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ABSTRACT
We study two fundamental graph problems, Graph Connectivity
(GC) and Minimum Spanning Tree (MST), in the well-studied Con-
gested Clique model, and present several new bounds on the time
and message complexities of randomized algorithms for these prob-
lems. No non-trivial (i.e., super-constant) time lower bounds are
known for either of the aforementioned problems; in particular,
an important open question is whether or not constant-round algo-
rithms exist for these problems. We make progress toward answer-
ing this question by presenting randomized Monte Carlo algorithms
for both problems that run in O(log log logn) rounds (where n is
the size of the clique). Our results improve by an exponential fac-
tor on the long-standing (deterministic) time bound ofO(log log n)
rounds for these problems due to Lotker et al. (SICOMP 2005). Our
algorithms make use of several algorithmic tools including graph
sketching, random sampling, and fast sorting.

The second contribution of this paper is to present several almost-
tight bounds on the message complexity of these problems. Specif-
ically, we show that Ω(n2) messages are needed by any algorithm
(including randomized Monte Carlo algorithms, and regardless of
the number of rounds) that solves the GC (and hence also the MST)
problem if each machine in the Congested Clique has initial knowl-
edge only of itself (the so-called KT0 model). In contrast, if the ma-
chines have initial knowledge of their neighbors’ IDs (the so-called
KT1 model), we present a randomized Monte Carlo algorithm for
MST that usesO(npolylogn) messages and runs inO(polylogn)
rounds. To complement this, we also present a lower bound in the
KT1 model that shows that Ω(n) messages are required by any al-
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gorithm that solves GC, regardless of the number of rounds used.
Our results are a step toward understanding the power of random-
ization in the Congested Clique with respect to both time and mes-
sage complexity.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complexity]: Gen-
eral; C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Algorithms, Theory

Keywords
Congested Clique; Graph connectivity; Minimum spanning tree;
Graph sketches; Message complexity; Randomization

1. INTRODUCTION
The Congested Clique model consists of n machines that can

communicate with each other via an underlying complete network.
A key feature of the model is the bandwidth restriction on the
communication links, i.e., only a limited number of bits (typically
O(logn) bits, as assumed here) can be sent along each link in each
round. In the Congested Clique, since the diameter of the commu-
nication network is just one, every machine is within one hop of ev-
ery other machine and thus all information is quite local. The main
algorithmic issue lies then in dealing with the potential congestion
caused by the bandwidth restrictions. Indeed, there has been a lot of
recent work in studying various fundamental problems in the Con-
gested Clique model, including facility location [12, 6], minimum
spanning tree (MST) [22, 14], shortest paths and distances [7, 15,
25], triangle finding [10, 9], subgraph detection [10], ruling sets [6,
14], sorting [28, 21], and routing [21]. The modelling assumption
in solving these problems is that the input graph G = (V,E) is
“embedded” in the Congested Clique, that is, each node of G is
uniquely mapped to a machine and the edges of G are naturally
mapped to the links between the corresponding machines (cf. Sec-
tion 1.2).

Research on the Congested Clique has focused mostly on the
time complexity (i.e., the number of synchronous rounds) of these



problems. The complete network allows Θ(n2) (different) mes-
sages (each message is of size O(logn) bits) to be exchanged in
each round, and many of the time-efficient algorithms for various
problems have exploited this vast parallel communication ability
to give “super-fast” algorithms that run in a sub-logarithmic (in n)
number of rounds. An important early result is the work of Lotker
et al. [22], which presented anO(log log n)-round deterministic al-
gorithm for the MST problem. This was a significant improvement
at the time (only an O(logn)-round algorithm was known [29]).
Lotker et al. left open the question of whether or not an even faster
algorithm was possible—in particular, whether a constant-round
algorithm could be possible for MST or for the (simpler) prob-
lem of graph connectivity (GC). Regarding lower bounds, almost
nothing non-trivial is known.1 In particular, for the GC and MST
problems, no super-constant time lower bounds are known.2 The
situation is not promising from the lower bounds side: the recent re-
sults of [11] have proved that showing substantially super-constant
lower bounds on time in the Congested Clique is as hard as prov-
ing long-open lower bounds in circuit complexity. However, this
leaves open the important question of whether or not constant-time
algorithms are possible for GC as well as the MST problem.

Thus far there has been little work on understanding the message
complexity of problems in the Congested Clique. Message com-
plexity refers to the number of messages (typically of polylogarith-
mic size) sent and received by all machines over the course of an al-
gorithm; in many applications, this is the dominant cost as it plays a
major role in determining the running time and auxiliary resources
(e.g., energy) consumed by the algorithm. For example, communi-
cation cost is one of the dominant costs in distributed computation
on large-scale data in modern data centers [19]. In the particular
context of the Congested Clique, optimizing messages as well as
time has direct applications to the performance of distributed al-
gorithms in other models such as the Big Data (k-machine) model
[19], which was recently introduced to study distributed computa-
tion on large-scale graphs. The above work shows how to “convert”
algorithms (cf. Conversion theorem of [19]) designed in the Con-
gested Clique model to the Big Data model; the running time in the
Big Data model depends on both the time and the message com-
plexities of the corresponding algorithm in the Congested Clique
model. Another related motivation comes from the connection be-
tween the Congested Clique model and the MapReduce model.
In [13] it is shown that if a Congested Clique algorithm runs in
T rounds and, in addition, has moderate message complexity, then
it can be simulated in the MapReduce model in O(T ) rounds.

1.1 Our Contributions
In this paper we focus on two fundamental graph problems in the

Congested Clique, namely graph connectivity (GC) and minimum
spanning tree (MST), and present several new results that make
progress toward understanding the time and message complexities
of randomized algorithms for these problems.

Faster Algorithms for GC and MST. Our first contribution con-
sists of randomized (Monte Carlo) algorithms, running inO(log log logn)
rounds and succeeding with high probability (w.h.p.), for both GC

1This is the case with respect to the standard unicast/multicast ver-
sion of the Congested Clique—the model assumed in this paper—
where each node can send a different message (or no message at all)
along each of its incident links in each round. Recently, time lower
bounds have been shown in the weaker broadcast version of the
Congested Clique—where machines can send only the same mes-
sage across its incident links in a round—for some problems such
as shortest paths [15] and the subgraph detection problem [10].
2This is true even in the broadcast version of the model.

and MST (cf. Section 2.3).3 Our results improve by an exponen-
tial factor on the long-standing time upper bound of O(log logn)
rounds for MST due to Lotker et al. [22]. It is worth mentioning
that the Lotker et al. MST algorithm is deterministic, in contrast
to ours, which uses randomness in a crucial way. Our algorithms
make use of several tools including sketching, random sampling,
and fast sorting. We first show how to solve GC inO(log log logn)
rounds. We do this by making use of linear sketches [3, 2, 23] in
addition to Lotker et al.’s algorithm. The latter is used as a “pre-
processing” step to first decrease the size of the graph with which
we must work. Specifically, we run the algorithm of Lotker et al. for
O(log log logn) rounds and this yields enough MST edges so that
the number of connected components induced by these edges shrinks
to O(n/polylogn). This in turn lends itself to an application
of sketching. Linear sketching [3, 2, 23] is a powerful technique
which is helpful in efficiently determining an outgoing edge of
a component. A sketch of a vertex (or a component) is a short
O(polylogn)-bit vector that efficiently encodes the neighborhood
of the vertex. Sampling from this sketch gives a random (outgo-
ing) edge of this vertex (component). A critically useful property
arises from the linearity of the sketches: adding the sketches of a
set of vertices gives the sketch of the component induced by ver-
tex set; the edges between the nodes within a component (i.e., the
intra-component edges) are automatically “cancelled”, leaving only
a sketch of the outgoing edges. After reducing the size of the graph
to O(n/polylogn), it is possible to check connectivity locally by
simply sending the sketches to a single node in the clique. We use
our connectivity algorithm as a key ingredient in our MST algo-
rithm. MST is a more-challenging problem, and (likely) cannot be
solved using sketches alone or by simply collecting information at
a single node. However, by leveraging the fact that our connectivity
algorithm (except the Lotker et al. part) uses only O(n) messages,
we can run several GC subroutines in parallel. In our MST algo-
rithm, edges are partitioned intoO(

√
n) groups by weight and each

group of edges is processed by a separate GC subroutine; therefore,
up to Θ(

√
n) GC subroutines could be running in parallel. We

note that the runtimes of our algorithms are dominated by the pre-
processing step that employs the subroutine of Lotker et al. (which
takesO(log log logn) rounds); all other parts require only constant
time.

It is worth emphasizing that if we allow O(polylogn) bits per
message, instead of O(logn) bits per message (which is the stan-
dard bound for the Congested Clique model), then our algorithm
solves MST in O(1) rounds. In other words, enlarging the per-link
bandwidth to O(polylogn) obviates the need for using the Lotker
et al. MST algorithm as a pre-processing step. Lotker et al. point
out that their algorithm also extends to a larger bandwidth setting;
specifically, running in O(log 1/ε) rounds if each message is nε

bits long. For example, this implies that the Lotker et al. algo-
rithm would run in O(1) rounds if each message was allowed to
contain Θ(

√
n) bits. This need for poly-sized messages should be

contrasted with our MST algorithm which is capable of running in
O(1) rounds using only O(polylogn)-sized messages.

Message Complexity Bounds. Our second contribution is a col-
lection of almost-tight lower bounds on the message complexity of
GC and MST. Unlike time complexity, when we talk about mes-
sage complexity there are subtle distinctions that must be made re-
lating to the models. In particular, the distinction between having
and not having initial knowledge of neighbors’ IDs is relevant. Our
O(log log logn)-round randomized MST algorithm has a message

3Throughout this paper, by “w.h.p.” we mean with probability at
least 1− 1/nΩ(1).



complexity of Θ(n2) (as does the algorithm of Lotker et al. [22]).
As we improved on the time complexity using randomization, a
natural question is whether we can improve the message complex-
ity as well. It turns out that the answer depends on the distinc-
tion relating to initial knowledge, mentioned above. Specifically,
in Section 3 we show that Ω(n2) messages are needed by any (ran-
domized) algorithm (regardless of the number of rounds) to solve
the GC (and hence the MST) problem if each machine in the clique
has (initial) knowledge of only itself (the so-called KT0 model,
cf. Section 1.2). This result improves on the Ω(n2) MST lower
bound of Korach et al. [20], which applies only to deterministic al-
gorithms. On the other hand, if machines begin with knowledge
of their neighbors’ IDs (the so-called KT1 model, cf. Section 1.2),
it turns out that by exploiting the synchronous nature of the model
one can solve any problem fairly trivially with an algorithm that
communicates only O(n) bits. We show that this is optimal in the
KT1 model by showing that Ω(n) messages are needed by any al-
gorithm, regardless of the running time of the algorithm. These
two results hold for all algorithms, including randomized Monte
Carlo algorithms, thus extending previously known lower bounds.
The O(n) bits message complexity upper bound mentioned above
is not particularly satisfying because the algorithm it depends on
uses super-polynomially many rounds. This naturally leads to the
question of whether MST (or GC) can be solved fast and using only
a small number of messages. We provide a partial answer to this
question by presenting an MST algorithm in the KT1 model that
requires onlyO(npolylogn) messages andO(polylogn) rounds.
This result is obtained by adapting to the Congested Clique model
the algorithm in [2] that combines the use of linear sketches with a
standard Borůvka-type MST algorithm.

1.2 The Model
The Congested Clique is a set of n computing entities connected

through a complete network. Specifically, the model consists of a
point-to-point network described by a graph N = (V,E) where
the vertices V represent independent computing entities pairwise
connected through a complete network of |E| =

(
n
2

)
bidirectional

communication channels, represented by the edges E of N .
Each vertex v ∈ V of the network has a distinct identifier of

O(logn) bits. At the beginning of the computation, each vertex
knows its own identity, the number n, and the part of the input it
gets assigned. There are then two possible variants of the model
based on the amount of knowledge available at the vertices regard-
ing the network. In the first one, each computing entity initially
knows, in addition to its own identity, the identity of its n−1 neigh-
bors, while in the second one a computing entity initially does not
know the identities of its n − 1 neighbors. Following, e.g., [5],
we denote these two variants as KT1 and KT0, respectively. Thus,
in the KT0 model, each node can send and receive messages along
n − 1 communication links (without loss of generality, numbered
1, 2, . . . , n−1), without being aware of the identity of nodes at the
other end of the communication links.

The computation proceeds in synchronous rounds. In each round
each node can perform some local computation and send a (possi-
bly different) message of O(logn) bits to each of its n− 1 neigh-
bors. It is assumed that both the computing entities and the com-
munication links are fault-free. The Congested Clique model is
therefore specifically geared toward understanding the role of the
limited bandwidth as a fundamental obstacle in distributed com-
puting, in contrast to other classical models for distributed comput-
ing that instead focus, e.g., on the effects of latency (the LOCAL
model) or on the effects of both latency and limited bandwidth (the

CONGEST model). It is assumed that both the computing entities
and the communication links are fault-free.

In distributed computing two complexity measures are usually
relevant: the time complexity of a computation is the total number
of rounds to complete the computation, while the message complex-
ity of a computation is the total number of messages exchanged to
complete the computation. In this paper, we consider both com-
plexity measures.

Graph problems in the Congested Clique. In the Congested
Clique, the input graph of a graph problem is assumed to be a span-
ning subgraph of the underlying machine network. Specifically, the
input is a spanning subgraphG = (V,E′),E′ ⊆ E, of the underly-
ing clique communication network N = (V,E). The input to each
node v ∈ V consists of an (n − 1)-bit vector where the i-th bit is
associated with the i-th channel of v, and indicates whether or not
in E′ there is an edge between node v and the endpoint of its i-th
channel; when the KT1 variant of the model is assumed, then the i-
th bit indicates whether or not edge (v, ID(i)) ∈ E′, where ID(i) is
the identifier of the node at the other end of v’s i-th channel. Recall
that in the KT1 model v knows the IDs of all its neighbors and can
associate these with its communication channels. This definition
can be easily generalized to deal with directed and/or weighted in-
put graphs (in the latter case we shall also assume that edge weights
are integers that can be represented with O(logn) bits).

For the MST problem, we require that when the algorithm ends
each machine knows which of its incident edges belong to the out-
put MST; for verification problems such as GC, we require that
when the algorithm ends at least one machine knows the output
value.

Input distribution. Notice that in the Congested Clique model the
input graph G is tightly coupled with the communication network
N and the graph is distributed among the machines via a vertex par-
tition. This is not the case in other related models for distributed
graph processing, such as [1, 30, 19]. In these papers the input
graph can be much larger than the machine network and the distri-
bution of the graph among machines is via an edge partition. In [19]
this edge partition is assumed to be random (initially), in [30] the
edge partition can be worst case, whereas in [1] the edge partition
is worst case, but with the requirement that each processor has the
same number of edges. It is worth noting that [30] does prove mes-
sage complexity lower bound for problems such as GC, but these
lower bounds make crucial use of the worst case distribution of
edges and do not apply in our model. Similarly, the lower bounds
in the setting of [1] do not seem to directly apply in the Congested
Clique model.

2. MST CONSTRUCTION IN O(log log logn)

ROUNDS
In this section we present a randomized algorithm in the Con-

gested Clique model that computes an MST in O(log log logn)
rounds, w.h.p. As a first step toward this algorithm, we present
a randomized algorithm that solves GC w.h.p. in O(log log logn)
rounds. Both algorithms use Θ(n2) messages. Given this mes-
sage complexity, the KT0 and KT1 model are equivalent since a
KT0 algorithm can start with each node broadcasting its ID to all
n − 1 other nodes. Therefore, for convenience we describe our
algorithms in the KT1 model. Our GC algorithm constructs a max-
imal spanning forest of the input graph (i.e., a spanning forest with
as many trees as the number of components in the input graph), and
at the end of the algorithm every node will know such a spanning
forest.



2.1 Linear Sketches of a Graph
A key tool used by our algorithm is linear sketches [2, 3, 23].

An important aspect of using sketches for connectivity is working
with an appropriate graph representation. As described in [23], we
use the following graph representation. For each node v ∈ V , we
define the incidence vector av ∈ {−1, 0, 1}(

n
2) which describes

the edges incident on node v as follows:

av((x, y)) =


0 if {x, y} /∈ E
1 if {x, y} ∈ E and v = x < y

−1 if {x, y} ∈ E and x < y = v.

With this representation it is easy to see the following property of
these vectors: for any subset of nodes S, the non-zero entries of∑
v∈S av corresponds exactly to the edges in the cut (S, V \ S).
Once we have this representation, the next step is to project these

vectors into lower dimensional space, i.e., sketch space. Specifi-
cally, for each vector av , we compute a random O(poly logn)–
dimensional sketch sv , such that two properties are satisfied: (i)
sampling from the sketch sv returns a non-zero entry of av with
uniform probability (over all non-zero entries in av) and (ii) when
nodes in a connected component are merged, the sketch of the
new “super node” is obtained by coordination-wise addition of the
sketches of the nodes in the component. The first property is re-
ferred as `0-sampling in the streaming literature [8, 23, 16] and
the second property is referred as linearity (hence, the name linear
sketches). The graph sketches used in [2, 3, 23] rely on the `0-
sampling algorithm by Jowhari et al. [16]. Sketches constructed us-
ing the Jowhari et al. [16] approach are small, using only Θ(log2 n)
bits per sketch and are obtained by using a (random) linear pro-
jection. Specifically, the approach of Jowhari et al. [16] requires
the construction of a random O(log2 n)×

(
n
2

)
matrix L, such that

sv = L ·av . Note that this implies that the sketch of the component
obtained by merging neighboring nodes u and v is simply the sum
of the sketches su and sv:

su+v = L · (au + av) = L · au + L · av = su + sv.

To ensure this linearity property all nodes need to compute the same
matrix L and thus need access to shared randomness, i.e., polyno-
mially many mutually independent random bits. Sharing this vol-
ume of information is not feasible, given how fast we require our al-
gorithms to be. So instead, we appeal to the `0-sampling algorithm
of Cormode and Firmani [8] which requires, for the construction
of the matrix L, a family of Θ(logn)-wise independent hash func-
tions. As we make precise below, avoiding the requirement of full
independence reduces the volume of information that needs to be
shared considerably.

To be more precise, let Hk denote a family of k-wise indepen-
dent hash functions. For positive real x, let [x] denote the set
{1, 2, . . . , dxe}. Let h : [N ] → [N3] be a randomly selected
hash function from Hk, where N =

(
n
2

)
. For each r ∈ [c logN ]

for constant c > 1, let gr : [N ]→ [2 logN ], be randomly selected
fromH2. GivenHk, k = Θ(logn) andH2, Cormode and Firmani
show that one can construct a O(log4 N) = O(log4 n)-bits linear
sketch sv of av such that their `0-sampler succeeds with probabil-
ity at least 1 − 1

Nc and, conditioned on this, outputs a non-zero
entry of av with probability 1

N′ + N−c, where N ′ is the number
of non-zero elements in av . For the linearity property to hold, the
same hash functions h and {gr}r need to be used by all nodes v.
For our purpose what this means is that the Θ(logn)-wise indepen-
dent hash function h and the O(logn), pair-wise independent hash
functions {gr}r need to be shared among all nodes in the network.
A k-wise independent hash function whose range is polynomial in

n can be constructed using Θ(k logn) mutually independent ran-
dom bits [4]. Therefore, this implies that Θ(log2 n) mutually inde-
pendent random bits are sufficient to generate h and the Θ(logn)
gr’s. Thus Θ(log2 n) mutually independent random bits need to be
shared among all nodes in the network and this will allows every
node v to construct a sketch sv of size O(log4 n). This sharing of
O(log2 n) bits can be achieved in the following simple way. Desig-
nate Θ(logn) nodes for generating dlogne random bits each. Each
of these designated node then sends these dlogne bits (using a con-
stant number of messages each) to all other nodes. In the applica-
tions of linear sketches to GC and MST, we need every node v to
compute t = Θ(logn) independent sketches s1

v, s
2
v, . . . , s

t
v , such

that each family {sjv}v , 1 ≤ j ≤ t has the linearity property. Us-
ing the simple approach describe above, Θ(log2 n) nodes to could
designated to generate and share inO(1) rounds all the mutually in-
dependent random bits needed for generating all the sketches. We
summarize this in the following theorem.

THEOREM 1. Given a graph G = (V,E), n = |V |, there is
a Congested Clique algorithm running in O(1) rounds, at the end
of which every node v ∈ V has computed an independent col-
lection of t = Θ(logn) sketches, s1

v, s
2
v, . . . , s

t
v , such that each

family {sjv}v , 1 ≤ j ≤ t has the linearity property. The size
of each computed sketch is O(log4 n) bits. The `0-sampling al-
gorithm on each sketch sjv returns an edge in av with probability
1/(non-zero entries in av) + n−2.

2.2 Using Linear Sketches to Solve GC
In this section we describe how to utilize linear sketches to solve

GC w.h.p. on a Congested Clique in O(log log logn) rounds. Our
algorithm runs in two phases. Initially, the input graph can be
viewed as having n components, one for each vertex. In the first
phase, we reduce the number of components to O(n/log4 n) by
running the deterministic MST algorithm of Lotker et al. [22] for
O(log log logn) rounds. Phase 2 operates on the resulting compo-
nent graph. This is the graph whose vertices are the components
computed in Phase 1 and whose edges represent adjacencies be-
tween components. Each component leader (e.g., node with min-
imum ID in the component) computes Θ(logn) independent lin-
ear sketches of its neighborhood in the component graph. Since
this graph has O

(
n/log4 n

)
vertices and each linear sketch has

size O(log4 n) bits, the entire volume of all linear sketches at all
nodes has size O(n logn) bits. Thus, if we want to send all lin-
ear sketches to a single (global) leader machine, we would have to
solve a routing problem in which each sender has O(log4 n) mes-
sages (of size O(logn) each) and the receiver (leader) is required
to receive O(n) messages. This problem can be solved using, for
example, Lenzen’s routing algorithm [21], inO(1) rounds. The rest
of the algorithm is simply local computation by the leader followed
by the leader communicating the output, which is of size O(n), to
all nodes in an additional O(1) rounds. We now provide the most
important details.

The Lotker et al. MST algorithm takes an edge-weighted clique
as input. The algorithm runs in phases, taking constant number of
communication rounds per phase. At the end of phase k ≥ 0, the
algorithm has computed a partition Fk = {F1

k, F2
k, . . . , Fm

k}
of the nodes of G into clusters, where each cluster is a connected
component of the graph induced by the edges selected thus far. Fur-
thermore, for each cluster F ∈ Fk, the algorithm has computed a
minimum spanning tree T (F ). It is worth noting that at the end of
Phase k every node in the network knows the partition Fk and the
collection {T (F ) | F ∈ Fk} of trees. It is shown that at the end of
phase k the size of the smallest cluster is at least 22k−1

and hence



|Fk| ≤ n/22k−1

. In the following, we refer to the Lotker et al.
algorithm as the CC-MST algorithm. Let CC-MST(G, k) denote
the execution of CC-MST on an edge-weighted clique graphG for
k phases.

THEOREM 2 (LOTKER ET AL. [22]). CC-MST computes an
MST of an n-node edge-weighted clique inO(log logn) rounds. At
the end of phase k, CC-MST has computed a vertex-partition Fk
and a collection of trees T k = {T (F ) | F ∈ Fk} with the fol-
lowing properties: (i) |F | ≥ 22k−1

for all F ∈ Fk, (ii) every
node knows Fk and T k, and (iii) if the largest weight of an edge in
T (F ), for cluster F ∈ Fk is w, then there is no edge with weight
w′ < w connecting F to a different cluster F ′ ∈ Fk.

Algorithm REDUCECOMPONENTS describes Phase 1 of our GC al-
gorithm. The input to this algorithm is an arbitrary graph G (not a
clique and not edge-weighted) and the algorithm returns a forest T1

and a component graph G1 induced by the edges in this forest. Af-
ter Steps 2-3 of the algorithm, each node in the network knows the
forest T1, by Theorem 2. In Step 4, the subroutine BUILDCOM-
PONENTGRAPH computes the component graph G1 of the forest
T1 using one round of communication, as follows. Each node u
examines each incident edge {u, v} and if v belongs to a differ-
ent connected component, then u send a message to the compo-
nent leader of v’s component. (Note that if u has two neighbors v1

and v2 that belong to the same connected component, distinct from
u’s connected component, then u only sends one message to the
component leader of the component containing v1 and v2.) Each
component leader v, processes each of the messages it has received
in the previous step, and if it has received a message from a node
u, then it marks the leader of u’s component as a neighbor in the
component graph. Thus, at the end of BUILDCOMPONENTGRAPH,
every component leader knows all neighboring component leaders
in the component graph.

A tree T in forest T1 is called finished if it is a spanning tree of
a connected component of G; otherwise we call T unfinished. Fin-
ished trees correspond to isolated nodes in the component graph
and play no further role in the algorithm. (In fact, if we only
wanted to verify connectivity, as opposed to computing a maxi-
mal spanning forest, we could have the algorithm stop and report
“disconnected” as soon as a finished tree, not spanning the entire
graph, is detected.) Unfinished trees (represented by their com-
ponent leaders) can be viewed as vertices of the graph that will
processed in Phase 2. Note that at the end of Algorithm REDUCE-
COMPONENTS, it is guaranteed that every node knows the ID of the
leader of the component it belongs to and every component leader
knows incident inter-component edges. Now we prove the follow-
ing lemma that bounds the number of vertices in the graph that will
be processed in Phase 2 of the GC algorithm.

LEMMA 3. The number of unfinished trees in T1 areO
(

n
log4 n

)
.

PROOF. In Step 1, we build a weighted clique from the input
graphG by assigning to every edge inG, the weight 1; non-adjacent
pairs of vertices are assigned weight ∞. Step 2 simply executes
CC-MST on this weighted clique for log log logn + 3 iterations,
which returns a set of clustersF and a forest T∞ of trees, one span-
ning tree per cluster. By Theorem 2(i), every cluster in F has size
at least log4 n. Now note that some edges of weight∞ might have
been selected by CC-MST to be part of T∞; and in Step 3 we dis-
card these edges. By Theorem 2(iii), if a tree T ∈ T∞ contains an
edge of weight∞, it is finished because all edges incident on T and
connecting to a different tree in T∞ have weight∞ (i.e., they are
non-edges in G). Thus no unfinished tree in T∞ contains an edge

Algorithm 1 Phase 1: REDUCECOMPONENTS

Input: A graph G = (V,E).
Output: T1, a spanning forest of G with at most O(n/ log3 n) unfinished

trees and G1, the component graph induced by the edges of T1.
1. Assign unit weights to edges in G to obtain a weighted graph Gw;

make Gw a clique by adding edges not in G and assign weight∞ to
these newly added edges.

2. (F , T∞)← CC-MST(Gw, dlog log logn+ 3e)
3. T1 ← T∞ \ {{u, v} ∈ E(T∞) | wt(u, v) =∞}
4. G1 ← BUILDCOMPONENTGRAPH(G, T1)
5. return (T1, G1)

of weight∞. This implies that no unfinished tree is fragmented in
Step 3 of Algorithm REDUCECOMPONENTS and thus each unfin-
ished tree has size at least log4 n. Therefore, there can be at most
O(n/ log4 n) unfinished trees.

Phase 2 runs on the component graphG1 returned by Phase 1. Note
that G1 has O(n/log4 n) non-isolated nodes and the Θ(logn),
O(log4 n)-bit-sized linear sketches computed for each non-isolated
node would result in a total volume of O(n logn) bits of infor-
mation, which can be sent to a single node in O(1) rounds using
Lenzen’s routing algorithm. At a high level, this is what hap-
pens in Phase 2 followed by local computation of the maximal
spanning forest. Phase 2 is described in more detail in Algorithm
SKETCHANDSPAN below. Let v∗ denote the vertex in V with min-
imum ID.

Algorithm 2 Phase 2: SKETCHANDSPAN

Input: G1 = (V1, E1), V1 ⊆ V .
Output: T2, a maximal spanning forest of G1

1. Each vertex v ∈ V1 that is not isolated computes sketches svi

for i = 1, 2, . . . , c logn of its neighborhood.
2. Each vertex v ∈ V1 sends these c logn sketches to v∗.
3. v∗ uses these sketches to locally sample edges betwee con-

nected components to compute a maximal spanning forest T2

of G1.
4. v∗ assigns each edge in T2 to a node in V such that each node is

assigned a single edge. v∗ then sends each edge to its assigned
node. Each node in V then broadcast the edge it received from
v∗ so that all nodes now know T2.

5. return T2

Our final GC algorithm executes Phase 1 (Algorithm REDUCE-
COMPONENTS) followed by Phase 2 (Algorithm SKETCHANDSPAN).
Edges in T2 are inter-component edges and each such edge needs to
be mapped to a real edge in input graphG. For each edge {C1, C2}
in T2 the leaders of components C1 and C2 know edges in G that
have induced edge {C1, C2}. One of the leaders, say the one with
smaller ID, picks an edge in G corresponding to {C1, C2}. Lead-
ers send all their picked edges to v∗. Denote by T ′2 the set of the
all picked edges. Since T2 is a forest, v∗ is the target of fewer than
n edges and this communication takes O(1) rounds.

THEOREM 4 (GC ALGORITHM). The GC problem can be solved
in O(log log logn) rounds w.h.p. in the Congested Clique model.
Furthermore, if the bandwidth of each communication link was
O(log5 n) bits, instead of O(logn) bits, then GC could be solved
in O(1) rounds.

REMARK 5. It is worth noting that this approach of reducing
number of components and then using linear-sketch-based algo-
rithm to solve the GC problem can be used to solve the bipartiteness



problem in O(log log logn) rounds w.h.p. and also the k-edge-
connectivity problem in O(k log log logn) rounds w.h.p. using the
approach of Ahn et al. [2].

2.3 Using Linear Sketches to Solve MST
In this section we show how to obtain an exact solution to the

MST problem on a Congested Clique. The algorithm starts (in Step
1) with a pre-processing phase in which:

(i) the number of components is reduced from n toO(n/log4 n)
using the Lotker et al. MST algorithm, similar to Phase 1 of
our GC algorithm and

(ii) the number of edges is reduced toO(n3/2) by using the clas-
sical sampling result of Karger, Klein, and Tarjan (KKT sam-
pling) [18].

Part (ii) of the pre-processing phase runs in O(1) rounds and thus
the running time of this phase is dominated by Part (i), in which
O(log log logn) rounds of the Lotker et al. MST algorithm are ex-
ecuted. The use of KKT sampling yields two MST subproblems,
each withO(n3/2) edges andO(n/log4 n) vertices. Following the
pre-processing phase, in the main phase of our algorithm, we solve
each of the two above-mentioned MST problems in O(1) rounds.
At a high level, this MST algorithm partitions by edge-weight the
O(n3/2) edges in the graph intoO(

√
n) groups of size n each. We

then solve O(
√
n) instances of the GC problem in parallel. We

now provide details of this algorithm.

2.3.1 Pre-Processing: Reducing Number of Compo-
nents and Edges

We first reduce the number of components to at mostO(n/log4 n)
components by executing CC-MST for dlog log logn+3e phases,
similar to Phase 1 our GC algorithm. Let T1 be the spanning forest
and G1 be the component graph obtained by executing the above
step. Here, we think of the component graph G1 as being edge-
weighted, with the weight of an edge connecting components C
and C′ set to the minimum weight of an edge between a node in C
and a node in C′. By Theorem 2, T1 is a subset of a MST of G.
Our goal now is to complete this MST by determining which edges
in G1 are in the MST.

Karger, Klein, and Tarjan [18] present a randomized linear-time
algorithm to find a MST in an edge-weighted graph in a sequential
setting (RAM model). A key component of their algorithm is a ran-
dom edge sampling step to discard edges that cannot be in the MST.
For completeness we state their sampling result and the necessary
terminology.

DEFINITION 1 (F -LIGHT EDGE [18]). Let F be a forest in a
graph G and let F (u, v) denote the path (if any) connecting u and
v in F . Let wtF (u, v) denote the maximum weight of an edge on
F (u, v) (if there is no path then wtF (u, v) =∞). We call an edge
{u, v} F -heavy if wt(u, v) > wtF (u, v), and F -light otherwise.

LEMMA 6 (KKT SAMPLING LEMMA [18]). LetH be a sub-
graph obtained from G by including each edge independently with
probability p, and let F be the minimum spanning forest of H . The
number of F -light edges in G is at most n/p, w.h.p.

The implication of the above lemma is that if we set p = 1/
√
n

then the number of sampled edges in H and the number of F -light
edges inG both areO(n3/2) w.h.p. Crucially, none of the F -heavy
edges can be in an MST ofG. Therefore if we compute a minimum
spanning forest F ofH , then we can discard all F -heavy edges and
compute a minimum spanning forest of the graph induced by the

remaining F -light edges in G. We have thus reduced the problem
into two MST problems: (i) compute a minimum spanning forest
F of H where the number of edges in H is O(n3/2) w.h.p. and (ii)
compute a minimum spanning forest of the graph induced by F -
light edges in G. Note that these two problems cannot be solved in
parallel since the latter problem depends on the output of the first
problem. Specifically, after problem (i) has been solved we need
to identify all F -light edges; these will serve as input to problem
(ii). Identifying F -light edges is easy because after problem (i)
has been solved every node knows F and can therefore determine
which incident edges are F -light.

Algorithm 3 summarizes our approach. In the beginning of Al-
gorithm EXACT-MST every node knows weights of incident edges
and at the end of the execution every node knows all the edges
that are in the MST computed by the algorithm. The subroutine
BUILDCOMPONENTGRAPH invoked in Step 2 now builds an edge-
weighted component graph. Like the unweighted version of BUILD-
COMPONENTGRAPH, this subroutine also runs in O(1) rounds.
The only difference is that each node u (in a component C) con-
siders all edges to a component C′ ( 6= C) and informs the leader
of C′ about the edge between u and C′ of smallest weight. Af-
ter this round of communication, component leaders have enough
information to determine the smallest weight edge to every other
component. The subroutine SQ-MST is called twice (in Steps 4
and 6), to compute a minimum spanning forest of a graph with
O(n/log4 n) vertices and O(n3/2) edges. We describe SQ-MST
in detail in the next subsection and show that it runs inO(1) rounds
w.h.p. Algorithmn SQ-MST comes with the guarantee that at the
end of its execution, all nodes know the MST computed by it.

Algorithm 3 EXACT-MST
Input: An edge-weighted clique G(V,E)
Output: An MST of G
1. (F , T1)←CC-MST(G, dlog log logn+ 3e)
2. G1 ← BUILDCOMPONENTGRAPH(G, T1)
3. H ← a subgraph of G1 obtained by sampling each edge in G1 inde-

pendently with probability 1√
n

4. F ← SQ-MST(H)
5. E` ← {{u, v} ∈ E(G1) | {u, v} is F -light}
6. T2 ← SQ-MST(E`)
7. return T1 ∪ T2

2.3.2 Computing MST of O(n3/2)-size Graph
We now describe Algorithm SQ-MST, which computes inO(1)

rounds an MST of a subgraph G′ = (V ′, E′) of G with O(n3/2)
edges and O(n/log4 n) vertices. (Pseudocode appears in Algo-
rithm 4.) The bounds on number of vertices and number of edges
are critical to ensuring that our MST algorithm runs inO(1) rounds.
The algorithm starts with edges in E′ being sorted, i.e., each node
computes the rank r(e) of each incident edge e in a sorted (by
edge-weights) sequence of all edges in E′. This sorting problem
can be solved in O(1) rounds on the Congested Clique by using
Lenzen’s distributed sorting algorithm [21]. Then each node parti-
tions (in Step 2) the incident edges based on their ranks. Thus we
partition E′ into O(

√
n) sets E1, E2, . . . , Ep (p = O(

√
n)) each

containing n edges (Ep might have less than n edges) such that
E1 contains all the edges whose ranks are in the range 1 to n, E2

contains the edges with ranks between n + 1 and 2n, and so on.
Since nodes know ranks of incident edges, each node can identify,
for each incident edge e, an index i ∈ [p] such that e ∈ Ei.



Algorithm 4 SQ-MST

Input: A weighted subgraphG′(V ′, E′, wt) withO
(

n
log4 n

)
ver-

tices and O(n3/2) edges
Output: An MST of G′

1. r(E) ← DISTRIBUTEDSORT(E); each edge e ∈ E′ is as-
signed a rank r(e), in non-decreasing order of edge-weights.

2. Partition edges in E based on their ranks r(e) into p partitions
E1, E2, . . . Ep (p = O(

√
n)), each partition having n edges

(Ep might have less than n edges) such that E1 contains edges
with ranks 1, 2, . . . , n;E2 contains edges with ranks n+1, n+
2, . . . , 2n; and so on.

3. Let g(i) be the node in G with ID i. Assign g(i) as the
“guardian” of part Ei. Nodes send edges in Ei to g(i).

4. for i = 1 to i = p in parallel do
5. Let Gi = (V ′,∪i−1

j=1Ej). Each vertex v ∈ V ′ constructs
t = Θ(logn) sketches si,1v , si,2v , . . . , si,tv . of its neigh-
borhood with respect to Gi.

6. Each node v ∈ V ′ sends the sketch collection {si,jv }tj=1

to g(i).
7. g(i) executes locally:

(a) Ti ← SPANNINGFOREST(Gi) (based on linear
sketches received)
(b) g(i) processes edges in Ei in rank-based order.

for each edge ej = {u, v} in e1, e2, . . . :
if there is a path between u and v in
Ti ∪ {e` | ` < j} then discard ej

else add ej toMi.
8. return ∪pi=1Mi

In the next step (Step 3) we gather each setEi at a guardian node
g(i). This can be done inO(1) rounds as well, using Lenzen’s rout-
ing algorithm, because (i) the number of edges incident on a node
is less than n and therefore each node is the sender of less than n
edges, and (ii) |Ei| ≤ n and therefore each node is the receiver of
at most n edges. The role of a guardian node g(i) is to determine
which of the edges in Ei are a part of the MST. Specifically, g(i)
wants to know for each edge e = {u, v} ∈ Ei whether there is a
path between u and v in the graph induced by edges with ranks
less than r(e). (Note that these are edges of weight no greater
than e). That is, for each edge e ∈ Ei, g(i) needs to determine
whether there is a path between u and v in the graph induced by
edges ∪i−1

k=0Ek ∪ {e` ∈ Ei | r(e`) < r(e)}. Let Gi be the sub-
graph of G′ induced by the edge set ∪i−1

k=0Ek. One way to solve
this problem would be for g(i) to compute a maximal spanning
forest Ti of Gi. Then g(i) could locally check uv-connectivity in
the graph Ti ∪ {e` ∈ Ei | r(e`) < r(e)}. Thus each g(i) needs to
have available a solution to GC on the graph Gi. There are O(

√
n)

such guardians — one for each part Ei and hence the challenge is
executing O(

√
n) instances of GC computations in parallel in the

Congested Clique network.
What provides crucial help in permitting these p = O(

√
n) GC

instances to run in parallel is that G′ has O(n/log4 n) nodes and
O(n3/2) edges. Note that since G′ has O(n/ log4 n) nodes, Phase
1 of GC is not required and only Phase 2 of GC needs to be executed
in parallel on O(

√
n) instances. The main communication step

in Phase 2 of the GC algorithm is nodes sending their Θ(logn)
linear sketches to single node for local computation. Each node
v ∈ V ′ has a set of incident edges belonging to each graph Gi,
1 ≤ i ≤ p. Thus v computes Θ(p logn) = Θ(

√
n logn) different

linear sketches, each of size Θ(log4 n) bits. Therefore, in total
each node v hasO(

√
n · log4 n) differentO(logn)-sized messages

to send. On the receiver’s side, a guardian g(i) is the target of
O(n) messages of size O(logn) bits. This communication can be
completed in O(1) using Lenzen’s routing algorithm, and thus we
obtain the following theorem.

THEOREM 7. Algorithm EXACT-MST computes an MST of an
n-node edge-weighted clique in O(log log logn) rounds w.h.p. on
the Congested Clique. Furthermore, if the bandwidth of each com-
munication link is O(log5 n) bits, then MST can be computed in
O(1) rounds.

3. MESSAGE LOWER BOUNDS IN THE KT0

MODEL
In this section we show that, at least in the KT0 model, it is im-

possible to avoid the Ω(n2) message complexity of the algorithms
of the previous section. We show that any algorithm that solves GC,
even a randomized Monte Carlo algorithm, needs to send Ω(n2)
messages. In the following, we use GC(m) to denote the problem
of determining, in the KT0 model, whether or not an input graph
with m edges is connected.

3.1 Construction
To show a lower bound on the message complexity of Monte

Carlo algorithms, we construct a hard distribution H on the inputs
and use Yao’s Minimax Principle (Prop. 2.6 in [24]).

We assume without (much) loss of generality that n is even. Con-
sider anym, n ≤ m ≤ n

2
·(n

2
−1). Then, for a given n, partition the

n nodes into two subsets U and V of size n/2. Next, we construct
biconnected (2-connected) graphsGU andGV onU and V , respec-
tively. Assume w.l.o.g. that the nodes of U are u0, u1, . . . , un/2−1

and the nodes of V are v0, v1, . . . , vn/2−1. We next use m edges
to construct our graph G = GU ∪GV .

Since m should be at least as large as n, with the first n edges of
G we connect uj to uj+1 and vj to vj+1 for each j (where indices
are interpreted mod n/2). If m ≥ 2n, we connect uj to uj+2 and
vj to vj+2 for each j; and in general, if m ≥ k · n we connect uj
to uj+k and vj to vj+k for each j. This procedure is performed for
each k = 1, 2, . . . until k = k′ such that m < k′ ·n. With the final
m−(k′−1)·n “leftover” edges, we connect u0 to uk′ , u1 to u1+k′ ,
u2 to u2+k′ , etc. in that order until we run out of edges to add to the
graph. Let GU be the graph on the nodes U and GV be the graph
on the nodes V constructed in this manner. ThenG = GU ∪GV is
a nearly-regular disconnected graph composed of two biconnected
components GU and GV . Assuming n is even, every vertex has
degree b 2m

n
c or d 2m

n
e.

We next construct the input distribution H . One-half of the
probability mass of H will be placed on the (disconnected) graph
G = GU ∪ GV . The other 1/2 of the probability mass will be
distributed uniformly among the members of the following set SG.
An element of SG is formed by choosing two edges of G – one
from GU and one from GV – and “swapping” the endpoints. That
is, suppose e1 = (u1, u2) ∈ GU and e2 = (v1, v2) ∈ GV are
chosen in G. For each such pair e1, e2, add the following graphs to
SG: G−e1−e2 +(u1, v1)+(u2, v2) andG−e1−e2 +(u1, v2)+
(u2, v1). Since GU and GV are biconnected, each member of SG
is connected (in contrast toG = GU ∪GV , which is disconnected).
The half of the probability mass of H assigned to SG is distributed
uniformly over the elements of SG.

3.2 Lower Bounds
We first show how to extend the lower bound argument of Korach

et al. [20] for deterministic MST algorithms in KT0 to GC.



THEOREM 8. LetAD be a deterministic algorithm solving GC(m)
in the KT0 model, where n ≤ m ≤ n

2
· (n

2
− 1). Then the worst-

case number of messages sent during the execution ofAD is Ω(m).

PROOF. As in [20], consider the execution of AD on G, and
suppose that there exists a “square” u1, v1, v2, u2, with (u1, u2)
an edge in GU and (v1, v2) an edge in GV , such that during the
execution of AD , no messages are sent along the communication
links (u1, u2), (u1, v1), (v1, v2), or (u2, v2). As Korach et al. do
in [20], we claim that if this is the case, then the execution of AD
proceeds identically on the input G′ = G− (u1, u2)− (v1, v2) +
(u1, v1) + (u2, v2) (which is an element of SG). To see this point,
note that in the KT0 model, no node (including u1) can distinguish
between the situation where an edge leaving u1 at a certain “port”
goes to v1 and the situation where the edge leaving that “port” goes
to u2. This is true for the other edges and nodes involved in the
“square.” Therefore, since the output ofAD must be different onG
(disconnected) and G′ (connected), it cannot be the case that there
exists such a “square” in the execution of AD on G. To complete
the proof, as in [20], one can show that there exists a set of at least
Ω(m) edge-disjoint “squares” and hence there is no set of edges
of size less than Ω(m) that can intersect all such GU -GV squares.
In summary, then, in order to be correct on G and all members
of SG, AD must use a set of links, during its execution on G, of
size Ω(m), and hence must have worst-case message complexity
Ω(m).

We now combine the above argument with the hard distribu-
tion H (defined in previous subsection) to obtain a lower bound
on deterministic algorithms that err with (at most) a certain con-
stant probability. Then, by applying Yao’s Minimax Principle we
obtain a lower bound on the message complexity of Monte Carlo
randomized algorithms.

THEOREM 9. Let AMC be a Monte Carlo algorithm solving
GC(m) with probability at least 4/5 in the KT0 model, where n ≤
m ≤ n

2
· (n

2
− 1). Then the expected number of messages sent

during the execution of AMC (on a worst-case input) is Ω(m).

PROOF. To show a lower bound on the (expected) message com-
plexity of AMC , by Yao’s Minimax Principle (Prop. 2.6 in [24]),
it suffices to consider deterministic algorithms that err with prob-
ability at most 2/5 (i.e., twice the error probability of AMC ) on
the hard distribution on the input. Consider any such deterministic
algorithm AD . Since AD is correct with probability at least 3/5,
we conclude that (i)AD is correct on at least one-tenth of the mass
assigned to G (implying AD is correct on G, since AD is deter-
ministic); and (ii) AD is correct on at least one-tenth of the input
instances in SG.

The correctness of AD on G together with at least one-tenth of
the instances of SG allows a re-use of the analysis for deterministic
case (see proof of Theorem 8). The result follows.

4. MESSAGE COMPLEXITY IN THE KT1

MODEL
We start with the simple, but important observation that n bits

of communication suffice to solve MST (or any problem, for that
matter) in the KT1 model. The idea is that each node u can view
the initial information it possesses as number ru and simply send
a bit to a “leader” (e.g., node with smallest ID) in round ru. The
leader can solve the problem locally and communicate the solution
back in a similar manner using an additional n bits. Hence, all the
information is encoded using the synchronized clock. This sets up

a significant contrast with the KT0 model, where we have shown
an Ω(n2) lower bound on the number of messages needed to solve
GC, even assuming a synchronous setting. We now show an un-
conditional, matching lower bound in the KT1 model, namely that
any algorithm (even randomized Monte Carlo) for solving GC (and
hence MST) needs to communicate Ω(n) bits of information. In
fact, what we show is stronger: we show that at least Ω(n) dis-
tinct messages are sent, in the worst case, during the course any
algorithm that solves GC.

4.1 Message Lower Bounds in the KT1 Model
Definitions. We define the GC(x, y) problem, in the KT1 variant
of the Congested Clique model, to be the problem of determining
the connectivity of an input graph (with the usual assumption that
nodes have initial knowledge of their incident edges and neighbors
in the input graph—as GC has been posed previously), with the
extra condition that, during the last round of any algorithm solv-
ing GC(x, y), node x must send a message to node y containing
the final output (“connected” or “disconnected”, as 1 or 0). The
identities of x and y are known to all nodes as part of the input to
GC(x, y).

We now define a set of forests, {Gi,j}, for i ≥ 1 and 0 ≤ j ≤ i+ 1.
InGi,j , there are n = 2i+2 nodes {u0, u1, . . . , ui, v0, v1, . . . , vi}.
The edges of Gi,0 are as follows: u0 is connected to v0, and v0 is
connected to uk for each k ∈ {1, . . . , i}. Then, for each k ∈
{1, . . . , i}, uk is connected to vk. See Figure 1.

u0 v0

ui

u3

u2

u1

vi

v3

v2

v1

Figure 1: The graph Gi,0.

Next, for j ∈ {1, . . . , i}, Gi,j is constructed fromGi,0 by delet-
ing edge (uj , vj). (Thus each such Gi,j has two components.)
Lastly, let Gi,i+1 be the intersection ∩ij=1Gi,j , which is the graph
formed from Gi,0 in which all of the edges {(uj , vj)}ij=1 have
been deleted (and thus Gi,i+1 has i+ 1 components).

THEOREM 10. Let Ai,u0,v0 be a deterministic algorithm, run-
ning in the KT1 variant, that solves GC(u0, v0) on the family of
graphs {Gi,j}j for j ∈ {0, 1, . . . , i, i + 1}. Then the worst-case
message-complexity of Ai,u0,v0 is Ω(n). In particular, there exists
a j ∈ {0, i + 1} such that Ai,j0,v0 uses (sends) Ω(i) = Ω(n)
messages during its execution on Gi,j .

PROOF. We partition the n = 2i + 2 nodes of each Gi,· as
follows: For each j ∈ {1, . . . , i}, let P (1)

i,j be the set of nodes

{uj , vj}; let P (2)
i,j = P

(1)
i,j be the complement of P (1)

i,j . We say that

partition Pi,j = {P (1)
i,j , P

(2)
i,j } is crossed during the running of an

algorithm (on some Gi,·) if a message is sent (i) from a node in
P

(1)
i,j to a node in P (2)

i,j ; or (ii) from a node in P (2)
i,j to a node in

P
(1)
i,j .



We claim that each partition Pi,j is crossed either during the
running of Ai,u0,v0 on Gi,0 or during the running of Ai,u0,v0 on
Gi,i+1. Indeed, suppose not, and let j′ be one such j. Since the
inputs to the GC(u0, v0) problem for graphs Gi,0 and Gi,j′ are
the same for each node of P (2)

i,j′ , we can first conclude that Pi,j′ is
crossed during the running of Ai,u0,v0 on Gi,j′ . If not, then the
operation of Ai,u0,v0 would be identical on the nodes of P (2)

i,j′ for
both of the graphs Gi,0 and Gi,j′ , which is impossible since u0

must eventually decide the connectivity of the graph and send the
result to v0—and unlike Gi,0, Gi,j′ is disconnected. So a message
is sent across Pi,j′ on the input graph Gi,j′ . Furthermore, we can
also conclude that, during the first round r′ in which a message is
sent across Pi,j′ (on input Gi,j′ ), a message is sent from a node in
P

(1)

i,j′ to a node in P (2)

i,j′ . The reason for this is precisely that it is the

only possibility—during round r′, no node in P (2)

i,j′ can send a mes-
sage across Pi,j′ , for otherwise that same message would be sent
during the running of Ai,u0,v0 on input Gi,0 (because the decision
to send such a message is made prior to the receipt of any messages
from P

(1)

i,j′ ).
Therefore, we conclude that during the (again, deterministic)

running of Ai,u0,v0 on Gi,j′ , one of the nodes of P (1)

i,j′ (either uj′
or vj′ ) makes the decision to send a message across Pi,j′ prior to
the receipt of any messages from P

(2)

i,j′ . The consequence of this
conclusion, however, is that exactly the same behavior must occur
during the running of Ai,u0,v0 on Gi,i+1, because the information
at uj′ and vj′ is identical for both of the inputs Gi,j′ and Gi,i+1.
Thus a message must be sent from P

(1)

i,j′ to P (2)

i,j′ during the running
of Ai,u0,v0 on Gi,i+1, which is a contradiction.

Any single message sent between two of the n nodes can cross
only two of the partitions Pi,j (because the sets P (1)

i,j are pairwise
disjoint), so, in total, at least i = n−2

2
messages are sent during

the runnings of Ai,u0,v0 on both Gi,0 and Gi,i+1. Therefore the
number of messages sent by Ai,u0,v0 is at least i

2
= n−2

4
= Ω(n)

on at least one of Gi,0, Gi,i+1.

COROLLARY 11. LetAn be a deterministic algorithm, running
in the KT1 variant of the Congested Clique model, that solves GC
on inputs having n nodes. Then the worst-case message-complexity
of An is Ω(n).

PROOF. It is straightforward to reduce GC(u, v), on an input
graph G′, to GC using two additional messages: (i) Run An on
G′; (ii) At the conclusion of An, whichever node knows the result
sends that result to u (note that each node of the input graph is as-
sumed to be provided the identities of u and v as part of the input);
and (iii) u sends the result to v. It follows that no deterministic
algorithm for GC in the KT1 Congested Clique model can have a
worst-case message-complexity less than the smallest worst-case
message-complexity for an algorithm solving a problem GC(u, v)
(in KT1) minus 2. The result follows.

4.1.1 Lower Bound for Monte Carlo Algorithms
The above lower bound can be extended to randomized Monte

Carlo algorithms via a straightforward application of Yao’s Min-
imax Principle (Prop. 2.6 in [24]). (A lower bound of the same
form for Monte Carlo algorithms has recently been derived using a
different technique [27].)

COROLLARY 12. Let An be a randomized algorithm for solv-
ing GC on n-node graphs, running in the KT1 variant of the Con-
gested Clique model with error probability of at most 1/10. Then
the worst-case message-complexity of An is Ω(n).

PROOF. Consider the family of graphs {Gi,j}j , for 0 ≤ j ≤
i + 1, and a “hard distribution” on this family that assigns proba-
bility 1/4 to Gi,0, 1/4 to Gi,i+1 and distributes the remaining 1/2
uniformly to the graphs Gi,j , j = 1, 2, . . . , i. Consider any deter-
ministic algorithm solvingGC(u0, v0), that errs with probability at
most 1/5 over this distribution. Such an algorithm would have to be
correct on Gi,0 and Gi,i+1 and correct on at least 3i/10 of the in-
stancesGi,j . The argument in the proof of Theorem 10 can be then
repeated for Gi,0, Gi,i+1, and the Ω(i) instances Gi,j for which
the algorithm is correct. As in the deterministic case, this yields
the result that at least one of the executions, on Gi,0 or Gi,i+1 uses
at least 3i/40 messages for GC(u0, v0). This leads to an Ω(n)
lower bound on message complexity of any Monte Carlo algorithm
solving GC(u0, v0) that errs with probability at most 1/10. The
reduction in the proof of Corollary 11 then leads to the result for
GC.

4.2 MST in O(polylogn) Rounds and O(npolylog n)

Messages
In this subsection we show that if we allow the use ofO(polylogn)

rounds, then we can obtain an algorithm that solves MST using
onlyO(npolylog n) messages in the KT1 Congested Clique model.
This should be contrasted with our O(log log logn)-round algo-
rithm, which uses Θ(n2) messages. This algorithm is an adaption
of the sketch-based algorithm in [26, 2, 17].

THEOREM 13. An MST can be computed in the KT1 Congested
Clique model inO(log5 n) rounds usingO(n log5 n) messages (of
size O(logn)-bits each).

PROOF. The algorithm proceeds in O(logn) phases, where in
each phase a minimum-weight outgoing edge (MWOE) incident on
each node is selected (w.h.p.) and the resulting connected compo-
nents are merged together to form a new node. Components are
indicated by their component label; all nodes in a component hold
the ID of the leader of that component. Initially, each node is in a
component on its own.

Consider an arbitrary phase of the algorithm. Each component
leader generates O(log2 n) mutually independent random bits and
sends these to each node in its component. (Recall from the de-
scription of linear sketches in Section 2.1 that the Cormode-Firmani
[8] construction of linear sketches requires O(log2 n) mutually in-
dependent random bits.) This communication can be done naively,
taking O(logn) rounds and using a total of O(n logn) messages.
Each node in the graph uses the received random bits to compute
an O(log4 n)-bit linear sketch of its neighborhood with respect to
the original graph. Each node in the graph then sends its sketch to
its component leader, simply using O(log3 n) rounds. Each com-
ponent leader computes the sum of the received linear sketches and
then samples an outgoing edge, w.h.p. Suppose that a component
leader v has obtained an outgoing edge with weight wv . Node v
sends wv to all its followers who then delete all incident edges of
weight more than wv and obtain new, possibly smaller, neighbor-
hoods. The entire process is repeated O(logn) times, at which
point v has found a MWOE, w.h.p. Each MWOE is then sent to
the node v∗ with minimum ID, which then merges components,
updates labels, and then informs nodes of their component labels.
This completes the current phase and yields the theorem.

5. CONCLUSIONS
Our work makes progress in understanding both the time and

message complexity of two important graph problems, graph con-
nectivity and minimum spanning tree, in the Congested Clique. We



improve the upper bound on the round complexity of MST in the
Congested Clique model significantly, presenting anO(log log logn)-
round algorithm, and this makes the question of whether there is an
O(1)-round MST algorithm in the Congested Clique model even
more tantalizing. Our work also suggests new questions, that si-
multaneously focus on both round and message complexity. For
example, is it possible to design sub-logarithmic GC or MST algo-
rithms that use O(npolylogn) messages?
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