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Abstract—One potential method to attain more energy-efficient
circuits with the current technology is Near-Threshold Comput-
ing. However, this energy savings comes at a cost of increased
functional failure, which necessitates that circuits must be more
fault-tolerant, and thus contain more gates. Thus, achieving
energy savings with Near-Threshold Computing involves properly
balancing the energy used per gate with the number of gates used.

We consider both the setting where the supply voltages must be
homogeneous and the setting where they may be heterogeneous.
We show that, for small circuit error bounds, there are many
natural functions that can be computed with a log factor less
energy by heterogeneous circuits than is possible with homoge-
neous circuits, and that this result is tight for many functions. In
contrast, we show that there are relations that can be computed
with a log-squared factor less energy by heterogeneous circuits
than is possible with homogeneous circuits.

I. INTRODUCTION

The threshold voltage of a transistor is the minimum supply
voltage at which the transistor starts to conduct current.
However, if the designed supply voltage was exactly the
ideal threshold voltage, some transistors would likely fail to
operate as designed due to manufacturing and environmental
variations. In the traditional approach to circuit design the
supply voltages for each transistor/gate are set sufficiently
high so that with sufficiently high probability no transistor
fails, and thus the designed circuits need not be fault-tolerant.
One potential method to attain more energy-efficient circuits
is Near-Threshold Computing, which simply means that the
supply voltages are designed to be closer to the threshold
voltage. As the power used by a transistor/gate is roughly
proportional to the square of the supply voltage [1], Near-
Threshold Computing can potentially significantly decrease
the energy used per gate. However, this energy savings comes
at a cost of a greater probability of functional failure, which
necessitates that the circuits must be more fault-tolerant,
and thus contain more gates. As the total energy used by
a circuit is approximately the energy used per gate times
the number of gates, achieving energy savings with Near-
Threshold Computing involves properly balancing the energy
used per gate with the number of gates used.

Since the relationship between voltage and the log of the
failure is approximately linear (see Figure 7 in [2]), we have
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that the error as a function of supply voltage v is approximately
of the form of ε(v) = c−v , for some positive constant c.
Using the fact that the energy is proportional to the square
of the supply voltage [1], we conclude that the failure-to-
energy function for a 65nm SRAM cell is approximately
E(ε) = Θ(log2(1/ε)). We thus initially adopt this model of the
relationship between energy and error. (However, results in this
paper can be generalized to a broader class of relationships.)

While it may not currently be practical, in principle the
supply voltages need not be homogeneous over all gates, that
is, different gates could be supplied with different voltages.
Intuitively, heterogeneous voltages should benefit a circuit
where certain parts of the computation are more sensitive to
failure than others. For example, in order for a circuit to be
highly reliable, gates near the output need to be highly reliable.
However, it may be acceptable for gates that are far from the
output to be less reliable if there is sufficient redundancy in
the circuit.

This naturally leads to the question of whether there is any
limit to the energy savings possible by allowing heterogeneous
supply voltages. Before stating our contributions toward an-
swering this question, it is useful to first consider the related
literature.

A. Related Work

The study of the design of fault-tolerant circuits using noisy
gates (that is, gates that fail with some known, fixed probabil-
ity) was initiated with the seminal paper by von Neumann [3].
The general idea of trading accuracy of a hardware circuit
and computing architecture for energy savings dates back to
at least [4]. A theoretical study of Near-Threshold Computing
was initiated in [5]. [5] gave some general upper and lower
bounds on the energy required to compute general functions,
showed that there are some functions where allowing het-
erogeneous supply voltages does not give significantly lower
energy circuits, and showed that there are some circuits where
allowing heterogeneous supply voltages can give significantly
lower energy circuits.

Following up on this work, [6] showed that the traditional
approach, cranking up the supply voltage sufficiently high
so that each of the s gates fails with probability at most
δ/s, has approximation ratio Θ

(
log2 s

)
. The main result of
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[6] was that it is NP-hard to achieve a significantly bet-
ter approximation ratio than the traditional approach to this
problem. [7] considered a model where the (heterogeneous)
supply voltages specify exactly the failure rate of a gate, rather
than just an upper bound on the failure rate. In this model,
[7] showed that a single circuit may be able to compute an
exponential number of functions. Despite this, [7] showed that
with high probability, the optimal energy circuit for a function
chosen uniformly at random requires exponential energy (i.e.,
Ω(2n/n) energy).

B. Our Contributions

We reconsider the question how much energy savings is
possible by allowing heterogeneous supply voltages under
the assumption that one requires that the circuit error bound
approaches zero as the size of the input grows (as opposed
to being constant, as was assumed in [5]). It is common in
situations where randomization is involved to desire/require
such “high confidence” bounds. In particular, we assume
that the circuit error bound is δ = 1/nc for some constant
c > 0, which is the most common type of high confidence
bound. One practical motivation for desiring high confidence
bounds is when the function/circuit considered is a component
in a larger computation/circuit, and the final error bound
is a sum/combination of the error bounds of the various
components. In such a setting one might reasonably desire that
the error bounds of the components approach zero. Somewhat
surprisingly to us, when high confidence error bounds are
required, we can resolve positively this open question from [5],
for both functions and relations. That is, we show that there
are functions and relations that benefit from heterogeneity.

Specifically, in Section II we show that for any Boolean
function that is non-degenerate (in the sense that for every
input bit affects the output for at least one input), and that
can be computed by a circuit with O(n) faultless gates, there
is a heterogeneous circuit that consumes Ω(log n) less energy
than the minimum energy homogeneous circuit. In Section III
we show that this log energy savings is tight, as for any
such function, a factor of O(log n) energy savings is the most
that can be gained from heterogeneity. Switching to relations,
we show in Section IV that for a particular super-majority
relation, there is a heterogeneous circuit that uses a factor
Ω
(
log2 n

)
less energy than any homogeneous circuit. Finally,

in Section V we show that, for every relation that has a
linear sized circuit, every heterogeneous circuit uses at most
O
(
log2 n

)
less energy than the optimal homogeneous circuit.

Before presenting our formal model we provide some
intuition for the high level proof techniques. Turning to the
first result, we begin by using the fact that no circuit’s output
gate can have failure rate greater than the error bound, while
computing correctly with probability at least 1 − δ, to lower
bound the energy used by any homogeneous circuit. To build
our circuit that requires Ω(log n) less energy than this lower
bound, we borrow a gadget from [8] that allows us to replace
each gate in a faultless circuit with O(log n) gates that fail with
constant probability, while ensuring that a constant fraction of

these will compute correctly. Combining this with a majority
gadget, also of size O(log n), placed before the output of the
circuit, allows us to recover the correct output with sufficiently
high probability.

The second result, showing that this energy savings is tight,
follows by extending the techniques from the general energy
lower bound of [5]. The idea is first to map a circuit to an
equivalent model (in terms of energy and failure probability)
where failures occur both at gates and on wires. We then
consider the event that for each input bit, all wires emanating
from this bit fail, and show that in such a case we can bound
the probability that circuit computes incorrectly. We in turn use
this to lower bound the total energy used by wires emanating
from each input bit, yielding the desired energy lower bound.

Turning to relations, we consider the majority relation which
returns a 0 if the input contains at least 75% 0’s, a 1 if the
input contains at least 75% 1’s, and either 0 or 1 otherwise.
The standard circuit to compute such a relation is a tree
of full adders. The approach is similar to our first result in
that we add increasing redundancy so that failures become
increasingly rare, and near the output, we take the majority
using low probabilities of failure. The main complexity comes
in accounting for the fact that full adders consist of multiple
output bits.

The final result follows by observing that circuits of linear
size require Ω(n) energy, and that, for a relation that can be
computed with O(n) faultless gates, setting the voltage such
that each gate uses O

(
log2 n

)
energy is sufficient to ensure

that with high enough probability no gate fails, resulting in a
homogeneous circuit that uses O

(
n log2 n

)
energy.

In summary, we essentially show that high confidence
computation of functions can be done with logarithmically less
energy if heterogeneous supply voltages are allowed (and this
is the best possible), and that high confidence computation
of relations can be done with log-squared less energy if
heterogeneous supply voltages are allowed (and this is best
possible).

C. Formal Model

A Boolean relation h is a map from {0, 1}n to {0, 1}, where
each input is mapped to 0, 1, or both 0 and 1. If x ∈ {0, 1}n
is mapped to both 0 and 1, this can be thought of as “don’t
care” (for example because the input x should not occur in
a correctly functioning system). A Boolean function f is a
Boolean relation where each input is uniquely mapped to either
0 or 1. For any input x ∈ {0, 1}n, denote by x` the input that
has the same bits as x, except for the `-th bit, which is flipped.

A gate is a function g : {0, 1}ng → {0, 1}, where ng is the
number of inputs (i.e., the fan-in) of the gate. We assume that
the maximum fan-in is at most a constant. A Boolean circuit
C with n inputs is a directed acyclic graph in which each of
the n input nodes (i.e., those with no incoming edges) outputs
one of the input bits, and where every other node is a gate.
The size of a circuit, denoted by s, is the number of gates it
contains. For any I ∈ {0, 1}n, C(I) denotes the output of the
Boolean function computed by Boolean circuit layout C.



In this paper we consider circuits (C, v̄) that consist of
both a traditional circuit layout C as well as a vector of
supply voltages v̄, one for each gate of C. Every gate g is
supplied with a voltage vg . We say that the supply voltages
are homogeneous when every gate of the circuit is supplied
with the same voltage, and heterogeneous otherwise. A circuit
is homogeneous when its supply voltages are homogeneous,
and heterogeneous otherwise. We say that a gate fails when it
produces an incorrect output, that is, when given an input x
it produces an output other than g(x).

Each non-input gate g fails independently with probability at
most ε(vg), where ε : R+ → (0, 1/2) is a decreasing function.
The voltage supplied to a gate determines both its energy usage
and its failure probability, thus we define εg := ε(vg) and
drop all future formal reference to supply voltages. Finally
we assume there is a decreasing, nonnegative failure-to-energy
function E(ε) that maps the failure probability ε to the energy
used by a gate. Throughout the paper we assume that E(ε) =
Θ
(
log2(1/ε)

)
and that limε→1/2− E(ε) > 0. In the full version

of the paper we shall discuss how to generalize our results to
other failure-to-energy functions.

A gate that never fails is said to be faultless. Given a value
δ ∈ (0, 1/2) (δ may not be constant), a circuit (C, ε̄) that
computes a Boolean relation h is said to be (1 − δ)-reliable
if for every input I on which h(I) is not both 0 and 1, C(I)
equals h(I) with probability at least 1−δ. The minimal circuit
size for a relation h is the minimum number of faultless gates
required by any circuit computing h.

II. OBTAINING LOGARITHMIC ENERGY SAVINGS FOR
FUNCTIONS

We show here that, for a wide class of natural functions,
allowing heterogeneous supply voltages provides a logarithmic
savings in energy. In particular, we show that, when δ is
a polynomial function of the minimum circuit size s, it is
possible to obtain an Ω(log s) energy savings using heteroge-
neous supply voltages. The result is that many natural Boolean
functions can be computed with asymptotically less energy
using heterogeneous circuits. Formally, we have the following
theorem.

Theorem 1. For any function f with minimum circuit size s,
for any constant c > 0, if δ = 1/sc, the optimal homogeneous
circuit requires energy Ω

(
s log2 s

)
energy, and the optimal

heterogenous circuit uses O(s log s) energy.

Proof. We first provide a lower bound on the energy used
by any homogeneous circuit that (1 − δ)-reliably computes
f . Since, by assumption, s gates are required when there are
no failures, and because the circuit is homogeneous, gates (in
particular, the output gate) can fail with probability at most
1/sc. Since it must be that ε < δ, and E(1/sc) = Θ

(
log2 s

)
,

we have that Ω
(
s log2 s

)
energy is required.

The upper bound requires significantly more work, although
is still a somewhat straightforward use of techniques from [8],
which proves the following as part of the proof of the general

fault-tolerant upper bound in [8] (which is re-stated in this
paper as Theorem 6):

Lemma 2 ([8]). Let the maximum fan-in of any gate be a
constant. There is a constant ε1 > 0 and θ > 1/2 such that
for any ε ≤ ε1, there is a ρ = ρ(ε) < 1 such that any gate g
of fan-in ` can be replaced by a gadget with

1) k input wires for each input to g,
2) k output wires, and
3) Θ(k) gates,

with the property that if, for all i, at least a θ fraction of the
i-th set of input wires carries bit bi, then the probability that
fewer than a θ fraction of the output wires carries g(b1, . . . , b`)
is at most ρk.

In a manner similar to the proof of the general fault-tolerant
upper bound in [8], we use Lemma 2 to replace each gate in
the original circuit with a gadget whose input and output is
Θ(log s) wires, and set the failure probability of this section
of the circuit to ε1, with the result that the probability that
less than a θ fraction of the wires carry the correct output
(i.e., the output if there were no failures) is at most 1/sc+2.
Since the failure rate is set to be constant, the first part of
the circuit uses energy Θ(s log s). The probability that any
gadget’s output does not carry at least a θ fraction of the
correct bits is at most 1/sc+1.

At the end of the circuit, we use the standard majority
circuitof size Θ(log s) to obtain the output, and set the failure
of this section of the circuit to be 1/sc+2, thus this section of
the circuit uses energy Θ

(
log3 s

)
and the probability that any

gate in this section of the circuit fails is at most 1/sc+1.

III. LOGARITHMIC SAVINGS IS MAXIMAL FOR FUNCTIONS

We now show that, for a large class of natural functions,
this Θ(log s) savings is the best we can hope to do. In
particular, we show a lower bound on the energy used by any
heterogeneous circuit that computes a function, in terms of the
number of non-degenerate input bits that the function has. For
any function f with (1) minimum circuit size that is linear in
n, that is s = Θ(n), and (2) Θ(n) non-degenerate input bits,
when δ is polynomial in s, we can apply this lower bound
to show that any heterogeneous circuit computing f must use
Ω(s log s) = Ω(n log n) energy.

We start with the definition of non-degenerate input bits,
and then give the main theorem of this section.

Definition 3 (non-degenerate input bit). The ith input bit to
a Boolean function f with n inputs is non-degenerate if there
exists some input I ∈ [0, 1]n such that f(I) 6= f(Ii).

Theorem 4. Let f be a function with b non-degenerate input
bits. Then, for any δ ∈ (0, 1/2), the optimal heterogeneous
circuit requires Ω(b log 1/δ) energy.

Proof. This proof is quite similar to the proofs of Theorem 1
and Lemma 6 of [5], which in turn use ideas from [9] and [10].
Space constraints force us to defer the full proof to the full
version of this paper.



IV. OBTAINING LOG-SQUARED ENERGY SAVINGS FOR
RELATIONS

In this section we prove that, in contrast with the previous
section, there are relations where heterogeneous circuits can
obtain a ω(log n) energy savings over homogeneous circuits.
In fact, we show that a natural supermajority relation obtains a
Θ
(
log2 n

)
energy savings, which, as we show in Section V, is

asymptotically the maximum possible savings for any relation
that does not require circuits of superlinear size. Formally, we
have the following theorem.

Theorem 5. Suppose δ = 1/nc for some constant c > 0.
Then there is a relation such that the optimal heterogeneous
circuit uses O(n) energy, but the optimal homogeneous circuit
requires Ω

(
n log2 n

)
energy.

We cite the following general theorem proved by Pippenger
in [11] and formalized by Gacs in [8] that will be useful in
our construction in this section of the paper.

Theorem 6 ([11], [8]). There is an ε0 > 0 such that for any
ε < ε0, δ ≥ 3ε, and any function f computable by a faultless
circuit of size s, there is an (1− δ)-reliable circuit computing
f of size O(s log(s/δ)) when gates fail with probability at
most ε.

The following relation is quite natural. The relation outputs
the majority if at least 3/4 of the bits are the majority, and
otherwise we do not care about the output.

Definition 7. Let N1(x) be the number of 1’s in the binary
string x. The Supermajority Relation (SR) is the following
Boolean relation:

SR(x) =


0, if N1(x) < n/4,

1, if N1(x) > 3n/4, and
0 and 1 otherwise,

where x is the input and |x| = n.

The proof of the following lemma is deferred to the full
version of the paper.

Lemma 8. When δ = 1/nc, for some constant c > 0, SR can
be computed by a circuit with heterogeneous voltages using
O(n) energy.

We can now prove our main theorem, which is straightfor-
ward given the previous lemma.

Proof of Theorem 5. By Lemma 8, SR can be computed by
a heterogeneous circuit that uses O(n) energy. It remains
to show that any homogeneous circuit computing SR uses
Ω
(
n log2 n

)
energy. Note that since gates in any homogeneous

circuit computing SR cannot fail with probability more than
δ, and since δ = 1/nc, the energy used by each gate must
be at least Ω

(
log2 n

)
. Additionally, it is obvious that any

circuit correctly computing SR must have gates connected to
at least half the inputs, and so any circuit computing SR using
gates of constant fan-in must have Ω(n) gates. Therefore,

any homogeneous circuit computing SR must use Ω
(
n log2 n

)
energy.

V. LIMITATIONS ON SURPASSING LOG-SQUARED SAVINGS
FOR RELATIONS

In this section we observe that, for relations with faultless
circuits of linear size, heterogeneous supply voltages can yield
at most O

(
log2 n

)
energy savings.

Theorem 9. Let h be any relation with minimum circuit
size s = O(n), and let δ = 1/sc for some c > 0. Then
the optimal heterogeneous circuit uses Ω(s) energy, and the
optimal homogeneous circuit uses O

(
s log2 s

)
energy.

Proof. Consider any relation h that can by computed by a
faultless circuit of size s = O(n). Any heterogeneous circuit
computing h must have size at least s (since the circuit must
compute correctly even if no gate fails), and thus must use
Ω(s) energy. On the other hand, if δ = 1/sc for some
c > 0, then a homogeneous circuit computing h can be
constructed by setting the failure rate to 1/sc+1. By the union
bound, the probability that even a single gate fails in this
homogeneous circuit is at most 1/sc. Additionally, this circuit
uses O

(
s log2 s

)
energy.

VI. OPEN PROBLEMS

The main question left open by this paper is to determine if
supply voltage heterogeneity allows asymptotic energy savings
when the circuit error bound is constant.
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