
A

Network-Oblivious Algorithms

GIANFRANCO BILARDI, ANDREA PIETRACAPRINA, GEPPINO PUCCI, MICHELE
SCQUIZZATO, and FRANCESCO SILVESTRI, University of Padova

A framework is proposed for the design and analysis of network-oblivious algorithms, namely, algorithms

that can run unchanged, yet efficiently, on a variety of machines characterized by different degrees of

parallelism and communication capabilities. The framework prescribes that a network-oblivious algorithm
be specified on a parallel model of computation where the only parameter is the problem’s input size,

and then evaluated on a model with two parameters, capturing parallelism granularity and communication

latency. It is shown that, for a wide class of network-oblivious algorithms, optimality in the latter model
implies optimality in the Decomposable BSP model, which is known to effectively describe a wide and

significant class of parallel platforms. The proposed framework can be regarded as an attempt to port
the notion of obliviousness, well established in the context of cache hierarchies, to the realm of parallel

computation. Its effectiveness is illustrated by providing optimal network-oblivious algorithms for a number

of key problems. Some limitations of the oblivious approach are also discussed.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of Computation—
Parallelism and concurrency; F.2.0 [Analysis of Algorithms and Problem Complexity]: General

General Terms: Algorithms, theory

Additional Key Words and Phrases: Communication, models of computation, network locality, oblivious al-
gorithms, parallel algorithms

ACM Reference Format:
J. ACM V, N, Article A (January YYYY), 36 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Communication plays a major role in determining the performance of algorithms
on current computing systems and has a considerable impact on energy consump-
tion. Since the relevance of communication increases with the size of the system, it
is expected to play an even greater role in the future. Motivated by this scenario,
a large body of results have been devised concerning the design and analysis of
communication-efficient algorithms. While often useful and deep, these results do not
yet provide a coherent and unified theory of the communication requirements of com-
putations. One major obstacle toward such a theory lies in the fact that, prima facie,
communication is defined only with respect to a specific mapping of a computation
onto a specific machine structure. Furthermore, the impact of communication on per-

This work was supported, in part, by MIUR of Italy under project AMANDA, and by the University of Padova
under projects STPD08JA32 and CPDA121378/12. Silvestri was also supported by the European Research
Council under grant agreement no. 614331. A preliminary version of this paper appeared in Proceedings of
the 21st IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2007.
Author’s addresses: G. Bilardi, A. Pietracaprina, G. Pucci, Department of Information Engineering,
University of Padova, 35131 Padova, Italy, {bilardi,capri,geppo}@dei.unipd.it; M. Scquizzato (cur-
rent address), Department of Computer Science, University of Houston, Houston, TX 77204-3010, USA,
michele@cs.uh.edu; F. Silvestri (current address), IT University of Copenhagen, Rued Langgaards Vej 7,
2300 København S, Denmark, fras@itu.dk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 0004-5411/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Gianfranco Bilardi et al.

formance depends on the latency and bandwidth properties of the channels connecting
different parts of the target machine. Hence, the design, optimization, and analysis
of algorithms can become highly machine-dependent, which is undesirable from the
economical perspective of developing efficient and portable software. The outlined sit-
uation has been widely recognized, and a number of approaches have been proposed to
solve it or to mitigate it.

On one end of the spectrum, we have the parallel slackness approach, based on the
assumption that, as long as a sufficient amount of parallelism is exhibited, general and
automatic latency-hiding techniques can be deployed to achieve an efficient execution.
Broadly speaking, the required algorithmic parallelism should be at least proportional
to the product of the number of processing units and the worst-case latency of the
target machine [Valiant 1990]. Further assuming that this amount of parallelism is
available in computations of practical interest, algorithm design can dispense alto-
gether with communication concerns and focus on the maximization of parallelism.
The functional/data-flow and the PRAM models of computations have often been sup-
ported with similar arguments. Unfortunately, as argued in [Bilardi and Preparata
1995; 1997; 1999], latency hiding is not a scalable technique, due to fundamental phys-
ical constraints (namely, upper bounds to the speed of messages and lower bounds to
the size of devices). Hence, parallel slackness does not really solve the communication
problem. (Nevertheless, functional and PRAM models are quite valuable and have sig-
nificantly contributed to the understanding of other dimensions of computing.)

On the other end of the spectrum, we could place the universality approach, whose
objective is the development of machines (nearly) as efficient as any other machine of
(nearly) the same cost, at executing any computation (see, e.g., [Leiserson 1985; Bilardi
and Preparata 1995; Bhatt et al. 2008; Bilardi and Pucci 2011]). To the extent that a
universal machine with very small performance and cost gaps could be identified, one
could adopt a model of computation sufficiently descriptive of such a machine, and fo-
cus most of the algorithmic effort on this model. As technology approaches the inherent
physical limitations to information processing, storage, and transfer, the emergence of
a universal architecture becomes more likely. Economy of scale can also be a force
favoring convergence in the space of commercial machines. While this appears as a
perspective worthy of investigation, at the present stage, neither the known theoret-
ical results nor the trends of commercially available platforms indicate an imminent
strong convergence.

In the middle of the spectrum, a variety of computational models proposed in
the literature can be viewed as variants of an approach aiming at realizing an
efficiency/portability/design-complexity tradeoff [Bilardi and Pietracaprina 2011].
Well-known examples of these models are LPRAM [Aggarwal et al. 1990], DRAM [Leis-
erson and Maggs 1988], BSP [Valiant 1990] and its refinements (such as D-BSP [de la
Torre and Kruskal 1996; Bilardi et al. 2007a], BSP* [Bäumker et al. 1998], E-BSP [Ju-
urlink and Wijshoff 1998], and BSPRAM [Tiskin 1998]), LogP [Culler et al. 1996],
QSM [Gibbons et al. 1999], MapReduce [Karloff et al. 2010; Pietracaprina et al. 2012]
and several others. These models aim at capturing features common to most (reason-
able) machines, while ignoring features that differ. The hope is that performance of
real machines be largely determined by the modeled features, so that optimal algo-
rithms in the proposed model translate into near optimal ones on real machines. A
drawback of these models is that they include parameters that affect execution time.
Then, in general, efficient algorithms are parameter-aware, since different algorithmic
strategies can be more efficient for different values of the parameters. One parameter
present in virtually all models is the number of processors. Most models also exhibit
parameters describing the time required to route certain communication patterns. In-
creasing the number of parameters, from just a small constant to logarithmically many

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:3

in the number of processors, can considerably increase the effectiveness of the model
with respect to realistic architectures, such as point-to-point networks, as extensively
discussed in [Bilardi et al. 2007a]. A price is paid in the increased complexity of al-
gorithm design necessary to gain greater efficiency across a larger class of machines.
The complications further compound if the hierarchical nature of the memory is also
taken into account, so that communication between processors and memories becomes
an optimization target as well.

It is natural to wonder whether, at least for some problems, parallel algorithms can
be designed that, while independent of any machine/model parameters, are neverthe-
less efficient for wide ranges of these parameters. In other words, we are interested
in exploring the world of efficient network-oblivious algorithms with a spirit similar to
the one that motivated the development of efficient cache-oblivious algorithms [Frigo
et al. 2012]. In this paper, we define the notion of network-oblivious algorithms and
propose a framework for their design and analysis. Our framework is based on three
models of computation, each with a different role, as briefly outlined below.

The three models are based on a common organization consisting of a set of
CPU/memory nodes communicating through some interconnection. Inspired by the
BSP model and its aforementioned variants, we assume that the computation proceeds
as a sequence of supersteps, where in a superstep each node performs local computa-
tion and sends/receives messages to/from other nodes, which will be consumed in the
subsequent superstep. Each message occupies a constant number of words.

The first model of our framework (specification model), is used to specify network-
oblivious algorithms. In this model, the number of CPU/memory nodes, referred to
as virtual processors, is a function v(n) of the input size and captures the amount of
parallelism exhibited by the algorithm. The second model (evaluation model) is the
basis for analyzing the performance of network-oblivious algorithms on different ma-
chines. It is characterized by two parameters, independent of the input: the number
p of CPU/memory nodes, simply referred to as processors in this context, and a fixed
latency/synchronization cost σ per superstep. The communication complexity of an al-
gorithm is defined in this model as a function of p and σ. Finally, the third model
(execution machine model) enriches the evaluation model, by replacing parameter σ
with two independent parameter vectors of size logarithmic in the number of proces-
sors, which represent, respectively, the inverse of the bandwidth and the latency costs
of suitable nested subsets of processors. In this model, the communication time of an
algorithm is analyzed as a function of p and of the two parameter vectors. In fact, the
execution machine model of our framework coincides with the Decomposable Bulk Syn-
chronous Parallel (D-BSP) model [de la Torre and Kruskal 1996; Bilardi et al. 2007a],
which is known to describe reasonably well the behavior of a large class of point-to-
point networks by capturing their hierarchical structure [Bilardi et al. 1999].

A network-oblivious algorithm is designed in the specification model but can be run
on the evaluation or execution machine models by letting each processor of these mod-
els carry out the work of a pre-specified set of virtual processors. The main contribution
of this paper is an optimality theorem showing that for a wide and interesting class of
network-oblivious algorithms, which satisfy some technical conditions and whose com-
munication requirements depend only on the input size and not on the specific input
instance, optimality in the evaluation model automatically translates into optimality
in the D-BSP model, for suitable ranges of the models’ parameters. It is this circum-
stance that motivates the introduction of the intermediate evaluation model, which
simplifies the analysis of network-oblivious algorithms, while effectively bridging the
performance analysis to the more realistic D-BSP model.

In order to illustrate the potentiality of the framework we devise network-oblivious
algorithms for several fundamental problems, such as matrix multiplication, Fast

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Gianfranco Bilardi et al.

Fourier Transform, comparison-based sorting, and a class of stencil computations. In
all cases, except for stencil computations, we show, through the optimality theorem,
that these algorithms are optimal when executed on the D-BSP, for wide ranges of the
parameters. Unfortunately, there exist problems for which optimality on the D-BSP
cannot be attained in a network-oblivious fashion for wide ranges of parameters. We
show that this is the case for the broadcast problem.

To help place our network-oblivious framework into perspective, it may be useful to
compare it with the well-established sequential cache-oblivious framework [Frigo et al.
2012]. In the latter, the specification model is the Random Access Machine; the eval-
uation model is the Ideal Cache Model IC(M,B), with only one level of cache of size
M and line length B; and the execution machine model is a machine with a hierarchy
of caches, each with its own size and line length. In the cache-oblivious context, the
simplification in the analysis arises from the fact that, under certain conditions, opti-
mality on IC(M,B), for all values ofM and B, translates into optimality on multilevel
hierarchies.

The notion of obliviousness in parallel settings has been addressed by several pa-
pers. In a preliminary version of this work [Bilardi et al. 2007b] (see also [Herley
2011]), we proposed a framework similar to the one presented here, where messages
are packed in blocks whose fixed size is a parameter of the evaluation and execution
machine models. While blocked communication may be preferable for models where
the memory and communication hierarchies are seamlessly integrated, such as mul-
ticores, latency-based models like the one used here are equivalent for that scenario
and also capture the case when communication is accomplished through a point-to-
point network. In recent years, obliviousness in parallel platforms has been explored
in the context of multicore architectures, where processing units communicate through
a multilevel cache hierarchy at the top of a shared memory [Chowdhury et al. 2013;
Cole and Ramachandran 2010; 2012a; 2012b; Blelloch et al. 2010; Blelloch et al. 2011].
Although these papers have significantly contributed to the development of oblivious
algorithmics, the proposed results exploit the blocked and shared-memory nature of
the communication system and thus do not suit platforms with distributed memories
and point-to-point networks, for which our model of obliviousness is more appropri-
ate. Chowdhury et al. [Chowdhury et al. 2013] introduced a multilevel hierarchical
model for multicores and the notion of multicore-oblivious algorithm for this model. A
multicore-oblivious algorithm is specified with no mention of any machine parameters,
such as the number of cores, number of cache levels, cache sizes and block lengths, but
it may include some simple hints to the run-time scheduler, like space requirements.
These hints are then used by a suitable scheduler, aware of the multicore parame-
ters, to efficiently schedule the algorithm on multicores with a multilevel cache hier-
archy and any given number of cores. Cole and Ramachandran [Cole and Ramachan-
dran 2010; 2012a; 2012b] presented resource-oblivious algorithms: these are multicore-
oblivious algorithms with no hints, which can be efficiently executed on two-level mem-
ory multicores by schedulers that are not aware of the multicore parameters. In [Blel-
loch et al. 2010; Blelloch et al. 2011], it is shown that multicore resource-oblivious
algorithms can be analyzed independently of both the parallel machine and the sched-
uler. In the first work, the claim is shown for hierarchies of only private or only shared
caches. In the second work, the result is extended to a multilevel hierarchical multi-
core by introducing a parallel version of the cache-oblivious framework of [Frigo et al.
2012], named the Parallel Cache-Oblivious model, and a scheduler for oblivious irreg-
ular computations. In contrast to these oblivious approaches, Valiant [Valiant 2011]
studies parallel algorithms for multicore architectures advocating a parameter-aware
design of portable algorithms. The paper presents optimal algorithms for Multi-BSP,

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:5

a bridging model for multicore architectures which exhibits a hierarchical structure
akin to that of our execution machine model.

The rest of the paper is organized as follows. In Section 2 we formally define the
three models relevant to the framework and in Section 3 we prove the optimality the-
orem mentioned above. In Section 4 we present the network-oblivious algorithms for
matrix multiplication, Fast Fourier Transform, comparison-based sorting, and stencil
computations. We also discuss the impossibility result regarding the broadcast prob-
lem. Section 5 extends the optimality theorem by presenting a less powerful version
which, however, applies to a wider class of algorithms. Section 6 concludes the paper
with some final remarks. Appendix A provides a table that summarizes the main no-
tations and symbols used in the paper.

2. THE FRAMEWORK
We begin by introducing a parallel machine model M(v), which underlies the spec-
ification, the evaluation, and the execution components of our framework. Specifi-
cally, M(v) consists of a set of v processing elements, denoted by P0,P1, . . . ,Pv−1, each
equipped with a CPU and an unbounded local memory, which communicate through
some interconnection. For simplicity, throughout this paper, we assume that the num-
ber of processing elements is always a power of two. The instruction set of each CPU
is essentially that of a standard Random Access Machine, augmented with the three
primitives sync(i), send(m, q), and receive(). Furthermore, each Pr has access to its
own index r and to the number v of processing elements. When Pr invokes primi-
tive sync(i), with i in the integer range [0, log v), a barrier synchronization is enforced
among the v/2i processing elements whose indices share the i most significant bits
with r.1 When Pr invokes send(m, q), with 0 ≤ q < v, a constant-size message m is
sent to Pq; the message will be available in Pq only after a sync(k), where k is not
bigger than the number of most significant bits shared by r and q. On the other hand,
the function receive() returns an element in the set of messages received up to the
preceding barrier and removes it from the set.

In this paper, we restrict our attention to algorithms where the sequence of labels
of the sync operations is the same for all processing elements, and where the last op-
eration executed by each processing element is a sync.2 In this case, the execution of
an algorithm can be viewed as a sequence of supersteps, where a superstep consists of
all operations performed between two consecutive sync operations, including the sec-
ond of these sync operations. Supersteps are labeled by the index of their terminating
sync operation: namely, a superstep terminating with sync(i) will be referred to as
an i-superstep, for 0 ≤ i < log v. Furthermore, we make the reasonable assumption
that, in an i-superstep, each Pr can send messages only to processing elements whose
index agrees with r in the i most significant bits, that is, message exchange occurs
only between processors belonging to the same synchronization subset. We observe
that the results of this paper would hold even if, in the various models considered,
synchronizations were not explicitly labeled. However, explicit labels can help reduce
synchronization costs. For instance, they become crucial for the efficient execution of
the algorithms on point-to-point networks, especially those of large diameter.

In a more intuitive formulation, processing elements inM(v) can be conceptually en-
visioned as the leaves of a complete binary tree of height log v. When a processing ele-

1For notational convenience, throughout this paper we use log x to mean max{1, log2 x}.
2As we will see in the paper, several algorithms naturally comply or can easily be adapted to comply with
these restrictions. Nevertheless, a less restrictive family of algorithms for M(v) can be defined, by allowing
processing elements to feature different traces of labels of their sync operations, still ensuring termination.
The exploration of the potentialities of these algorithms is left for future research.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Gianfranco Bilardi et al.

ment Pr invokes the primitive sync(i), all processing elements belonging to the subtree
rooted at the ancestor of Pr at level i are synchronized. Similarly, an i-superstep im-
poses that message exchange and synchronization are performed independently within
the groups of leaves associated with the different subtrees rooted at level i. However,
we remark that the tree is a conceptual construction and that M(v) should not be con-
fused with a tree network, since no assumption is made on the specific communication
infrastructure between processing elements.

Consider an M(v)-algorithm A satisfying the above restrictions. For a given input
instance I, we use LiA(I) to denote the set of i-supersteps executed by A on input
I, and define SiA(I) = |LiA(I)|, for 0 ≤ i < log v. Algorithm A can be naturally and
automatically adapted to execute on a smaller machine M(2j), with 0 ≤ j < log v, by
stipulating that processing element Pr of M(2j) will carry out the operations of the
v/2j consecutively numbered processing elements of M(v) starting with Pr(v/p), for
each 0 ≤ r < 2j . We call this adaptation folding. Under folding, supersteps with a label
i < j on M(v) become supersteps with the same label on M(2j), while supersteps with
label i ≥ j on M(v) become local computation on M(2j). Hence, when considering the
communication occurring in the execution of A on M(2j), the set LiA(I) is relevant as
long as i < j.

A network-oblivious algorithm A for a given computational problem Π is designed
on M(v(n)), referred to as specification model, where the number v(n) of process-
ing elements, which is a function of the input size, is selected as part of the algo-
rithm design. The processing elements are called virtual processors and are denoted
by VP0,VP1, . . . ,VPv(n)−1, in order to distinguish them from the processing elements
of the other two models. Since the folding mechanism illustrated above enables A to
be executed on a smaller machine, the design effort can be kept focussed on just one
convenient virtual machine size, oblivious to the actual number of processors on which
the algorithm will be executed.

While a network-oblivious algorithm is specified for a large virtual machine, it is
useful to analyze its communication requirements on machines with reduced degrees
of parallelism. For these purposes, we introduce the evaluation model M(p, σ), where
p ≥ 1 is a power of two and σ ≥ 0, which is essentially an M(p) where the additional
parameter σ is used to account for the latency plus synchronization cost of each su-
perstep. The processing elements of M(p, σ) are called processors and are denoted by
P0,P1, . . . ,Pp−1. Consider the execution of an algorithm A on M(p, σ) for a given input
I. For each superstep s, the metric of interest that we use to evaluate the communi-
cation requirements of the algorithm is the maximum number of messages hsA(I, p)
sent/destined by/to any processor in that superstep. Thus, the set of messages ex-
changed in the superstep can be viewed as forming an hsA(I, p)-relation, where hsA(I, p)
is often referred to as the degree of the relation. In the evaluation model, the commu-
nication cost of a superstep of degree h is defined as h+ σ, and it is independent of the
superstep’s label. For our purposes, it is convenient to consider the cumulative degree
of all i-supersteps, for 0 ≤ i < log p:

F iA(I, p) =
∑

s∈LiA(I)

hsA(I, p).

Then, the communication complexity of A on M(p, σ) is defined as

HA(n, p, σ) = max
I:|I|=n

{
log p−1∑
i=0

(
F iA(I, p) + SiA(I) · σ

)}
. (1)

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:7

We observe that the evaluation model with this performance metric coincides with
the BSP model [Valiant 1990] where the bandwidth parameter g is set to 1 and the
latency/synchronization parameter ` is set to σ.

Next, we turn our attention to the last model used in the framework, called exe-
cution machine model, which represents the machines where network-oblivious algo-
rithms are actually executed. We focus on parallel machines whose underlying inter-
connection exhibits a hierarchical structure, and use the Decomposable BSP (D-BSP)
model [de la Torre and Kruskal 1996; Bilardi et al. 2007a] as our execution machine
model. A D-BSP(p, g, `), with g = (g0, g1, . . . , glog p−1) and ` = (`0, `1, . . . , `log p−1), is an
M(p) where the cost of an i-superstep depends on parameters gi and `i, for 0 ≤ i < log p.
The processing elements, called processors and denoted by P0,P1, . . . ,Pp−1 as in the
evaluation model, are partitioned into nested clusters: for 0 ≤ i ≤ log p, a set formed
by all the p/2i processors whose indices share the most significant i bits is called an
i-cluster. As for the case of the specification model, if we envision a conceptual tree-
like organization with the p D-BSP processors at the leaves, then i-clusters correspond
to the leaves of subtrees rooted at level i. Observe that during an i-superstep each
processor communicates only with processors of its i-cluster. For the communication
within an i-cluster, parameter `i represents the latency plus synchronization cost (in
time units), while gi represents an inverse measure of bandwidth (in units of time per
message). By importing the notation adopted in the evaluation model, we define the
communication time of an algorithm A on D-BSP(p, g, `) as,

DA(n, p, g, `) = max
I:|I|=n

{
log p−1∑
i=0

(
F iA(I, p)gi + SiA(I)`i

)}
. (2)

The results in [Bilardi et al. 1999] provide evidence that D-BSP is an effective machine
model, since its hierarchical structure and its 2 log p bandwidth and latency parame-
ters are sufficient to capture reasonably well the cost of both balanced and unbalanced
communication for a large class of point-to-point networks [Bilardi et al. 1999].

Through the folding mechanism discussed above, any network-oblivious algorithm
A specified on M(v(n)) can be transformed into an algorithm for M(p) with p < v(n),
hence into an algorithm for M(p, σ) or D-BSP(p, g, `). In this case, the quantities
HA(n, p, σ) and DA(n, p, g, `) denote, respectively, the communication complexity and
communication time of the folded algorithm. Moreover, since algorithms designed on
the evaluation model M(p, σ) or on the execution machine model D-BSP(p, g, `) can be
regarded as algorithms for M(p), once the parameters σ or g and ` are fixed, we can
also analyze the communication complexities/times of their foldings on smaller ma-
chines (i.e., machines with 2j processors, for any 0 ≤ j < log p). These relations among
the models are crucial for the effective exploitation of our framework.

The following definitions establish useful notions of optimality for the two complex-
ity measures introduced above relatively to the evaluation and execution machine
models. For each measure, optimality is defined with respect to a class of algorithms,
whose actual role will be made clear later in the paper. Let C denote a class of algo-
rithms, solving a given problem Π.

Definition 2.1. Let 0 < β ≤ 1. An M(p, σ)-algorithm B ∈ C is β-optimal on M(p, σ)
with respect to C if for each M(p, σ)-algorithm B′ ∈ C and for each n,

HB(n, p, σ) ≤ 1

β
HB′(n, p, σ) .

Definition 2.2. Let 0 < β ≤ 1. A D-BSP(p, g, `)-algorithm B ∈ C is β-optimal on D-
BSP(p, g, `) with respect to C if for each D-BSP(p, g, `)-algorithm B′ ∈ C and for each

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Gianfranco Bilardi et al.

n,

DB(n, p, g, `) ≤ 1

β
DB′(n, p, g, `) .

Note that the above definitions do not require β to be a constant: intuitively, larger
values of β correspond to higher degrees of optimality.

3. OPTIMALITY THEOREM FOR STATIC ALGORITHMS
In this section we show that, for a certain class of network-oblivious algorithms, β-
optimality in the evaluation model, for suitable ranges of parameters p and σ, trans-
lates into β′-optimality in the execution machine model, for some β′ = Θ(β) and suit-
able ranges of parameters p, g, and `. This result, which we refer to as optimality
theorem, holds under a number of restrictive assumptions; nevertheless, it is applica-
ble in a number of interesting case studies, as illustrated in the subsequent sections.
The optimality theorem shows the usefulness of the intermediate evaluation model
since it provides a form of “bootstrap”, whereby from a given degree of optimality on
a family of machines we infer a related degree of optimality on a much larger family.
It is important to remark that the class of algorithms for which the optimality theo-
rem holds includes algorithms that are network-aware, that is, whose code can make
explicit use of the architectural parameters of the model (p and σ, for the evaluation
model, and p, g, and `, for the execution machine model) for optimization purposes.

In a nutshell, the approach we follow hinges on the fact that both communication
complexity and communication time (Equations 1 and 2) are expressed in terms of
quantities of the type F iA(I, p). If communication complexity is low then these quanti-
ties must be low, whence communication time must be low as well. Below, we discuss a
number of obstacles to be faced when attempting to refine the outlined approach into
a rigorous argument and how they can be handled.

A first obstacle arises whenever the performance functions are linear combinations
of other auxiliary metrics. Unfortunately, worst-case optimality of these metrics does
not imply optimality of their linear combinations (nor vice versa), since the worst case
of different metrics could be realized by different input instances. In the cases of our
interest, the “losses” incurred cannot be generally bounded by constant factors. To cir-
cumvent this obstacle, we restrict our attention to static algorithms, defined by the
property that the following quantities are equal for all input instances of the same
size n: (i) the number of supersteps; (ii) the sequence of labels of the various super-
steps; and (iii) the set of source-destination pairs of the messages exchanged in any
individual superstep. This restriction allows us to overload the notation, writing n in-
stead of I in the argument of functions that become invariant for instances of the same
size, namely LiA(n), SiA(n), hsA(n, p), and F iA(n, p). Likewise, the max operation becomes
superfluous and can be omitted in Equation 1 and Equation 2. Static algorithms nat-
urally arise in DAG (Directed Acyclic Graph) computations. In a DAG algorithm, for
every instance size n there exists (at most) one DAG where each node with indegree 0
represents an input value, while each node with indegree greater than 0 represents a
value produced by a unit-time operation whose operands are the values of the node’s
predecessors (nodes with outdegree 0 are viewed as outputs). The computation re-
quires the execution of all operations specified by the nodes, complying with the data
dependencies imposed by the arcs.3

In order to prove the optimality theorem, we need a number of technical results and
definitions. Recall that folding can be employed to transform an M(p, σ)-algorithm
into an M(2j , σ)-algorithm, for any 1 ≤ j ≤ log p: as already mentioned, an algorithm

3In the literature, DAG problems have also been referred to as pebble games [Savage 1998, Section 10.1].

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:9

designed on the M(p, σ) can be regarded as algorithms for M(p), once the parameter σ
is fixed; then, we can analyze the communication complexity of its folding on a smaller
M(2j , σ′) machine, for any 0 ≤ j < log p and σ′ ≥ 0. The following lemma establishes a
useful relation between the communication metrics when folding is applied.

LEMMA 3.1. Let B be a static M(p, σ)-algorithm. For every input size n, 1 ≤ j ≤
log p and σ′ ≥ 0, considering the folding of B on M(2j , σ′) we have

j−1∑
i=0

F iB(n, 2j) ≤ p

2j

j−1∑
i=0

F iB(n, p) .

PROOF. The lemma follows by observing that in every i-superstep, with i < j, mes-
sages sent/destined by/to processor Pk of M(2j , σ′), with 0 ≤ k < 2j , are a subset of
those sent/destined by/to the p/2j M(p, σ)-processors whose computations are carried
out by Pk.

It is easy to come up with algorithms where the bound stated in the above lemma
is not tight. In fact, while in an i-superstep each message must be exchanged between
processors whose indices share at least i most significant bits, some messages which
contribute to F iB(n, p) may be exchanged between processors whose indices share j > i
most significant bits, thus not contributing to F iB(n, 2j). Motivated by this observation,
we define below a class of network-oblivious algorithms where a parameter α quan-
tifies how tight the upper bound of Lemma 3.1 is, when considering their foldings on
smaller machines. This parameter will be employed to control the extent to which an
optimality guarantee in the evaluation model translates into an optimality guarantee
in the execution model.

Definition 3.2. A static network-oblivious algorithm A specified on M(v(n)) is said
to be (α, p)-wise, for some 0 < α ≤ 1 and 1 < p ≤ v(n), if considering the folding of A on
M(2j , 0) we have

j−1∑
i=0

F iA(n, 2j) ≥ α p
2j

j−1∑
i=0

F iA(n, p) ,

for every 1 ≤ j ≤ log p and every input size n.

(We remark that in the above definition parameter α is not necessarily a constant
and can be made, for example, a function of p.) Intuitively, (α, p)-wiseness is meant to
capture, in an average sense, the property that for each i-superstep involving an h-
relation, there exists an i-cluster where an α-fraction of the processors send/receive h
messages to/from processors belonging to a different (i+ 1)-subcluster. As an example,
a network-oblivious algorithm for M(v(n)) where, for each i-superstep there is always
at least one segment of v(n)/2i+1 virtual processors consecutively numbered starting
from k · (v(n)/2i+1), for some k ≥ 0, each sending a number of messages equal to
the superstep degree to processors outside the segment, is an (α, p)-wise algorithm for
each 1 < p ≤ v(n) and α = 1. However, (α, p)-wiseness holds even if the aforementioned
communication scenario is realized only in an average sense. Furthermore, consider a
pair of values α′ and p′ such that 1 < p′ ≤ p, and 1 < α′ ≤ α. It is easy to see that
(p/p′)F iA(n, p) ≥ F iA(n, p′), for every 0 ≤ i < log p′, and this implies that a network-
oblivious algorithm which is (α, p)-wise is also (α′, p′)-wise.

A final issue to consider is that the degrees of supersteps with different labels con-
tribute with the same weight to the communication complexity while they contribute
with different weights to the communication time. The following lemma will help in
bridging this difference.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Gianfranco Bilardi et al.

LEMMA 3.3. For m ≥ 1, let 〈X0, X1, . . . , Xm−1〉 and 〈Y0, Y1, . . . , Ym−1〉 be two arbi-
trary sequences of real values, and let 〈f0, f1, . . . , fm−1〉 be a non-increasing sequence of
non-negative real values. If

∑k−1
i=0 Xi ≤

∑k−1
i=0 Yi, for every 1 ≤ k ≤ m, then

m−1∑
i=0

Xifi ≤
m−1∑
i=0

Yifi .

PROOF. By defining S0 = 0 and Sk =
∑k−1
j=0 (Yj −Xj) ≥ 0, for 1 ≤ k ≤ m, we have:

m−1∑
i=0

fi(Yi −Xi) =

m−1∑
i=0

fi(Si+1 − Si) =

m−1∑
i=0

fiSi+1 −
m−1∑
i=1

fiSi ≥

≥
m−1∑
i=0

fiSi+1 −
m−1∑
i=1

fi−1Si = fm−1Sm ≥ 0 .

We then get the desired inequality
∑m−1
i=0 Xifi ≤

∑m−1
i=0 Yifi.

We are now ready to state and prove the optimality theorem. Let C denote a class
of static algorithms solving a problem Π, with the property that for any algorithm
A ∈ C for v processing elements, all of its foldings on 2j processing elements, for each
1 ≤ j < log v, also belong to C .

THEOREM 3.4 (OPTIMALITY THEOREM). Let A ∈ C be network-oblivious and
(α, p?)-wise, for some α ∈ (0, 1] and a power of two p?. Let also (σm0 , σ

m
1 , . . . , σ

m
log p?−1)

and (σM0 , σM1 , . . . , σMlog p?−1) be two vectors of non-negative values, with σmj ≤ σMj , for
every 0 ≤ j < log p?. If A is β-optimal on M(2j , σ) w.r.t. C , for σmj−1 ≤ σ ≤ σMj−1 and
1 ≤ j ≤ log p?, then, for every power of two p ≤ p?, A is αβ/(1 + α)-optimal on D-
BSP(p, g, `) w.r.t. C as long as:

— gi ≥ gi+1 and `i/gi ≥ `i+1/gi+1, for 0 ≤ i < log p− 1;
— max1≤k≤log p{σmk−12k/p} ≤ `i/gi ≤ min1≤k≤log p{σMk−12k/p}, for 0 ≤ i < log p.4

PROOF. Fix the value p and the vectors g and ` so as to satisfy the hypotheses
of the theorem, and consider a D-BSP(p, g, `)-algorithm C ∈ C . By the β-optimality
of A on the evaluation model M(2j , ψp/2j), for each 1 ≤ j ≤ log p and ψ such that
σmj−1 ≤ ψp/2j ≤ σMj−1, we have

HA

(
n, 2j ,

ψp

2j

)
≤ 1

β
HC

(
n, 2j ,

ψp

2j

)
since C can be folded into an algorithm for M(2j , ψp/2j), still belonging to C . By the
definition of communication complexity it follows that

j−1∑
i=0

(
F iA(n, 2j) + SiA(n)

ψp

2j

)
≤ 1

β

j−1∑
i=0

(
F iC(n, 2

j) + SiC(n)
ψp

2j

)
,

4Note that in order to allow for a nonempty range of values for the ratio `i/gi, the σm and σM vectors
must be such that max1≤k≤log p{σm

k−12k/p} ≤ min1≤k≤log p{σM
k−12k/p}. This will always be the case for

the applications discussed in the next section.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:11

and then, by applying Lemma 3.1 to the right side of the above inequality, we obtain
j−1∑
i=0

(
F iA(n, 2j) + SiA(n)

ψp

2j

)
≤ 1

β

j−1∑
i=0

(
p

2j
F iC(n, p) + SiC(n)

ψp

2j

)
. (3)

Define ψmp = max1≤k≤log p{σmk−12k/p} and ψMp = min1≤k≤log p{σMk−12k/p}. The con-
dition imposed by the theorem on the ratio `i/gi implies that ψmp ≤ ψMp , hence, by
definition of these two quantities, we have that σmj−12j/p ≤ ψmp , ψMp ≤ σMj−12j/p.

Let us first set ψ = ψMp in Inequality 3, and note that, by the above observation,
σmj−1 ≤ ψMp p/2

j ≤ σMj−1. By multiplying both terms of the inequality by 2j/(ψMp p), and
by exploiting the non-negativeness of the F iA(n, 2j) terms, we obtain

j−1∑
i=0

SiA(n) ≤ 1

β

j−1∑
i=0

(
F iC(n, p)

ψMp
+ SiC(n)

)
.

Next, we make log p applications of Lemma 3.3, one for each j = 1, 2, . . . , log p, by set-
ting m = j, Xi = SiA(n), Yi = (1/β)

(
F iC(n, p)/ψ

M
p + SiC(n)

)
, and fi = `i/gi. This gives

j−1∑
i=0

SiA(n)
`i
gi
≤ 1

β

j−1∑
i=0

(
F iC(n, p)

`i
ψMp gi

+ SiC(n)
`i
gi

)
,

for 1 ≤ j ≤ log p. Since, by hypothesis, `i/gi ≤ ψMp , for each 0 ≤ i < log p, we have
`i/ψ

M
p gi ≤ 1, hence we can write

j−1∑
i=0

SiA(n)
`i
gi
≤ 1

β

j−1∑
i=0

(
F iC(n, p) + SiC(n)

`i
gi

)
, (4)

for 1 ≤ j ≤ log p.
Now, let us set ψ = ψmp in Inequality 3, which, again, guarantees σmj−1 ≤ ψmp p/2

j ≤
σMj−1. By exploiting the wiseness ofA in the left side and the non-negativeness of SiA(n),
we obtain

j−1∑
i=0

α
p

2j
F iA(n, p) ≤ 1

β

j−1∑
i=0

(
p

2j
F iC(n, p) + SiC(n)

ψmp p

2j

)
.

By multiplying both terms by 2j/(pα) and observing that, by hypothesis, ψmp ≤ `i/gi,
for each 0 ≤ i < log p, we get

j−1∑
i=0

F iA(n, p) ≤ 1

αβ

j−1∑
i=0

(
F iC(n, p) + SiC(n)

`i
gi

)
. (5)

Summing Inequality 4 with Inequality 5 yields
j−1∑
i=0

(
F iA(n, p) + SiA(n)

`i
gi

)
≤ 1 + α

αβ

j−1∑
i=0

(
F iC(n, p) + SiC(n)

`i
gi

)
,

for 1 ≤ j ≤ log p. Applying Lemma 3.3 with m = log p, Xi = F iA(n, p) + SiA(n)`i/gi,
Yi = (1 + α)/(αβ)

(
F iC(n, p) + SiC(n)`i/gi

)
, and fi = gi yields

log p−1∑
i=0

(
F iA(n, p)gi + SiA(n)`i

)
≤ 1 + α

αβ

log p−1∑
i=0

(
F iC(n, p)gi + SiC(n)`i

)
. (6)

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Gianfranco Bilardi et al.

Then, by definition of communication time we have

DA (n, p, g, `) ≤ 1 + α

αβ
DC (n, p, g, `) ,

and the theorem follows.

Note that the theorem requires that both the gi’s and `i/gi’s form non-increasing se-
quences. The assumption is rather natural since it reflects the fact that larger subma-
chines exhibit more expensive communication (hence, a larger g parameter) and larger
network capacity (hence, a larger `/g ratio).

A few remarks regarding the above optimality theorem are in order. First, the proof
of the theorem heavily relies on the manipulation of linear combinations of worst-case
metrics related to executions of the algorithms with varying degrees of parallelism.
This justifies the restriction to static algorithms, since, as anticipated at the begin-
ning of the section, the variation of the metrics with the input instances would make
the derivations invalid. However, based on the fact that the linear combinations in-
volve a logarithmic number of terms, the proof of the theorem can be extended to non
static algorithms by increasing the gap between optimality in the evaluation model
and optimality in the execution machine model by an extra O(log p) factor. Specifically,
for arbitrary algorithms, after a straightforward reinterpretation of the quantities in
a worst-case sense, the summation on the right hand side of Equation 6, while not
necessarily equal to DC (n, p, g, `), can be shown to be a factor at most O(log p) larger.

The complexity metrics adopted in this paper target exclusively interprocessor com-
munication, thus a (sequential) network-oblivious algorithm specified on M(v) but us-
ing only one of the virtual processors would clearly be optimal with respect to these
metrics. For meaningful applications of the theorem, the class C must be suitably de-
fined to exclude such degenerate cases and to contain algorithms where the work is
sufficiently well balanced among the processing elements. Also, one could argue that
the effectiveness of our framework is confined only to very regular algorithms, because
of the wiseness hypothesis and the fact that the evaluation model uses the maximum
number of messages sent/received by a processor as the key descriptor for communi-
cation costs, thus disregarding the overall communication volume. However, it has to
be remarked that wiseness can be achieved even under communication patterns which
are globally unbalanced, as long as some balancing is locally guaranteed within some
cluster. Also, since the quest for optimality requires evaluating an algorithm at differ-
ent levels of granularity, communication patterns with the same maximum message
count at a processor but different overall communication volume may be discriminated,
to some extent, by their different communication costs at coarser granularities.

Some of the issues encountered in establishing the optimality theorem have an ana-
log in the context of memory hierarchies. For example, time in the Hierarchical Mem-
ory Model (HMM) can be linked to I/O complexity as discussed in [Aggarwal et al.
1987], so that optimality of the latter for different cache sizes implies the optimality of
the former for wide classes of functions describing the access time to different memory
locations. Although, to the best of our knowledge, the question has not been explicitly
addressed in the literature, a careful inspection of the arguments of [Aggarwal et al.
1987] shows that some restriction to the class of algorithms is required, to guarantee
that the maximum value of the I/O complexity for different cache sizes is simulta-
neously reached for the same input instance. (For example, the optimality of HMM
time does not follow for the class of arbitrary comparison-based sorting algorithms,
since the known I/O complexity lower bound for this problem [Aggarwal and Vitter
1988] may not be simultaneously reachable for all relevant cache sizes.) Moreover, the
monotonicity we have assumed for the gi and the `i/gi sequences has an analog in

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:13

the assumption that the function used in [Aggarwal et al. 1987] to model the memory
access time is polynomially bounded.

In the cache-oblivious framework the equivalent of our optimality theorem requires
algorithms to satisfy the regularity condition [Frigo et al. 2012, Lemma 6.4], which
requires that the number of cache misses decreases by a constant factor when the
cache size is doubled. On the other hand, our optimality theorem gives the best bound
when the network-oblivious algorithm is (Θ(1), p)-wise, that is, when the communica-
tion complexity decreases by a constant factor when the number of processors is dou-
bled. Although the regularity condition and wiseness cannot be formalized in a similar
fashion due to the significant differences between the cache- and network-oblivious
frameworks, we observe that both assumptions require the oblivious algorithms to re-
act seamlessly and smoothly to small changes of the machine parameters.

4. ALGORITHMS FOR FUNDAMENTAL PROBLEMS
In this section we illustrate the use of the proposed framework by developing efficient
network-oblivious algorithms for a number of fundamental computational problems:
matrix multiplication (Section 4.1), Fast Fourier Transform (Section 4.2), and sort-
ing (Section 4.3). All of our algorithms exhibit Θ(1)-optimality on the D-BSP for wide
ranges of the machine parameters. In Section 4.4, we also present network-oblivious
algorithms for stencil computations. These latter algorithms run efficiently on the D-
BSP although they do not achieve Θ(1)-optimality, which appears to be a hard chal-
lenge in this case. In Section 4.5, we also establish a negative result by proving that
there cannot exist a network-oblivious algorithm for broadcasting which is simultane-
ously Θ(1)-optimal on two sufficiently different M(p, σ) machines.

As prescribed by our framework, the performance of the network-oblivious algo-
rithms on the D-BSP is derived by analyzing their performance on the evaluation
model. Optimality is assessed with respect to classes of algorithms where the compu-
tation is not excessively unbalanced among the processors, namely, algorithms where
an individual processor cannot perform more than a constant fraction of the total min-
imum work for the problem. For this purpose, we exploit some recent lower bounds
which rely on mild assumptions on work distributions and strengthen previous bounds
based on stronger assumptions [Scquizzato and Silvestri 2014]. Finally, we want to
stress that all of our algorithms are also work-optimal.

4.1. Matrix Multiplication
The n-MM problem consists of multiplying two

√
n×
√
n matrices, A and B, using only

semiring operations. A result in [Kerr 1970] shows that any static algorithm for the n-
MM problem which uses only semiring operations must compute all n3/2 multiplicative
terms, that is the products A[i, k] ·B[k, j], with 0 ≤ i, j, k <

√
n.

Let C denote the class of static algorithms for the n-MM problem such that any
A ∈ C for v processing elements satisfies the following properties: (i) no entry of A
or B is initially replicated (however, the entries of A and B are allowed to be initially
distributed among the processing elements in an arbitrary fashion); (ii) no processing
element computes more than n3/2/min{v, 113} multiplicative terms;5 (iii) all of the
foldings of A on 2j processing elements, for each 1 ≤ j < log v, also belong to C . The
following lemma establishes a lower bound on the communication complexity of the
algorithms in C .

5The min term follows from the lower bound in [Scquizzato and Silvestri 2014, Theorem 2] which applies to
computations where each processor computes at most n3/2/min{v, 113}multiplicative terms on a BSP with
v processors. Clearly, weakening the assumption for [Scquizzato and Silvestri 2014, Theorem 2] automati-
cally translates into a weaker property (ii).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Gianfranco Bilardi et al.

LEMMA 4.1. The communication complexity of any n-MM algorithm in C when
executed on M(p, σ) is Ω

(
n/p2/3 + σ

)
.

PROOF. The bound for σ = 0 is proved in [Scquizzato and Silvestri 2014, Theo-
rem 2], and it clearly extends to the case σ > 0. The additive σ term follows since at
least one message is sent by some processing element.

We now describe a static network-oblivious algorithm for the n-MM problem, which
follows from the parallelization of the respective cache-oblivious algorithm [Frigo et al.
2012]. Then, we prove its optimality in the evaluation model, for wide ranges of the
parameters, and in the execution model through the optimality theorem. For conve-
nience, we assume that n is a power of 23 (the general case requires minor yet tedious
modifications). The algorithm is specified on M(n), and requires that the input and
output matrices be evenly distributed among the n VPs. We denote with A, B and C
the two input matrices and the output matrix respectively, and with Ahk, Bhk and Chk,
with 0 ≤ h, k ≤ 1, their four quadrants. The network-oblivious algorithm adopts the
following recursive strategy:

(1) Partition the VPs into eight segments Shk`, with 0 ≤ h, k, ` ≤ 1, containing the
same number of consecutively numbered VPs. Replicate and distribute the inputs
so that the entries of Ah` and B`k are evenly spread among the VPs in Shk`.

(2) In parallel, for each 0 ≤ h, k, ` ≤ 1, compute recursively the productMhk` = Ah` ·B`k
within Shk`.

(3) In parallel, for each 0 ≤ i, j <
√
n, the VP responsible for C[i, j] collects Mhk0[i′, j′]

and Mhk1[i′, j′], with h = b2i/
√
nc, k = b2j/

√
nc, i′ = i mod (

√
n/2) and j′ = j

mod (
√
n/2), and computes C[i, j] = Mhk0[i′, j′] +Mhk1[i′, j′].

At the i-th recursion level, with 0 ≤ i ≤ (log n)/3, 8i (n/4i)-MM subproblems are solved
by distinct M(n/8i)’s formed by distinct segments of VPs. The recursion stops at i =
(log n)/3 when each VP solves sequentially an n1/3-MM subproblem. By unfolding the
recursion, we get that the algorithm comprises a constant number of 3i-supersteps
at the i-th recursive level, where each VP sends/receives O

(
2i
)

messages. In order
to easily claim that the algorithm is (Θ(1), n)-wise, we may assume that, in each 3i-
superstep, VPj sends 2i dummy messages to VPj+n/23i+1 , for 0 ≤ j < n/23i+1. These
messages do not affect the asymptotic communication complexity and communication
time exhibited by the algorithm in the evaluation and execution machine models. (In
fact, constant wiseness is already achieved by the original communication pattern,
but a direct proof would have required a more convoluted argument than resorting to
dummy messages. Indeed, we will use the same trick in the other network-oblivious
algorithms presented in the paper.)

THEOREM 4.2. The communication complexity of the above n-MM network-
oblivious algorithm when executed on M(p, σ) is

HMM(n, p, σ) = O

(
n

p2/3
+ σ log p

)
,

for every 1 < p ≤ n and σ ≥ 0. The algorithm is (Θ(1), n)-wise and Θ(1)-optimal with
respect to C on any M(p, σ) with 1 < p ≤ n and σ = O

(
n/(p2/3 log p)

)
.

PROOF. When executed on M(p, σ), the above algorithm decomposes the problem
into 8 subproblems that are solved by 8 distinct M(p/8, σ) machines and each proces-
sor sends/receives O(n/p) messages in O(1) supersteps for processing the inputs and
outputs of the 8 subproblems. The communication complexity satisfies the recurrence

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:15

relation:

HMM(n, p, σ) =

{
HMM(n/4, p/8, σ) +O(n/p+ σ) if p > 1,
0 otherwise.

By unrolling the recurrence, we get

HMM(n, p, σ) = O

(log p)/3∑
i=0

(
n2i

p
+ σ

) = O

(
n

p2/3
+ σ log p

)
.

As anticipated, the wiseness is guaranteed by the dummy messages introduced in each
superstep. Finally, it is easy to see that the algorithm satisfies the three requirements
for belonging to C , hence its optimality follows from Lemma 4.1.

COROLLARY 4.3. The above n-MM network-oblivious algorithm is Θ(1)-optimal
with respect to C on any D-BSP(p, g, `) machine with 1 < p ≤ n, non-increasing gi’s
and `i/gi’s, and `0/g0 = O(n/p).

PROOF. Since the network-oblivious algorithm is (Θ(1), n)-wise and belongs to C ,
the corollary follows by plugging p? = n, σmi = 0, and σMi = Θ

(
n/((i+ 1)22i/3)

)
into

Theorem 3.4.

4.1.1. Space-Efficient Matrix Multiplication. Observe that the network-oblivious algorithm
described above incurs an O

(
n1/3

)
memory blow-up per VP. As described below, the

recursive strategy can be modified so to incur only a constant memory blow-up, at the
expense of an increased communication complexity. The resulting network-oblivious
algorithm turns out to be Θ(1)-optimal with respect to the class of algorithms featuring
constant memory blow-up.

We assume, as before, that the entries of A,B and C be evenly distributed among the
VPs. The VPs are (recursively) divided into four segments which solve the eight (n/4)-
MM subproblems in two rounds: in the first round, the segments compute A00 · B00,
A01·B11,A11·B10 andA10·B01 (one product per segment), while in the second round they
compute A01 ·B10, A00 ·B01, A10 ·B00 and A11 ·B11 (again, one product per segment). The
recursion ends when each VP solves sequentially an 1-MM subproblem. By unfolding
the recursion, we get that for every 0 ≤ i < log n/2, the algorithm executes Θ

(
2i
)

2i-
supersteps where each VP sends/receives Θ(1) messages. At any time each VP contains
only O(1) matrix entries, but the recursion requires it to handle a stack of O(log n)
entries. However, it is easy to see that only a constant number of bits are needed for
each stack entry, hence, under the natural assumption that each matrix entry occupies
a constant number of Θ(log n)-bit words, the entire stack at each VP requires storage
proportional to O(1) matrix entries. Therefore, the algorithm incurs only a constant
memory blow-up. As before, the algorithm can be easily made (Θ(1), n)-wise by adding
suitable dummy messages.

When executed on M(p, σ), the above space efficient algorithm exhibits a communi-
cation complexity, denoted withHMM-space(n, p, σ), that satisfies the recurrence relation:

HMM-space(n, p, σ) =

{
2HMM-space(n/4, p/4, σ) +O(n/p+ σ) if p > 1,
0 otherwise.

By unrolling the relation, we get HMM-space(n, p, σ) = O
(
n/
√
p+ σ

√
p
)
.

Let C ′ denote the class of static algorithms for the n-MM problem such that any
A ∈ C ′ for v processing elements satisfies the following properties: (i) the local storage
required at each processing element is O(n/v); (ii) all of the foldings of A on 2j pro-
cessing elements, for each 1 ≤ j < log v, also belong to C ′. Since it is proved in [Irony

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Gianfranco Bilardi et al.

et al. 2004] that any n-MM algorithm in C ′ when running on M(p, 0) must exhibit an
Ω
(
n/
√
p
)

communication complexity, the above network-oblivious algorithm is Θ(1)-
optimal with respect to C ′ on any M(p, σ) with 1 < p ≤ n and σ = O(n/p). Conse-
quently, Theorem 3.4 yields optimality of the algorithm on any D-BSP(p, g, `) machine
with 1 < p ≤ n, non-increasing gi’s and `i/gi’s, and `0/g0 = O(n/p).

4.2. Fast Fourier Transform
The n-FFT problem consists of computing the Discrete Fourier Transform of n values
using the n-input FFT DAG, where a vertex is a pair 〈w, l〉, with 0 ≤ w < n and
0 ≤ l < log n, and there exists an arc between two vertices 〈w, l〉 and 〈w′, l′〉 if l′ = l+ 1,
and either w and w′ are identical or their binary representations differ exactly in the
l-th bit [Leighton 1992].

Let C denote the class of static algorithms for the n-FFT problem such that any
A ∈ C for v processing elements satisfies the following properties: (i) each DAG node
is evaluated exactly once (i.e., recomputation is not allowed); (ii) no input value is
initially replicated; (iii) no processing element computes more than εn log nDAG nodes,
for some constant 0 < ε < 1; (iv) all of the foldings of A on 2j processing elements, for
each 1 ≤ j < log v, also belong to C . Note that, as in the preceding subsection, the
class of algorithms we are considering makes no assumptions on the input and output
distributions. we make no assumptions on the input and output distributions. The
following lemma establishes a lower bound on the communication complexity of the
algorithms in C .

LEMMA 4.4. The communication complexity of any n-FFT algorithm in C when
executed on M(p, σ) is Ω((n log n)/(p log(n/p)) + σ).

PROOF. The bound for σ = 0 is proved in [Scquizzato and Silvestri 2014, Theo-
rem 11], and it clearly extends to the case σ > 0. The additive σ term follows since at
least one message is sent by some processing element.

We now describe a static network-oblivious algorithm for the n-FFT problem, and
then prove its optimality in the evaluation and execution models. The algorithm is
specified onM(n), and exploits the well-known decomposition of the FFT DAG into two
sets of

√
n-input FFT subDAGs, with each set containing

√
n such subDAGs [Aggarwal

et al. 1987]. For simplicity, in order to ensure integrality of the quantities involved, we
assume n = 22

k

for some integer k ≥ 0. We assume that at the beginning the n inputs
are evenly distributed among the n VPs. In parallel, each of the

√
n segments of

√
n

consecutively numbered VPs computes recursively the assigned subDAG. Then, the
outputs of the first set of subDAGs are permuted in a 0-superstep so to distribute the
inputs of each subDAGs of the second set among the VPs of a distinct segment. The
permutation pattern is equivalent to the transposition of a

√
n ×
√
n matrix. Finally,

each segment computes recursively the assigned subDAG.
At the i-th recursion level, with 0 ≤ i < log log n, n1−1/2

i

n1/2
i

-FFT subproblems are
solved by n1−1/2

i

M(n1/2
i

) models formed by distinct segments of VPs. The recurrence
stops at i = log log n when each segment of two VPs computes a 2-input subDAG. It is
easy to see, by unfolding the recursion, that the algorithm comprises O

(
2i
)

supersteps
with label (1−1/2i) log n at the i-th recursive level, where each VP sends/receives O(1)
messages. As before, in order to enforce wiseness without affecting the algorithm’s
asymptotic performance, we assume that in each (1− 1/2i) log n-superstep, VPj sends
a dummy message to VPj+n1/2i/2, for each 0 ≤ j < n1/2

i

/2.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:17

THEOREM 4.5. The communication complexity of the above n-FFT network-
oblivious algorithm when executed on M(p, σ) is

HFFT(n, p, σ) = O

((
n

p
+ σ

)
log n

log(n/p)

)
,

for every 1 < p ≤ n and σ ≥ 0. The algorithm is (Θ(1), n)-wise and Θ(1)-optimal with
respect to C on any M(p, σ) with 1 < p ≤ n and σ = O(n/p).

PROOF. When executed on M(p, σ), the above algorithm decomposes the problem
into two sets of

√
n subproblems that are solved by

√
n distinct M(p/

√
n, σ) machines

and each processor sends/receives O(n/p) messages in O(1) supersteps for processing
the inputs and outputs of the 2

√
n subproblems. The communication complexity satis-

fies the recurrence relation:

HFFT(n, p, σ) =

{
2HFFT(

√
n, p/

√
n, σ) +O(n/p+ σ) if p > 1,

0 otherwise.

By unrolling the recurrence, we get

HFFT(n, p, σ) = O

log(logn/ log(n/p))∑
i=0

2i
(
n

p
+ σ

) = O

((
n

p
+ σ

)
log n

log(n/p)

)
.

The wiseness is ensured by the dummy messages, and since the algorithm satisfies the
requirements for belonging to C , its optimality follows from Lemma 4.4.

We now apply Theorem 3.4 to show that the network-oblivious algorithm is Θ(1)-
optimal on the D-BSP for wide ranges of the machine parameters.

COROLLARY 4.6. The above n-FFT network-oblivious algorithm is Θ(1)-optimal
with respect to C on any D-BSP(p, g, `) machine with 1 < p ≤ n, non-increasing gi’s
and `i/gi’s, and `0/g0 = O(n/p).

PROOF. Since the network-oblivious algorithm is (Θ(1), n)-wise and belongs to C ,
we get the claim by plugging p? = n, σmi = 0, and σMi = Θ

(
n/2i

)
in Theorem 3.4.

We observe that although we described the network-oblivious algorithm assuming
n = 22

k

, in order to ensure integrality of the quantities involved, the above results can
be generalized to the case of n arbitrary power of two. In this case, the FFT DAG is re-
cursively decomposed into a set of 2blog

√
nc-input FFT subDAGs and a set of n/2blog

√
nc-

input FFT subDAGs. The optimality of the resulting algorithm in both the evaluation
and execution machine models can be proved in a similar fashion as before.

4.3. Sorting
The n-sort problem requires to label n (distinct) input keys with their ranks, using
only comparisons, where the rank of a key is the number of smaller keys in the input
sequence.

Let C denote the class of static algorithms for the n-sort problem such that any
A ∈ C for v processing elements satisfies the following properties: (i) initially, no input
key is replicated and, during the course of the algorithm, only a constant number of
copies per key are allowed at any time; (ii) no processing element performs more than
εn log n comparisons, for an arbitrary constant 0 < ε < 1; (iii) all of the foldings of A
on 2j processing elements, 1 ≤ j < log v, also belong to C . We make no assumptions
on how the keys are distributed among the processing elements at the beginning and
at the end of the algorithm. The following lemma establishes a lower bound on the
communication complexity of the algorithms in C .

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Gianfranco Bilardi et al.

LEMMA 4.7. The communication complexity of any n-sort algorithm in C when
executed on M(p, σ) is Ω((n log n)/(p log(n/p)) + σ).

PROOF. The bound for σ = 0 is proved in [Scquizzato and Silvestri 2014, Theo-
rem 8], and it clearly extends to the case σ > 0. The additive σ term follows since at
least one message is sent by some processing element.

We now present a static network-oblivious algorithm for the n-sort problem, and
then prove its optimality in the evaluation and execution models. The algorithm im-
plements a recursive version of the Columnsort strategy, as described in [Leighton
1985]. Consider the n input keys as an r× s matrix, with r · s = n and r ≥ s2. Column-
sort is organized into eight phases numbered from 1 to 8. During Phases 1, 3, 5 and 7
the keys in each column are sorted recursively (in Phase 5 adjacent columns are sorted
in reverse order). During Phases 2, 4, 6 and 8 the keys of the matrix are permuted: in
Phase 2 (resp., 4) a transposition (resp., diagonalizing permutation [Leighton 1985])
of the r × s matrix is performed maintaining the r × s shape; in Phase 6 (resp., 8) an
r/2-cyclic shift (resp., the reverse of the r/2-cyclic shift) is done.6 Columnsort can be
implemented on M(n) as follows. For convenience, assume that n = 2(3/2)

d

for some
integer d ≥ 0, and set r = n2/3 and s = n/r (the more general case is discussed later).
The algorithm starts with the input keys evenly distributed among the n VPs. In the
odd phases the keys of each column are evenly distributed among the VPs of a distinct
segment of r consecutively numbered VPs, which form an independent M(r). Then,
each segment solves recursively the subproblem corresponding to the column it re-
ceived. The even phases entail a constant number of 0-supersteps of constant degree.
At the i-th recursion level, with 0 ≤ i ≤ log3/2 log n, each segment of n(2/3)

i

consecu-
tively numbered VPs forming an independent M(n(2/3)

i

) solves 4i subproblems of size
n(2/3)

i

. The recurrence stops at i = log3/2 log n when each VP solves, sequentially, a
subproblem of constant size. It is easy to see, by unfolding the recursion, that the al-
gorithm consists of Θ

(
4i
)

supersteps with label (1 − (2/3)i) log n at the i-th recursive
level, where each VP sends/receives O(1) messages. As before, in order to enforce wise-
ness, without affecting the algorithm’s asymptotic performance, we assume that in
each (1− (2/3)i) log n-superstep, VPj sends a dummy message to VPj+n(2/3)i/2, for each

0 ≤ j < n(2/3)
i

/2.

THEOREM 4.8. The communication complexity of the above network-oblivious algo-
rithm for n-sort when executed on M(p, σ) is

Hsort(n, p, σ) = O

((
n

p
+ σ

)(
log n

log(n/p)

)log3/2 4
)
,

for every 1 < p ≤ n and σ ≥ 0. The algorithm is (Θ(1), n)-wise and it is Θ(1)-optimal
with respect to C on any M(p, σ) with p = O

(
n1−δ

)
, for any arbitrary constant δ ∈ (0, 1),

and σ ≥ 0.

PROOF. When executed on M(p, σ), the above algorithm decomposes the problem
into four sets of n1/3 subproblems that are solved in four phases by n1/3 distinct

6In the original paper [Leighton 1985], the shift in Phase 6 is not cyclic: a new column is added contain-
ing the r/2 overflowing keys and r/2 large dummy keys, while the first column is filled with r/2 small
dummy keys. However, it is easy to see that a cyclic shift suffices if the first r/2 keys in the first column are
considered smaller than the last r/2 keys.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:19

M(p/n1/3, σ) machines and each processor sends/receives O(n/p) messages in O(1) su-
persteps for processing the inputs and outputs of the 4n1/3 subproblems. The commu-
nication complexity satisfies the recurrence relation:

Hsort(n, p, σ) =

{
4Hsort(n

2/3, p/n1/3, σ) +O(n/p+ σ) if p > 1,
0 otherwise.

By unrolling the recurrence, we get

Hsort(n, p, σ) = O

log3/2(logn/ log(n/p))∑
i=0

4i
(
n

p
+ σ

) = O

((
n

p
+ σ

)(
log n

log(n/p)

)log3/2 4
)
.

The wiseness is guaranteed by the dummy messages. Since the algorithm satisfies the
three requirements to be in C , its optimality follows from Lemma 4.7.

COROLLARY 4.9. The above n-sort network-oblivious algorithm is Θ(1)-optimal
with respect to C on any D-BSP(p, g, `) machine with p = O

(
n1−δ

)
, for some arbitrary

constant δ ∈ (0, 1), and non-increasing gi’s and `i/gi’s.

PROOF. Since the network-oblivious algorithm is (Θ(1), n)-wise and belongs to C ,
we get the claim by plugging p? = n, σmi = 0, and σMi = +∞ in Theorem 3.4.

Consider now the more general case when n is an arbitrary power of two. Now, the
input keys must be regarded as the entries of an r × s matrix, where r is the smallest
power of two greater than or equal to n2/3. Simple, yet tedious, calculations show that
the results stated in Theorem 4.8 and Corollary 4.9 continue to hold in this case.

Finally, we remark that the above network-oblivious sorting algorithm turns out to
be Θ(1)-optimal on any D-BSP(p, g, `), as long as p = O

(
n1−δ

)
for constant δ, with re-

spect to a wider class of algorithms which satisfy the requirements (i), (ii), and (iii),
specified above for C , but need not be static. By applying the lower bound for sort-
ing in [Scquizzato and Silvestri 2014] on two processors, it is easy to show that Ω(n)
messages must cross the bisection for this class of algorithms. Therefore, we get an
Ω(g0n/p) lower bound on the communication time on D-BSP(p, g, `), which is matched
by our network-oblivious algorithm.

4.4. Stencil Computations
A stencil defines the computation of any element in a d-dimensional spatial grid at
time t as a function of neighboring grid elements at time t − 1, t − 2, . . . , t − ρ, for
some integers ρ ≥ 1 and d ≥ 1. Stencil computations arise in many contexts, ranging
from iterative finite-difference methods for the numerical solution of partial differ-
ential equations, to algorithms for the simulation of cellular automata, as well as in
dynamic programming algorithms and in image-processing applications. Also, the sim-
ulation of a d-dimensional mesh [Bilardi and Preparata 1997] can be envisioned as a
stencil computation.

In this subsection, we restrict our attention to stencil computations with ρ = 1.
To this purpose, we define the (n, d)-stencil problem which represents a wide class of
stencil computations (see, e.g., [Frigo and Strumpen 2005]). Specifically, the problem
consists in evaluating all nodes of a DAG of nd+1 nodes, each represented by a dis-
tinct tuple 〈i0, i1, . . . , id〉, with 0 ≤ i0, i1, . . . , id < n, where each node 〈i0, i1, . . . , id〉 is
connected, through an outgoing arc, to (at most) 3d neighbors, namely 〈i0 + δ0, i1 +
δ1, . . . , id−1 + δd−1, id+ 1〉 for each δ0, δ1, . . . , δd−1 ∈ {0,±1} (whenever such nodes exist).
We suppose n to be a power of two. Intuitively, the (n, d)-stencil problem consists of
n time steps of a stencil computation on a d-dimensional spatial grid of side n, where

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Gianfranco Bilardi et al.

each DAG node corresponds to a grid element (first d coordinates) at a given time step
(coordinate id).

Let Cd denote the class of static algorithms for the (n, d)-stencil problem such that
any A ∈ Cd for v processing elements satisfies the following properties: (i) each DAG
node is evaluated once (i.e., recomputation is not allowed); (ii) no processing element
computes more than εnd+1 DAG nodes, for some constant 0 < ε < 1; (iii) all of the
foldings of A on 2j processing elements, 1 ≤ j < log v, also belong to Cd. Note that,
as before, this class of algorithms makes no assumptions on the input and output
distributions. The following lemma establishes a lower bound on the communication
complexity of the algorithms in Cd.

LEMMA 4.10. The communication complexity of any (n, d)-stencil algorithm in Cd
when executed on M(p, σ) is Ω

(
nd/p(d−1)/d + σ

)
.

PROOF. The bound for σ = 0 is proved in [Scquizzato and Silvestri 2014, Theo-
rem 5], and it clearly extends to the case σ > 0. The additive σ term follows since at
least one message is sent by some processing element.

In what follows, we develop efficient network-oblivious algorithms for the (n, d)-
stencil problem, for the special cases of d = {1, 2}. The generalization to values d > 2,
and to other types of stencils, is left as an open problem.

4.4.1. The (n, 1)-Stencil Problem. The (n, 1)-stencil problem consists of the evaluation of
a DAG shaped as a 2-dimensional array of side n. We reduce the solution of the stencil
problem to the computation of a diamond DAG. Specifically, we define a diamond DAG
of side n as the intersection of a (2n − 1, 1)-stencil DAG with the following four half-
planes: i0 + i1 ≥ (n− 1), i0 − i1 ≤ (n− 1), i0 − i1 ≥ −(n− 1), and i0 + i1 ≤ 3(n− 1) (i.e.,
the largest diamond included in the stencil).7 It follows that an (n, 1)-stencil DAG can
be partitioned into five full or truncated diamond DAGs of side less than n which can
be evaluated in a suitable order, with the outputs of one DAG evaluation providing the
inputs for subsequent DAG evaluations.

Our network-oblivious algorithm for the (n, 1)-stencil is specified on M(n) and con-
sists of five stages, where in each stage the whole M(n) machine takes care of the
evaluation of a distinct diamond DAG (full or truncated) according to the aforemen-
tioned partition. We require that all of the O(n) inputs necessary for the evaluation of
a diamond DAG are evenly distributed among the n VPs at the start of the stage in
charge of the DAG. No matter how the inputs are assigned to the VPs at the beginning
of the algorithm, the data movement required to guarantee the correct input distri-
bution at the various stages can be accomplished in O(1) 0-supersteps where each VP
sends/receives O(n) messages.

We now focus on the evaluation of the individual diamond DAGs. For ease of pre-
sentation, we consider the evaluation of a full diamond DAG of side n on M(n). Simple
yet tedious modifications are required for dealing with truncated or smaller diamond
DAGs. We exploit the fact that this DAG can be decomposed recursively into smaller
diamonds. Parallel algorithms for stencil computations based on this or similar de-
compositions are known [Chowdhury and Ramachandran 2008; Frigo and Strumpen
2009; Tang et al. 2011], but their focus is on optimizing processors cache efficiency
rather than inter-processor communications.

Let k = 2d
√
logne. The diamond DAG is partitioned into 2k − 1 horizontal stripes,

each containing up to k diamonds of side n/k, as depicted in Figure 1. The DAG evalu-

7We observe that our definition of diamond DAG is consistent with the one in [Bilardi and Preparata 1997],
whose edges are a superset of those of the diamond DAG defined in [Aggarwal et al. 1990].

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:21

n
k

n

r-th stripe

Fig. 1. The decomposition of the diamond DAG performed by our algorithm.

ation is accomplished into 2k − 1 non-overlapping phases. In the r-th such phase, with
0 ≤ r < 2k − 1, the diamonds in the r-th stripe are evaluated in parallel by distinct
M(n/k) submachines formed by disjoint segments of consecutively numbered VPs.8
At the beginning of each phase, a 0-superstep is executed so to provide the VPs of
each M(n/k) submachine with the appropriate input, that is, the immediate predeces-
sors (if any) of the diamond assigned to the submachine. In this superstep each VP
sends/receives O(1) messages. In each phase, the diamonds of side n/k are evaluated
recursively.

In general, at the i-th recursive level, with i ≥ 1, a total of (2k − 1)i non-overlapping
phases are executed where diamonds of side ni = n/ki are evaluated in parallel by dis-
tinct M(ni) submachines. Each such phase starts with a superstep of label (i−1) · log k
in order to provide each M(ni) with the appropriate input. In turn, the evaluation of a
diamond of side ni within an M(ni) submachine is performed recursively by partition-
ing its nodes into 2k− 1 horizontal stripes of diamonds of side ni+1 = n/ki+1 which are
evaluated in 2k− 1 non-overlapping phases by M(ni+1) submachines, with each phase
starting with a superstep of label i · log k where each VP sends/receives O(1) messages
(and thus each processor sends/receives O(n/p) messages). The recursion ends at level
τ = blogk nc, which is the first level where the diamond of side nτ becomes smaller than
k. If nτ > 1, each diamond of side nτ assigned to an M(nτ) submachine is evaluated
straightforwardly in 2nτ − 1 supersteps of label τ · log k. Instead, if nτ = 1, at recursion
level τ each VP independently evaluates a 1-node diamond, and no communication is
required.

8We observe that some M(n/k) submachines may not be assigned to subproblems, since the number of
diamonds in a stripe could be smaller than k. In order to comply with the requirement that in the algorithm
execution the sequence of superstep labels is the same at each processing element, we assume that idle
M(n/k) submachines are assigned dummy diamonds of side n/k to be evaluated.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Gianfranco Bilardi et al.

By unfolding the recursion, one can easily see that the evaluation of a diamond DAG
of side n entails, overall, (2k− 1)i supersteps of label (i− 1) · log k, for 1 ≤ i ≤ τ , and, if
nτ > 1, (2k − 1)τnτ supersteps of label τ · log k. In each of these supersteps, every VP
sends/receives O(1) messages.

In order to guarantee (Θ(1), n)-wiseness of our algorithm, we assume that suitable
dummy messages are added in each superstep so to make each VP exchange the same
number of messages.

THEOREM 4.11. The communication complexity of the above network-oblivious al-
gorithm for the (n, 1)-stencil problem when executed on M(p, σ) is

H1-stencil(n, p, σ) = O
(
n4
√
logn

)
,

for every 1 < p ≤ n and 0 ≤ σ = O(n/p). The algorithm is (Θ(1), n)-wise and
Ω
(

1/4
√
logn

)
-optimal with respect to C1 on any M(p, σ) with 1 < p ≤ n and σ = O(n/p).

PROOF. As observed before, the communication required at the beginning of each
of the five stages contributes an additive factor O(n) to the communication complexity,
hence it is negligible. Let us then concentrate on the communication complexity for one
diamond DAG evaluation. Recall that τ = blogk nc. First suppose that p ≤ kτ . Observe
that at every recursion level i, with 0 ≤ i < dlogk pe, the evaluation of each diamond of
side ni = n/ki is performed by p/ki > 1 processors, and each processor sends/receives
O(n/p) messages in O(1) supersteps for processing the inputs and outputs of these
subproblems; on the other hand, at every recursion level i, with dlogk pe ≤ i ≤ τ , each
diamond of side n/ki is evaluated by a single processor of M(p, σ) and no communica-
tion takes place. Thus, the communication complexity satisfies the recurrence relation:

H1-stencil(n, p, σ) =

{
(2k − 1)H1-stencil(n/k, p/k, σ) +O(n/p+ σ) if p > 1,
0 otherwise.

This recurrence has solution

H1-stencil(n, p, σ) = O

dlogk pe−1∑
i=0

(2k − 1)i+1

(
n

p
+ σ

)
= O

(
(2k)logk p+1n

p

)
= O

(
n2logk pk

)
= O

(
n4
√
logn

)
,

where we exploited the upper bound on σ. Instead, if kτ < p ≤ n, we have that at every
recursion level i, with 0 ≤ i ≤ τ , the evaluation of each diamond of side ni = n/ki is
performed by p/ki > 1 processors. Then, by the above discussion and recalling that
for i = τ , diamonds of side nτ = n/kτ are evaluated straightforwardly in 2nτ − 1

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:23

supersteps, we obtain

H1-stencil(n, p, σ) = O

(
τ−1∑
i=0

(2k − 1)i+1

(
n

p
+ σ

))
+O

(
(2k − 1)τ

n

kτ

(
n

p
+ σ

))
= O

(
(2k)τ

n

kτ
n

p

)
= O(n2τk)

= O
(
n4
√
logn

)
,

where we exploited the upper bound on σ and the fact that p > kτ hence, by definition
of τ , n/p < k. The wiseness is ensured by the dummy messages. It is easy to see that
the algorithm complies with the requirements for belonging to C1, hence the claimed
optimality is a consequence of Lemma 4.10, and the theorem follows.

Finally, we show that the network-oblivious algorithm for the (n, 1)-stencil problem
achieves Ω

(
1/4
√
logn

)
-optimality on the D-BSP as well, for wide ranges of machine

parameters.

COROLLARY 4.12. The above network-oblivious algorithm for the (n, 1)-stencil prob-
lem is Ω

(
1/4
√
logn

)
-optimal with respect to C1 on any D-BSP(p, g, `) machine with

1 < p ≤ n, non-increasing gi’s and `i/gi’s, and `0/g0 = O(n/p).

PROOF. The corollary follows by Theorem 4.11 and by applying Theorem 3.4 with
p? = n, σmi = 0, and σMi = Θ

(
n/2i

)
.

We remark that a tighter analysis of the algorithm and/or the adoption of different
values for the recursion degree k, still independent of p and σ, may yield slightly better
efficiency. The two techniques recently proposed in [Tang et al. 2015] to improve the
parallelism of recursive cache-efficient dynamic programming algorithms might also
have the potential to lead to improved bounds. However, it is an open problem to devise
a network-oblivious algorithm which is Θ(1)-optimal on the D-BSP for wide ranges of
the machine parameters.

4.4.2. The (n, 2)-Stencil Problem. In this subsection we present a network-oblivious al-
gorithm for the (n, 2)-stencil problem, which requires the evaluation of a DAG shaped
as a 3-dimensional array of side n. Both the algorithm and its analysis are a suit-
able adaptation of the ones for the (n, 1)-stencil problem. In order to evaluate a 3-
dimensional domain we make use of two types of subdomains which, intuitively, play
the same role as the diamond for the (n, 1)-stencil: the octahedron and the tetrahedron.
An octahedron of side n is the intersection of a (2n−1, 2)-stencil with the following eight
half-spaces: i0 + i2 ≥ (n − 1), i0 − i2 ≤ (n − 1), i0 − i2 ≥ −(n − 1), i0 + i2 ≤ 3(n − 1),
i0 + i1 ≥ (n− 1), i0− i1 ≤ (n− 1), i0− i1 ≥ −(n− 1), and i0 + i1 ≤ 3(n− 1); a tetrahedron
of side n is the intersection of a (2n − 1, 2)-stencil with the following four half-spaces:
i0 + i1 ≥ (n− 1), i0 − i1 ≥ (n− 1), i1 + i2 ≤ 2(n− 1), and i1 − i2 ≤ 0.

As shown in [Bilardi and Preparata 1997], a 3-dimensional array of side n can be
partitioned into 17 instances of (possibly truncated) octahedra or tetrahedra of side n
(see Figure 6 of [Bilardi and Preparata 1997]). Our network-oblivious algorithm ex-
ploits this partition and is specified on M(n2). It consists of 17 stages, where in each
stage the VPs take care of the evaluation of one polyhedra of the partition. We assume
that at the beginning of the algorithm the inputs are evenly distributed among the n2
VPs, and also impose that the inputs of each stage be evenly distributed among the

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Gianfranco Bilardi et al.

VPs. The data movement required to guarantee the correct input distribution for each
stage can be accomplished in O(1) 0-supersteps, where each VP sends/receives O(1)
messages.

Let k = 2d
√
logne. An octahedron of side n can be partitioned into octahedra and

tetrahedra of side n/k in log k steps, where the i-th such step, with 1 ≤ i ≤ log k,
refines a partition of the initial octahedron into octahedra or tetrahedra of side n/2i−1
by decomposing each of these polyhedra into smaller ones of side n/2i, according to
the scheme depicted in [Bilardi and Preparata 1997, Figure 5]. The final partition
is obtained at the end of the log k-th step. The octahedra and tetrahedra of the final
partition can be grouped in horizontal stripes in such a way that the polyhedra of each
stripe can be evaluated in parallel. Consider first the set of octahedra of the partition.
It can be seen that the projection of these octahedra on the (i0, i2)-plane coincides with
the decomposition of the diamond DAG depicted in Figure 1. As a consequence, we
can identify 2k − 1 horizontal stripes of octahedra, where each stripe contains up to k2
octahedra of side n/k. Moreover, the interleaving of octahedra and tetrahedra in the
basic decompositions of [Bilardi and Preparata 1997, Figure 5], implies that there is
a stripe of tetrahedra between each pair of consecutive stripes of octahedra. Hence,
there are also (2k − 1) − 1 horizontal stripes of tetrahedra, each containing up to k2
tetrahedra of side n/k. Overall, the octahedron of side n is partitioned into 4k − 3
horizontal stripes of at most k2 polyhedra of side n/k each, where stripes of octahedra
are interleaved with stripes of tetrahedra. With a similar argument one can derive a
partition of a tetrahedron of side n into 2k − 1 ≤ 4k − 3 horizontal stripes of at most k2
polyhedra of side n/k each, where stripes of octahedra are interleaved with stripes of
tetrahedra.

Once established the above preliminaries, the network-oblivious algorithm to evalu-
ate a 3-dimensional array of side n on M(n2) follows closely from the recursive strategy
used for the (n, 1)-stencil problem: the evaluation of an octahedron is accomplished in
4k − 3 non-overlapping phases, in each of which the polyhedra (either octahedra or
tetrahedra) of side n/k in one horizontal stripe of the partition described above are
recursively evaluated in parallel by distinct M(n2/k2) submachines formed by disjoint
segments of consecutively numbered VPs; a tetrahedron of side n can be evaluated
through a recursive strategy similar to the one for the octahedron within the same
complexity bounds. As usual, we add to each superstep O(1) dummy messages per VP
to guarantee (Θ(1), n2)-wiseness.

THEOREM 4.13. The communication complexity of the above network-oblivious al-
gorithm for the (n, 2)-stencil problem when executed on M(p, σ) is

H2-stencil(n, p, σ) = O

(
n2
√
p

8
√
logn

)
,

for every 1 < p ≤ n2 and 0 ≤ σ = O
(
n2/p

)
. The algorithm is (Θ(1), n2)-wise and

Ω
(

1/8
√
logn

)
-optimal with respect to C2 on any M(p, σ) with 1 < p ≤ n2 and σ =

O
(
n2/p

)
.

PROOF. Let Hoctahedron(n, p, σ) be the communication complexity required by the re-
cursive strategy presented above for the evaluation of an octahedron of side n, when
executed on M(p, σ). The recursion depth of that strategy is τ = blogk nc. First suppose
that p ≤ k2τ . At every recursion level i, with 0 ≤ i < d(logk p)/2e, the evaluation of
each polyhedron of side ni = n/ki is performed by p/k2i > 1 processors, and each pro-
cessor sends/receives O

(
n2/p

)
messages in O(1) supersteps for processing the inputs

and outputs of these subproblems; on the other hand, at every recursion level i, with

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:25

d(logk p)/2e ≤ i ≤ τ , each polyhedron of side n/ki is evaluated by a single processor
of M(p, σ) and no communication takes place. Thus, the communication complexity
satisfies the recurrence relation:

Hoctahedron(n, p, σ) =

{
(4k − 3)Hoctahedron(n/k, p/k2, σ) +O

(
n2/p+ σ

)
if p > 1,

0 otherwise.

This recurrence has solution

Hoctahedron(n, p, σ) = O

d(logk p)/2e−1∑
i=0

(4k − 3)i+1

(
n2

p
+ σ

)
= O

(
(4k)(logk p)/2+1n

2

p

)
= O

(
n2
√
p

2logk pk

)
= O

(
n2
√
p

4
√
logn

)
,

where we used the hypothesis σ = O
(
n2/p

)
. Instead, when k2τ < p ≤ n2, we have that

at every recursion level i, with 0 ≤ i ≤ τ , the evaluation of each polyhedron of side
ni = n/ki is performed by p/k2i > 1 processors. Then, since for i = τ , polyhedra of side
nτ = n/kτ are evaluated straightforwardly in Θ(nτ) supersteps, we obtain

Hoctahedron(n, p, σ) = O

(
τ−1∑
i=0

(4k − 3)i+1

(
n2

p
+ σ

))
+O

(
(4k − 3)τ

n

kτ

(
n2

p
+ σ

))
= O

(
(4k)τ

n

kτ
n2

p

)
= O

(
n2
√
p

4τk

)
= O

(
n2
√
p

8
√
logn

)
,

where we used the hypothesis σ = O
(
n2/p

)
and the inequalities n/kτ < k and k2τ < p.

Similar upper bounds on the communication complexity can be proved for the eval-
uation of a tetrahedron of side n and for the evaluation of truncated octahedra or
tetrahedra.

Recall that the algorithm for the (n, 2)-stencil problem consists of 17 stages, where in
each stage the VPs take care of the evaluation of one (possibly truncated) octahedron
or tetrahedron of side n, and that the data movement which ensures the correct input
distribution for each stage can be accomplished in O(1) 0-supersteps, where each VP
sends/receives O(1) messages. This implies that

H2-stencil(n, p, σ) = O

(
n2
√
p

8
√
logn

)
.

Since the strategies for the evaluation of (possibly truncated) octahedra or tetrahedra
can be made (Θ(1), n2)-wise, through the introduction of suitable dummy messages,
the overall algorithm is also (Θ(1), n2)-wise. Moreover, the algorithm complies with
the requirements for belonging to C2, hence the claimed optimality is a consequence of
Lemma 4.10.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Gianfranco Bilardi et al.

COROLLARY 4.14. The above network-oblivious algorithm for the (n, 2)-stencil prob-
lem is Ω

(
1/8
√
logn

)
-optimal with respect to C2 on any D-BSP(p, g, `) machine with

1 < p ≤ n2, non-increasing gi’s and `i/gi’s, and `0/g0 = O
(
n2/p

)
.

PROOF. The corollary follows by Theorem 4.13 and by applying Theorem 3.4 with
p? = n2, σmi = 0, and σMi = Θ

(
n2/2i

)
.

4.5. Limitations of the Oblivious Approach
In this subsection, we establish a negative result by showing that for the broadcast
problem, defined below, a network-oblivious algorithm can achieve O(1)-optimality on
M(p, σ) only for very limited ranges of σ. Let V [0, 1, . . . , n − 1] be a vector of n entries.
The n-broadcast problem requires to copy the value V [0] into all other V [i]’s. Let C
denote the class of static algorithms for the n-broadcast problem such that any A ∈ C
for v processing elements satisfies the following properties: (i) at least εv processing
elements hold entries of V , for some constant 0 < ε ≤ 1, and the distribution of the
entries of V among the processing elements cannot change during the execution of the
algorithm; (ii) all of the foldings of A on 2j processing elements, 1 ≤ j < log v, also
belong to C . The following lemma establishes a lower bound on the communication
complexity of the algorithms in C

THEOREM 4.15. The communication complexity of any n-broadcast algorithm in C

when executed on M(p, σ), with 1 < p ≤ n and σ ≥ 0, is Ω
(

max{2, σ} logmax{2,σ} p
)

.

PROOF. Let A be an algorithm in C . Suppose that the execution of A on M(p, σ)
requires t supersteps, and let pi denote the number of processors that “know” the value
V [0] by the end of the i-th superstep, for 1 ≤ i ≤ t. Clearly, p0 = 1 and pt ≥ εp, since
by definition of C , at least εp processors hold entries of V to be updated with the
value V [0]. During the i-th superstep, pi − pi−1 new processors get to know V [0]. Since
at the beginning of this superstep only pi−1 processors know the value, we conclude
that the superstep involves an h-relation with h ≥ d(pi − pi−1)/pi−1e. Therefore, the
communication complexity of A is

HA(n, p, σ) ≥
t∑
i=1

(⌈
pi − pi−1
pi−1

⌉
+ σ

)
=

t∑
i=1

(⌈
pi
pi−1

⌉
− 1 + σ

)
.

Assuming, without loss of generality, that the pi’s are strictly increasing, we obtain

HA(n, p, σ) = Ω

(
tmax{2, σ}+

t∑
i=1

pi
pi−1

)
.

Since
∏t
i=1 pi/pi−1 = pt, it follows that

∑t
i=1 pi/pi−1 is minimized for pi/pi−1 = (pt)

1/t ≥
(εp)1/t, for 1 ≤ i ≤ t. Hence,

HA(n, p, σ) = Ω
(
t
(

max{2, σ}+ p1/t
))
. (7)

Standard calculus shows that the right-hand side is minimized (to within a constant
factor) by choosing t = Θ

(
logmax{2,σ} p

)
, and the claim follows.

The above lower bound is tight. Consider the following M(p, σ) algorithm for n-
broadcast. Let the entries of V be evenly distributed among the processors, with V [0]
held by processor P0. For convenience we assume n is a power of two. Let κ be the small-
est power of 2 greater than or equal to max{2, σ}. The algorithm consists of dlogκ pe su-

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:27

persteps: in the i-th superstep, with 0 ≤ i < dlogκ pe, each Pjp/κi , with 0 ≤ j < κi, sends
the value V [0] to P(κj+`)p/κi+1 , for each 0 ≤ ` < κ. (When logκ p is not an integer value,
in the last superstep only values of ` that are multiples of κi+1/p are used.) It is imme-
diate to see that the algorithm belongs to C and that its communication complexity on
M(p, σ) is

Hbroadκ(n, p, σ) = O((κ+ σ) logκ p) = O
(

max{2, σ} logmax{2,σ} p
)
.

Therefore, the algorithm is O(1)-optimal. Observe that the algorithm is aware of pa-
rameter σ and, in fact, this knowledge is crucial to achieve optimality. In order to
see this, we prove that any network-oblivious algorithm for n-broadcast can be Θ(1)-
optimal on M(p, σ), only for limited ranges of σ. Let H?(n, p, σ) denote the best commu-
nication complexity achievable on M(p, σ) by an algorithm for n-broadcast belonging
to C . By the above discussion we know that H?(n, p, σ) = Θ

(
max{2, σ} logmax{2,σ} p

)
.

Let A ∈ C be a network-oblivious algorithm for n-broadcast specified on M(v(n)). For
every 1 < p ≤ v(n) and 0 ≤ σ1 ≤ σ2, we define the maximum slowdown incurred by A
with respect to the best M(p, σ)-algorithm in C , for σ ∈ [σ1, σ2], as

GAPA(n, p, σ1, σ2) = max
σ1≤σ≤σ2

{
HA(n, p, σ)

H?(n, p, σ)

}
.

THEOREM 4.16. Let A ∈ C be a network-oblivious algorithm for n-broadcast speci-
fied on M(v(n)). For every 1 < p ≤ v(n) and 0 ≤ σ1 ≤ σ2, we have

GAPA(n, p, σ1, σ2) = Ω

(
log max{2, σ2}

log max{2, σ1}+ log log max{2, σ2}

)
.

PROOF. The definition of function GAP implies that

GAPA(n, p, σ1, σ2) = Ω

(
HA(n, p, σ1)

H?(n, p, σ1)
+
HA(n, p, σ2)

H?(n, p, σ2)

)
.

Let t be the number of supersteps executed by the folding of A on M(p, σ), and
note that, since A is network-oblivious, this number cannot depend on σ. By argu-
ing as in the proof of Theorem 4.15 (see Inequality 7) we get that HA(n, p, σ) =
Ω
(
t
(
max{2, σ}+ p1/t

))
, for any σ, hence GAPA(n, p, σ1, σ2) is bounded from below by

Ω

(
t
(
max{2, σ1}+ p1/t

)
max{2, σ1} logmax{2,σ1} p

+
t
(
max{2, σ2}+ p1/t

)
max{2, σ2} logmax{2,σ2} p

)
,

which is minimized for t = Θ(log p/(log max{2, σ1}+ log log max{2, σ2})). Substituting
this value of t in the above formula yields the stated result.

An immediate consequence of the above theorem is that if a network-oblivious al-
gorithm for n-broadcast is Θ(1)-optimal on M(p, σ) it cannot be simultaneously Θ(1)-
optimal on an M(p, σ′), for any σ′ sufficiently larger than σ. A similar limitation of the
optimality of a network-oblivious algorithm for n-broadcast can be argued with respect
to its execution on D-BSP(p, g, `).

5. EXTENSION TO THE OPTIMALITY THEOREM
The optimality theorem of Section 3 makes crucial use of the wiseness property.
Broadly speaking, a network-oblivious algorithm is (Θ(1), p)-wise when the commu-
nication performed in the various supersteps is somewhat balanced in the sense that

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Gianfranco Bilardi et al.

the maximum number of messages sent/received by a virtual processor does not dif-
fer significantly from the average number of messages sent/received by other virtual
processors belonging to the same region of suitable size. While there exist (Θ(1), p)-
wise network-oblivious algorithms for a number of important problems, as shown in
Section 4, there cases where wiseness may not be guaranteed.

As a simple example of poor wiseness, consider a network-oblivious algorithm A for
M(n) consisting of one 0-superstep where VP0 sends n messages to VPn/2. Fix p with
2 ≤ p ≤ n. Clearly, for each 1 ≤ j ≤ log p we have that HA(n, 2j , 0) = n, hence the algo-
rithm is (α, p)-wise only for α = O(1/p). When executed on a D-BSP(p, g,0), the com-
munication time of the algorithm is ng0. However, as already observed in [Bilardi et al.
2007a], under reasonable assumptions the communication time of the algorithm’s exe-
cution on the D-BSP can be improved by first evenly spreading the n messages among
clusters of increasingly larger size which include the sender, and then gathering the
messages within clusters of increasingly smaller size which include the receiver. Mo-
tivated by this observation, we introduce a more effective protocol to execute network-
oblivious algorithms on the D-BSP. By employing this protocol we are able to prove an
alternative optimality theorem which requires a much weaker property than wiseness,
at the expense of a slight (polylogarithmic) loss of efficiency.

Let A be a network-oblivious algorithm specified on M(v(n)), and consider its ex-
ecution on a D-BSP(p, g, `), with 1 ≤ p ≤ v(n). As before, each D-BSP processor Pj ,
with 0 ≤ j < p, carries out the operations of the v(n)/p consecutively numbered VPs of
M(v(n)) starting with VPj(v(n)/p). However, the communication required by each su-
perstep is now performed on D-BSP more effectively by enforcing a suitable balancing.
More precisely, each i-superstep s of A, with 0 ≤ i < log p, is executed on the D-BSP
through the following protocol, which we will refer to as ascend-descend protocol:

(1) (Computation phase) Each D-BSP processor performs the local computations of its
assigned virtual processors.

(2) (Ascend phase) For k = log p−1 downto i+1: within each k-cluster Γk, the messages
which originate in Γk but are destined outside Γk, are evenly distributed among the
p/2k processors of Γk.

(3) (Descend phase) For k = i to log p − 1: within each k-cluster Γk, the messages cur-
rently residing in Γk are evenly distributed among the processors of the (k + 1)-
clusters inside Γk which contain their final destinations.

Observe that each iteration of the ascend/descend phases requires a prefix-like com-
putation to assign suitable intermediate destinations to the messages in order to guar-
antee their even distribution in the appropriate clusters.

LEMMA 5.1. Let A be a network-oblivious algorithm specified on M(v(n)) and con-
sider its execution on D-BSP(p, g, `), with 1 < p ≤ v(n), using the ascend-descend pro-
tocol. Let s be an i-superstep, for some 0 ≤ i < log p, and let ξs be the sequence of
supersteps employed by the protocol for executing s. Then, for every i < k < log p, ξs
comprises O(1) k-supersteps of degree O

(
2khsA(n, 2k)/p

)
, and O(log p) k-supersteps each

of constant degree.

PROOF. Consider iteration k of the ascend phase of the protocol, with i + 1 ≤ k ≤
log p−1, and a k-cluster Γk. As invariant at the beginning of the iteration, we have that
the at most hsA(n, 2k+1) messages originating in each k+1-cluster Γ′ included in Γk and
destined outside Γk are evenly distributed among the processors of Γ′. Hence, the even
distribution of these messages among the p/2k processors of Γk requires a prefix-like
computation and anO

(
d2k+1hsA(n, 2k+1)/pe

)
-relation within Γk. Consider now iteration

k of the descend phase of the protocol, with i ≤ k ≤ log p − 1, and a k-cluster Γk. As

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:29

invariant at the beginning of the iteration, we have that the at most 2hsA(n, 2k+1) mes-
sages to be moved in the iteration are evenly distributed among the processors of Γk.
Since each (k + 1)-cluster included in Γk receives at most hsA(n, 2k+1) messages, the
iteration requires a prefix-like computation and an O

(
d2k+1hsA(n, 2k+1)/pe

)
-relation

within Γk. The lemma follows, since each prefix-like computation in a k-cluster can
be performed in O(log p) k-supersteps of constant degree (e.g., using a straightforward
tree-based strategy [JáJá 1992]).

We now define the notion of fullness, which is weaker than wiseness but which still
allows us to port the optimality of network-oblivious algorithms with respect to the
evaluation model onto the execution machine model, at the price of some loss of effi-
ciency.

Definition 5.2. A static network-oblivious algorithm A specified on M(v(n)) is said
to be (γ, p)-full, for some γ > 0 and 1 < p ≤ v(n), if the folding of A on M(2j , 0) satisfies

j−1∑
i=0

F iA
(
n, 2j

)
≥ γ p

2j

j−1∑
i=0

SiA(n),

for every 1 ≤ j ≤ log p and input size n.

It is easy to see that a (Θ(1), p)-wise network-oblivious algorithm A is also (Θ(1), p)-
full as long as hsA(n, p) ≥ 1, for every i-superstep s of A and every 1 < p ≤ v(n).
On the other hand, a (Θ(1), p)-full algorithm is not necessarily (Θ(1), p)-wise, as wit-
nessed by the previously mentioned network-oblivious algorithm consisting of a sin-
gle 0-superstep where VP0 sends n messages to VPn/2, which is (Θ(1), p)-full but not
(Θ(1), p)-wise, for any 2 ≤ p ≤ n. In this sense, (γ, p)-fullness is a weaker condition
than (Θ(1), p)-wiseness.

The following theorem shows that when (γ, p)-full algorithms are executed on the
D-BSP using the ascend-descend protocol, optimality in the evaluation model is pre-
served on the D-BSP within a polylogarithmic factor. As in Section 3, let C denote a
class of static algorithms solving a problem Π, with the property that for any algorithm
A ∈ C for v processing elements, all of its foldings on 2j processing elements, for each
1 ≤ j < log v, also belong to C .

THEOREM 5.3. Let A ∈ C be a (γ, p?)-full network-oblivious algorithm for some
γ > 0 and a power of two p∗. Let also {σm0 , σm1 , . . . , σmlog p?−1} and {σM0 , σM1 , . . . , σMlog p?−1}
be two vectors of non-negative values, with σmj ≤ σMj , for every 0 ≤ j < log p?. If A is
β-optimal on M(2j , σ) w.r.t. C , for σmj−1 ≤ σ ≤ σMj−1 and 1 ≤ j ≤ log p?, then, for every
power of two p ≤ p?,A is Θ

(
β/((1 + 1/γ) log2 p)

)
-optimal on D-BSP(p, g, `) w.r.t. C when

executed with the ascend-descend protocol, as long as:

— the execution of A on D-BSP(p, g, `) using the ascend-descend protocol is in C ;
— gi ≥ gi+1 and `i/gi ≥ `i+1/gi+1, for 0 ≤ i < log p− 1;
— max1≤k≤log p{σmk−12k/p} ≤ `i/gi ≤ min1≤k≤log p{σMk−12k/p}, for 0 ≤ i < log p.

PROOF. Consider the execution of A on a D-BSP(p, g, `) using the ascend-descend
protocol. Let Ã denote the actual sequence of supersteps performed on the D-BSP in
this execution of A. Note that once the D-BSP parameters are fixed, Ã can be regarded
as a network-oblivious algorithm specified on M(p). Clearly, any optimality considera-
tions on the communication time of the execution of Ã (regarded as a network-oblivious
algorithm) on D-BSP(p, g, `) using the standard protocol, will also apply to the commu-

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Gianfranco Bilardi et al.

nication time of the execution ofA on D-BSP(p, g, `) using the ascend-descend protocol,
being the two communication times the same.

We will assess the degree of optimality of the communication time of Ã by resort-
ing to Theorem 3.4. This entails analyzing the communication complexity of Ã on
M(2j , σ), for any 1 ≤ j ≤ log p, and determining its wiseness. Focus on M(2j , σ) for
some 1 ≤ j ≤ log p, and consider an arbitrary i-superstep s of A, for some 0 ≤ i < j.
Let ξs be the sequence of supersteps in Ã executed in the ascend and descend phases
associated with superstep s. From Lemma 5.1, we know that for every i < k < log p,
ξs comprises O(1) k-supersteps of degree O

(
2khsA(n, 2k)/p

)
, and O(log p) k-supersteps

each of constant degree. Now, in the execution on M(2j , σ) a k-superstep with k ≥ j
becomes local to the processors and does not contribute to the communication com-
plexity. Since each processor of M(2j , σ) corresponds to p/2j processors of M(p), the
communication complexity on M(2j , σ) contributed by the sequence ξs is

O

(
j−1∑
k=i+1

(
p

2j

(
2k

p
hsA(n, 2k) + log p

)
+ σ log p

))
.

Therefore, since hsA(n, 2k) ≤ 2j−khsA(n, 2j), the above summation is upper bounded by

O

(
j−1∑
k=i+1

(
hsA(n, 2j) +

p log p

2j
+ σ log p

))
= O

((
hsA(n, 2j) +

p

2j
+ σ

)
log2 p

)
.

Recall that LiA(n) denotes the set of i-supersteps executed by A, and SiA(n) = |LiA(n)|.
Thus, the communication complexity of Ã on M(2j , σ) can be written as

HÃ(n, 2j , σ) = O

j−1∑
i=0

∑
s∈LiA(n)

(
hsA(n, 2j) +

p

2j
+ σ

)
log2 p

= O

log2 p

j−1∑
i=0

∑
s∈LiA(n)

(
hsA(n, 2j) + σ

)
+

j−1∑
i=0

∑
s∈LiA(n)

p

2j

= O

(
log2 p

(
HA(n, 2j , σ) +

p

2j

j−1∑
i=0

SiA(n)

))
= O

(
(1 + 1/γ) log2 p ·HA(n, 2j , σ)

)
,

where the last inequality follows by the (γ, p∗)-fullness of A.
The above inequality shows that algorithm Ã is β/((1 + 1/γ) log2 p)-optimal as a con-

sequence of the β-optimality of A. Let us now assess the wiseness of Ã. Consider again
the sequence ξs of supersteps of Ã associated with an arbitrary i-superstep s of A, for
some 0 ≤ i < log p. We know that for every i < k < log p, ξs comprises O(1) k-supersteps
of degree O

(
2khsA(n, 2k)/p

)
, and O(log p) k-supersteps each of constant degree. More-

over, we can assume that suitable dummy messages are added so that in a k-superstep
of degree O

(
2khsA(n, 2k)/p

)
(resp., degree O(1)) all processors of a (k + 1)-cluster send

Θ
(
2khsA(n, 2k)/p

)
(resp., Θ(1)) messages to the sibling (k + 1)-cluster included in the

same k-cluster. It is easy to see that the above considerations about the optimality of
Ã remain unchanged, while Ã becomes (Θ(1), p)-wise. Finally, we recall that Ã belongs
to class C by hypothesis, and this is so even forcing it into being wise. Therefore, by

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:31

applying Theorem 3.4 to Ã, we can conclude that Ã, hence A, is Θ
(
β/((1 + 1/γ) log2 p)

)
-

optimal on a D-BSP(p, g, `) with parameters satisfying the initial hypotheses.

As remarked above, the fullness requirement is considerably less stringent than
wiseness. Algorithmic strategies that could benefit from this weaker requirement
might be, for example, those designed for processor networks characterized by low-
bandwidth decompositions into subnets. Typical communication patterns arising in
these strategies may not feature constant wiseness since at each level of the decom-
position a small fraction of boundary processors communicates across subnets, while
they may exhibit constant fullness as long as a sufficiently large number of messages
are exchanged among these boundary processors.

We conclude this section by observing that the relation stated by Theorem 5.3 be-
tween optimality in the evaluation model and optimality in D-BSP can be tightened
when the gi and `i parameters of the D-BSP decrease geometrically. In this case, it
is known that a prefix-like computation within a k-cluster, for 0 ≤ k < log p, can be
performed in O(gk + `k) communication time (e.g., see [Bilardi et al. 2007a, Proposi-
tion 2.2.2]). Then, by a similar argument used to prove Theorem 5.3 it can be shown
that a (γ, p)-full algorithm A which is β-optimal in the evaluation model becomes
Θ(β/((1 + 1/γ) log p))-optimal when executed on the D-BSP, thus reducing by a factor
log p the gap between the two optimality factors.

6. CONCLUSIONS
We introduced a framework to explore the design of network-oblivious algorithms, that
is, algorithms which run efficiently on machines with different processing power and
different bandwidth/latency characteristics, without making explicit use of architec-
tural parameters for tuning performance. In the framework, a network-oblivious algo-
rithm is written for v(n) virtual processors (specification model), where n is the input
size and v(·) a suitable function. Then, the performance of the algorithm is analyzed
in a simple model (evaluation model) consisting of p ≤ v(n) processors and where
the impact of the network topology on communication costs is accounted for by a la-
tency parameter σ. Finally, the algorithm is executed on the D-BSP model [de la Torre
and Kruskal 1996; Bilardi et al. 2007a] (execution machine model), which describes
reasonably well the behavior of a large class of point-to-point networks by capturing
their hierarchical structures. A D-BSP consists of p ≤ v(n) processors and its network
topology is described by the log p-size vectors g and `, which account for bandwidth
and latency costs within nested clusters, respectively. We have shown that for static
network-oblivious algorithms, where the communication requirements depend only on
the input size and not on the specific input instance (e.g., algorithms arising in DAG
computations), the optimality on the evaluation model for certain ranges of p and σ
translates into optimality on the D-BSP model for corresponding ranges of the model’s
parameters. This result justifies the introduction of the evaluation model that allows
for a simple analysis of network-oblivious algorithms while effectively bridging the
performance analysis to D-BSP which more accurately models the communication in-
frastructure of parallel platforms through a logarithmic number of parameters.

We devised Θ(1)-optimal static network-oblivious algorithms for prominent prob-
lems such as matrix multiplication, FFT, and sorting, although in the case of sorting
optimality is achieved only when the available parallelism is polynomially sublinear
in the input size. Also, we devised suboptimal, yet efficient, network-oblivious algo-
rithms for stencil computations, and we explored limitations of the oblivious approach
by showing that for the broadcasting problem optimality in D-BSP can be achieved by
a network-oblivious algorithm only for rather limited ranges of the parameters. Simi-
lar negative results were also proved in the realm of cache-oblivious algorithms (e.g.,

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Gianfranco Bilardi et al.

see [Bilardi and Peserico 2001; Brodal and Fagerberg 2003; Silvestri 2006; 2008]). De-
spite these limitations, the pursuit of oblivious algorithms appears worthwhile even
when the outcome is a proof that no such algorithm can be Θ(1)-optimal on an ample
class of target machines. Indeed, the analysis behind such a result is likely to reveal
what kind of adaptivity to the target machine is necessary to obtain optimal perfor-
mance.

The present work can be naturally extended in several directions, some of which are
briefly outlined below. First, it would be useful to further assess the effectiveness of our
framework by developing novel efficient network-oblivious algorithms for prominent
problems beyond the ones of this paper. Some progress in this direction has been done
in [Chowdhury et al. 2013; Demmel et al. 2013]. For the problems considered here, in
particular sorting and stencil computations, it would be very interesting to investigate
the potentiality of the network-oblivious approach at a fuller degree. More generally,
it would be interesting to develop lower-bound techniques to limit the level of optimal-
ity that network-oblivious algorithms can reach on certain classes of target platforms.
Another challenging goal concerns the generalization of the results of Theorems 3.4
and 5.3 to a wider class of algorithms, for instance by removing the restriction to static
algorithms and/or by weakening the assumptions (wiseness or fullness) required to
prove these theorems. It would be also useful to identify other classes of machines
for which network-oblivious algorithms can be effective. Another open problem is to
augment our framework by incorporating memory constraints in the evaluation model
so to study the interplay between communication, parallelism and memory. In this
context, it is important to devise suitable schedulers that map network-oblivious al-
gorithms on the evaluation model without violating the memory constraints, and to
study the inherent tradeoffs for fundamental problems. Preliminary results in these
directions include space-bounded schedulers for multicores (e.g., [Chowdhury et al.
2013; Simhadri et al. 2014]), and tradeoffs for linear algebra problems (e.g., [Irony
et al. 2004; Ballard et al. 2011; Ballard et al. 2012]). More in general, it would be very
interesting to generalize our work to apply to computing scenarios, such as traditional
time-shared systems as well as emerging global computing environments, where the
amount of resources devoted to a specific application can itself vary dynamically over
time, in the same spirit as [Bender et al. 2014] generalized the cache-oblivious frame-
work to environments in which the amount of memory available to an algorithm can
fluctuate.

Finally, we observe that some of the network-oblivious algorithms presented in this
paper share a similar structure with their cache-oblivious counterparts (see, e.g., the
matrix multiplication and FFT algorithms). It would be interesting to explore whether
there is a deeper relations between the two kinds of obliviousness. We conjecture that
cache-oblivious algorithms can be obtained by simulating network-oblivious ones us-
ing a suitable adaptation of the technique developed in [Pietracaprina et al. 2006].
However, the other direction seems far more challenging, since cache-oblivious algo-
rithms do not have to exhibit parallelism necessarily. The ultimate goal would be rep-
resented by the integration of cache- and network-obliviousness in a unified framework
for the development of machine-oblivious computations. The results obtained by [Blel-
loch et al. 2010; Chowdhury et al. 2013] in the context of shared-memory platforms
could be a source of inspiration toward this goal.

Acknowledgments
The authors would like to thank Vijaya Ramachandran for helpful discussions and the
anonymous reviewers for useful comments.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:33

REFERENCES
Alok Aggarwal, Bowen Alpern, Ashok K. Chandra, and Marc Snir. 1987. A model for hierarchical memory.

In Proceedings of the 19th ACM Symposium on Theory of Computing (STOC). 305–314.
Alok Aggarwal, Ashok K. Chandra, and Marc Snir. 1987. Hierarchical memory with block transfer. In Pro-

ceedings of the 28th IEEE Symposium on Foundations of Computer Science (FOCS). 204–216.
Alok Aggarwal, Ashok K. Chandra, and Marc Snir. 1990. Communication complexity of PRAMs. Theoret.

Comput. Sci. 71, 1 (1990), 3–28.
Alok Aggarwal and Jeffrey S. Vitter. 1988. The input/output complexity of sorting and related problems.

Comm. ACM 31, 9 (1988), 1116–1127.
Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and Oded Schwartz. 2012. Brief Announce-

ment: strong scaling of matrix multiplication algorithms and memory-independent communication
lower bounds. In Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA). 77–79.

Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. 2011. Minimizing communication in numer-
ical linear algebra. SIAM J. Matrix Analysis Applications 32, 3 (2011), 866–901.

Armin Bäumker, Wolfgang Dittrich, and Friedhelm Meyer auf der Heide. 1998. Truly efficient parallel algo-
rithms: 1-optimal multisearch for an extension of the BSP model. Theoret. Comput. Sci. 203, 2 (1998),
175–203.

Michael A. Bender, Roozbeh Ebrahimi, Jeremy T. Fineman, Golnaz Ghasemiesfeh, Rob Johnson, and Samuel
McCauley. 2014. Cache-adaptive algorithms. In Proceedings of the 25th annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). 958–971.

Sandeep N. Bhatt, Gianfranco Bilardi, and Geppino Pucci. 2008. Area-time tradeoffs for universal VLSI
circuits. Theoret. Comput. Sci. 408, 2-3 (2008), 143–150.

Gianfranco Bilardi and Enoch Peserico. 2001. A characterization of temporal locality and its portability
across memory hierarchies. In Proceedings of the 28th International Colloquium on Automata, Lan-
guages and Programming (ICALP). 128–139.

Gianfranco Bilardi and Andrea Pietracaprina. 2011. Theoretical models of computation. In Encyclopedia of
Parallel Computing, David A. Padua (Ed.). Springer, 1150–1158.

Gianfranco Bilardi, Andrea Pietracaprina, and Geppino Pucci. 1999. A quantitative measure of portability
with application to bandwidth-latency models for parallel computing. In Proceedings of the 5th Interna-
tional Euro-Par Conference on Parallel Processing (Euro-Par). 543–551.

Gianfranco Bilardi, Andrea Pietracaprina, and Geppino Pucci. 2007a. Decomposable BSP: A bandwidth-
latency model for parallel and hierarchical computation. In Handbook of Parallel Computing: Models,
Algorithms and Applications, John Reif and Sanguthevar Rajasekaran (Eds.). CRC Press, 277–315.

Gianfranco Bilardi, Andrea Pietracaprina, Geppino Pucci, and Francesco Silvestri. 2007b. Network-
oblivious algorithms. In Proceedings of the 21st IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 1–10.

Gianfranco Bilardi and Franco Preparata. 1995. Horizons of parallel computation. J. Parallel Distrib. Com-
put. 27, 2 (1995), 172–182.

Gianfranco Bilardi and Franco Preparata. 1997. Processor-time tradeoffs under bounded-speed message
propagation: Part I, upper bounds. Theory Comput. Syst. 30, 6 (1997), 523–546.

Gianfranco Bilardi and Franco Preparata. 1999. Processor-time tradeoffs under bounded-speed message
propagation: Part II, lower bounds. Theory Comput. Syst. 32, 5 (1999), 531–559.

Gianfranco Bilardi and Geppino Pucci. 2011. Universality in VLSI computation. In Encyclopedia of Parallel
Computing, David A. Padua (Ed.). Springer, 2112–2118.

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2011. Scheduling
irregular parallel computations on hierarchical caches. In Proceedings of the 23rd ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). 355–366.

Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2010. Low depth cache-oblivious algo-
rithms. In Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 189–199.

Gerth S. Brodal and Rolf Fagerberg. 2003. On the limits of cache-obliviousness. In Proceedings of the 35th
ACM Symposium on Theory of Computing (STOC). 307–315.

Rezaul A. Chowdhury and Vijaya Ramachandran. 2008. Cache-efficient dynamic programming algorithms
for multicores. In Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA). 207–216.

Rezaul A. Chowdhury, Vijaya Ramachandran, Francesco Silvestri, and Brandon Blakeley. 2013. Oblivious
algorithms for multicores and networks of processors. J. Parallel Distrib. Comput. 73, 7 (2013), 911–925.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 Gianfranco Bilardi et al.

Richard Cole and Vijaya Ramachandran. 2010. Resource oblivious sorting on multicores. In Proceedings of
the 37th International Colloquium on Automata, Languages and Programming (ICALP). 226–237.

Richard Cole and Vijaya Ramachandran. 2012a. Efficient resource oblivious algorithms for multicores with
false sharing. In Proceedings of the 26th IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS). 201–214.

Richard Cole and Vijaya Ramachandran. 2012b. Revisiting the cache miss analysis of multithreaded algo-
rithms. In Proceedings of the 10th Latin American Theoretical Informatics Symposium (LATIN). 172–
183.

David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay, Eunice E. Santos, Klaus E. Schauser,
Ramesh Subramonian, and Thorsten von Eicken. 1996. LogP: A practical model of parallel computation.
Comm. ACM 39, 11 (1996), 78–85.

Pilar de la Torre and Clyde P. Kruskal. 1996. Submachine locality in the bulk synchronous setting. In Pro-
ceedings of the 2nd International Euro-Par Conference on Parallel Processing (Euro-Par). 352–358.

James Demmel, David Eliahu, Armando Fox, Shoaib Kamil, Ben Lipshitz, Oded Schwartz, and Omer
Spillinger. 2013. Communication-optimal parallel recursive rectangular matrix multiplication. In Pro-
ceedings of the 27th IEEE International Parallel and Distributed Processing Symposium (IPDPS). 261–
272.

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. 2012. Cache-oblivious
algorithms. ACM Trans. Algorithms 8, 1, Article 4 (2012), 22 pages.

Matteo Frigo and Volker Strumpen. 2005. Cache oblivious stencil computations. In Proceedings of the 19th
International Conference on Supercomputing (ICS). 361–366.

Matteo Frigo and Volker Strumpen. 2009. The cache complexity of multithreaded cache oblivious algorithms.
Theory Comput. Syst. 45, 2 (2009), 203–233.

Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran. 1999. Can a shared-memory model serve as a
bridging model for parallel computation? Theory Comput. Syst. 32, 3 (1999), 327–359.

Kieran T. Herley. 2011. Network obliviousness. In Encyclopedia of Parallel Computing, David A. Padua
(Ed.). Springer, 1298–1303.

Dror Irony, Sivan Toledo, and Alexandre Tiskin. 2004. Communication lower bounds for distributed-memory
matrix multiplication. J. Parallel Distrib. Comput. 64, 9 (2004), 1017–1026.

Joseph JáJá. 1992. An Introduction to Parallel Algorithms. Addison-Wesley Longman Publishing Co., Inc.
Ben H. H. Juurlink and Harry A. G. Wijshoff. 1998. A quantitative comparison of parallel computation

models. ACM Trans. Comput. Syst. 16, 3 (1998), 271–318.
Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A Model of Computation for MapReduce.

In Proceedings of the 21st annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 938–948.
Leslie Robert Kerr. 1970. The Effect of Algebraic Structure on the Computational Complexity of Matrix

Multiplication. Ph.D. Dissertation. Cornell University.
Frank T. Leighton. 1985. Tight bounds on the complexity of parallel sorting. IEEE Trans. Comput. 34, 4

(1985), 344–354.
Frank T. Leighton. 1992. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes.

Morgan Kaufmann Publishers Inc.
Charles E. Leiserson. 1985. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE

Trans. Comput. 34, 10 (1985), 892–901.
Charles E. Leiserson and Bruce M. Maggs. 1988. Communication-efficient parallel algorithms for dis-

tributed random-access machines. Algorithmica 3, 1-4 (1988), 53–77.
Andrea Pietracaprina, Geppino Pucci, Matteo Riondato, Francesco Silvestri, and Eli Upfal. 2012. Space-

round tradeoffs for MapReduce computations. In Proceedings of the 26th ACM International Conference
on Supercomputing (ICS). 235–244.

Andrea Pietracaprina, Geppino Pucci, and Francesco Silvestri. 2006. Cache-oblivious simulation of parallel
programs. In Proceedings of the 8th IEEE IPDPS Workshop on Advances in Parallel and Distributed
Computational Models (APDCM). 1–8.

John E. Savage. 1998. Models of Computation: Exploring the Power of Computing. Addison-Wesley Longman
Publishing Co., Inc.

Michele Scquizzato and Francesco Silvestri. 2014. Communication lower bounds for distributed-memory
computations. In Proceedings of the 31st Symposium on Theoretical Aspects of Computer Science
(STACS). 627–638.

Francesco Silvestri. 2006. On the limits of cache-oblivious matrix transposition. In Proceedings of the 2nd
Symposium on Trustworthy Global Computing (TGC). 233–243.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Algorithms A:35

Francesco Silvestri. 2008. On the limits of cache-oblivious rational permutations. Theoret. Comput. Sci. 402,
2-3 (2008), 221–233.

Harsha Vardhan Simhadri, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Aapo Kyrola. 2014.
Experimental analysis of space-bounded schedulers. In Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). 30–41.

Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and Charles E. Leiserson.
2011. The pochoir stencil compiler. In Proceedings of the 23rd ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA). 117–128.

Yuan Tang, Ronghui You, Haibin Kan, Jesmin Jahan Tithi, Pramod Ganapathi, and Rezaul A. Chowdhury.
2015. Cache-oblivious wavefront: improving parallelism of recursive dynamic programming algorithms
without losing cache-efficiency. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP). 205–214.

Alexandre Tiskin. 1998. The bulk-synchronous parallel random access machine. Theoret. Comput. Sci. 196,
1-2 (1998), 109–130.

Leslie G. Valiant. 1990. A bridging model for parallel computation. Comm. ACM 33, 8 (1990), 103–111.
Leslie G. Valiant. 2011. A bridging model for multi-core computing. J. Comput. System Sci. 77, 1 (2011),

154–166.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 Gianfranco Bilardi et al.

A. LIST OF NOTATIONS AND SYMBOLS
The following table summarizes the most important notations and symbols used in the
paper.

Notation/Symbol Meaning

n Input size.

M(v)
Computational model which underlies the specification, evaluation and
execution models. It consists of v processing elements.

M(v(n)) Specification model with v(n) virtual processors.

M(p, σ) Evaluation model with p processors.

D-BSP(p, g, `) Execution model with p processors.

v
Number of processing elements in the underlying model. The symbol v
can thus refer to any (specification, evaluation or execution) model.

v(n) Number of virtual processors in the specification model.

p Number of processors in the evaluation or execution models.

σ Latency parameter in the evaluation model M(p, σ).

g = (g0, g1, . . . , glog p−1) Bandwidth parameters of the execution model D-BSP(p, g, `).

` = (`0, `1, . . . , `log p−1) Latency parameters of the execution model D-BSP(p, g, `).

Li
A(I), (resp., Li

A(n)) Set of i-supersteps executed by an algorithm A on input I (resp., by a
static algorithm A on an input of size n).

Si
A(I), (resp., Si

A(n)) Si
A(I) = |Li

A(I)| (resp., Si
A(n) = |Li

A(n)|).

hsA(I, p) (resp., hsA(n, p))

Maximum number of messages sent or received by a processor of M(p, σ)
or D-BSP(p, g, `) during superstep s of an algorithm A on input I (resp.,
of a static algorithm A on an input of size n). It is also called degree of
the superstep.

F i
A(I, p) (resp., F i

A(n, p)) Cumulative degree of all i-supersteps of an algorithm A on input I (resp.,
of a static algorithm A on an input of size n).

HA(n, p, σ)
Communication complexity of an algorithm A on M(p, σ) with input size
n.

DA(n, p, g, `)
Communication time of an algorithm A on D-BSP(p, g, `) with input size
n.

C Class of algorithms that solve a given computational problem.

β-optimality Characterization of the optimality of algorithms in the evaluation model
and in the execution model (see Definitions 2.1 and 2.2, respectively).

(α, p)-wiseness,
(γ, p)-fullness

Characterizations of the communication pattern in the evaluation model
of a network-oblivious algorithm (see Definitions 3.2 and 5.2, respec-
tively).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

