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Abstract The Massively Parallel Computation (MPC)

model serves as a common abstraction of many modern

large-scale data processing frameworks, and has been

receiving increasingly more attention over the past few

years, especially in the context of classical graph prob-

lems. So far, the only way to argue lower bounds for this

model is to condition on conjectures about the hardness

of some specific problems, such as graph connectivity

on promise graphs that are either one cycle or two cy-

cles, usually called the one cycle vs. two cycles problem.

This is unlike the traditional arguments based on con-

jectures about complexity classes (e.g., P 6= NP), which

are often more robust in the sense that refuting them

would lead to groundbreaking algorithms for a whole

bunch of problems.

In this paper we present connections between prob-

lems and classes of problems that allow the latter type

of arguments. These connections concern the class of

problems solvable in a sublogarithmic amount of rounds

in the MPC model, denoted by MPC(o(logN)), and the

standard space complexity classes L and NL, and sug-

gest conjectures that are robust in the sense that re-

futing them would lead to many surprisingly fast new

algorithms in the MPC model. We also obtain new

conditional lower bounds, and prove new reductions
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and equivalences between problems in the MPC model.

Specifically, our main results are as follows.

– Lower bounds conditioned on the one cycle vs. two

cycles conjecture can be instead argued under the

L * MPC(o(logN)) conjecture: these two assump-

tions are equivalent, and refuting either of them

would lead to o(logN)-round MPC algorithms for

a large number of challenging problems, including

list ranking, minimum cut, and planarity testing. In

fact, we show that these problems and many others

require asymptotically the same number of rounds

as the seemingly much easier problem of distinguish-

ing between a graph being one cycle or two cycles.

– Many lower bounds previously argued under the one

cycle vs. two cycles conjecture can be argued under

an even more robust (thus harder to refute) con-

jecture, namely NL * MPC(o(logN)). Refuting this

conjecture would lead to o(logN)-round MPC algo-

rithms for an even larger set of problems, including

all-pairs shortest paths, betweenness centrality, and

all aforementioned ones. Lower bounds under this

conjecture hold for problems such as perfect match-

ing and network flow.

Keywords Massively Parallel Computation · Condi-

tional hardness · Fine-grained complexity

1 Introduction

The Massively Parallel Computation (MPC) model is

arguably the most popular model of computation that

captures the essence of several very successful general-

purpose frameworks for massively parallel coarse-grained

computations on large data sets, such as MapReduce [35],

Hadoop [86], Spark [88], and Dryad [54]. The main fea-

ture of this model is that a single commodity machine
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of a large cluster cannot store the entirety of the input,

but just a sublinear fraction of it. This is an impor-

tant restriction since we think of the data set as being

very large. The computation proceeds in synchronous

rounds, and in each of them the machines can exchange

data with each other with the sole restriction that no

one can send or receive more data than it is capable of

storing. The goal is to keep the total number of rounds

as low as possible.

This basic model has been intensively investigated

in the past decade, mostly from an algorithmic point of

view—see [59,65,47,75,63,7,60,15,52,78,24,42,8,12,11,

45,48,17,27,21,43,19,33,44,32] and references therein.

It turns out that many problems can be solved with an

MPC algorithm that terminates in O(logN) rounds,

where N denotes the input size, usually by simulat-

ing known PRAM algorithms [59,47]. However, design-

ing faster algorithms resisted the efforts of many re-

searchers. Recently, a few works managed to break the

O(logN) barrier by relaxing a bit the constraint on

the memory size: specifically, they showed that some

graph problems allow for o(logN)-round solutions in

the so-called near-linear memory regime, whereby ma-

chines have memories of size Õ(n), where n is the num-

ber of nodes in the graph [42,11,12,21,33].1 However,

without this kind of relaxations only a few problems

are known to admit a o(logN)-round algorithm [45,

48,17,27].2 A fundamental question is thus whether

many known O(logN)-round algorithms can be com-

plemented with a tight lower bound.

Unfortunately, proving unconditional lower bounds—

that is, without any assumptions—seems extremely dif-

ficult in this model, as it would imply a breakthrough

in circuit complexity: Roughgarden et al. [78] showed

that, when enough machines are available, proving any

super-constant lower bound for any problem in P would

imply new circuit lower bounds, and specifically would

separate NC1 from P—a long-standing open question in

complexity theory that is a whisker away from the P vs.

NP question. This means that the lack of super-constant

lower bounds in the MPC model can be blamed on our

inability to prove some computational hardness results.

In light of this barrier, the focus shifted to proving

conditional lower bounds, that is, lower bounds condi-

tioned on plausible hardness assumptions. One widely-

believed assumption concerns graph connectivity, which,

1 Notice that this relaxes the sublinear constraint on the
memory size in the case of sparse graphs.
2 Some algorithms have been analyzed in terms of other pa-

rameters, such as the diameter [8,9,19] or the spectral gap [14]
of the graph. The round complexity of these algorithms is
o(logN) in some cases, but it remains Ω(logN) in general.
In this paper we do not consider this kind of parameterized
analysis.

when machines have a memory of size O(n1−ε) for a

constant ε > 0, is conjectured to require Ω(log n) MPC

rounds [59,75,15,78,87].3 The same conjecture is often

made even for the special case of the problem where the

graph consists of either one cycle or two cycles, usually

called one cycle vs. two cycles problem. The one cycle

vs. two cycles conjecture has been proven useful to show

conditional lower bounds for several problems, such as

maximal independent set, maximal matching [43], mini-

mum spanning trees in low-dimensional spaces [7], single-

linkage clustering [87], 2-vertex connectivity [9], gener-

ation of random walks [64], as well as parameterized

conditional lower bounds [19].4

However, it is not clear whether the one cycle vs.

two cycles conjecture is true or not, and if not, what its

refutation implies. This situation is in contrast with tra-

ditional complexity theory, where a refutation of a con-

jectured relationship between complexity classes would

typically imply groundbreaking algorithmic results for

a large number of problems; for example, if the P 6= NP
conjecture fails, then there would be efficient (polynomial-

time) algorithms for all problems in NP, including a

number of “hard” problems. To put it another way, a

conjecture like P 6= NP is more robust in the sense that

it is extremely hard to refute—doing so requires a ma-

jor algorithmic breakthrough. The goal of this paper is

to explore conjectures of this nature in the MPC model.

1.1 Summary of Contributions

In this paper we show many connections between prob-

lems and classes of problems that lead to more ro-

bust conjectures for the MPC model. In particular, we

study the connections between the class of problems

solvable in a sublogarithmic amount of rounds in the

MPC model with O(N1−ε) memory per machine for

some constant ε ∈ (0, 1) and up to polynomially many

machines, denoted by MPC(o(logN)), and the standard

space complexity classes L and NL. (Recall that L and

NL are the classes of decision problems decidable in

logarithmic space on deterministic and nondeterminis-

tic Turing machines, respectively.) The connection be-

tween MPC and these complexity classes is enabled by

a recent result showing how Boolean circuits can be

efficiently simulated in the MPC model. In short, we

3 Observe that in the near-linear memory regime this con-
jecture breaks: graph connectivity can be solved in O(1) MPC
rounds [18].
4 The one cycle vs. two cycles problem is usually stated

such that, in the case of two cycles, these have n/2 nodes each.
However, we observe that all the mentioned conditional lower
bounds hold also when the two cycles may have arbitrary
lengths.



Equivalence Classes and Conditional Hardness in Massively Parallel Computations 3

present a set of observations and reductions that sug-

gest that L * MPC(o(logN)) and NL * MPC(o(logN))

are two robust conjectures that might play crucial roles

in arguing lower bounds in the MPC model, as they al-

ready imply tight conditional lower bounds for a large

number of problems. In particular, with some assump-

tions on the total amount of memory (equivalently, ma-

chines) available in the system, we can conclude the

following.

1. Robustness: The one cycle vs. two cycles conjec-

ture is robust, since it is equivalent to conjecturing

that L * MPC(o(logN)), and refuting this conjec-

ture requires showing o(logN)-round algorithms for

all problems in L. This class includes many impor-

tant problems such as graph connectivity, cycle de-

tection, and planarity testing.

2. Equivalences: All L-complete problems are equiv-

alent in the sense that they require asymptotically

the same number of rounds. This means that the one

cycle vs. two cycles problem, which is L-complete

(see Appendix A.1), is equivalent to many seem-

ingly harder problems, such as graph bipartiteness,

minimum cut, and formula evaluation (see problems

in the bottom ellipse in Figure 1 for more). This also

means that the conjectures on the hardness of graph

connectivity and on the hardness of the one cycle vs.

two cycles problem are equivalent.

Additionally, all NL-complete problems and a few

others are also equivalent. These problems include

st-reachability, all-pairs shortest paths (both the di-

rected and undirected cases) on unweighted graphs,

diameter, and betweenness centrality (see problems

in the top ellipse in Figure 1 for more).

3. New conditional lower bounds: Assuming the

one cycle vs. two cycles conjecture (equivalently, L *
MPC(o(logN))), there are no o(logN)-round algo-

rithms for all L-hard problems and a few other prob-

lems. This implies new conditional lower bounds

for more than a dozen of problems, such as be-

tweenness centrality, planarity testing, graph bipar-

titeness, list ranking, formula evaluation, and dens-

est subgraph (see problems in the big rectangle in

Figure 1 for more). Previously only a few lower

bounds were known, e.g., for single-linkage cluster-

ing [87] and maximum matching [70]. (Of course,

lower bounds for connectivity-related problems are

trivially implied by the one cycle vs. two cycles con-

jecture.) Most of our lower bounds are tight (e.g.,

lower bounds for problems in the ellipses in Fig-

ure 1).

4. A more robust conjecture: For NL-hard prob-

lems, we can argue lower bounds under the more ro-

bust NL * MPC(o(logN)) conjecture. These prob-

lems include perfect matching, single-source short-

est paths, diameter, and network flow (see problems

in the small rectangle in Figure 1 for more). Note

that, since L ⊆ NL, the NL * MPC(o(logN)) con-

jecture is more robust (i.e., safer, more likely to be

true) than its counterpart with L.

1.2 Related Work

Fish et al. [40] were perhaps the first to establish a

connection between the MPC model and classical com-

plexity classes. Besides the introduction of a uniform

version of the model, they showed that constant-round

MPC computations can simulate sublogarithmic space-

bounded Turing machines, and then proved strict hi-

erarchy theorems for the MPC model under certain

complexity-theoretic assumptions.

Roughgarden et al. [78] discuss connections between

the MPC model and Boolean circuits. They show that

standard degree arguments for circuits can be applied

to MPC computations as well, and specifically that any

Boolean function whose polynomial representation has

degree d requires Ω(logs d) rounds of MPC using ma-

chines with memory s. This implies an Ω(logs n) lower

bound on the number of rounds for graph connectivity.

Perhaps more interestingly, the authors show a barrier

for unconditional lower bounds by observing that, if

enough machines are available, then proving any super-

constant lower bound in the MPC model for any prob-

lem in P would imply new circuit lower bounds, and

specifically would separate NC1 from P, thus answering

a notorious open question in circuit complexity. This re-
sult follows by showing that, with a number of available

machines polynomial in the number of input nodes of

the circuit, NC1 circuits can be efficiently simulated in

the MPC model. We observe that their argument read-

ily generalizes to show that any bounded fan-in Boolean

circuit of depth d and of polynomial size can be simu-

lated in O(dd/ log se) MPC rounds. Very recently, Frei

and Wada [41] prove the same result improving over the

amount of machines required for the simulation—from

linear to strongly sublinear in the size of the circuit.

Given the difficulty of proving lower bounds for all

algorithms, one can (a) prove lower bounds for restricted

classes of algorithms, or (b) prove conditional lower

bounds: assume one lower bound, and transfer the con-

jectured hardness to other problems via reductions (with

common examples being the theory of NP-hardness and

its more recent analogue for problems in P, usually

called fine-grained complexity theory). Both paths give

a deep understanding and warn us what not to try when

designing algorithms.
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Problems hard under the L * MPC(o(logN)) conjecture

Problems equivalent under O(1) MPC rounds

Graph Connectivity

One Cycle vs. Two Cycles

st-connectivity # Connected Components

Connected ComponentsMinimum Spanning Forest

Cycle Detection

Order Between Vertices

List Ranking

Formula Evaluation

Planarity Testing Graph BipartitenessMinimum Cut

Out-degree 1 st-reachability

Densest Subgraph Single-Linkage Clustering

Problems hard under the NL * MPC(o(logN)) conjecture

Problems equivalent under O(1) MPC rounds

st-reachability

Shortest PathStrong Connectivity

Directed Cycle Detection

SSSP APSP

DiameterRadius

Median

Betweenness Centrality

Perfect Matching
Circuit Evaluation

Network Flow

Fig. 1: A classification of the complexity of some prominent problems in the MPC model. Problems in the top

ellipse are on unweighted graphs.

Within the first line of inquiry, Pietracaprina et

al. [74] prove lower bounds for matrix multiplication

algorithms that compute all the n3 elementary prod-

ucts (thus ruling out Strassen-like algorithms). Similar

kinds of limitations are required by Beame et al. [15],

Jacob et al. [55], Im and Moseley [51], and Assadi and

Khanna [13] to prove lower bounds for st-connectivity,

list ranking, graph connectivity, and maximum cover-

age, respectively. Of a similar flavor are the results of

Afrati et al. [3], who show, for a fixed number of rounds

(usually a single round), space-communication trade-

offs.

Within the second line of inquiry fall [7,87,9,64],

which use the conjecture on the hardness of graph con-

nectivity as a hardness assumption for proving condi-

tional lower bounds for other problems such as mini-

mum spanning trees in low-dimensional spaces, single-

linkage clustering, 2-vertex connectivity, and generat-

ing random walks, respectively. Recently, Ghaffari et

al. [43] present conditional lower bounds for other key

graph problems such as constant-approximate maxi-

mum matching, constant-approximate vertex cover, max-

imal independent set, and maximal matching. Their

lower bounds also rest on the hardness of graph con-

nectivity, hold for a wide class of MPC algorithms,

and are obtained by applying a new general framework

(later revised in [31]) that allows one to lift (uncondi-

tional) lower bounds from the classical LOCAL model
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of distributed computing to the MPC model. Assum-

ing the same conjecture, Behnezhad et al. [19] show a

parameterized lower bound of Ω(logD) for identifying

connected components in graphs of diameter D. By ob-

serving that a couple of specific NC1 reductions can be

simulated in O(1) MPC rounds, Dhulipala et al. [36]

show that if a variant of graph connectivity on batch-

dynamic graphs can be solved within a certain amount

of rounds, so can all the problems in P. A conditional

lower bound following a different kind of argument is

given by Andoni et al. [8], who show that an no(1)-

round MPC algorithm that answers O(n+m) pairs of

reachability queries in directed graphs with n nodes and

m edges can be simulated in the RAM model yielding

faster Boolean matrix multiplication algorithms. Very

recently, Chung et al. [28] show, using techniques from

the data structures and cryptography literature, that

there exist functions whose computation, assuming the

validity of a popular methodology for designing cryp-

tographic constructions, is essentially not parallelizable

in the MPC model.

Several other models have been developed in the

quest to establish rigorous theoretical foundations of

(massively) parallel computing, with the PRAM being

one of the most investigated. The MPC model is more

powerful than the PRAM since PRAM algorithms can

be simulated in the MPC model with constant slow-

down [59,47], and some problems (such as sorting or

evaluating the XOR function) can be solved much faster

in the MPC model.

Valiant’s bulk-synchronous parallel (BSP) model [83]

anticipated many of the features of MPC-type compu-

tations, such as the organization of the computation
in a sequence of synchronous rounds (originally called

supersteps). Several papers (e.g., [46,67,2,80,22]) ex-

plored the power of this model by establishing lower

bounds on the number of supersteps or on the com-

munication complexity required by BSP computations,

where the latter is defined as the sum, over all the

supersteps of an algorithm, of the maximum number

of messages sent or received by any processor. Lower

bounds on the number of supersteps are usually of the

form Ω(loghN), where h is the maximum number of

messages sent or received by any processor in any su-

perstep.

Another model aiming at serving as an abstraction

for modern large-scale data processing frameworks is

the k-machine model [61]. Inspired by message-passing

models in distributed computing, the k-machine model

features k available machines, and in each round any

pair of machines is allowed to communicate using mes-

sages of a given size. Hard bounds on the point-to-point

communication lead to very strong round lower bounds

in this model [61,71,72].

The congested clique (see, e.g., [37]) is a model for

network computations bearing some similarities with

the MPC model. On one hand, algorithms for this model

can be simulated in the MPC model—under some spe-

cific conditions on the size of the local memories [50,42,

18]. On the other hand, analogously to the MPC model,

proving a super-constant unconditional lower bound in

the congested clique for a problem in NP would imply

better circuit size-depth tradeoffs for such a problem

than are currently known [37]. This induced further in-

vestigations of the model under the lens of complexity

theory [62].

Recently, a variant of the MPC model called Adap-

tive Massively Parallel Computation (AMPC) model

has been introduced with the main motivation of al-

leviating the (conditional) hardness results of the origi-

nal model. The AMPC model extends the MPC model

by storing all the messages sent within a round in a

distributed hash table; in the following round, each

machine can read arbitrary values from this hash ta-

ble, subject to the same constraints on the amount of

communication as in the original model. This exten-

sion allows for new graph algorithms with much lower—

usually constant—round complexities compared to the

best-known solutions in the MPC model [20].

2 Preliminaries

2.1 The MPC Model

The Massively Parallel Computation (MPC) model is a

theoretical abstraction capturing the main distinguish-

ing aspects of several popular frameworks for the paral-

lel processing of large-scale datasets. It was introduced

by Karloff, Suri, and Vassilvitskii [59], and refined in

subsequent work [47,15,7].

In this model the system consists of p identical ma-

chines (processors), each with a local memory of size s.

If N denotes the size of the input, then s = O(N1−ε)

for some constant ε > 0, and the total amount of mem-

ory available in the system is p · s = O(N1+γ) for

some constant γ ≥ 0. (Clearly, p · s ≥ N must also

hold.) The space size is measured by words, each of

Θ(logN) bits. Initially, the input is adversarially dis-

tributed across the machines. The computation pro-

ceeds in synchronous rounds. In each round, each ma-

chine performs some computation on the data that re-

sides in its local memory, and then, at the end of the

round, exchanges messages with other machines. The

total size of messages sent or received by each machine
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in each round is bounded by s.5 The goal is to minimize

the total number of rounds.

For problems defined on graphs, the input size N is

equal to n+m, where n is the number of nodes of the

graph and m is the number of edges. When considering

graph problems, in this paper we assume s = O(n1−ε).

This regime of memory size, usually called strongly sub-

linear memory regime, is always in compliance with

the aforementioned constraint on the size of the local

memory, even when graphs are sparse, for which the

constraint is the most restrictive.

The value of parameter ε can be chosen by the end

user. In particular, when solving problem A on input

instance I through a reduction to problem B on input

instance I ′ of increased size, a call to the procedure for

B should set the value of this parameter to a constant

ε′ ∈ (0, 1) such that |I ′|1−ε′ = O(|I|1−ε).
Since we want to relate the MPC model to classical

complexity classes, one must make sure that the model

is uniform, by which we mean, roughly speaking, that

the same algorithm solves the problem for inputs of all

(infinitely many) sizes. Fish et al. [40] dealt with this

issue observing that Karloff et al.’s original definition

of the model [59] is non-uniform, allowing it to decide

undecidable languages, and thus by reformulating the

definition of the model to make it uniform. Building on

that reformulation, and letting f : N → R+ be a func-

tion, we define the class MPC(f(N)) to be the class of

problems solvable in O(f(N)) MPC rounds by a uni-

form family of MPC computations.

2.2 Circuit Complexity Background

In this section we review the Boolean circuit model of

computation. An n-input, m-output Boolean circuit C

is a directed acyclic graph with n sources (i.e., nodes

with no incoming edges), called input nodes, and m

sinks (i.e., nodes with no outgoing edges). All non-

source nodes are called gates, and are labeled with one

among AND, OR, or NOT. The fan-in of a gate is the

number of its incoming edges. The size of C is the total

number of nodes in it. The depth of C is the number of

nodes in the longest path in C.

Note that to decide an entire language, which may

contain inputs of arbitrary lengths, we need a family

of Boolean circuits, one for each input length. In other

words, the Boolean circuit is a natural model for non-

uniform computation. When we want to establish re-

lationships between circuit classes and standard ma-

chine classes, we need to define uniform circuit classes,

5 This means that there is no computation performed on
the fly on incoming data.

with a restriction on how difficult it can be to con-

struct the circuits. The usual notion of uniformity in

this case is that of logspace-uniformity : a family of cir-

cuits {Cn}n∈N is logspace-uniform if there is an implic-

itly log-space computable function mapping 1n to the

description of the circuit Cn, where implicitly log-space

computable means that the mapping can be computed

in logarithmic space—see next section for the definition

of logarithmic space.

Definition 1 ([10,81]) For i ≥ 1, NCi is the class of

languages that can be decided by a logspace-uniform

family of Boolean circuits with a polynomial number of

nodes of fan-in at most two and O(logi n) depth. The

class NC is ∪i≥1NCi.

The complexity classes ACi and AC = ∪i≥0ACi are

defined exactly as NCi and NC except that gates are

allowed to have unbounded fan-in. Hence, for every i ∈
N, NCi ⊆ ACi. By replacing gates with large fan-in by

binary trees of gates each with fan-in at most two, we

also have ACi ⊆ NCi+1.

2.3 Space Complexity Background

Space complexity measures the amount of space, or

memory, necessary to solve a computational problem.

It serves as a further way of classifying problems ac-

cording to their computational difficulty, and its study

has a long tradition, which brought several deep and

surprising results.

Particularly relevant to this paper are some low-

space complexity classes, and specifically, classes of prob-

lems that can be solved with sublinear memory. In or-

der for this to make sense—sublinear space is not even

enough to store the input—one must distinguish be-

tween the memory used to hold the input and the work-

ing memory, which is the only memory accounted for.

Formally, we shall modify the computational model, in-

troducing a Turing machine with two tapes: a read-only

input tape, and a read/write working tape. The first

can only be read, whereas the second may be read and

written in the usual way, and only the cells scanned on

the working tape contribute to the space complexity of

the computation. Using this two-tape model, one can

define the following complexity classes.

Definition 2 ([10,81]) L is the class of languages that

are decidable in logarithmic space on a deterministic

Turing machine. NL is the class of languages that are

decidable in logarithmic space on a nondeterministic

Turing machine.
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Informally, logarithmic space is sufficient to hold a

constant number of pointers into the input and counters

of O(logN) bits (N is the length of the input), and a

logarithmic number of boolean flags.

As for other complexity classes, problems complete

for L or NL are defined to be the ones that are, in a

certain sense, the most difficult in such classes. To this

end, we first need to decide on the kind of reducibility

that would be appropriate. Polynomial-time reducibil-

ity would not be very useful because L ⊆ NL ⊆ P, which

implies that every language in L (resp., NL), except

∅ and Σ∗, would be L-complete (resp., NL-complete).

Hence we need weaker versions of reduction, ones that

involve computations corresponding to sub-classes of L
and NL. One notion of reducibility that makes sense for

the class L is that of NC1 reducibility [30], where NC1 is

the class of languages decidable in logarithmic depth by

a uniform family of Boolean circuits of bounded fan-in.

Definition 3 A language B is L-complete if (1) B ∈ L,

and (2) every A in L is NC1 reducible to B.

NC1 reducibility has been defined in [29]. In the lit-

erature reductions of even-lower level than NC1 are used

to identify meaningful notions of L-completeness. Ex-

amples are projections and first-order reductions. For

example, the class first-order logic, denoted as FO, equals

the complexity class AC0, and since AC0 ⊂ NC1, a first-

order reduction is strictly stronger than an NC1 reduc-

tion.

A good choice for the class NL is to use log-space re-

ductions, that is, reductions computable by a determin-

istic Turing machine using logarithmic space—specifically,

in a log-space reduction all the desired bits of the output

function can be decided in logarithmic space; see [10,

81] for a more formal definition of log-space reducibility.

Definition 4 ([10,81]) A language B is NL-complete

if (1) B ∈ NL, and (2) every A in NL is log-space re-

ducible to B.

Following standard terminology we say that a lan-

guage is L-hard (under NC1 reductions) (resp., NL-hard

(under log-space reductions)) if it merely satisfies con-

dition (2) of Definition 3 (resp., Definition 4).

In Appendix A we recall some known results on the

space complexity of several fundamental problems.

3 Massively Parallel Computations and Space

Complexity Classes

In this section we recall a recent result showing that

Boolean circuits can be efficiently simulated in the MPC

model, and then we build on it to derive new results and

conjectures.

3.1 Efficient Circuit Simulation in the MPC Model

We now recall the main result in [41] which, roughly

speaking, says that any bounded fan-in Boolean circuit

of depth d and of polynomial size can be simulated in

O(dd/ log se) MPC rounds. This result is already im-

plicit in [78], where it is achieved by a simple simu-

lation whereby each gate of the circuit is associated

with a machine whose responsibility is to compute the

output of the gate. This requires the availability of a

number of machines linear in the size of the circuit.

Very recently, Frei and Wada [41] came up with a more

sophisticated strategy, which uses only a strongly sub-

linear amount of machines. Their strategy employs two

distinct simulations: for NC1 circuits they exploit Bar-

rington’s well-known characterization of NC1 in terms

of bounded-width polynomial-size branching programs,

and thus simulate such branching programs in a con-

stant number of rounds; for the higher levels of the NC
hierarchy, the Boolean circuits themselves are directly

simulated, suitably dividing the computation into the

simulation of sub-circuits of depth O(log n), each to be

accomplished in O(1) rounds.

The authors work in the original model of Karloff et

al. [59], but their result seamlessly applies in the refined

MPC model.

Theorem 1 ([41]) Let DMPCi denote the class of prob-

lems solvable by a deterministic MPC algorithm in O(logiN)

rounds with O(N1−ε) local memory per machine and

O(N2(1−ε)) total memory. Then,

NCi+1 ⊆ DMPCi

for every i ∈ N and for every ε ∈ (0, 1/2). (When i = 0,

the result holds also for ε = 1/2.)

Setting i = 0, we have the following.

Corollary 1 The class NC1 can be simulated in O(1)

MPC rounds with O(N1−ε) local memory per machine

and O(N2(1−ε)) total memory, for any constant ε ∈
(0, 1/2].

Since NC1 ⊆ L ⊆ NL ⊆ NC2 (see, e.g., [73]), an im-

mediate by-product of Theorem 1 is that some standard

space complexity classes can be efficiently simulated in

the MPC model.

Corollary 2 The class NC2, and thus the classes L and

NL, can be simulated in O(logN) MPC rounds with

O(N1−ε) local memory per machine and O(N2(1−ε)) to-

tal memory, for any constant ε ∈ (0, 1/2).

Corollary 2 implies that many important problems,

e.g. most of those listed in Appendix A (excluding those

not known to be in L or NL, such as perfect matching),

can be solved in O(logN) MPC rounds.
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3.2 New Consequences of Circuit Simulations

In this section we discuss new consequences of the fact

that the MPC model is powerful enough to efficiently

simulate general classes of Boolean circuits.

Theorem 2 Consider the MPC model where the size

of the local memory per machine is O(N1−ε) for some

constant ε ∈ (0, 1/2], and assume that Ω(N2(1−ε)) total

memory is available. Let f : N → R+ be a function.

Then, if any L-hard problem can be solved in O(f(N))

MPC rounds, so can all the problems in the class L.

Moreover, either all L-complete problems can be solved

in O(f(N)) MPC rounds, or none of them can.

Proof Both claims follow directly from the definitions of

L-hardness and L-completeness, and from Corollary 1.

Let A be an L-hard problem that can be solved in

O(f(N)) MPC rounds. By definition of L-hardness, ev-

ery problem in L is NC1 reducible to A. By assumption,

ε ∈ (0, 1/2] and Ω(N2(1−ε)) total memory is available,

and thus, by Corollary 1, an NC1 reduction can be simu-

lated inO(1) MPC rounds, giving the first claim. There-

fore, in particular, if any L-complete problem can be

solved in O(f(N)) MPC rounds, so can all the other L-

complete problems. In other words, either all L-complete

problems can be solved in O(f(N)) MPC rounds, or

none of them can. ut

We remark that in Theorem 2 no assumption is

placed on the function f(N), which therefore can be

of any form, even a constant. Hence, Theorem 2 says

that all the known L-complete problems such as graph

connectivity, graph bipartiteness, cycle detection, and

formula evaluation, are equivalent in the MPC model,

and in a very strong sense: they all require asymptot-

ically the same number of rounds. (Analogous equiva-

lences are common in computer science, e.g., in the the-

ory of NP-completeness and, at a finer-grained level, in

the recent fine-grained complexity theory, where equiv-

alence classes of problems within P, such as the APSP

class [85,84], are established.) Thus, this simple result

provides an explanation for the striking phenomenon

that for these well-studied problems we seem unable

to break the O(logN) barrier in the MPC model. It

also implies that the conjectures on the hardness of

graph connectivity and on the hardness of the one cy-

cle vs. two cycles problem are equivalent, at least when

Ω(N2(1−ε)) total memory is available.

The next theorem provides an even stronger barrier

for improvements in the MPC model.

Theorem 3 Consider the MPC model where the size

of the local memory per machine is O(N1−ε) for some

constant ε ∈ (0, 1/2], and assume that Ω(N2(1−ε)) to-

tal memory is available. Let f : N → R+ be a func-

tion. If any L-hard problem can be solved in O(f(N))

MPC rounds, then either all NL-complete problems can

be solved in O(f(N)) MPC rounds, or none of them

can. Moreover, if any NL-hard and any L-hard problem

can be solved in O(f(N)) MPC rounds, so can all the

problems in the class NL.

Proof Let A be an L-hard problem that can be solved

in O(f(N)) MPC rounds. Then, by Theorem 2, every

problem in the class L can be solved in O(f(N)) MPC

rounds and thus, in particular, every log-space reduc-

tion can be computed in O(f(N)) MPC rounds. By def-

inition of NL-completeness, every problem in NL, and

thus, in particular, any NL-complete problem, is log-

space reducible to any other NL-complete problem, and

this proves the first statement.

Let B be an NL-hard problem that can be solved in

O(f(N)) MPC rounds. By definition of NL-hardness,

every problem in NL is log-space reducible to B. Since

we have just argued that if any L-hard problem can be

solved in O(f(N)) MPC rounds, so can any log-space

reduction, the second statement follows. ut
Once again, we stress that in Theorem 3 no assump-

tion is placed on the function f(N), which therefore can

be of any form, even a constant.

Theorem 3 indicates that, unless L = NL, in the

MPC model the connectivity problem on directed graphs,

which is both NL-complete and L-hard, is strictly harder

than on undirected graphs in the sense that breaking

the current logarithmic barrier, if possible, would be

strictly harder.

Notice that we also have the following weaker, but
simpler to prove, result: if any problem NL-complete

under NC1 reductions (such as st-reachability) can be

solved in O(f(N)) MPC rounds, so can all the prob-

lems in the class NL. This follows directly from the def-

inition of NL-completeness under NC1 reductions and

from Corollary 1. Notice also that the result in Theo-

rem 3 can be extended with the same proof to complex-

ity classes wider than NL, such as NC2 or P, for which

hardness is defined in terms of log-space reducibility as

well.

3.2.1 New Conjectures

The common belief that problems such as graph con-

nectivity and list ranking cannot be solved in o(logN)

MPC rounds, along with the equivalence result of The-

orem 2, justify the following conjecture.

Conjecture 1 No L-hard problem can be solved in o(logN)

MPC rounds with O(N1−ε) local memory per machine,
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for any constant ε ∈ (0, 1), not even with a polynomial

amount of total memory. Equivalently,

L * MPC(o(logN)).

We now show the claimed equivalence.

Proposition 1 The two statements in Conjecture 1

are equivalent.

Proof We shall argue that if any of the two statements

is wrong, so is the other, and vice versa. Assume L ⊆
MPC(o(logN)). Then, some L-complete, and hence L-

hard, problem is contained in MPC(o(logN)), that is,

it can be solved in o(logN) MPC rounds. To show

the other direction, assume that there exists an L-hard

problem that can be solved in o(logN) MPC rounds

with a polynomial amount of total memory. Then, by

Theorem 2, every problem in L can be solved in o(logN)

MPC rounds, i.e., L ⊆ MPC(o(logN)). ut

We would like to remark that, in light of Theorem 2,

Conjecture 1 is totally equivalent to the preceding con-

jectures on the hardness of graph connectivity or of the

one cycle vs. two cycles problem [59,75,15,78,87]; how-

ever, Theorem 2 significantly strengthens the evidence

for such conjectures.

Likewise, Theorem 3 provides a justification for the

following conjecture.

Conjecture 2 No NL-hard and L-hard problem can be

solved in o(logN) MPC rounds with O(N1−ε) local

memory per machine, for any constant ε ∈ (0, 1), not

even with a polynomial amount of total memory. Equiv-

alently,

NL * MPC(o(logN)).

We now show the claimed equivalence.

Proposition 2 The two statements in Conjecture 2

are equivalent.

Proof We shall argue that if any of the two statements

is wrong, so is the other, and vice versa. Assume NL ⊆
MPC(o(logN)). Then, in particular, st-reachability can

be solved in o(logN) MPC rounds. Since st-reachability

is both NL-hard and L-hard, this contradicts the first

statement. To show the other direction, assume that

there exists an NL-hard and L-hard problem that can

be solved in o(logN) MPC rounds with a polynomial

amount of total memory. Then, by Theorem 3, every

problem in NL can be solved in o(logN) MPC rounds,

i.e., NL ⊆ MPC(o(logN)). ut

L

NL

MPC(o(logN))

Fig. 2: Conjectured relationships among classes L, NL,

and MPC(o(logN)).

Figure 2 depicts the conjectured relationships among

L, NL, and MPC(o(logN)). Observe that since L ⊆ NL,

Conjecture 1 implies Conjecture 2. Hence, unless L =

NL, Conjecture 2 is weaker than Conjecture 1, and thus

more likely to be true.

We stress that breaking either conjecture would have

vast consequences because of the large number of fun-

damental problems contained in L and NL. This is some-

what in contrast, e.g., to the Strong Exponential Time

Hypothesis (SETH), a popular hardness assumption

on the complexity of k-SAT used to prove a plethora

of conditional lower bounds, especially in the realm

of polynomial-time algorithms [84], whose refutation

would have more limited algorithmic consequences.

These two conjectures can be used as a base for

conditional lower bounds in the MPC model, in the
same way as the one cycle vs. two cycles conjecture was

used as a hardness assumption in [7,87,9,43,19,64].

4 Reductions and Equivalences in Massively

Parallel Computations

In this section we discuss two equivalence classes of

problems and some conditional lower bounds in the

MPC model. The two equivalence classes both contain

problems equivalent to each other under O(1)-round

MPC reductions and for which the best known upper

bound isO(logN) rounds, but differ in terms of the low-

space computational complexity characterization of the

problems they contain.

As a consequence of the results of Section 3, most

of these reductions and equivalences follow from known

hardness and completeness results for low-space com-

plexity classes such as L and NL.
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We will also show novel, simple reductions and equiv-

alences in the MPC model. Some of such reductions

crucially require the availability of up to polynomially

many machines (equivalently, a total amount of mem-

ory up to polynomial in the input size), which are used

to host up to a polynomial number of copies of the in-

put data. The quick creation of so many input replicas

can be achieved through the use of a simple two-step

broadcast procedure, as shown in the following lemma.

Lemma 1 The input data can be replicated up to a

polynomial number of times in O(1) MPC rounds.

Proof Assume that initially all the input data is held

by the first β consecutively numbered machines. (This

is without loss of generality since sorting can be done

deterministically in O(1) MPC rounds [47].) We use

a basic two-step broadcast procedure to replicate the

contents of each machine in O(N1−ε) other machines.

Any polynomial-factor replication can thus be achieved

by repeating the procedure a constant amount of times.

Let c be a sufficiently large positive constant. For

each i ∈ [β], machine i logically partitions its memory

contents in cN1−ε parts, one for each word. Then, ma-

chine i sends the j-th word to the (β+(i−1)cN1−ε+j)-

th machine. Finally, each of these machines broadcasts

the word received from machine i to all the other ma-

chines in the range β+(i−1)cN1−ε+1, . . . , β+icN1−ε,

thus yielding a factor-cN1−ε replication of the contents

of each machine. ut

4.1 An Equivalence Class for Undirected Graph

Connectivity

In this section we discuss the MPC equivalence class

for graph connectivity in undirected graphs. This prob-

lem, which asks to determine whether a given undi-

rected graph is connected or not, was one of the first

problems to be shown L-hard under (uniform) NC1 re-

ductions [30], and then it was placed in L by the re-

markable algorithm of Reingold [76]. Exploiting the re-

sults of Section 3, we know that one can recycle all the

reductions that have been developed in classical com-

plexity theory for showing hardness and completeness

for class L in the MPC model as well, since these can all

be simulated in O(1) MPC rounds with O(N2(1−ε)) to-

tal memory. This immediately implies that the class of

L-complete problems forms an equivalence class in the

MPC model as well. Specifically, for example, either all

the following problems can be solved with a sublogarith-

mic MPC algorithm, or none of them can:6 graph con-

6 See Appendix A for precise definitions of the various prob-
lems, as well as for references.

nectivity, connectivity for promise graphs that are a dis-

joint union of cycles, st-connectivity, st-reachability for

directed graphs of out-degree one, cycle detection, or-

der between vertices, formula evaluation, and planarity

testing.

Recycling (some) old SL-completeness results. Many more

problems can be placed in this MPC equivalence class

almost effortlessly: this is the case for some problems

complete for the class symmetric logarithmic space (SL),

a class defined by Lewis and Papadimitriou [66] to cap-

ture the complexity of undirected st-connectivity be-

fore this was eventually settled by the breakthrough

of Reingold. Completeness in SL is defined in terms of

log-space reductions, and st-connectivity is one com-

plete problem for it. Since L ⊆ SL, Reingold’s algorithm

made these two classes collapse, thus widening the class

L with many new problems. However, completeness for

SL does not translate into completeness for L, since the

latter is defined in terms of a lower-level kind of reduc-

tion. Luckily, some of the log-space reductions devised

to show hardness for SL turn out to be actually stronger

than log-space. This is the case, e.g., of testing whether

a given graph is bipartite (or, equivalently, 2-colorable),

as we show next.

Lemma 2 Graph bipartiteness is equivalent to st-connectivity

under O(1)-round MPC reductions, with O(n1−ε) local

memory per machine for some constant ε ∈ (0, 1), and

O(n(n+m)) total memory.

Proof Jones et al. [57] showed that testing whether a

graph is non-bipartite is equivalent to st-connectivity

under log-space reductions. We will now argue that

both reductions can be simulated in O(1) MPC rounds.

We start by showing that st-connectivity reduces to

graph bipartiteness in O(1) MPC rounds. The idea is

to make use of the fact that a graph is bipartite if and

only if it has no cycle of odd length. Given an instance

G = (V,E), s, and t of st-connectivity, we build a new

graph G′ = (V ′, E′) where

V ′ = {u, u′ : u ∈ V }∪{e, e′ : e ∈ E}∪{w} (with w /∈ V ∪E)

and

E′ = {{u, e}, {e, v}, {u′, e′}, {e′,v′} : e = {u, v} ∈ E}∪
{{s, s′}, {t, w}, {t′, w}}.

Then observe that G′ contains an odd-length cycle,

and hence is not bipartite, if and only if s is connected

to t in G. Nodes and edges of G′ can be easily gen-

erated in O(1) rounds, and stored with O(n(n + m))

total memory. Since |V ′| = O(n2), when working with

G′ the size of the local memory is set to n2(1−ε
′) where
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ε′ ∈ (0, 1) is a constant such that n2(1−ε
′) = O(n1−ε).

Then, an O(f(n))-round algorithm for graph bipartite-

ness translates into an O(f(n))-round algorithm for st-

connectivity.

We now show that graph bipartiteness reduces to

st-connectivity in O(1) MPC rounds. Given an instance

G = (V,E), the idea is to construct a new graph G′ by

creating two copies of each node, call them copy 0 and

copy 1, and then for any edge {u, v} ∈ E, connecting

copy 0 of u to copy 1 of v and vice versa. This can be

trivially done in O(1) MPC rounds. It can be observed

that G is not bipartite if and only if there is some node

w such that copy 0 of w is reachable from copy 1 of

w. To take care of the phrase “there is some node w”,

n copies of G′ are created and new nodes s and t are

introduced. Then s (resp., t) is connected to copy 0

(resp., copy 1) of the i-th node in the i-th copy of G′.

By Lemma 1, this can be accomplished in O(1) MPC

rounds as well. Then G is not bipartite if and only if

there is a path between nodes s and t in this graph. ut
A good source of problems complete for SL is [6].

From decision to search problems. Complexity classes

such as L contain problems phrased as decision prob-

lems. Nevertheless, it is often easy to transform a de-

cision problem into its search version—perhaps at the

price of a large amount of total memory requirements.

As an example, consider the problem called order be-

tween vertices (ORD), which, given a directed path

specified by giving for each node its successor in the

path, and two distinguished nodes a and b, asks to de-

termine whether a precedes b. ORD is the decision ver-

sion of list ranking, the problem of obtaining a total

ordering from a given successor relation [38]. It is easy

to argue the following equivalence.

Lemma 3 List ranking is equivalent to order between

vertices under O(1)-round MPC reductions, with O(n1−ε)

local memory per machine for some constant ε ∈ (0, 1),

and O(n3) total memory.

Proof Order between vertices trivially reduces to list

ranking. We now argue that list ranking is reducible

under O(1)-round MPC reductions to ORD when there

are polynomially many available machines. The reduc-

tion is as follows: (1) create
(
n
2

)
replicas of the n in-

puts across the machines; by Lemma 1 this takes O(1)

MPC rounds; (2) in parallel, solve ORD for each pair

of nodes, one pair for each input replica; (3) each of

n designated machines outputs the rank of a distinct

node u by counting the number of yes/no outputs for

ORD for the pair (u, v), for each v 6= u: doing this is

tantamount to doing summation, which can be done in

O(1) MPC rounds by [26] and Corollary 1. ut

Graph Connectivity

# Connected Components

Connected Components

st-connectivity

Minimum Cut

Minimum Spanning Forest

Fig. 3: Constant-round reductions among graph connec-

tivity and related problems. Dashed arrows correspond

to trivial reductions.

Non-pairwise reductions. Sometimes back-and-forth re-

ductions between two problems are not known. In this

case their equivalence may nevertheless be established

through a series of reductions involving related prob-

lems. As an example, we now show that a bunch of prob-

lems related to graph connectivity are all equivalent

under O(1)-round MPC reductions. Besides graph con-

nectivity and st-connectivity, these are determining the

connected components of an undirected graph, count-

ing the number of connected components (# connected

components), finding a minimum-weight spanning for-

est (MSF), and finding a minimum cut. See Figure 3.

Recall that a connected component of an undirected

graph is a maximal set of nodes such that each pair

of nodes is connected by a path, and it is usually rep-

resented by a labeling of nodes such that two nodes

have the same label if and only if they are in the same

connected component. A minimum spanning forest of a

weighted graph is the union of the minimum spanning

trees for its connected components. In the minimum cut

problem we have to find a partition of the nodes of a

graph into two disjoint sets V1, V2 = V \ V1 such that

the set of edges that have exactly one endpoint in V1
and exactly one endpoint in V2 is as small as possible.

Lemma 4 Graph connectivity, st-connectivity, # con-

nected components, connected components, minimum

spanning forest, and minimum cut are all equivalent

under O(1)-round MPC reductions, with O(n1−ε) lo-

cal memory per machine for some constant ε ∈ (0, 1),

and Õ(n2m(n+m)) total memory.

Proof The reductions from graph connectivity to de-

tecting the number of connected components, to MSF,

and to minimum cut are obvious. The reductions from

# connected components to connected components and

to MSF are also obvious. We already mentioned that

there is a non-obvious low-level equivalence between
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graph connectivity and st-connectivity, shown by Chan-

dra et al. [26].

Log-space reductions to st-connectivity from MSF

and from connected components were given by Nisan

and Ta-Shma [69] for showing that the class SL is closed

under complement. Here we will argue that these reduc-

tions can be simulated in O(1) MPC rounds.

We first discuss how to reduce connected compo-

nents to st-connectivity. The reduction is to evaluate,

for each node s, st-connectivity for every other node t

in the graph. Then, the label ` assigned to node s is

`(s) = min
t∈V
{ID of node t such that t is connected to s}.

By Lemma 1 and by the fact that the min function

can be evaluated in O(1) rounds (by [26] and Corol-

lary 1), this reduction can be accomplished in O(1)

MPC rounds.

We now discuss how to reduce MSF to st-connectivity.

This is based on the following simple property shown

in [69], implicitly used in several other similar reduc-

tions [4,49,71,8]: an edge e = {u, v} is in the minimum-

weight spanning forest if and only if u is not connected

to v in the graph made up of all edges having lower

weight than e. Then, by Lemma 1, in O(1) rounds the

input graph can be replicated m times across the avail-

able machines, and then testing whether a designated

edge e is in the (unique) minimum-weight spanning for-

est of G can be done in parallel for each edge of the

graph.

Finally, we discuss how to reduce minimum cut to #

connected components. This is based on the paralleliza-

tion of Karger’s celebrated contraction algorithm [58]—

hence this is a randomized reduction, which works with

high probability. Recall that Karger’s algorithm repeats

O(n2 log n) times the process of contracting randomly

chosen edges, one by one, until only two nodes remain.

By assumption, we have enough machines to replicate

the input graph those many times in O(1) MPC rounds

(by Lemma 1) and run the O(n2 log n) trials in parallel.

Identifying the minimum cut from these results can be

done in O(1) MPC rounds.

The question is therefore how to run a single time

the contraction algorithm. To this end, it is convenient

to work with the following equivalent reformulation of

the contraction algorithm—see [58, Section 3.1]. First,

generate a random permutation of the m edges. Gener-

ating a random permutation can be done inO(1) rounds

by having each processor take one edge and assign it

a score chosen uniformly at random from a sufficiently

large range of integers, and then by sorting these scores.

Then, imagine contracting edges in the order in which

they appear in the permutation until only two nodes

remain—this is equivalent to the original formulation

of the contraction algorithm. With a sufficiently high

probability, a random permutation will yield a contrac-

tion to two nodes which determine a particular mini-

mum cut. Then, consider any such permutation. The

key property is that it has a prefix such that the set of

edges in this prefix induces two connected components

(the two sides of the cut), that any prefix which is too

short yields more than two connected components, and

that any prefix which is too long yields only one. Hence,

with enough machines available, we can determine the

correct prefix by examining all the m prefixes of each

permutation in parallel. ut

We can now summarize all the results of this section.

Theorem 4 The following problems are all equivalent

under O(1)-round MPC reductions, with O(n1−ε) lo-

cal memory per machine for some constant ε ∈ (0, 1),

and Õ(n2m(n + m)) total memory: graph connectiv-

ity, connectivity for promise graphs that are a disjoint

union of cycles, st-connectivity, st-reachability for di-

rected graphs of out-degree one, cycle detection, order

between vertices, formula evaluation, planarity testing,

graph bipartiteness, list ranking, # connected compo-

nents, connected components, minimum spanning for-

est, and minimum cut.

Conditional hardness: L-hard problems. Finally, there

are problems known to be L-hard, but not known to

be in L, such as densest subgraph and perfect matching

(see Appendix A). Since for these problems only one-

way reductions from problems in L are known, we don’t

know whether they are part of the equivalence class of

undirected graph connectivity.

4.2 An Equivalence Class for Directed Graph

Connectivity

In this section we discuss the MPC equivalence class for

graph connectivity in directed graphs. The problem cor-

responding to st-connectivity in directed graphs is st-

reachability, that is, the problem of detecting whether

there is a path from a distinguished node s to a dis-

tinguished node t in a directed graph. st-reachability is

the prototypical complete problem for NL [73,81,10].

By Definition 4, hardness in class NL is defined with

respect to log-space reducibility, but we do not know

whether log-space computations can be simulated in

o(logN) MPC rounds—in fact, in Section 3 we con-

jecture they cannot. However, it turns out that many

of the known log-space reductions that establish NL-

hardness of problems can be simulated in O(1) MPC

rounds. This is the case, for example, of the reductions
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between st-reachability and shortest path, the other canon-

ical example of NL-complete problem which, given an

undirected (unweighted) graph, two distinguished nodes

s and t, and an integer k, asks to determine if the length

of a shortest path from s to t is k.

Lemma 5 Shortest path on unweighted graphs is equiv-

alent to st-reachability under O(1)-round MPC reduc-

tions, with O(n1−ε) local memory per machine for some

constant ε ∈ (0, 1), and O(n(n+m)) total memory.

Proof We first show that st-reachability can be reduced

to shortest path in O(1) MPC rounds. For an integer k

we denote the set of integers {1, 2, . . . , k} by [k]. Given

a directed graph G = (V,E) and two designated nodes

s and t, we create a new (undirected) layered graph

G′ = (V ′, E′) where

V ′ = {vi : v ∈ V, i ∈ [n]}

and

E′ = {{vi, vi+1} : v ∈ V, i ∈ [n− 1]}∪
{{ui, vi+1} : (u, v) ∈ E, i ∈ [n− 1]}.

It is easy to see that there is a directed path from s to

t in G if and only if there is a path of length n−1 from

s1 to tn in G′.

We now show the other direction. Given an undi-

rected graph G = (V,E), two designated nodes s and

t, and an integer b ∈ [n − 1], we create a new directed

layered graph G′ = (V ′, E′) where

V ′ = {vi : v ∈ V, i ∈ [b]}

and

E′ = {(vi, vi+1) : v ∈ V, i ∈ [b− 1]}∪
{(ui, vi+1) : {u, v} ∈ E, i ∈ [b− 1]}.

Then again it is easy to see that the length of a shortest

path from s to t is at most b if and only if there is a

directed path from s1 to tb in G′. If the length is at most

b then one can determine if it is exactly b by repeating

the same construction with b− 1 in place of b.

In both directions, nodes and edges of G′ can be eas-

ily generated in O(1) rounds, and stored with O(n(n+

m)) total memory. Since |V ′| ≤ n2, when working with

G′ the size of the local memory is set to n2(1−ε
′) where

ε′ ∈ (0, 1) is a constant such that n2(1−ε
′) = O(n1−ε).

Then, anO(f(n))-round algorithm for one problem trans-

lates into an O(f(n))-round algorithm for the other,

and vice versa. ut

There are other NL-complete problems that can be

shown to be equivalent under O(1)-round MPC reduc-

tions. Some examples are directed cycle detection, by

a simple adaptation of the preceding reductions, and

strong connectivity, which follows from a result in [26].

We suspect that many other log-space reductions are

actually (or can easily be translated into) O(1)-round

MPC reductions, thus enabling us to enlarge the equiv-

alence class for graph connectivity in directed graphs

almost effortlessly by leveraging known results in com-

plexity theory.

When this is not possible, one might have to de-

vise novel reductions. We now do so for some impor-

tant shortest-path-related problems as well as for some

graph centrality problems.

4.2.1 New Fine-Grained MPC Reductions:

Constant-Round Equivalences Between Graph

Centrality Problems, APSP, and Diameter

In this section we prove a collection of constant-round

equivalences between shortest path and many other prob-

lems on weighted graphs.

First, some preliminaries. In a graph problem, the

input is an n-nodem-edge (directed or undirected) graph

G = (V,E) with integer edge weights w : E → {−M, . . . ,M}
where M = O(nc) for some positive constant c. G is as-

sumed to contain no negative-weight cycles. Let d(u, v)

denote the (shortest-path) distance from node u ∈ V

to node v ∈ V , that is, the minimum over all paths

from u to v of the total weight sum of the edges of the

path. If there is no path connecting the two nodes, i.e.,

if they belong to different connected components, then

conventionally the distance is defined to be infinite.

The fundamental all-pairs shortest paths (APSP)

problem is to compute d(u, v) for every pair of nodes

u, v ∈ V . In the (sequential) RAM model, APSP has

long been known to admit an O(n3) time algorithm. De-

spite the long history, no algorithm that runs in time

O(n3−ε) for some constant ε > 0 is known, and it is

conjectured that no such algorithm exists [85,84]. This

conjecture is commonly used as a hardness hypothesis

in fine-grained complexity theory to rule out faster al-

gorithms than those currently known for several prob-

lems [84]. Beyond such APSP-hardness results, some

important problems have been shown to be equivalent

to APSP, in the sense that either all such problems ad-

mit O(n3−ε) time algorithms, or none of them do [85,

1,84].

These equivalences and most hardness results under

the APSP hypothesis rely on a reduction from APSP

to the negative triangle problem, which asks whether

a graph has a triangle with negative total weight. Al-
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though negative triangle can be easily solved in O(1)

MPC rounds thanks to Lemma 1, a key building block

in the reduction from APSP [85] is a well-known equiva-

lence [39] between APSP and the distance product prob-

lem of computing the product of two matrices over the

(min,+) semiring (also known as min-plus matrix mul-

tiplication); unfortunately, in the reduction from APSP

to distance product there are dlog ne of such matrix

products (by using the “repeated squaring” strategy),

and this takes O(log n) MPC rounds—which is likely to

be best possible, for a reason that will be clear in the

next paragraph. Hence in the MPC model we cannot

rely on a reduction to negative triangle to prove equiv-

alences to APSP or related hardness results: we need

sublogarithmic fine-grained reductions.

Hence we shall follow a different path, by reduc-

ing from the shortest path problem. Given a weighted

graph, two distinguished nodes s and t, and an integer

k, shortest path is the problem of determining if the

distance of a shortest path from s to t is k. This prob-

lem is NL-complete, even for undirected and unweighted

graphs [23]. (This also explains why the repeated ma-

trix squaring discussed in the previous paragraph is best

possible under Conjecture 2.) As we will show shortly, it

turns out that shortest path is reducible in O(1) MPC

rounds to several fundamental graph problems, includ-

ing many graph centrality problems defined in terms of

shortest paths. Then, by crucially exploiting the avail-

ability of many machines, we will argue that APSP

is O(1)-round reducible to shortest path. Obvious re-

ductions to APSP complete the picture and establish

the equivalence of all these problems under O(1)-round

MPC reductions. See Figure 4 for a complete summary.

SSSP Diameter Radius Median Betweenness Centrality

Shortest Path

APSP

Fig. 4: The constant-round reductions shown in this

section. Dashed arrows correspond to trivial reductions.

We now formally define the problems we are going

to investigate. The eccentricity ε(v) of a node v is the

greatest distance between v and any other node. It can

be thought of as how far a node is from the node most

distant from it in the graph. The diameter of a graph

is the greatest distance between any pair of nodes or,

equivalently, the maximum eccentricity of any node in

the graph, that is,

diam(G) = max
u∈V

max
v∈V

d(u, v).

The radius of a graph is the minimum eccentricity of

any node, that is,

radius(G) = min
u∈V

max
v∈V

d(u, v),

and a node with minimum eccentricity is called a center

of the graph. The distance sum of a node u is the sum

of the distances from u to all the other nodes, that

is,
∑
v∈V d(u, v).7 In a (strongly) connected graph, the

closeness centrality of a node u is the normalized inverse

of its distance sum, that is,

CC(u) =
n− 1∑

v∈V d(u, v)
.

A node with maximum closeness centrality, i.e., a node

that minimizes the sum of the distances to all other

nodes is called a median of the graph, and the value

min
u∈V

∑
v∈V

d(u, v)

is defined as the median of the graph. The betweenness

centrality of a node u is defined as

BC(u) =
∑

s,t∈V \{u},s6=t

σs,t(u)

σs,t
,

where σs,t is the total number of distinct shortest paths

from s to t, and σs,t(u) is the number of such paths that

use u as an intermediate node. Informally, betweenness

centrality measures the propensity of a node to be in-

volved in shortest paths.

We start by showing the simple fine-grained equiv-

alence between APSP and shortest path.

Lemma 6 APSP is equivalent to shortest path under

O(1)-round MPC reductions, with O(n1−ε) local mem-

ory per machine for some constant ε ∈ (0, 1), and O(n2(n+

m)) total memory.

Proof The reduction from shortest path to APSP is ob-

vious. The other direction is also immediate when we

have enough machines, and specifically O(n2(n + m))

total memory: by Lemma 1 we can create 2
(
n
2

)
copies

of the input graph in O(1) MPC rounds, and then in

parallel, one pair for each copy, compute the shortest

path for each (ordered, if the graph is directed) pair of

nodes. ut

In the following results we will use roughly the same

reduction. We start with the problem of determining

the diameter of a graph.

7 This is sometimes also called the farness of u.
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Lemma 7 Shortest path is O(1)-round MPC reducible

to diameter, with O(n1−ε) local memory per machine

for some constant ε ∈ (0, 1), and O(n+m) total mem-

ory.

Proof We start with the case of undirected graphs. Given

an instance of shortest path, the idea is to alter the

input graph by sticking two new and sufficiently long

paths to nodes s and t, so that the path of largest total

weight includes both s and t.

This is sufficient if the original graphG is connected;

otherwise, the diameter is infinite, and from this infor-

mation we cannot determine the length of a shortest

path from s to t. Hence, we shall first make G con-

nected in a way that alters the distance between s and

t only if they are not connected in G. Since the distance

between any two nodes can be at most (n − 1)M , this

can be achieved by adding to the graph a new node v

and n edges of weight nM between v and any other

node. Then, we append two additional chains to s and

t, each with 2n edges of weight M , and denote this

modified graph by G′. See Figure 5.

s t

. . . b

. . . a

v

Fig. 5: Reduction from shortest path to diameter. Nodes

and edges of the original graph G are in black, whereas

nodes and edges added in the reduction are in gray.

This reduction can be performed inO(1) MPC rounds,

it increases the number of nodes and the number of

edges by O(n), and the maximum absolute weight by

a factor of O(n). Therefore, any MPC algorithms that

runs in O(f(n,m)) rounds in the new graph G′ can be

used to solve the original instance G in O(f(O(n),m+

O(n))) = O(f(n,m)) rounds.

Observe that the diameter of the modified graph

G′ must include the two chains appended to s and t.

Hence any algorithm for the diameter when executed on

graph G′ always returns 4nM plus the shortest-path

distance between s and t in G′. By construction, the

latter quantity, which we denote by α, is at most (n−

1)M if s and t are connected in G, and (exactly) 2nM

otherwise. Thus the answer to shortest path is α if the

diameter of G′ is at most 4nM +(n−1)M , and infinity

otherwise.

In the directed case, we use the same weighted graph

G′ as before, adding one parallel edge for each edge,

both with the same weight but with opposite directions.

The rest of the algorithm is the same and its analysis

is analogous to the undirected case. ut

Observe that st-connectivity in undirected or di-

rected graphs can also be reduced to diameter, with

the same reduction. However, in undirected graphs st-

connectivity is only L-hard, while shortest path is NL-

hard.

Lemma 8 Shortest path is O(1)-round MPC reducible

to radius, with O(n1−ε) local memory per machine for

some constant ε ∈ (0, 1), and O(n+m) total memory.

Proof We start with the case of undirected graphs. Given

an instance of shortest path, we will construct the graph

G′ of Figure 5 used in the reduction from shortest path

to diameter, and then we will modify G′ to obtain a

new graph G′′ such that radius(G′′) = diameter(G′).

The graph G′′ is obtained from G′ by creating a

second copy of it, and then by contracting node b of

the first copy of G′ with node a of the second copy of

G′. (Recall that the contraction of a pair of nodes vi
and vj of a graph produces a graph in which the two

nodes v1 and v2 are replaced with a single node v such

that v is adjacent to the union of the nodes to which v1
and v2 were originally adjacent.) This reduction can be

performed inO(1) MPC rounds, it increases the number

of nodes by O(n) and the number of edges by O(m),

and the maximum absolute weight by a factor of O(n).

Let c be the node resulting from this contraction.

It is easy to see that c is the center of this newly con-

structed graph G′′: in fact, by the symmetry of G′′ and

by the assignment of the edge weights, any other node

has higher eccentricity. Thus, radius(G′′) = diameter(G′),

and hence we can proceed as in the proof of Lemma 7.

In the directed case, we use the same weighted graph

G′′ as before, adding one parallel edge for each edge,

both with the same weight but with opposite directions.

The rest of the algorithm is the same and its analysis

is analogous to the undirected case. ut

Lemma 9 Shortest path is O(1)-round MPC reducible

to median, with O(n1−ε) local memory per machine for

some constant ε ∈ (0, 1), and O(n+m) total memory.

Proof We start with the case of undirected graphs. Given

an instance of shortest path, we construct the graph G′′

as in the reduction from shortest path to radius (see
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proof of Lemma 8), and compute median(G′′). Then,

we shall edit G′′ by adding two nodes, a′ and b′, as well

as two edges, {a, a′} and {b, b′}, both of weight M . We

call the resulting graph G′′′. This reduction can be per-

formed in O(1) MPC rounds, it increases the number

of nodes by O(n) and the number of edges by O(m),

and the maximum absolute weight by a factor of O(n).

Then, we compute median(G′′′). Since node c is the

median of both G′′ and G′′′, we immediately have that

median(G′′′)−median(G′′) = d(c, a′)(= d(c, b′))

= radius(G′′) +M

= diameter(G′) +M,

and hence we can proceed as in the proof of Lemma 7.

In the directed case, we use the same weighted graphs

G′′ and G′′′ as before, adding one parallel edge for each

edge, both with the same weight but with opposite di-

rections. The rest of the algorithm is the same and its

analysis is analogous to the undirected case. ut

Now we consider the evaluation of the betweenness

centrality of nodes. In contrast to the previous reduc-

tions, in the following one we shall create n copies of the

reduction graph leveraging Lemma 1, and then perform

some computation in parallel.

Lemma 10 Shortest path is O(1)-round MPC reducible

to betweenness centrality, with O(n1−ε) local memory

per machine for some constant ε ∈ (0, 1), and O(n(n+

m)) total memory.

Proof Once again, we start with the case of undirected

graphs. In the directed case we use the same weighted

graph adding one parallel edge for each edge, both with

the same weight but with opposite directions, with an

analogous analysis.

Given an instance of shortest path, we construct the

graph G′ of Figure 5 as in the reduction from short-

est path to diameter. Then, we modify the weights of

the edges of G′ in such a way that exactly one short-

est path exists from any node to any other node, and

that the length of the original shortest path in G can

be easily recovered. To this end, since by assumption

the weights of the edges are integers, it is sufficient to

increase the weight of each edge of the starting graph

G by a real value chosen independently and uniformly

at random from the interval [1/n5, 1/n2]. (This can be

achieved by having each edge pick, independently and

uniformly at random, an integer from the set of inte-

gers [n2, n5], hence the probability that any two edges

have chosen the same number is at most
(
m
2

)
/(n5−n2+

1) < 1/nΩ(1).) This reduction can be performed in O(1)

MPC rounds, it increases the number of nodes and the

number of edges by O(n), and the maximum absolute

weight by a factor of O(n).

Now we create n−1 more copies of this graph, which

by Lemma 1 can be done in O(1) MPC rounds, and

compute the betweenness centrality of each node of G,

in parallel on each copy of the graph. Since there is a

single shortest path from any node to any other node,

the betweenness centrality of a node u is the total num-

ber of shortest paths in the graph that use u as an inter-

mediate node. Consider the (unique) shortest path from

s to t, and let A be the set of its nodes. Let B = V \A
be the remaining nodes of G. Then observe that (i) for

any node u ∈ A, BC(u) ≥ 2n · 2n, since u is an in-

termediate node in each shortest path from any of the

2n nodes of the chain appended to s to any of the 2n

nodes of the chain appended to t; and (ii) for any node

u ∈ B, BC(u) ≤
(
n
2

)
. Hence, to compute the shortest

path from s to t in G it is sufficient to consider only

the nodes whose betweenness centrality is no less than

4n2, and return the sum of the floors of the weights of

all edges with both endpoints in this set of nodes. This

can be easily done in O(1) MPC rounds. ut

An immediate consequence of these results is the

following.

Proposition 3 Shortest path, SSSP, APSP, diameter,

radius, median, and betweenness centrality are all equiv-

alent under O(1)-round MPC reductions, with O(n1−ε)

local memory per machine for some constant ε ∈ (0, 1),

and O(n2(n+m)) total memory.

Proof The two reductions involving SSSP are obvious.

The reduction from diameter (or radius) to APSP is

also obvious, since determining the maximum (or min-

imum) in a set of values can be easily done in O(1)

MPC rounds. The theorem then follows from Lemma 6,

Lemma 7, Lemma 8, Lemma 9, and Lemma 10. ut

It is interesting to observe that this equivalence class

includes problems, such as SSSP and APSP, that in the

(sequential) RAM model have vastly different complex-

ities, and that an analogous reduction from APSP to

diameter in the RAM model seems elusive [1].

We can now summarize all the results of this section.

Theorem 5 The following problems are all equivalent

under O(1)-round MPC reductions, with O(n1−ε) local

memory per machine for some constant ε ∈ (0, 1), and

O(n2(n+m)) total memory: st-reachability, strong con-

nectivity, directed cycle detection, unweighted shortest

path, unweighted SSSP, unweighted APSP, unweighted

diameter, unweighted radius, unweighted median, and

unweighted betweenness centrality.
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Conditional hardness: problems hard for NL under O(1)-

round MPC reductions. Finally, there exist problems

known to be hard for NL under AC0, and thus NC1 and

O(1)-round MPC, reductions, but not known to be in

NL. Some examples are perfect matching (even in bipar-

tite graphs), network flow, and circuit evaluation [26].

Since for these problems only one-way reductions from

problems in NL are known, we don’t know whether they

are part of the equivalence class of directed graph con-

nectivity.

5 Open Problems

The present work can be naturally extended in several

directions. One obvious direction is to prove more con-

ditional lower bounds based on the conjectures of this

paper, and to show more equivalences between prob-

lems.

Several results of this paper, from the connections

between MPC computations and space complexity of

Section 3 to the reductions of Section 4, crucially re-

quire the availability in the system of a total amount of

memory super-linear in the size of the input. These re-

sults have no implications for the more interesting case

of low total memory—that is, linear or near-linear in

the input size.8 Hence, it would be interesting to es-

tablish equivalence classes and show implications that

hold under more severe restrictions on the total amount

of available memory. (Obtaining low-round reductions

with linear or near-linear total space seems to require

completely new techniques for several of the problems

considered in this paper, though.)

Finally, it is tempting to speculate that improved

algorithms for any of the problems discussed in this pa-

per could have significant consequences in other models

of computation, such as falsifying some widely-believed

conjecture in complexity theory. Identifying new conse-

quences of their falsification would add further weight

to the conjectures of this paper.
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APPENDIX

A Space Complexity of Fundamental Problems

Here we report what is known about the space complexity of
several fundamental problems. Two good sources of problems
complete for L or NL are [30,57].

Graph Connectivity: L-complete: L-hard [30, Theorem 3], and
in L by virtue of the remarkable algorithm of Reingold [76].
Remains L-complete for promise graphs that are a disjoint
union of cycles [30, Theorem 3].

st-connectivity: L-complete, by virtue of a non-obvious equiv-
alence with graph connectivity under projection reducibil-
ity shown by Chandra et al. [26].

st-reachability for directed graphs of out-degree one: The out-
degree one version of st-reachability. It is L-complete [56].

Order Between Vertices: Given a directed path, specified by
giving for each node its successor in the path, and two dis-
tinguished nodes a and b, Order Between Vertices (ORD),
sometimes also called Path Ordering, asks to determine
whether a precedes b. ORD is L-complete [38].

Formula Evaluation: A formula is a circuit where each gate
has fan-out (out-degree) exactly one, where the underly-
ing algebraic structure is the Boolean algebra. Hence a
formula is a circuit whose underlying graph is a tree. For-
mulas represent computations where the results of sub-
computations cannot be used more than once. It is easy
to see that Boolean formula evaluation is in L. A seminal
paper by Buss shows that Boolean formula evaluation be-
longs to NC1 [25]. However, for this result it is crucial that
the Boolean formula is given as a string (for instance its
preorder notation), and not as a tree in pointer represen-
tation (e.g., by the list of all edges plus gate types). For
the latter representation, the problem is L-complete [16].

Cycle Detection: L-complete, even when the given graph con-
tains at most one cycle [30].

Planarity Testing: Is a given graph planar? Allender and Ma-
hajan [5] showed that this problem is hard for L under
projection reducibility (even for graphs of maximum de-
gree 3), and that it lies in SL. Thus, by the result of
Reingold [76], planarity testing is L-complete.

Densest Subgraph: Given an undirected graph and a number
k, is the density of a densest subgraph at least k? Observe
that cycle detection is a special case of this problem with
k = 1, and thus densest subgraph is L-hard.

st-reachability: This is st-connectivity in directed graphs, that
is, the problem of detecting whether there is a path from
a distinguished node s to a distinguished node t in a
directed graph. It is denoted STCON, and also known
as directed st-connectivity, graph reachability, PATH, or
graph accessibility problem (GAP). It is the prototypi-
cal complete problem for NL [73,81,10]. (This result was
first proved by Jones [56], and is implicit in [79], where
STCON is called the “threadable maze” problem.) It re-
mains NL-complete for the stronger case of first-order re-
ductions [53]. It is L-hard [79,66], but not known to be
in L. In Eulerian directed graphs (i.e., directed graphs
where each node has in-degree equal to its outdegree) it
is in L [77].

Strong Connectivity: NL-complete: equivalent to st-reachability
under AC0 reductions [26].

Shortest Path: Given an undirected (unweighted) graph, two
distinguished nodes s and t, and an integer k, the problem
of determining if the length of a shortest path from s to
t is k is NL-complete [23].

Directed Cycle Detection: Given a directed graph, does it
contain a directed cycle? NL-complete [81].

2SAT: NL-complete [73, Theorem 16.3].
NFA/DFA Acceptance: NL-complete [81].
Perfect Matching: NL-hard, even in bipartite graphs, because

of a AC0 reduction from st-reachability [26]. (Also L-hard,
even on k-trees [34, Lemma 5.1].) It is a long-standing
open question to determine whether perfect matching is
in NC (despite some recent substantial progress [82]).

Bipartite Matching, Network Flow: Equivalent under AC0 re-
ductions to bipartite perfect matching [26], and thus NL-
hard.

Circuit Evaluation: It is P-complete under AC0 reductions [26],
and thus also NL-hard and L-hard.

A.1 L-Completeness of the One Cycle vs. Two Cycles

Problem

In [30, Theorem 3] it is shown that graph connectivity when
the given graph is known to be a disjoint union of cycles is L-
hard. A careful inspection of the reductions used to establish
this result reveals that the problem remains hard even when
the graph is known to be made up of either one or three
cycles. By reducing from a different problem, we now show
that graph connectivity remains hard even when the graph is
known to be made up of either one or two cycles.9

Proposition 4 Graph connectivity for promise graphs that
are either one cycle or two cycles is L-complete.

Proof Membership in L is guaranteed by the algorithm of
Reingold [76]. To show L-hardness, we shall exhibit an NC1

reduction from order between vertices. Given an instance
(G, a, b) for order between vertices, we build a new graph G′

as follows: (1) the two arcs pointing to a and to b, denoted
(a′, a) and (b′, b), respectively, are removed, (2) the direc-
tion of each of the remaining n− 3 arcs is discarded, and (3)
edges {s, a}, {a′, b′}, and {b, t} are added, where s denotes
the source and t the sink of G, respectively. See Figure 6.
This construction is an NC1 reduction. The resulting graph
G′ consists of two cycles if a precedes b in G, and of one single
cycle otherwise. ut

9 Graphs are allowed to have parallel edges, that is, cycles
with two edges.
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s a′ a b′ b t −→ s a′ a b′ b t

s b′ b a′ a t −→ s b′ b a′ a t

Fig. 6: Reduction from order between vertices to one cycle vs. two cycles.
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