
Equivalence Classes and Conditional Hardness in
Massively Parallel Computations
Danupon Nanongkai
KTH Royal Institute of Technology, Sweden
danupon@gmail.com

Michele Scquizzato
University of Padova, Italy
scquizza@math.unipd.it

Abstract
The Massively Parallel Computation (MPC) model serves as a common abstraction of many modern
large-scale data processing frameworks, and has been receiving increasingly more attention over
the past few years, especially in the context of classical graph problems. So far, the only way to
argue lower bounds for this model is to condition on conjectures about the hardness of some specific
problems, such as graph connectivity on promise graphs that are either one cycle or two cycles,
usually called the one cycle vs. two cycles problem. This is unlike the traditional arguments based
on conjectures about complexity classes (e.g., P 6= NP), which are often more robust in the sense
that refuting them would lead to groundbreaking algorithms for a whole bunch of problems.

In this paper we present connections between problems and classes of problems that allow
the latter type of arguments. These connections concern the class of problems solvable in a
sublogarithmic amount of rounds in the MPC model, denoted by MPC(o(log N)), and some standard
classes concerning space complexity, namely L and NL, and suggest conjectures that are robust in
the sense that refuting them would lead to many surprisingly fast new algorithms in the MPC model.
We also obtain new conditional lower bounds, and prove new reductions and equivalences between
problems in the MPC model.

2012 ACM Subject Classification Theory of computation → Massively parallel algorithms

Keywords and phrases Massively parallel computation, conditional hardness, fine-grained complexity

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2019.33

Funding This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under grant agreement
No 715672. M. Scquizzato was also partially supported by the University of Padova under grant
BIRD197859/19.

1 Introduction

The Massively Parallel Computation (MPC) model is arguably the most popular model of
computation that captures the essence of several very successful general-purpose frameworks
for massively parallel coarse-grained computations on large data sets, such as MapReduce [23],
Hadoop [60], Spark [62], and Dryad [38]. The MPC model, introduced by Karloff et al. [40],
and originally inspired by the MapReduce paradigm, aims at modeling distributed-memory
parallel computations in the situation when the size of the input is so big that a single
machine cannot even store the whole input, but just a strongly sublinear fraction of it. The
computation proceeds in synchronous rounds, and in each of them the machines can exchange
data with each other with the sole restriction that no one can ever receive more data than it
is capable of storing. The goal is to keep the total number of rounds as low as possible.

© Danupon Nanongkai and Michele Scquizzato;
licensed under Creative Commons License CC-BY

23rd International Conference on Principles of Distributed Systems (OPODIS 2019).
Editors: Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:danupon@gmail.com
mailto:scquizza@math.unipd.it
https://doi.org/10.4230/LIPIcs.OPODIS.2019.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Equivalence Classes and Conditional Hardness in Massively Parallel Computations

This basic model has been much investigated in the past decade, mostly from an al-
gorithmic point of view [40, 45, 33, 12, 52, 53, 2, 43, 35, 4, 39, 26, 13, 37, 55, 15, 22, 61,
29, 5, 11, 9, 8, 31, 34, 28, 36, 6, 14, 20, 17, 30, 16]. A common outcome is that, when N
denotes the input size, a solution terminating in O(logN) rounds is possible, usually by
simulating known PRAM algorithms [40, 33], but going below that resisted the efforts of
many researchers. Recently, a few works managed to break the O(logN) barrier by relaxing
a bit the strongly-sublinear constraint on the memory size, and showed that some graph
problems allow for o(logN)-round solutions in the so-called near-linear memory regime,
whereby machines have memories of size Õ(n), where n is the number of nodes in the
graph [22, 29, 8, 9, 17]. However, without this kind of relaxations only a handful of problems
are known to admit a o(logN)-round algorithm [31, 34, 20]. A fundamental question is thus
whether many known O(logN)-round algorithms can be complemented with tight lower
bounds.

Unfortunately, proving unconditional lower bounds – that is, without any assumptions –
seems extremely difficult in this model, as it would imply a breakthrough in circuit complexity:
Roughgarden et al. [55] showed that, when enough machines are available, proving any super-
constant lower bound for any problem in P would imply new circuit lower bounds, and
specifically would separate NC1 from P – a long-standing open question in complexity theory
that is a whisker away from the P vs. NP question. This means that the lack of super-constant
lower bounds in the MPC model can be blamed on our inability to prove some computational
hardness results.

In light of this barrier, the focus rapidly shifted to proving conditional lower bounds,
that is, lower bounds conditioned on plausible hardness assumptions. One widely-believed
assumption concerns graph connectivity, which, when machines have a memory of size O(n1−ε)
for some constant ε > 0, is conjectured to require Ω(logn) MPC rounds [40, 53, 13, 55, 61].1
The same conjecture is often made even for the special case of the problem where the graph
consists of either one cycle or two cycles, usually called one cycle vs. two cycles problem.
The one cycle vs. two cycles conjecture has been proven useful to show conditional lower
bounds for some problems, such as minimum spanning trees in low-dimensional spaces [4],
single-linkage clustering [61], 2-vertex connectivity [6], generation of random walks [44], as
well as parameterized conditional lower bounds [16].2

However, it is not clear whether the one cycle vs. two cycles conjecture is true or not, and
if not, what its refutation implies. This situation is in contrast with traditional complexity
theory, where a refutation of a conjectured relationship between complexity classes would
typically imply groundbreaking algorithmic results for a large number of problems; for
example, if the P 6= NP conjecture fails, then there would be efficient (polynomial-time)
algorithms for all problems in NP, including a number of “hard” problems. To put it another
way, a conjecture like P 6= NP is more robust in the sense that it is extremely hard to refute –
doing so requires a major algorithmic breakthrough. The goal of this paper is to explore
conjectures of this nature in the MPC model.

1 Observe that in the near-linear memory regime this conjecture breaks: graph connectivity can be solved
in O(1) MPC rounds [15].

2 The one cycle vs. two cycles problem is usually stated such that, in the case of two cycles, these have
n/2 nodes each. However, we observe that all the mentioned conditional lower bounds hold also when
the two cycles may have arbitrary lengths.

D. Nanongkai and M. Scquizzato 33:3

1.1 Summary of Contributions

In this paper we show many connections between problems and classes of problems that lead
to more robust conjectures for the MPC model. In particular, we study the connections
between the class of problems solvable in a sublogarithmic amount of rounds in the MPC
model, denoted by MPC(o(logN)), and the standard space complexity classes L and NL.
(Recall that L and NL are the classes of decision problems decidable in logarithmic space on
deterministic and nondeterministic Turing machines, respectively.) The connection between
MPC and these complexity classes is enabled by a recent result showing how Boolean circuits
can be efficiently simulated in the MPC model. In short, we present a set of observations and
reductions that suggest that L * MPC(o(logN)) and NL * MPC(o(logN)) are two robust
conjectures that might play crucial roles in arguing lower bounds in the MPC model, as they
already imply tight conditional lower bounds for a large number of problems. In particular,
with some assumptions on the total amount of memory (equivalently, machines) available in
the system, we can conclude the following.

1. Robustness: The one cycle vs. two cycles conjecture is robust, since it is equivalent
to conjecturing that L * MPC(o(logN)), and refuting this conjecture requires showing
o(logN)-round algorithms for all problems in L. This class includes many important
problems such as graph connectivity, cycle detection, and planarity testing (see problems
in the bottom ellipse in Figure 1 for more).

2. Equivalences: All L-complete problems are equivalent in the sense that they require
asymptotically the same number of rounds. This means that the one cycle vs. two
cycles problem, which is L-complete (see Appendix A), is equivalent to many seemingly
harder problems, such as graph bipartiteness, minimum cut, and formula evaluation (see
problems in the bottom ellipse in Figure 1 for more).
Additionally, all NL-complete problems and a few others are also equivalent. These
problems include st-reachability, all-pairs shortest paths (both the directed and undirected
cases) on unweighted graphs, diameter, and betweenness centrality (see problems in the
top ellipse in Figure 1 for more).

3. New conditional lower bounds: Assuming the one cycle vs. two cycles conjecture
(equivalently, L * MPC(o(logN))), there are no o(logN)-round algorithms for all L-hard
problems and a few other problems. This implies new conditional lower bounds for
more than a dozen of problems, such as betweenness centrality, planarity testing, graph
bipartiteness, list ranking, formula evaluation, and densest subgraph (see problems in the
big rectangle in Figure 1 for more). Previously only a few lower bounds were known, e.g.,
those for single-linkage clustering [61] and maximum matching [48]. (Of course, lower
bounds for connectivity-related problems are trivially implied by the one cycle vs. two
cycles conjecture.) Most of our lower bounds are tight (e.g., lower bounds for problems
in the ellipses in Figure 1).

4. A more robust conjecture. For NL-hard problems, we can argue lower bounds
under the more robust NL * MPC(o(logN)) conjecture. These problems include perfect
matching, single-source shortest paths, diameter, and network flow (see problems in the
small rectangle in Figure 1 for more). Note that the NL * MPC(o(logN)) conjecture is
more robust (i.e., more likely to be true) since L ⊆ NL.

OPODIS 2019

33:4 Equivalence Classes and Conditional Hardness in Massively Parallel Computations

Problems hard under the L * MPC(o(logN)) conjecture

Problems equivalent under O(1) MPC rounds

Graph Connectivity

One Cycle vs. Two Cycles

st-connectivity # Connected Components

Connected ComponentsMinimum Spanning Forest

Cycle Detection

Order Between Vertices

List Ranking

Formula Evaluation

Planarity Testing Graph BipartitenessMinimum Cut

Out-degree 1 st-reachability

Densest Subgraph Single-Linkage Clustering

Problems hard under the NL * MPC(o(logN)) conjecture

Problems equivalent under O(1) MPC rounds

st-reachability

Shortest PathStrong Connectivity

Directed Cycle Detection

SSSP APSP

DiameterRadius

Median

Betweenness Centrality

Perfect Matching
Circuit Evaluation

Network Flow

Figure 1 A classification of the complexity of some prominent problems in the MPC model.
Problems in the top ellipse are on unweighted graphs.

1.2 Related Work

Fish et al. [26] were perhaps the first to establish a connection between the MPC model and
classical complexity classes. Besides the introduction of a uniform version of the model, they
showed that constant-round MPC computations can simulate sublogarithmic space-bounded
Turing machines, and then proved strict hierarchy theorems for the MPC model under certain
complexity-theoretic assumptions.

Roughgarden et al. [55] discuss connections between the MPC model and Boolean circuits.
They show that standard degree arguments for circuits can be applied to MPC computations
as well, and specifically that any Boolean function whose polynomial representation has
degree d requires Ω(logs d) rounds of MPC using machines with memory s. This implies
an Ω(logs n) lower bound on the number of rounds for graph connectivity. Perhaps more
interestingly, the authors show a barrier for unconditional lower bounds by observing that, if
enough machines are available, then proving any super-constant lower bound in the MPC
model for any problem in P would imply new circuit lower bounds, and specifically would

D. Nanongkai and M. Scquizzato 33:5

separate NC1 from P, thus answering a notorious open question in circuit complexity. This
result follows by showing that, with a number of available machines polynomial in the number
of input nodes of the circuit, NC1 circuits can be efficiently simulated in the MPC model.
We observe that their argument readily generalizes to show that any bounded fan-in Boolean
circuit of depth d and of polynomial size can be simulated in O(dd/ log se) MPC rounds. Very
recently, Frei and Wada [27] prove the same result improving over the amount of machines
required for the simulation – from linear to strongly sublinear in the size of the circuit.

Given the difficulty of proving lower bounds for all algorithms, one can (a) prove lower
bounds for restricted classes of algorithms, or (b) prove conditional lower bounds: assume one
lower bound, and transfer the conjectured hardness to other problems via reductions (with
common examples being the theory of NP-hardness and its more recent analogue for problems
in P, usually called fine-grained complexity theory). Both paths give a deep understanding
and warn us what not to try when designing algorithms.

Within the first line of inquiry, Pietracaprina et al. [52] prove lower bounds for matrix
multiplication algorithms that compute all the n3 elementary products. Similar kinds of
limitations are required by Beame et al. [13], Jacob et al. [39], Im and Moseley [36], and Assadi
and Khanna [10] to prove lower bounds for st-connectivity, list ranking, graph connectivity,
and maximum coverage, respectively. Of a similar flavor are the results of Afrati et al. [2],
who show, for a fixed number of rounds (usually a single round), space-communication
tradeoffs.

Within the second line of inquiry fall [4, 61, 6, 44], which use the conjecture on the
hardness of graph connectivity as a hardness assumption for proving conditional lower bounds
for other problems such as minimum spanning trees in low-dimensional spaces, single-linkage
clustering, 2-vertex connectivity, and generating random walks, respectively. Very recently,
Ghaffari et al. [30] present conditional lower bounds for other key graph problems such as
approximate maximum matching, approximate vertex cover, maximal independent set, and
maximal matching. Their lower bounds also rest on the hardness of graph connectivity, and
are obtained by introducing a new general method that lifts (unconditional) lower bounds
from the classical LOCAL model of distributed computing to the MPC model. A conditional
lower bound following a different kind of argument is given by Andoni et al. [5], who show
that an no(1)-round MPC algorithm that answers O(n+m) pairs of reachability queries in
directed graphs with n nodes and m edges can be simulated in the RAM model yielding
faster Boolean matrix multiplication algorithms.

Several other models have been developed in the quest to establish rigorous theoretical
foundations of (massively) parallel computing, with the PRAM being one of the most
investigated. The MPC model is more powerful than the PRAM since PRAM algorithms
can be simulated in the MPC model with constant slowdown [40, 33], and some problems
(such as evaluating the XOR function) can be solved much faster in the MPC model.

Valiant’s bulk-synchronous parallel (BSP) model [58] anticipated many of the features
of MPC-type computations, such as the organization of the computation in a sequence of
synchronous rounds (originally called supersteps). Several papers (e.g., [32, 47, 1, 56, 18])
explored the power of this model by establishing lower bounds on the number of supersteps
or on the communication complexity required by BSP computations. Lower bounds on the
number of supersteps are usually of the form Ω(loghN), where h is the maximum number of
messages sent or received by any processor in any superstep.

Another model aiming at serving as an abstraction for modern large-scale data processing
frameworks is the k-machine model [41]. Partly inspired by message-passing models in
distributed computing, in the k-machine model there are k available machines, and in each

OPODIS 2019

33:6 Equivalence Classes and Conditional Hardness in Massively Parallel Computations

round any pair of machines is allowed to communicate using messages of a given size. Hard
bounds on the point-to-point communication lead to very strong round lower bounds in this
model [41, 49, 50].

The congested clique (see, e.g., [24]) is a model for network computations bearing some
similarities with the MPC model. On one hand, algorithms for this model can be simulated in
the MPC model – under some specific conditions on the size of the local memories [35, 29, 15].
On the other hand, analogously to the MPC model, proving a super-constant unconditional
lower bound in the congested clique for a problem in NP would imply better circuit size-
depth tradeoffs for such a problem than are currently known [24]. This induced further
investigations of the model under the lens of complexity theory [42].

2 Preliminaries

In this section we present the MPC model in detail. We assume that the reader is familiar
with the standard space complexity classes L and NL, and with the logspace-uniform circuit
complexity classes NCk and ACk (see, e.g., the textbook [7]).

2.1 The MPC Model

The Massively Parallel Computation (MPC) model is a theoretical abstraction capturing
the main distinguishing aspects of several popular frameworks for the parallel processing of
large-scale datasets. It was introduced by Karloff, Suri, and Vassilvitskii [40], and refined in
subsequent work [33, 13, 4].

In this model the system consists of p identical machines (processors), each with a local
memory of size s. If N denotes the size of the input, then s = O(N1−ε) for some fixed
constant ε > 0, and the total amount of memory available in the system is p · s = O(N1+γ)
for some fixed constant γ ≥ 0. The space size is measured by words, each of Θ(logN)
bits. Initially, the input is adversarially distributed across the machines. The computation
proceeds in synchronous rounds. In each round, each machine performs some computation
on the data that resides in its local memory, and then, at the end of the round, exchanges
messages with other machines. The total size of messages sent or received by each machine
in each round is bounded by s. The goal is to minimize the total number of rounds.

For problems defined on graphs, the input size N is equal to n+m, where n is the number
of nodes of the graph and m is the number of edges. When considering graph problems,
in this paper we assume s = O(n1−ε). This regime of memory size, usually called strongly
sublinear memory regime, is always in compliance with the aforementioned constraint on the
size of the local memory, even when graphs are sparse, for which the constraint is the most
restrictive.

Since we want to relate the MPC model to classical complexity classes, one must make
sure that the model is uniform, by which we mean, roughly speaking, that the same algorithm
solves the problem for inputs of all (infinitely many) sizes. Fish et al. [26] dealt with this issue
observing that Karloff et al.’s original definition of the model [40] is non-uniform, allowing it
to decide undecidable languages, and thus by reformulating the definition of the model to
make it uniform. Building on that reformulation, and letting f : N→ R+ be a function, we
define the class MPC(f(N)) to be the class of problems solvable in O(f(N)) MPC rounds by
a uniform family of MPC computations.

D. Nanongkai and M. Scquizzato 33:7

3 Massively Parallel Computations and Space Complexity Classes

In this section we recall a recent result showing that Boolean circuits can be efficiently
simulated in the MPC model, and then we build on it to derive new results and conjectures.

3.1 Efficient Circuit Simulation in the MPC Model
We now recall the main result in [27] which, roughly speaking, says that any bounded fan-in
Boolean circuit of depth d and of polynomial size can be simulated in O(dd/ log se) MPC
rounds. This result is already implicit in [55], where it is achieved by a simple simulation
whereby each gate of the circuit is associated with a machine whose responsibility is to
compute the output of the gate. This requires the availability of a number of machines
polynomial in the number of inputs n of the circuit, and thus linear in the size of the
circuit. Very recently, Frei and Wada [27] came up with a more sophisticated strategy, which
uses only a strongly sublinear amount of machines. Their strategy employs two distinct
simulations: for NC1 circuits they exploit Barrington’s well-known characterization of NC1

in terms of bounded-width polynomial-size branching programs, and thus simulate such
branching programs in a constant number of rounds; for the higher levels of the NC hierarchy,
the Boolean circuits themselves are directly simulated, suitably dividing the computation
into the simulation of sub-circuits of depth O(logn), each to be accomplished in O(1) rounds.

The authors work in the original model of Karloff et al. [40], but their result seamlessly
applies in the refined MPC model.

I Theorem 1 ([27]). Let DMPCi denote the class of problems solvable by a deterministic
MPC algorithm in O(logiN) rounds with O(N1−ε) local memory per machine and O(N2(1−ε))
total memory. Then,

NCi+1 ⊆ DMPCi

for every i ∈ N and for every ε ∈ (0, 1/2). (When i = 0, the result holds also for ε = 1/2.)

Setting i = 0, we have the following.

I Corollary 2. The class NC1 can be simulated in O(1) MPC rounds with O(N1−ε) local
memory per machine and O(N2(1−ε)) total memory, for any constant ε ∈ (0, 1/2].

Since NC1 ⊆ L ⊆ NL ⊆ NC2 (see, e.g., [51]), an immediate by-product of Theorem 1 is
that some standard space complexity classes can be efficiently simulated in the MPC model.

I Corollary 3. The class NC2, and thus the classes L and NL, can be simulated in O(logN)
MPC rounds with O(N1−ε) local memory per machine and O(N2(1−ε)) total memory, for
any constant ε ∈ (0, 1/2).

3.2 New Consequences of Circuit Simulations
In this section we discuss new consequences of the fact that the MPC model is powerful
enough to efficiently simulate general classes of Boolean circuits.

I Theorem 4. Consider the MPC model where the size of the local memory per machine is
O(N1−ε) for any constant ε ∈ (0, 1/2], and assume that Ω(N2(1−ε)) total memory is available.
Let f : N→ R+ be a function. Then, if any L-hard problem can be solved in O(f(N)) MPC
rounds, so can all the problems in the class L. Moreover, either all L-complete problems can
be solved in O(f(N)) MPC rounds, or none of them can.

OPODIS 2019

33:8 Equivalence Classes and Conditional Hardness in Massively Parallel Computations

Proof. Both claims follow directly from the definitions of L-hardness and L-completeness,
and from Corollary 2. Let A be an L-hard problem that can be solved in O(f(N)) MPC
rounds. By definition of L-hardness, every problem in L is NC1 reducible to A. By assumption,
ε ∈ (0, 1/2] and Ω(N2(1−ε)) total memory is available, and thus, by Corollary 2, an NC1

reduction can be simulated in O(1) MPC rounds, giving the first claim. Therefore, in
particular, if any L-complete problem can be solved in O(f(N)) MPC rounds, so can all the
other L-complete problems. In other words, either all L-complete problems can be solved in
O(f(N)) MPC rounds, or none of them can. J

We remark that in Theorem 4 no assumption is placed on the function f(N), which
therefore can be of any form, even a constant. Hence, Theorem 4 says that all the known
L-complete problems such as graph connectivity, graph bipartiteness, cycle detection, and
formula evaluation, are equivalent in the MPC model, and in a very strong sense: they all
require asymptotically the same number of rounds. (Analogous equivalences are common
in computer science, e.g., in fine-grained complexity theory, where equivalence classes of
problems within P, such as the APSP class [59], are established.) Thus, this simple result
provides an explanation of the striking phenomenon that for these well-studied problems
we seem unable to break the O(logN) barrier in the MPC model. It also implies that the
conjectures on the hardness of graph connectivity and on the hardness of the one cycle vs.
two cycles problem are equivalent, at least when Ω(N2(1−ε)) total memory is available.

The next theorem provides an even stronger barrier for improvements in the MPC model.

I Theorem 5. Consider the MPC model where the size of the local memory per machine is
O(N1−ε) for any constant ε ∈ (0, 1/2], and assume that Ω(N2(1−ε)) total memory is available.
Let f : N→ R+ be a function. If any L-hard problem can be solved in O(f(N)) MPC rounds,
then either all NL-complete problems can be solved in O(f(N)) MPC rounds, or none of
them can. Moreover, if any NL-hard and any L-hard problem can be solved in O(f(N)) MPC
rounds, so can all the problems in the class NL.

Proof. Let A be an L-hard problem that can be solved in O(f(N)) MPC rounds. Then,
by Theorem 4, every problem in the class L can be solved in O(f(N)) MPC rounds and
thus, in particular, every log-space reduction can be computed in O(f(N)) MPC rounds. By
definition of NL-completeness, every problem in NL, and thus, in particular, any NL-complete
problem, is log-space reducible to any other NL-complete problem, and this proves the first
statement.

Let B be an NL-hard problem that can be solved in O(f(N)) MPC rounds. By definition
of NL-hardness, every problem in NL is log-space reducible to B. Since we have just argued
that if any L-hard problem can be solved in O(f(N)) MPC rounds, so can any log-space
reduction, the second statement follows. J

Once again, we stress that in Theorem 5 no assumption is placed on the function f(N),
which therefore can be of any form, even a constant.

Theorem 5 indicates that, unless L = NL, in the MPC model the connectivity problem on
directed graphs, which is both NL-complete and L-hard, is strictly harder than on undirected
graphs in the sense that breaking the current logarithmic barrier, if possible, would be strictly
harder.

3.2.1 New Conjectures
The common belief that problems such as graph connectivity and list ranking cannot be
solved in o(logN) MPC rounds, along with the equivalence result of Theorem 4, justify the
following conjecture.

D. Nanongkai and M. Scquizzato 33:9

I Conjecture 1. No L-hard problem can be solved in o(logN) MPC rounds with O(N1−ε)
local memory per machine, for any constant ε ∈ (0, 1), not even with a polynomial amount of
total memory. Equivalently,

L * MPC(o(logN)).

We now show the claimed equivalence.

I Proposition 6. The two statements in Conjecture 1 are equivalent.

Proof. We shall argue that if any of the two statements is wrong, so is the other, and vice
versa. Assume L ⊆ MPC(o(logN)). Then, some L-complete, and hence L-hard, problem is
contained in MPC(o(logN)), that is, it can be solved in o(logN) MPC rounds. To show the
other direction, assume that there exists an L-hard problem that can be solved in o(logN)
MPC rounds with a polynomial amount of total memory. Then, by Theorem 4, every problem
in L can be solved in o(logN) MPC rounds, i.e., L ⊆ MPC(o(logN)). J

We would like to remark that, in light of Theorem 4, Conjecture 1 is totally equivalent
to the preceding conjectures on the hardness of graph connectivity or of the one cycle vs.
two cycles problem [40, 53, 13, 55, 61]; however, Theorem 4 significantly strengthens the
evidence for such conjectures.

Likewise, Theorem 5 provides a justification for the following conjecture.

I Conjecture 2. No NL-hard and L-hard problem can be solved in o(logN) MPC rounds with
O(N1−ε) local memory per machine, for any constant ε ∈ (0, 1), not even with a polynomial
amount of total memory. Equivalently,

NL * MPC(o(logN)).

The two statements in Conjecture 2 are equivalent. The argument is similar to that used
for the preceding proposition.

Observe that since L ⊆ NL, Conjecture 1 implies Conjecture 2. Hence, unless L = NL,
Conjecture 2 is weaker than Conjecture 1, and thus more likely to be true.

4 Reductions and Equivalences in Massively Parallel Computations

In this section we discuss two equivalence classes of problems and some conditional lower
bounds in the MPC model. The two equivalence classes both contain problems equivalent
to each other under O(1)-round MPC reductions and for which the best known upper
bound is O(logN) rounds, but differ in terms of the low-space computational complexity
characterization of the problems they contain.

As a consequence of the results of Section 3, most of these reductions and equivalences
follow from known hardness and completeness results for low-space complexity classes such
as L and NL.

We will also show novel reductions and equivalences in the MPC model. Some of such
reductions crucially require the availability of up to polynomially many machines (equivalently,
a total amount of memory up to polynomial in the input size), which are used to host up
to a polynomial number of copies of the input data. The quick creation of so many input
replicas can be achieved through the use of a simple two-step broadcast procedure, as shown
in the following lemma.

I Lemma 7. The input data can be replicated up to a polynomial number of times in O(1)
MPC rounds.

OPODIS 2019

33:10 Equivalence Classes and Conditional Hardness in Massively Parallel Computations

4.1 An Equivalence Class for Undirected Graph Connectivity
In this section we discuss the MPC equivalence class for graph connectivity in undirected
graphs. This problem, which asks to determine whether a given undirected graph is connected
or not, was one of the first problems to be shown L-hard under (uniform) NC1 reductions [21],
and then it was placed in L by the remarkable algorithm of Reingold [54]. Exploiting
the results of Section 3, we know that one can recycle all the reductions that have been
developed in classical complexity theory for showing hardness and completeness for class
L in the MPC model as well, since these can all be simulated in O(1) MPC rounds with
O(N2(1−ε)) total memory. This immediately implies that the class of L-complete problems
forms an equivalence class in the MPC model as well. Specifically, for example, either all the
following problems can be solved with a sublogarithmic MPC algorithm, or none of them
can:graph connectivity, connectivity for promise graphs that are a disjoint union of cycles,
st-connectivity, st-reachability for directed graphs of out-degree one, cycle detection, order
between vertices, formula evaluation, and planarity testing.

Recycling (some) old SL-completeness results. Many more problems can be placed in
this MPC equivalence class almost effortlessly: this is the case for some problems complete for
the class symmetric logarithmic space (SL), a class defined by Lewis and Papadimitriou [46]
to capture the complexity of undirected st-connectivity before this was eventually settled by
the breakthrough of Reingold. Completeness in SL is defined in terms of log-space reductions,
and st-connectivity is one complete problem for it. Since L ⊆ SL, Reingold’s algorithm made
these two classes collapse, thus widening the class L with many new problems. However,
completeness for SL does not translate into completeness for L, since the latter is defined in
terms of a lower-level kind of reduction. Luckily, some of the log-space reductions devised to
show hardness for SL turn out to be actually stronger than log-space. This is the case, e.g.,
of testing whether a given graph is bipartite (or, equivalently, 2-colorable), as we show next.
I Lemma 8. Graph bipartiteness is equivalent to st-connectivity under O(1)-round MPC
reductions, with O(n1−ε) local memory per machine for any constant ε ∈ (0, 1), and O(n(n+
m)) total memory.

A good source of problems complete for SL is [3].

From decision to non-decision problems. Complexity classes such as L contain problems
phrased as decision problems. Nevertheless, it is often easy to transform them into their
non-decision version. As an example, consider order between vertices (ORD). ORD is the
decision version of list ranking, the problem of obtaining a total ordering from a given
successor relation [25]. It is easy to argue the following equivalence.
I Lemma 9. List ranking is equivalent to order between vertices under O(1)-round MPC
reductions, with O(n1−ε) local memory per machine for any constant ε ∈ (0, 1), and O(n3)
total memory.

Non-pairwise reductions. Sometimes back-and-forth reductions between two problems are
not known. In this case their equivalence may nevertheless be established through a series of
reductions involving related problems.
I Lemma 10. Graph connectivity, st-connectivity, # connected components, connected
components, minimum spanning forest, and minimum cut are all equivalent under O(1)-
round MPC reductions, with O(n1−ε) local memory per machine for any constant ε ∈ (0, 1),
and Õ(n2m(n+m)) total memory.

D. Nanongkai and M. Scquizzato 33:11

We can now summarize all the results of this section.

I Theorem 11. The following problems are all equivalent under O(1)-round MPC reductions,
with O(n1−ε) local memory per machine for any constant ε ∈ (0, 1), and Õ(n2m(n + m))
total memory: graph connectivity, connectivity for promise graphs that are a disjoint union
of cycles, st-connectivity, st-reachability for directed graphs of out-degree one, cycle detection,
order between vertices, formula evaluation, planarity testing, graph bipartiteness, list ranking,
connected components, connected components, minimum spanning forest, and minimum
cut.

Conditional hardness: L-hard problems. Finally, there are problems known to be L-hard,
but not known to be in L, such as densest subgraph and perfect matching. Since for these
problems only one-way reductions from problems in L are known, we don’t know whether
they are part of the equivalence class of undirected graph connectivity.

4.2 An Equivalence Class for Directed Graph Connectivity
In this section we discuss the MPC equivalence class for graph connectivity in directed
graphs. The problem corresponding to st-connectivity in directed graphs is st-reachability,
that is, the problem of detecting whether there is a path from a distinguished node s to a
distinguished node t in a directed graph. st-reachability is the prototypical complete problem
for NL [51, 57, 7].

Recall that hardness in NL is defined with respect to log-space reducibility, but we do
not know whether log-space computations can be simulated in o(logN) MPC rounds – in
fact, in Section 3 we conjecture they cannot. However, it turns out that many of the known
log-space reductions that establish NL-hardness of problems can actually be simulated in O(1)
MPC rounds. This is the case, for example, of the reductions between st-reachability and
shortest path, the other canonical example NL-complete problem which, given an undirected
(unweighted) graph, two distinguished nodes s and t, and an integer k, asks to determine if
the length of a shortest path from s to t is k.

I Lemma 12. Shortest path on unweighted graphs is equivalent to st-reachability under
O(1)-round MPC reductions, with O(n1−ε) local memory per machine for any constant
ε ∈ (0, 1), and O(nδ(n+m)) total memory where δ is a small enough positive constant.

There are other NL-complete problems that can be shown to be equivalent under O(1)-
round MPC reductions. Some examples are directed cycle detection, by a simple adaptation
of the preceding reductions, and strong connectivity, which follows from a result in [19]. We
suspect that many other log-space reductions are actually (or can easily be translated into)
O(1)-round MPC reductions, thus enabling us to enlarge the equivalence class for graph
connectivity in directed graphs almost effortlessly by leveraging known results in complexity
theory.

When this is not possible, one might have to devise novel reductions. We now do so for
some important shortest-path-related problems as well as for some graph centrality problems.

4.2.1 New Fine-Grained MPC Reductions: Constant-Round
Equivalences Between Graph Centrality Problems, APSP, and
Diameter

In this section we shall exploit the shortest path problem as a prototypical problem for
which the fastest known MPC algorithm takes O(logn) rounds, and prove a collection of
constant-round equivalences with many other graph problems.

OPODIS 2019

33:12 Equivalence Classes and Conditional Hardness in Massively Parallel Computations

We start by showing the simple fine-grained equivalence between APSP and shortest
path.

I Lemma 13. APSP is equivalent to shortest path under O(1)-round MPC reductions, with
O(n1−ε) local memory per machine for any constant ε ∈ (0, 1), and O(n2(n + m)) total
memory.

Proof. The reduction from shortest path to APSP is obvious. The other direction is also
immediate when we have enough machines, and specifically O(n2(n+m)) total memory: by
Lemma 7 we can create 2

(
n
2
)
copies of the input graph in O(1) MPC rounds, and then in

parallel, one pair for each copy, compute the shortest path for each (ordered, if the graph is
directed) pair of nodes. J

In the following results we will use roughly the same reduction. We start with the problem
of determining the diameter of a graph.

I Lemma 14. Shortest path is O(1)-round MPC reducible to diameter, with O(n1−ε) local
memory per machine for any constant ε ∈ (0, 1), and O(n+m) total memory.

Proof. We start with the case of undirected graphs. Given an instance of shortest path, the
idea is to alter the input graph by sticking two new and sufficiently long paths to nodes s
and t, so that the path of largest total weight includes both s and t.

This is sufficient if the original graph G is connected; otherwise, the diameter is infinite,
and from this information we cannot determine the length of a shortest path from s to t.
Hence, we shall first make G connected in a way that alters the distance between s and t
only if they are not connected in G. Since the distance between any two nodes can be at
most (n− 1)M , this can be achieved by adding to the graph a new node v and n edges of
weight nM between v and any other node. Then, we append two additional chains to s and
t, each with 2n edges of weight M , and denote this modified graph by G′.

This reduction can be performed in O(1) MPC rounds, it increases the number of nodes
and the number of edges by O(n), and the maximum absolute weight by a factor of O(n).
Therefore, any MPC algorithms that runs in O(T (n,m,M)) rounds in the new graph G′ can
be used to solve the original instance G in O(T (n,m,M)) rounds as well.

Observe that the diameter of the modified graph G′ must include the two chains appended
to s and t. Hence any algorithm for the diameter when executed on graph G′ always returns
4nM plus the shortest-path distance between s and t in G′. By construction, the latter
quantity, which we denote by α, is at most (n − 1)M if s and t are connected in G, and
(exactly) 2nM otherwise. Thus the answer to shortest path is α if the diameter of G′ is at
most 4nM + (n− 1)M , and infinity otherwise.

In the directed case, we use the same weighted graph G′ as before, adding one parallel
edge for each edge, both with the same weight but with opposite directions. The rest of the
algorithm is the same and its analysis is analogous to the undirected case. J

I Lemma 15. Shortest path is O(1)-round MPC reducible to radius, with O(n1−ε) local
memory per machine for any constant ε ∈ (0, 1), and O(n+m) total memory.

I Lemma 16. Shortest path is O(1)-round MPC reducible to median, with O(n1−ε) local
memory per machine for any constant ε ∈ (0, 1), and O(n+m) total memory.

Now we consider the evaluation of the betweenness centrality of nodes. In contrast to
the previous reductions, in the following one we shall create n copies of the reduction graph
leveraging Lemma 7, and then perform some computation in parallel.

D. Nanongkai and M. Scquizzato 33:13

I Lemma 17. Shortest path is O(1)-round MPC reducible to betweenness centrality, with
O(n1−ε) local memory per machine for any constant ε ∈ (0, 1), and O(n(n + m)) total
memory.

An immediate consequence of these results is the following.

I Proposition 18. Shortest path, SSSP, APSP, diameter, radius, median, and betweenness
centrality are all equivalent under O(1)-round MPC reductions, with O(n1−ε) local memory
per machine for any constant ε ∈ (0, 1), and O(n2(n+m)) total memory.

Proof. The two reductions involving SSSP are obvious. The reduction from diameter (or
radius) to APSP is also obvious, since determining the maximum (or minimum) in a set of
values can be easily done in O(1) MPC rounds. The theorem then follows from Lemmas 13
to 17. J

We can now summarize all the results of this section.

I Theorem 19. The following problems are all equivalent under O(1)-round MPC reductions,
with O(n1−ε) local memory per machine for any constant ε ∈ (0, 1), and O(n2(n+m)) total
memory: st-reachability, strong connectivity, directed cycle detection, unweighted shortest path,
unweighted SSSP, unweighted APSP, unweighted diameter, unweighted radius, unweighted
median, and unweighted betweenness centrality.

References
1 Micah Adler, Wolfgang Dittrich, Ben H. H. Juurlink, Miroslaw Kutylowski, and Ingo Rieping.

Communication-optimal parallel minimum spanning tree algorithms. In Proceedings of the
10th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 27–36,
1998.

2 Foto N. Afrati, Anish Das Sarma, Semih Salihoglu, and Jeffrey D. Ullman. Upper and Lower
Bounds on the Cost of a Map-Reduce Computation. PVLDB, 6(4):277–288, 2013.

3 Carme Àlvarez and Raymond Greenlaw. A compendium of problems complete for symmetric
logarithmic space. Computational Complexity, 9(2):123–145, 2000.

4 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In Proceedings of the 46th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 574–583, 2014.

5 Alexandr Andoni, Clifford Stein, Zhao Song, Zhengyu Wang, and Peilin Zhong. Parallel Graph
Connectivity in Log Diameter Rounds. In Proceedings of the 59th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 674–685, 2018.

6 Alexandr Andoni, Clifford Stein, and Peilin Zhong. Log Diameter Rounds Algorithms for
2-Vertex and 2-Edge Connectivity. In Proceedings of the 46th International Colloquium on
Automata, Languages, and Programming (ICALP), pages 14:1–14:16, 2019.

7 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

8 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and Cliff
Stein. Coresets Meet EDCS: Algorithms for Matching and Vertex Cover on Massive Graphs.
In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1616–1635, 2019.

9 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear Algorithms for (∆+1) Vertex
Coloring. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 767–786, 2019.

10 Sepehr Assadi and Sanjeev Khanna. Tight Bounds on the Round Complexity of the Distributed
Maximum Coverage Problem. In Proceedings of the 29th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2412–2431, 2018.

OPODIS 2019

33:14 Equivalence Classes and Conditional Hardness in Massively Parallel Computations

11 Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively Parallel Algorithms for Finding
Well-Connected Components in Sparse Graphs. In Proceedings of the 38th ACM Symposium
on Principles of Distributed Computing (PODC), pages 461–470, 2019.

12 Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest Subgraph in Streaming and
MapReduce. PVLDB, 5(5):454–465, 2012.

13 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. J. ACM, 64(6), 2017.

14 Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, MohammadTaghi
Hajiaghayi, Richard M. Karp, and Jara Uitto. Massively Parallel Computation of Matching
and MIS in Sparse Graphs. In Proceedings of the 38th ACM Symposium on Principles of
Distributed Computing (PODC), pages 481–490, 2019.

15 Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Semi-MapReduce
Meets Congested Clique. CoRR, abs/1802.10297, 2018.

16 Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Vahab Mirrokni.
Near-Optimal Massively Parallel Graph Connectivity. In Proceedings of the 60th IEEE Annual
Symposium on Foundations of Computer Science (FOCS), 2019. To appear.

17 Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G. Harris. Exponentially Faster
Massively Parallel Maximal Matching. In Proceedings of the 60th IEEE Annual Symposium
on Foundations of Computer Science (FOCS), 2019. To appear.

18 Gianfranco Bilardi, Michele Scquizzato, and Francesco Silvestri. A Lower Bound Technique
for Communication in BSP. ACM Trans. Parallel Comput., 4(3):14:1–14:27, 2018.

19 Ashok K. Chandra, Larry J. Stockmeyer, and Uzi Vishkin. Constant Depth Reducibility.
SIAM J. Comput., 13(2):423–439, 1984.

20 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
Complexity of (∆+1) Coloring in Congested Clique, Massively Parallel Computation, and
Centralized Local Computation. In Proceedings of the 38th ACM Symposium on Principles of
Distributed Computing (PODC), pages 471–480, 2019.

21 Stephen A. Cook and Pierre McKenzie. Problems Complete for Deterministic Logarithmic
Space. J. Algorithms, 8(3):385–394, 1987.

22 Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovic, Krzysztof Onak, and
Piotr Sankowski. Round compression for parallel matching algorithms. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 471–484,
2018.

23 Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, 2008.

24 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing
(PODC), pages 367–376, 2014.

25 Kousha Etessami. Counting Quantifiers, Successor Relations, and Logarithmic Space. J.
Comput. Syst. Sci., 54(3):400–411, 1997.

26 Benjamin Fish, Jeremy Kun, Ádám Dániel Lelkes, Lev Reyzin, and György Turán. On the
Computational Complexity of MapReduce. In Proceedings of the 29th International Symposium
on Distributed Computing (DISC), pages 1–15, 2015.

27 Fabian Frei and Koichi Wada. Efficient Circuit Simulation in MapReduce. In Proceedings of
the 30th International Symposium on Algorithms and Computation (ISAAC), 2019. To appear.

28 Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted Matchings
via Unweighted Augmentations. In Proceedings of the 38th ACM Symposium on Principles of
Distributed Computing (PODC), pages 491–500, 2019.

29 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and Ronitt Ru-
binfeld. Improved massively parallel computation algorithms for MIS, matching, and vertex
cover. In Proceedings of the 37th ACM Symposium on Principles of Distributed Computing
(PODC), pages 129–138, 2018.

D. Nanongkai and M. Scquizzato 33:15

30 Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional Hardness Results for Massively
Parallel Computation from Distributed Lower Bounds. In Proceedings of the 60th IEEE Annual
Symposium on Foundations of Computer Science (FOCS), 2019. To appear.

31 Mohsen Ghaffari and Jara Uitto. Sparsifying Distributed Algorithms with Ramifications in
Massively Parallel Computation and Centralized Local Computation. In Proceedings of the
30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1636–1653, 2019.

32 Michael T. Goodrich. Communication-efficient parallel sorting. SIAM J. Comput., 29(2):416–
432, 1999.

33 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, Searching, and Simulation
in the MapReduce Framework. In Proceedings of the 22nd International Symposium on
Algorithms and Computation (ISAAC), pages 374–383, 2011.

34 MohammadTaghi Hajiaghayi, Saeed Seddighin, and Xiaorui Sun. Massively Parallel Approx-
imation Algorithms for Edit Distance and Longest Common Subsequence. In Proceedings of
the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1654–1672,
2019.

35 James W. Hegeman and Sriram V. Pemmaraju. Lessons from the Congested Clique applied
to MapReduce. Theor. Comput. Sci., 608:268–281, 2015.

36 Sungjin Im and Benjamin Moseley. A Conditional Lower Bound on Graph Connectivity in
MapReduce. CoRR, abs/1904.08954, 2019.

37 Sungjin Im, Benjamin Moseley, and Xiaorui Sun. Efficient massively parallel methods for
dynamic programming. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 798–811, 2017.

38 Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In Proceedings of the 2007 EuroSys
Conference, pages 59–72, 2007.

39 Riko Jacob, Tobias Lieber, and Nodari Sitchinava. On the Complexity of List Ranking in
the Parallel External Memory Model. In Proceedings of the 39th International Symposium on
Mathematical Foundations of Computer Science (MFCS), pages 384–395, 2014.

40 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
MapReduce. In Proceedings of the 21st annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 938–948, 2010.

41 Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson. Distributed
Computation of Large-Scale Graph Problems. In Proceedings of the 26th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 391–410, 2015.

42 Janne H. Korhonen and Jukka Suomela. Towards a Complexity Theory for the Congested
Clique. In Proceedings of the 30th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 163–172, 2018.

43 Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast Greedy
Algorithms in MapReduce and Streaming. ACM Trans. Parallel Comput., 2(3), 2015.

44 Jakub Lacki, Slobodan Mitrovic, Krzysztof Onak, and Piotr Sankowski. Walking Randomly,
Massively, and Efficiently. CoRR, abs/1907.05391, 2019.

45 Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a method
for solving graph problems in MapReduce. In Proceedings of the 23rd ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 85–94, 2011.

46 Harry R. Lewis and Christos H. Papadimitriou. Symmetric Space-Bounded Computation.
Theor. Comput. Sci., 19:161–187, 1982.

47 Philip D. MacKenzie and Vijaya Ramachandran. Computational bounds for fundamental prob-
lems on general-purpose parallel models. In Proceedings of the 10th Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pages 152–163, 1998.

48 Krzysztof Onak. Personal communication, 2019.
49 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. Fast Distributed Algorithms

for Connectivity and MST in Large Graphs. ACM Trans. Parallel Comput., 5(1), 2018.

OPODIS 2019

33:16 Equivalence Classes and Conditional Hardness in Massively Parallel Computations

50 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. On the Distributed Complexity
of Large-Scale Graph Computations. In Proceedings of the 30th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 405–414, 2018.

51 Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
52 Andrea Pietracaprina, Geppino Pucci, Matteo Riondato, Francesco Silvestri, and Eli Up-

fal. Space-round tradeoffs for MapReduce computations. In Proceedings of the 26th ACM
International Conference on Supercomputing (ICS), pages 235–244, 2012.

53 Vibhor Rastogi, Ashwin Machanavajjhala, Laukik Chitnis, and Anish Das Sarma. Finding
connected components in Map-Reduce in logarithmic rounds. In Proceedings of the 29th IEEE
International Conference on Data Engineering (ICDE), pages 50–61, 2013.

54 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, 2008.
55 Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and Circuits (On Lower

Bounds for Modern Parallel Computation). J. ACM, 65(6), 2018.
56 Michele Scquizzato and Francesco Silvestri. Communication Lower Bounds for Distributed-

Memory Computations. In Proceedings of the 31st International Symposium on Theoretical
Aspects of Computer Science (STACS), pages 627–638, 2014.

57 Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.
58 Leslie G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM, 33(8):103–111,

1990.
59 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.

In Proceedings of the International Congress of Mathematicians 2018 (ICM 2018), pages
3431–3472, 2018.

60 Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.
61 Grigory Yaroslavtsev and Adithya Vadapalli. Massively parallel algorithms and hardness for

single-linkage clustering under `p-distances. In Proceedings of the 34th International Conference
on Machine Learning (ICML), pages 5596–5605, 2018.

62 Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi,
Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache Spark: a unified engine for big data
processing. Commun. ACM, 59(11):56–65, 2016.

APPENDIX

A L-Completeness of the One Cycle vs. Two Cycles Problem

In [21, Theorem 3] it is shown that graph connectivity when the given graph is known to be a
disjoint union of cycles is L-hard. A careful inspection of the reductions used to establish this
result reveals that the problem remains hard even when the graph is known to be made up
of either one or three cycles. By reducing from a different problem, we show that it remains
hard even when the graph is known to be made up of either one or two cycles.

I Proposition 20. Graph connectivity for promise graphs that are either one cycle or two
cycles is L-complete.

Proof. Membership in L is guaranteed by the algorithm of Reingold [54]. To show L-hardness,
we shall exhibit an NC1 reduction from order between vertices. Given an instance (G, a, b)
for order between vertices, we build a new graph G′ as follows: (1) the two arcs pointing
to a and to b, denoted (a′, a) and (b′, b), respectively, are removed, (2) the direction of each
of the remaining n− 3 arcs is discarded, and (3) edges {s, a}, {a′, b′}, and {b, t} are added,
where s denotes the source and t the sink of G, respectively. This construction is an NC1

reduction. The resulting graph G′ consists of two cycles if a precedes b in G, and of one
single cycle otherwise. J

	Introduction
	Summary of Contributions
	Related Work

	Preliminaries
	The MPC Model

	Massively Parallel Computations and Space Complexity Classes
	Efficient Circuit Simulation in the MPC Model
	New Consequences of Circuit Simulations
	New Conjectures

	Reductions and Equivalences in Massively Parallel Computations
	An Equivalence Class for Undirected Graph Connectivity
	An Equivalence Class for Directed Graph Connectivity
	New Fine-Grained MPC Reductions: Constant-Round Equivalences Between Graph Centrality Problems, APSP, and Diameter

	L-Completeness of the One Cycle vs. Two Cycles Problem

