at time t, the fractional flow time of job j iswj

∫∞
rj

pj(t)
pj
dt. Our goal

is to find energy-efficient schedules that provide a good (low) flow. We consider two different
ways to combine these conflicting goals. In the budget setting, we fix an energy budget B≥0
and seek the minimal (fractional or integral) flow achievable with this energy. In the flow
plus energy setting, we want to minimize a linear combination F(S)+βE(S) of energy and
(fractional or integral) flow.

3 Hardness Results
This section proves NP-hardness for the problems B-IDUA and B-IDWU. The reductions
are from the subset sum problem, where we are given n elements a1≥a2≥···≥an with
ai∈N as well as a target valueA∈N with a1<A<

∑n
i=1ai. The goal is to decide whether

there is a subset L⊆ [n] such that
∑
i∈Lai=A.

Basic Idea. For both reductions, we define for each element ai a job set Ji such that
jobs of different sets will not influence each other. Each Ji contains one low density job and
one/several high density jobs. Starting from a base schedule, we choose the parameters such
that investing roughly ai energy into Ji improves its flow by roughly ai. More precisely, when
Ji gets ai energy, additional energy can be used to decreases the flow at a rate�1/2 per
energy unit. Given substantially more or less energy, additional energy decreases the flow at
a rate of only 1/2. We achieve this by ensuring that at about ai energy, the schedule switches
from finishing the low density job after the high density jobs to finishing it before them. For an
energy budget ofA, we can define a target flow that is reached if and only if there is anL⊆ [n]
such that

∑
i∈Lai=A (corresponding to job sets that are given about ai extra energy).

Remarks. We assume a processor with two speeds s1=1 and s2=2 and power consump-
tion rates P1 =1 and P2 =4. For an isolated job of weight w, this means that increasing
a workload of x from speed s1 to s2 increases the energy by x and decreases the flow by
w· x2 . To ensure that jobs of different job sets do not influence each other, one can increase
all release times of the job set Ji by the total workload of all previous job sets. For ease of
exposition, we consider each job group Ji in isolation, and assume its first job is released at
time 0. Due to space constraints, the reduction for B-IDWU is deferred to the full version.

3.1 Hardness of B-IDUA
For i∈ [i], we define a job set Ji={(i,1),(i,2)} of two unit weight jobs and set δ= 1

a1n2 .
The release time of job (i,1) is ri1=0 and its size is pi1=ai. The release time of job (i,2)
is ri2=ai/2 and its size is pi2=2δai.

Definition 1 (Base Schedule). The base schedule BSi schedules job (i,1) at speed 1 and job
(i,2) at speed 2. It finishes job (i,1) after (i,2), has energy consumptionE(BSi)=ai+4δai,
and flow F(BSi)=ai+2δai.

Note that BSi is optimal for the energy budget E(BSi). Consider an optimal schedule S
for the jobs J=

⋃n
i=1Ji (release times shifted such that they do not interfere) for the energy

budget B=
∑n
i=1E(BSi)+A. Let L⊆ [n] be such that i∈L if and only if Ji gets at least

E(BSi)+ai−4δai=2ai energy in S.
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Lemma 1. S has flow at most F=
∑n
i=1F(BSi)−(12+δ)A iff

∑
i∈Lai=A.

Proof. For the first direction, given that
∑
i∈Lai=A, note that the schedule that gives each

job set Ji with i∈L exactly E(BSi)+ai energy and each Ji with i 6∈L exactly E(BSi)
energy adheres to the energy budget and has flow exactly F . For the other direction, consider
i∈ [n], let Ei be the total energy used to schedule Ji in S, and let ∆i=Ei−E(BSi) the
additional energy used with respect to the base schedule. Then, for i 6∈ L, the flow of Ji
is F(BSi)− 1

2∆i, yielding an average flow gain per energy unit of 1/2. For i ∈ L, the
flow gain per energy unit is 1 for the interval [2ai,2ai+2δai) and 1/2 otherwise. Thus, the
maximum average flow gain is achieved for Ei = 2ai+2δai, where the energy usage is
E(BSi)+ai−2δai and the flow isF(BSi)−ai/2. This yields a maximum average flow gain
per energy unit of ai/2

ai−2δai =
1

2−4δ . Using these observations, we now show that, if
∑
i∈Lai 6=

A, the schedule has either too much flow or uses too much energy. Let us distinguish two cases:
Case 1:

∑
i∈Lai<A: Using ai,A∈N and our observations, the flow decreases by at most

(w.r.t.
∑n
i=1BSi)

1

2−4δ
∑
i∈L

ai+
1

2

(
A−

∑
i∈L

ai
)
=
1

2
A+

δ

1−2δ
∑
i∈L

ai≤
1

2
A+

δ

1−2δ
(A−1)<

(1
2
+δ
)
A.

The last inequality follows from δ= 1
a1n2 <

1
2A .

Case 2:
∑
i∈Lai > A: This implies

∑
i∈Lai ≥ A+ 1. Note that even if all jobs (i,2)

with i∈ {1,2,...,n} are run at speed 1 instead of speed 2, the total energy saved with
respect to the base schedules is at most

∑n
i=12δai≤

2
n . By this and the previous obser-

vations, the additional energy used by S with respect to the base schedules is at least
(1−4δ)

∑
i∈Lai−

2
n≥
∑
i∈Lai−

6
n≥A+1− 6

n>A. ut

Theorem 1. B-IDUA is NP-hard.

4 Polynomial Time Algorithms
In this section we provide polynomial time algorithms for FE-IDUU, FE-ICUU, and FE-
FCWA. The algorithm for FE-ICUU generalizes and makes slight modifications to the algo-
rithm in [2] to handle arbitrary power functions. We also provide a new, simple, combinatorial
algorithm for FE-IDUU. While by the results of Section 5.1 we could use the algorithm for
FE-ICUU to solve FE-IDUU, the algorithm we provide has the advantages of not having
the numerical qualifications of the algorithm for FE-ICUU, as well as providing some addi-
tional insight into the open problem FE-IDUA. The algorithm for FE-FCWA generalizes
and makes slight modifications to the algorithm in [4] to handle arbitrary power functions.

4.1 An Algorithm for FE-IDUU
Here we give a polynomial time algorithm for FE-IDUU. We describe the algorithm for two
speeds; it is straightforward to generalize it to k speeds. The algorithm relies heavily upon the
fact that, when jobs are of unit size, the optimal completion ordering is always FIFO (since
any optimal schedule uses the SRPT (shortest remaining processing time) scheduling policy).4

Before describing the algorithm, we provide the necessary optimality conditions in Lemma 2.
They are based on the following definitions, capturing how jobs may affect each other.

4 In fact, a slightly more general result yields an optimal FE-IDUA schedule given an optimal
completion ordering.
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Definition 2 (Lower Affection). For a fixed schedule, a job j1 lower affects a job j2 if there
is an ε>0 such that decreasing the speed of j1 by any value in (0,ε] increases the flow of j2.

Definition 3 (Upper Affection). For a fixed schedule, a job j1 upper affects a job j2 if there
is some ε>0 such that increasing the speed of j1 by any value in (0,ε] decreases the flow of j2.

Lemma 2. Be S an optimal schedule and s1 and s2 consecutive speeds. Define α= P2−P1

s2−s1
and κ=−(P1−αs1)≥0. For job j with (interpolated) speed sj ∈ [s1,s2]: (a) sj>s1⇒ j
lower affects at least κ jobs, and (b) sj<s2⇒ j upper affects at most κ−1 jobs.

Proof. We start with (a). To get a contradiction, assume sj>s1 but j lower affects less than
κ jobs. Thus, for any ε>0, increasing j’s completion time by ε increases the flow of at most
κ−1 jobs by ε. If the resulting schedule isS′. For t= 1

sj
, the energy fromS toS′ decreases by

tP(1/t)−(t+ε)P(1/(t+ε))t(α/t+P1−αs1)−(t+ε)(α/(t+ε)+P1−αs1)
=α+tP1−tαs1−α−(t+ε)P1+(t+ε)αs1=−ε(P1−αs1)=κε.

So, the total change in the objective function is at most (κ−1)ε−κε<0, contradicting the op-
timality ofS. Statement (b) follows similarly by decreasing the completion time of j by ε. ut
Observation 2. Consider two arbitrary jobs j and j′ in an arbitrary schedule S.
(a) If j upper affects j′ 6=j and j does not run at s2, j′ must run at s1.
(b) While raising j’s speed, the number of its lower and upper affections can only decrease.
(c) If j upper affects j′, then changing the speed of j′ will not change j’s affection on j′.
(d) Assume j runs at speed sj and upper affects m jobs. Then, in any schedule where j’s

speed is increased (and all other jobs remain unchanged), j lower affects at mostm jobs.
Our algorithm GREEDYAFFECTION initializes each job with speed s1. Consider jobs in or-

der of release times and let j denote the current job. While j upper affects at least κ jobs and is
not running at s2, increase its speed. Otherwise, update j to the next job (or terminate if j=n).
Theorem 3. GREEDYAFFECTION solves FE-IDUU in polynomial time.

Proof. AssumeA is not optimal and letO be an optimal schedule agreeing withA for the most
consecutive job speeds (in order of release times). Let j be the first job that runs at a different
speed and let sA and sO be the job’s speeds inA andO. We consider two cases: If sA>sO,
Observation 2(a) implies that every job that is upper affected by j inO other than j itself is run
at s1. Consider the time ofA’s execution when the speed of j was at sO. SinceA continued to
raise j’s speed, j upper affected at least κ jobs. Let J be this set of jobs. By Observation 2(c),
j still upper affects all jobs j′∈J inO. This contradicts the optimality ofO (Lemma 2). For
the second case, assume sA<sO. By Lemma 2, j upper affects less than κ jobs inA. When
A stops raising j’s speed, all jobs to the right run at s1. Observations 2(b) and (d) imply that
j lower affects less than κ jobs inO, contradictingO’s optimality (Lemma 2). ut

4.2 An Algorithm for FE-ICUU
In this subsection we show that FE-ICUU is in P. Essentially, it is possible to modify
the algorithm from [2] to work with arbitrary power functions. The main alteration is that,
for certain power functions that would yield differential equations too complicated for the
algorithm to solve, we use binary search to find solutions to a these equations rather than
solve the equations analytically.

Theorem 4. There is a polynomial time algorithm for solving FE-ICUU.
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4.3 An Algorithm for FE-FCWA

This subsection shows that FE-FCWA is in P. The basic idea is to modify the algorithm
from [4] to work with arbitrary power functions, under some mild assumptions. In order to
maintain polynomial running time, the algorithm must efficiently find the next occurrence
of certain events. In [4], this is done by analytically solving a series of differential equations,
which are too complicated to solve for arbitrary power functions. Instead, our algorithm finds
the occurrence of the next event by using binary search to “guess” its occurrence, and then
(numerically) solve a (simpler) set of equations to determine if an event did, in fact, occur. Our
only assumption is that it is possible to numerically find a solution to the involved equations.

Theorem 5. There is a polynomial time algorithm for solving FE-FCWA.

5 Equivalence Reductions
Here we provide the reductions to obtain the hardness and algorithmic results that are not
proven explicitly. First, we reduce B-ICUU to FE-ICUU. Combined with the algorithm
from Section 4.2, this shows that B-ICUU is in P. The second reduction is from any prob-
lem in the discrete power setting to the corresponding continuous variant. As a result, the
hardness proofs from Section 3 for B-IDWU and B-IDUA imply that B-ICWU and B-
ICUA are NP-hard. Our final reduction is from B-FCWA to FE-FCWA. As a result of the
algorithm in Section 4.3, this shows that B-FCWA is in P.

5.1 Reducing B-ICUU to FE-ICUU
We show that, given an algorithm for the flow plus energy variant, we can solve the energy
budget variant of ICUU. The basic idea is to modify the coefficient β in the flow plus energy
objective until we find a schedule that fully utilizes the energy budget B. This schedule
gives the minimum flow forB. The major technical hurdles to overcome are that the power
function P may be non-differentiable, and may lead to multiple optimal flow plus energy
schedules, each using different energies. Thus, we may not find a corresponding schedule
for the given budget, even if there is one. To overcome this, we define the affectance νj of
a job j. Intuitively, νj represents how many jobs’ flows will be affected by a speed change
of j. We show that a job’s affectance is, in contrast to its energy and speed, unique across
optimal schedules and changes continuously in β. This will imply that job speeds change
continuously in β (i.e., for small enough changes, there are two optimal schedules with speeds
arbitrarily close). We also give a continuous transformation process between any two optimal
schedules. This eventually allows us to apply binary search to find the correct β.

Definitions & Notation. We start with some formal definitions for this section and a small
overview of what they will be used for in the remainder. Definition 6 (affectance) will be most
central to this section, as it will be shown in Lemma 3 and Corollary 1 to characterize optimal
schedules. It uses the subdifferential5 ∂P(s) to handle non-differentiable power functions P .

Definition 4 (Total Weight of Lower/Upper Affection). In any schedule, lj and uj are the
total weight of jobs lower and upper affected by j, respectively (see Definitions 2 and 3).

5 Subdifferentials generalize the derivative of convex functions. ∂P(s) is the set of slopes of lines
through (s,P(s)) that lower bound P . It is closed, convex on the interior of P ’s domain, and
non-decreasing if P is increasing [13].
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Definition 5 (Job Group). A job group is a maximal subset of jobs such that each job in the
subset completes after the release of the next job. Let Ji denote the job group with the i-th
earliest release time andWi the total weight of Ji (Ji=∅ andWi=0 if Ji does not exist). Job
groups Ji and Ji+1 are consecutive if the last job in Ji ends at the release time of the first job
in Ji+1. We set the indicator ζi=1 if and only if Ji+1 exists and Ji and Ji+1 are consecutive.

Definition 6 (Affectance Property). The ith job group of a schedule satisfies the affectance
property if either ζi+1=0 or the i+1st job group also satisfies the affectance property, and
there existsN i such that for all vi∈N i and j∈Ji

vi∈ [0,ζi+1(ν
i+1+Wi+1)], (1)

vj=v
i+uj, and (2)

vj=sjd−P(sj) for some d∈∂P(s). (3)

Here, νi = maxN i if job group i exists, and νi = 0 otherwise. A schedule satisfies the
affectance property if all job groups in the schedule satisfy the affectance property.

Definition 7 (Affectance of a Job). The set of speeds satisfying Eq. (3) for vj=ν is S(ν).
For each job j in group i with the affectance property, the affectance of job j is νj=νi+uj.

Characterizing Optimal Schedules. We first prove that the affectance property char-
acterizes optimal schedules. Lemma 3 shows that this property is necessary, Lemma 4 shows
that affectance is unique across optimal schedules, and Corollary 1 shows that the affectance
property is sufficient for optimality.

Lemma 3. Any optimal schedule for FE-ICUU satisfies the affectance property.

Lemma 4. Let S1 and S2 be schedules with the affectance property and let νij denote the
affectance of job j in the corresponding schedule. Then ν1j =ν

2
j for all j.

Next, we show how to transform any schedule that has the affectance property into any
other such schedule without changing the flow plus energy value. Together with Lemma 3, this
immediately implies that the affectance property is sufficient for optimality (Corollary 1). Also,
Lemma 3 is a nice algorithmic tool, as it allows us to find schedules “in between” any two
optimal schedules with arbitrary precision. We will make use of that in the proof of Theorem 6.

Lemma 5. Let S1 and S2 be schedules with the affectance property. We can transform S1
to S2 without changing its flow plus energy. All intermediate schedules satisfy the affectance
property and we can make the speed changes between intermediate schedules arbitrarily small.

Corollary 1. Any schedule satisfying the affectance property is optimal.

Binary Search Algorithm. We now provide the main technical result of this section,
a polynomial time algorithm for B-ICUU based on any such algorithm for FE-ICUU
(Theorem 6). In order to state the algorithm and its correctness, we need two more auxiliary
lemmas. Lemma 6 proves that the affectance of jobs is continuous in β, while Lemma 7 does
the same for job speeds.

Lemma 6. Forβ>0 and ε>0, there exists δ>0 such that for all jobs j andβ′∈ [β−δ,β+δ],
any optimal FE-ICCU schedules S for β and S′ for β′ adhere to ν′j∈ [νj−ε,νj+ε].
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Lemma 7. Forβ>0 and ε>0, there exists δ>0 such that for all jobs j andβ′∈ [β−δ,β+δ],
any optimal FE-ICUU schedules S for β and S′ for β′ adhere to s′j∈ [sj−ε,sj+ε].

Theorem 6. Given a polynomial time algorithm for the continuous flow plus energy problem
with unit size unit weight jobs, there is a polynomial time algorithm for the budget variant.

Proof. Suppose we are given an energy budgetB, and an algorithm to solve FE-ICUU. As
we formally show in the proof of Theorem 8, the energy of optimal schedules increases as
β decreases (even though we are considering here integral flow rather than fractional flow).
Thus, the first step of the algorithm is to binary search over β until we find a schedule that
fully utilizes B. If we find such a β, we are done (any optimal FE-ICUU schedule must
minimize flow for the energy it consumes). Otherwise, we consider three cases:
Case 1: We find a β for which the optimal FE-ICUU schedule runs every job at the lowest

speed used by any optimal schedule and uses>B energy. Here, this lowest speed is (if
it exists) the largest speed s such that for all s′<s we have P(s)

s ≤
P(s′)
s′ . In this case,

no solution exists, since running a job at a lower speed increases its flow but does not
decrease its energy.

Case 2: We find a β for which the optimal FE-ICUU schedule runs every job at the highest
speed used by any optimal schedule and uses≤B energy. Here, this highest speed is (if it
exists) the largest speed s such that for all s′>swe haveP(s′)=∞. In this case, β yields
the optimal budget solution, since running any job at a higher speed uses infinite energy.

Case 3: There is ε>0 such that for any β, the computed optimal FE-ICUU schedule uses
at leastB+ε or at mostB−ε energy. Since job speeds are continuous in β (Lemma 7)
and the energy increases as β decreases, we know that there is some β such that the
corresponding FE-ICUU solutions contain schedules using both B+ε1 energy and
B−ε2 energy (ε1,ε2>0). Fix such a β and let S1 and S2 be the corresponding schedules
using B−ε1 and B+ε2, respectively. By Lemma 5, we can continuously change the
speeds (and, thus, energy) of S1 to obtain S2. During this process, we obtain an interme-
diate optimal FE-ICUU schedule that uses exactlyB energy. As described above, this
schedule is also optimal for B-ICUU. ut

5.2 Reducing the Discrete to the Continuous Setting

The main result of this subsection is a reduction from the discrete to the continuous setting.
Using mild computational power assumptions, Theorem 7 shows how to use an algorithm for
the continuous variant of one of our problems (*-*C**) to solve the corresponding discrete
variant (*-*D**). It is worth noting that our reduction makes use of arbitrary continuous
power functions (especially power functions with a maximum speed).

Theorem 7. Given a polynomial time algorithm for any budget or flow plus energy variant
in the continuous setting, there is a polynomial time algorithm for the discrete variant.

5.3 Reducing from Budget to Flow Plus Energy for Fractional Flow

This subsection gives a reduction from the budget to the flow plus energy objective. The re-
duction given in Theorem 8 is for fractional flow, assumes the most general setting (weighted
jobs of arbitrary size), and preserves unit size and unit weight jobs, making it applicable to
reduce B-FC** to FE-FC**.
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Theorem 8. Given a polynomial time algorithm for the budget variant and fractional flow,
there is a polynomial time algorithm for the corresponding flow plus energy variant.
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