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using less energy per gate by designing the supply voltages to be closer to
the threshold voltage of transistors. However, this energy savings comes
at a cost of a greater probability of gate failure, which necessitates that
the circuits must be more fault-tolerant, and thus contain more gates.
Thus achieving energy savings with Near-Threshold Computing involves
properly balancing the energy used per gate with the number of gates
used. The main result of this paper is that almost all Boolean functions
require circuits that use exponential energy, even if allowed circuits using
heterogeneous supply voltages. This is not an immediate consequence of
Shannon’s classic result that almost all functions require exponential sized
circuits of faultless gates because, as we show, the same circuit layout can
compute many different functions, depending on the value of the supply
voltages. The key step in the proof is to upper bound the number of differ-
ent functions that one circuit layout can compute. We also show that the
Boolean functions that require exponential energy are exactly the Boolean
functions that require exponentially many faulty gates.
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1 Introduction

The threshold voltage of a transistor is the minimum supply voltage at which the
transistor starts to conduct current. However, if the designed supply voltage was
exactly the ideal threshold voltage, some transistors would likely fail to operate as
designed due to manufacturing and environmental variations. In the traditional
approach to circuit design the supply voltages for each transistor/gate are set suf-
ficiently high so that with sufficiently high probability no transistor fails, and thus
the designed circuits need not be fault-tolerant. One potential method to attain
more energy-efficient circuits is Near-Threshold Computing, which simply means
that the supply voltages are designed to be closer to the threshold voltage. As the
power used by a transistor/gate is roughly proportional to the square of the supply
voltage [4], Near-Threshold Computing can potentially significantly decrease the
energy used per gate. However, this energy savings comes at a cost of a greater
probability of functional failure, which necessitates that the circuits must be more
fault-tolerant, and thus contain more gates. For an example of this tradeoff in an
SRAM cell, see [7].

1.1 Our Contributions

As the total energy used by a circuit is roughly the sum over all gates of the en-
ergy used by that gate, achieving energy savings with Near-Threshold Computing
involves properly balancing the energy used per gate with the number of gates
used. In principle, for every function f there exists a circuit C computing f with
probability of error at most δ that uses minimum energy. It is natural to ask ques-
tions about the minimum energy required for various functions. Pippenger showed
that all Boolean functions with n inputs can be computed by circuit layouts with
O(2n/n) noisy gates (i.e., gates that fail independently with some known, fixed
probability) [12]. Using that construction, it immediately follows that all Boolean
functions can be computed by some circuit C that uses O(2n/n) energy when δ is
a fixed constant. Our main result, which we state somewhat informally below, is
that this result is tight for almost all functions.

Theorem 1. Almost all Boolean functions on n variables require circuits that use
Ω(2n/n) energy.

The main component of the proof is to show that most functions require circuit
layouts with exponentially many gates. Note that in this setting, this is not an im-
mediate consequence of Shannon’s classic result [15] that most functions require
circuit layouts with exponentially many faultless gates. To understand this point
better, let us consider the simple counting-based proof of the following somewhat
informal statement of Shannon’s classic result:

Theorem 2 (Shannon [15]). Almost all Boolean functions on n inputs require
circuits with faultless gates of size Ω(2n) bits (and of size Ω(2n/n) gates).
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Proof. We will associate circuit layouts with their binary representation in some
standard form. Each string of k bits specifies at most one circuit layout. There are
2k bit strings of length k. Thus using k or less bits, at most

∑k
i=0 2i ≤ 2k+1 different

circuit layouts can be specified. But there are 22
n

Boolean functions with n input
bits, hence k = 2n − ` bits are only sufficient to specify a 22

n−`+1/22
n

= 1/2`−1

fraction of all the possible Boolean functions. The bound on the number of gates
follows by noting that the number of bits per gate is logarithmic in the number of
gates. ut

The reason that this proof does not work in a Near-Threshold Computing
setting is because a circuit now not only consists of a layout, but also of a set
of supply voltages. Thus in principle a circuit may compute different functions
for different settings of the supply voltages. We start by showing that, perhaps
somewhat surprisingly until one sees the trick, this can in fact actually happen. In
Section 2 we show that when supply voltages must be homogeneous, that is every
gate of the circuit is supplied with the same voltage, there are simple circuits with
n inputs and O(n) gates that compute Ω

(
log n/ log( 1

δ log n)
)

different functions
with probability of error at most δ, and when heterogeneous supply voltages are
allowed, there are circuits with n inputs and O

(
n2
)

gates that compute Ω(3n)
different functions. Here by heterogeneous voltages we simply mean that different
gates could be supplied with different voltages.

In contrast, in Section 3 we show that, for each δ < 1/2, every homogeneous cir-
cuit with n inputs and s faulty gates computes at most s2n+1 different functions,
and every heterogeneous circuit with s faulty gates computes at most (8e2n)s dif-
ferent functions. These upper bounds are then sufficient to prove our main result
using the same counting-based technique as in the proof of Shannon’s classic result.
Since a homogeneous voltage setting is also a heterogeneous voltage setting, the
result that almost all functions require heterogeneous circuits using exponential
energy is strictly stronger than the corresponding result for homogeneous circuits.
Nevertheless, we include the latter as it demonstrates how much simpler homoge-
neous supply voltages are, and as we are able to obtain a slightly stronger bound
in terms of the required error probability δ.

These results leave open the possibility that some Boolean functions that do
not require circuits with exponentially many gates still require exponential energy.
For example, it could be the case that for some function the energy-optimal cir-
cuit has sub-exponentially many gates, with many of them requiring exponential
energy. We show in Section 4 that this is not the case, i.e., the Boolean functions
that require exponential energy are exactly the Boolean functions that require
exponentially many faulty gates.

1.2 Related Work

The study of fault-tolerant circuits started with the seminal paper by von Neu-
mann [16]. Subsequent work can be found in [5, 6, 12–14, 9, 8, 10]. The results of [16,
6, 12] show that any circuit layout of s faultless gates can be simulated by a circuit
with O(s log s) noisy gates. As already mentioned, Pippenger [12] showed that all
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Boolean functions can be computed by circuit layouts with O(2n/n) noisy gates.
In fact, he proved this result in a stronger model in which the error probabilities
of the gates could be adversarially set in the range [0, ε]. In this model, the fact
that almost all functions require Ω(2n/n) noisy gates immediately follows from
the classic result of Shannon that most functions require Ω(2n/n) faultless gates
and noting that the circuit must compute correctly if there are no gate failures. It
is also known that functions with sensitivity m (roughly, the number of bits that
affect the output on any input) require Ω(m logm) noisy gates [5, 13, 9]. A more
detailed history can be found in [9, 8].

The general idea of trading accuracy of a hardware circuit and computing archi-
tecture for energy savings dates back to at least [11]. An excellent survey on Near-
Threshold Computing can be found in [7]. A theoretical study of Near-Threshold
Computing was initiated in [3]. The four main results in [3] are: (1) to compute
a function with sensitivity m requires a circuit that uses energy Ω(m logm), (2)
if a function can be computed by a circuit with s faultless gates, then it can be
computed by a circuit with energy O(s log s) when δ is a fixed constant, (3) there
are circuits where there is a feasible heterogeneous setting of the supply voltages
which uses much less energy than any feasible homogeneous setting of the supply
voltages, and (4) there are functions where there are nearly optimal energy circuits
that have a homogeneous setting of the supply voltages when δ is a fixed constant.
[2] considered the problem of setting the supply voltage of a given circuit in such
a way that the circuit has a specified reliability with the objective of minimiz-
ing energy. [2] showed that obtaining a significantly better approximation ratio
than the traditional approach, which sets the voltage sufficiently high so that with
sufficiently high probability no gate fails, is NP-hard.

1.3 Formal Model

A Boolean function f is a function from {0, 1}n to {0, 1}. A gate is a function
g : {0, 1}ng → {0, 1}, where ng is the number of inputs (i.e., the fan-in) of the
gate. We assume that the maximum fan-in is at most a constant. A Boolean circuit
C with n inputs is a directed acyclic graph in which every node is a gate. Among
them there are n gates with fan-in zero, each of which outputs one of the n inputs
of the circuit. The size of a circuit, denoted by s, is the number of gates it con-
tains. For any I ∈ {0, 1}n, we denote by C(I) the output of the Boolean function
computed by Boolean circuit layout C.

In this paper we consider circuits (C, v̄) that consist of both a traditional cir-
cuit layout C as well as a vector of supply voltages v̄, one for each gate of C.
Every gate g is supplied with a voltage vg. We say that the supply voltages are
homogeneous when every gate of the circuit is supplied with the same voltage,
and heterogeneous otherwise. A circuit is said to be homogeneous when its supply
voltages are homogeneous, and heterogeneous otherwise. We say that a gate fails
when it produces an incorrect output, that is, when given an input x it produces
an output other than g(x).
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Each (faulty3) non-input gate g fails independently with probability ε(vg),
where ε : R+ → (0, 1/2) is a decreasing function. The voltage supplied to a
gate determines both its energy usage and its failure probability, thus we define
εg := ε(vg) and drop all future formal reference to supply voltages. Finally we
assume there is a failure-to-energy functionE(ε) that maps the failure probability
ε to the energy used by a gate. The only constraints we impose on E(ε) are that
it is decreasing and limx→0+ E(1/2 − x) > 0. In practice E(ε) is observed to be
roughlyΘ(log2(1/ε)) [7, 3]. The energy used by a circuit C is simply the aggregate
energy used by the gates,

∑
g∈C E(εg) in our notation.

A gate that never fails is said to be faultless. Given a value δ ∈ (0, 1/2) (δ may
not be constant), a circuit (C, ε̄) that computes a Boolean function f is said to
be (1− δ)-reliable if for every input I, C(I) equals f(I) with probability at least
1− δ. We say that C can compute ` different Boolean functions (1− δ)-reliably if
there exist ε̄1, ε̄2, . . . , ε̄` ∈ (0, 1/2)|C| and different Boolean functions f1, f2, . . . , f`
such that (C, ε̄i) computes fi (1− δ)-reliably, for each i ∈ 1, 2, . . . , `.

2 A Lower Bound on the Number of Functions
Computable by a Circuit

In this section we show that, in both the homogeneous case and the heteroge-
neous case, a single circuit can (1− δ)-reliably compute many different functions,
by changing the supply voltage(s). Both of these lower bounds demonstrate that
Shannon’s counting argument will not be sufficient to show that almost all func-
tions require exponential energy.

2.1 Homogeneous Supply Voltages

We start with the homogeneous case, giving an explicit construction of a cir-
cuit that computes approximately log n different functions. The key concept used
throughout is that for a large enough perfect binary tree of AND gates (referred
to as an AND tree) there is some ε such that, regardless of the input, the tree will
output 0 with high probability. By combining such trees of different sizes into a
single circuit we can essentially ignore different parts of the input depending on ε.
The statement and proof are formalized below.

Theorem 3. For any δ ∈ (0, 1/2) and n ∈ N, there exists a homogeneous circuit

C with n inputs and size O(n) that computes Ω
(

logn
log( 1

δ logn)

)
different Boolean

functions (1− δ)-reliably.

Proof (sketch). The circuit, which we indicate with C, consists of k perfect binary
trees of AND gates, which we refer to as AND1, . . . ,ANDk, and of a complete

3 In previous work faulty and noisy are often used as synonyms, however, in order to
provide additional clarity in regards to which model is currently being referred to,
we use noisy when referring to gates in the fault-tolerant model, and faulty when
referring to gates in the near-threshold model.
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Fig. 1: The circuit used in the proof of Theorem 3.

binary tree of OR gates, denoted OR1. The size of ANDi, which will be determined
later but decreases exponentially as i increases, is denoted by si, and the size of
OR1 is k−1. Each AND tree receives its own set of input bits. The outputs of these k
trees are fed into the tree of OR gates, and the output of the latter tree is the output
of the circuit. Thus, when ε = 0, the circuit C computes OR(AND1, . . . ,ANDk)
(see Figure 1).

The high level approach is to show that as ε grows larger, the larger AND trees
switch from computing the AND function to computing the 0 function. In other
words, the result is completely determined by the remaining functional AND trees.
By choosing the sizes si to be sufficiently different, we can show that each ANDi

will switch to computing the 0 function at a different ε, and further, when this
switch occurs all of the smaller trees will still be functioning correctly with high
probability. The details are left to the full version. ut

2.2 Heterogeneous Supply Voltages

We now show that with heterogeneous voltage settings, we can construct a cir-
cuit that computes exponentially many functions (1− δ)-reliably. We leverage the
power of heterogeneity to ensure that certain parts of the circuit compute correctly
with high probability, while other parts can fail with high probability. In partic-
ular, we build a circuit for a conjunctive normal form (CNF) Boolean formula
where the literals of the formula can be determined dynamically by forcing certain
gates to fail while preserving the correctness of the CNF calculation. This allows
a single circuit to compute all possible functions representable by CNF formulas
with n variables and a fixed number of fixed-sized clauses.
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Theorem 4. For any constant δ ∈ (0, 1/2) and n ∈ N, there exists a heteroge-
neous circuit C of size O

(
n2
)

that computes Ω(3n) different Boolean functions
(1− δ)-reliably.

Proof (sketch). We give a circuit that computes at least 3n different functions. We
delay the discussion of voltages and correctness until we have completely described
the circuit. Consider a 3CNF formula Φ with n variables and m clauses, i.e., Φ(x)
is 1 if x satisfies all the clauses and 0 otherwise. To build a circuit that computes
Φ, for each clause (`1 ∨ `2 ∨ `3) we have a single OR gate the inputs of which are
variables `1, `2, `3 (note these need not be different and we are ignoring negations
here). The output of each such OR gate is fed into an AND tree which outputs the
conjunction of all such clauses. This circuit computes fΦ, the Boolean function
computed by 3CNF formula Φ.

We now give the construction of the circuit C. Consider a generic 3CNF for-
mula Φ = (`1∨ `2∨ `3)∧· · ·∧ (`3m−2∨ `3m−1∨ `3m), and the corresponding series
of OR and AND gates as described above, however with input wires coming into
each `i removed. We will use a selection circuit to dynamically connect each `i to
some xj , depending on the supply voltages.

We define the selection circuit for `i, Si as follows. This circuit takes as input
log 2n bits as selectors as well as the 2n bits (x1,¬x1, . . . , xn,¬xn). The output of
Si is the bit corresponding to the location determined by the first log 2n bits. Note
that Pippenger provides such a circuit of size O(n) in [12]. Hence for all possible
Φ, by appropriately setting the log 2n bits of each selection circuit, this circuit
computes the function fΦ.

The last piece necessary to define C is describing how the log 2n input bit bk
of each selection circuit are set. For each such bk, we have a tree of AND gates

with Θ
(

log m logn
δ

)
inputs, the output of which is fed into bk. The input to these

AND gates are constant 0’s that go through a single NOT gate, which have failure
probability close to 0 if we want bk to be 1, and close to 1/2 if we want bk to be
0. We leave to the full version the details of showing that for any fixed Φ there are
voltage settings such that, for all x, with probability at least 1− δ, C(x) = fΦ(x).

Consider the case where m = n. We now compute the size of C. The size of
the 3CNF circuit is at most 3n. For each of the 3n literals, there is a circuit of size
O(n) that uses log 2n bits to map an input or its negation to that literal. Each of
the O(n log n) bits is created by a tree of size O(log(n log(n)/δ)). Thus C has size
O
(
n2 + n log(n) log(1/δ)

)
.

The last step is to show that there are Ω(3n) unique functions fΦ(x) with m
clauses. Consider some subset S = {s1, . . . , s|S|} ⊆ [n] and some assignment x =
(xs1 , xs2 , . . . , xs|S|) for the variables xi such that i ∈ S. Then, for each such xi, if
xi = 1 create the clause (xi∨xi∨xi) and ifxi = 0 create the clause (¬xi∨¬xi∨¬xi).
Create n− |S| additional clauses that are a duplicate of one of these clauses. Note
that the resulting formula Φ returns 1 exactly when the input bits S are set to x,
regardless of the value of the rest of the input bits, and 0 otherwise. Thus for each
unique assignment of x and each unique S we obtain a new function. Since there
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are
(
n
|S|
)

ways to choose S and 2|S| possible assignments for x, by the binomial

theorem we have that the sum over 0 ≤ |S| ≤ n of
(
n
|S|
)
2|S| is 3n. ut

3 Almost all Functions Require Exponential Energy

In this section we show that, despite the ability of a single circuit to compute multi-
ple functions, an upper bound on the number of such functions and an adaptation
of Shannon’s argument allows us to show that almost all functions require expo-
nential energy, both in the homogeneous and heterogeneous case. In some sense,
this is evidence that the advantages heterogeneity provides are somewhat limited,
as even though some heterogeneous circuits can compute many more functions
than any homogeneous circuit of the same size, this advantage is not sufficient to
reduce the minimal circuit size by more than a constant for almost all functions.

3.1 Adaptation of Shannon’s Argument

Inspired by Shannon’s counting argument that almost all Boolean functions re-
quire exponentially-sized circuits, we show first that, in circuit models where
circuits can compute multiple functions, as long as the number of functions a
single circuit can compute is not too many, almost all functions still require
exponentially-sized circuits. We will combine this with upper bounds on the num-
ber of functions homogeneous and heterogeneous circuits can compute to obtain
our main results. Note that the following lemma assumes gates have fan-in at most
two, and thus all of our results assume gate fan-in is at most two; It is straightfor-
ward to generalize this lemma and our results to any setting where the fan-in of
the gates is a constant.

Lemma 1. Suppose a circuit of size s can compute at most f(s) Boolean functions
in some circuit model where gates have fan-in at most two. If there exists some
constant c > 0 such that s4sf(s) = o

(
22
n)

for s = 2n/cn, then almost all Boolean
functions require Ω(2n/n) gates in that model.

Proof. Consider the set of circuits with at most s gates. A standard counting ar-
gument shows that any circuit in this set can be represented with 4s log s bits, and
therefore there are at most s4s circuits with size at most s. Thus, if for some c > 0
and s = 2n/cn it holds that s4sf(s) = o

(
22
n)

, then almost all Boolean functions
require circuits of size at least 2n/cn = Ω(2n/n). ut

3.2 Homogeneous Supply Voltages

In this subsection we show that almost all functions require exponential-energy
homogeneous circuits. In some sense, this result is a corollary of the later result
that almost all functions require exponential-energy heterogeneous circuits; How-
ever, we include this result as it illustrates how homogeneous circuits are simpler
than heterogeneous circuits, and we are able to obtain a slightly stronger lower
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bound on the energy used by almost all functions. Our proof aims to bound the
number of functions a circuit of size s can compute, which is necessary, since, as
we showed in the previous section, a single circuit can compute many functions.

Lemma 2. For any circuit C on n inputs with s gates, and any δ > 0, let F be
the set of all Boolean functions f for which there exists some ε ∈ (0, 1/2) such that
(C, ε) is (1− δ)-reliable for f . Then, |F| ≤ s2n + 1.

Proof. Fix some circuit C and input I, and let CI(ε) be the probability that (C, ε)
outputs a 1 on input I. Note that by definition for (C, ε) to compute some function
f we must have that for all inputs I, either CI(ε) ≥ 1− δ or CI(ε) ≤ δ. Fix some
input I and consider how the output ofC changes as we vary ε. Note that the above
observation implies that C will only switch the function it is computing due to
input I ifCI(ε) = 1−δ andCI(ε) is decreasing orCI(ε) = δ andCI(ε) is increasing.
However note that CI(ε) is a polynomial in ε of degree s,4 and therefore there are
at most s such points since between any two of them the function must change at
least once from increasing to decreasing or vice versa. This means that each input
I can cause C to switch the function it is computing at most s times. Since there
are 2n distinct inputs, this means that C can switch functions at most s2n times,
and therefore it is able to compute at most s2n + 1 different functions. ut

Since E(ε) = Ω(1) for ε > 1/2, we need only show that almost all functions
require exponentially many gates in this model to show that almost all functions re-
quire exponential energy. However, the following lemma will allow us to strengthen
our theorem statement.

Lemma 3. Let C be a homogeneous circuit that is (1− δ)-reliable. Then, ε ≤ δ.

Proof. Let f be the function C is trying to compute, and fix some input I. It
suffices to show that the output gate, go, must fail with probability less than δ. Let
p be the probability that go receives an input I ′ such that go(I

′) = f(I). Then,
note that Pr[go(I

′) = f(I)] = p(1 − ε) + (1 − p)ε ≤ 1 − ε. Since by hypothesis
Pr[C(I) = f(I)] ≥ 1− δ, it follows that ε ≤ δ. ut

We can now prove the desired theorem.

Theorem 5. For any δ ∈ (0, 1/2), almost all Boolean functions on n variables
require homogeneous circuits using Ω(E(δ)2n/n) energy.

Proof. From Lemma 2 we know that each circuit of size s computes at most s2n+1
different functions. We now show that for s = 2n/4n, the quantity s4s(s2n + 1) is
asymptotically smaller than 22

n

, the number of functions on n inputs. Plugging
in and simplifying we have(

2n

4n

)4 2n

4n
(

2n

4n
2n + 1

)
≤ 22

n

n
2n

n

22n = o(22
n

).

4 If we fix which gates fail, then the output of C on I is fixed to either 1 or 0. A fixed
set of q gates fail with probability εq(1 − ε)s−q, a polynomial of degree s in ε. CI(ε)
can be viewed as the sum over the sets of gates that, when failing, cause C to output
1 on I, of the probability of that set failing.
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Hence, Lemma 1 implies that almost all homogeneous circuits require Ω(2n/n)
gates. By Lemma 3, we have ε ≤ δ, so each gate uses at least E(δ) energy. ut

3.3 Heterogeneous Supply Voltages

In this section we show that almost all functions require exponential energy, even
when allowed circuits with heterogeneous voltages. The approach is similar to the
one for the homogeneous case, however the bound on the number of functions a
heterogeneous circuit can compute requires a technical result from real algebraic
geometry, which was proved by Alon [1].

Lemma 4. For any circuit C on n inputs with s gates, and any δ > 0, let F be
the set of all Boolean functions f for which there exists some ε̄ ∈ (0, 1/2)|C| such
that (C, ε̄) is (1− δ)-reliable for f . Then, |F| ≤ (8e2n)

s
.

Proof. Let P ⊂ R[X1, . . . , Xk] be a finite set of p polynomials with degree at most
d. A sign condition on P is an element of {0, 1,−1}p. The realization of the sign
condition σ in Rk is the semi-algebraic set

R(σ) =

{
x ∈ Rk :

∧
P∈P

sign (P (x)) = σ(P )

}
.

Let N(p, d, k) be the number of realizable sign conditions, i.e., the cardinality of
the set {σ : R(σ) 6= ∅}. The following theorem is due to Alon.

Theorem 6 (Proposition 5.5 in [1]). If 2p > k, then N(p, d, k) ≤
(

8edp
k

)k
.

Let I ∈ {0, 1}n be some input to C, and let PI(ε1, . . . , εs) be the probabil-
ity that C outputs 1 on I, when gate i fails with probability εi. Observe that
PI ∈ R[ε1, . . . , εs] and that PI has degree at most s, since we can compute PI
by summing over all possible subsets of gates that could fail and cause C to out-
put a 1, of the probability that exactly those gates fail and no others (which is a
polynomial is ε1, . . . , εs, where each εi has exponent 1).

Let P = {PI − (1 − δ)|I ∈ {0, 1}n}. Clearly, the cardinality of P is at most
2n. Observe that every different function f that C calculates must correspond to
a unique realizable sign condition of P, in the sense that there is some setting of
ε̄ = (ε1, . . . , εs) such that

1. P (ε̄)− (1− δ) > 0 on inputs I such that f(I) = 1, and
2. P (ε̄)−(1−δ) < 0 on inputs I such that f(I) = 0 (in fact, we needP (ε̄)−δ < 0,

an even stronger condition).

By Theorem 6, if the size of P is at least n/2, the number of realizable sign
conditions of P is at most (8e2n)

s
. Otherwise, if the size of P is at most n/2,

the total number of sign conditions is at most 3n/2 = o((8e2n)
s
). Thus, we have

obtained an upper bound on the number of different functionsC can compute. ut
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We can now prove our main theorem.

Theorem 7. For any δ ∈ (0, 1/2), almost all Boolean functions on n variables
require heterogeneous circuits using Ω(2n/n) energy.

Proof. From Lemma 4 we know that each circuit of size s computes at most (8e2n)s

different functions. We now show that for s = 2n/8n, the quantity s4s(8e2n)s is
asymptotically smaller than 22

n

, the number of functions on n inputs. Plugging
in and simplifying we have(

2n

8n

)4 2n

8n

(8e2n)
2n

8n ≤ 2
2n

2 2
2n(3+2−12−4 logn)

8n 2
2n

8 ≤ 2
5·2n

8 = o(22
n

).

Hence, Lemma 1 implies that almost all heterogeneous circuits require Ω(2n/n)
gates. The theorem follows sinceE(1/2) = Ω(1) andE is decreasing in the interval
(0, 1/2). ut

4 Relating Energy and the Number of Faulty Gates

In this section, we show that the Boolean functions that require exponential energy
are exactly the Boolean functions that require exponentially many faulty gates.
Before formalizing this notion we introduce some additional notation. For any
Boolean function f on n variables and any reliability parameter δ, let NG(f, δ)
denote the minimum size of any (heterogeneous) circuit that (1− δ)-reliably com-

putes f , and ÑG(f, δ) denote the minimum size of any homogeneous circuit that
(1−δ)-reliably computes f . Similarly define E(f, δ) to be the minimum energy used

by any (heterogeneous) circuit that (1 − δ)-reliably computes f , and Ẽ(f, δ) the
minimum energy used by any homogeneous circuit that (1− δ)-reliably computes
f . We are now ready to state the main result of this section.

Lemma 5. For all Boolean functions f , and for all δ < 1/2,

E(1/2)NG(f, δ) ≤ E(f, δ) ≤ Ẽ(f, δ) ≤ E

(
δ

ÑG(f, δ)

)
ÑG(f, δ).

Proof. First observe that E(f, δ) ≤ Ẽ(f, δ). We now prove the leftmost inequality.
Let (C, ε̄) be the circuit achieving E(f, δ) and note that by definition E(f, δ) =∑
g∈C E(εg). Since E is decreasing, it follows that E(εg) ≥ E(1/2) for all g ∈ C.

Additionally, by definition, |C| ≥ NG(f, δ), and the result follows.
To show the rightmost inequality, fix some Boolean function f , and some δ.

Let C be a circuit of size s = ÑG(f, δ), and ε the failure probability, such that
(C, ε) is (1− δ)-reliable on f . If ε ≥ δ/s, we are done, since E is decreasing. Note
that for a circuit of size s, if gates fail with probability at most δ/s, then by the
union bound, the probability that any gate fails is at most δ. Thus, if ε < δ/s, the
probability that any gate fails is at most δ. However, this implies that (C, δ/s) is

(1− δ)-reliable on f as well, and thus can use energy E
(

δ

ÑG(f,δ)

)
ÑG(f, δ). ut
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If E(1/2) is Ω(1), and E(δ/ÑG(f, δ)) is bounded above by a polynomial

in ÑG(f, δ) and 1/δ (recall that in current CMOS technologiesE(ε) = Θ
(
log2(1/ε)

)
),

this implies that any function that requires exponential energy requires exponen-
tial circuit size and vice versa.
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