
A Time- and Message-Optimal Distributed Algorithm for
Minimum Spanning Trees

Gopal Pandurangan
∗

University of Houston

Houston, TX, USA

gopalpandurangan@gmail.com

Peter Robinson

Royal Holloway, University of London

London, UK

peter.robinson@rhul.ac.uk

Michele Scquizzato

University of Houston

Houston, TX, USA

michele@cs.uh.edu

ABSTRACT
This paper presents a randomized (Las Vegas) distributed algo-

rithm that constructs a minimum spanning tree (MST) in weighted

networks with optimal (up to polylogarithmic factors) time and

message complexity. This algorithm runs in Õ (D +
√
n) time and

exchanges Õ (m) messages (both with high probability), where n is

the number of nodes of the network, D is the diameter, and m is

the number of edges. This is the �rst distributed MST algorithm

that matches simultaneously the time lower bound of Ω̃(D +
√
n)

[Elkin, SIAM J. Comput. 2006] and the message lower bound of

Ω(m) [Kutten et al., J. ACM 2015], which both apply to randomized

Monte Carlo algorithms.

The prior time and message lower bounds are derived using

two completely di�erent graph constructions; the existing lower

bound construction that shows one lower bound does not work for

the other. To complement our algorithm, we present a new lower

bound graph construction for which any distributed MST algorithm

requires both Ω̃(D +
√
n) rounds and Ω(m) messages.
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1 INTRODUCTION
The minimum-weight spanning tree (MST) construction problem

is one of the central and most studied problems in distributed

computing. A long line of research aimed at developing e�cient

distributed algorithms for the MST problem started more than
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thirty years ago with the seminal paper of Gallager, Humblet, and

Spira [13], which presented a distributed algorithm that constructs

an MST in O (n logn) rounds and exchanging O (m + n logn) mes-

sages
1

(throughout, n andm will denote the number of nodes and

the number of edges of the network, respectively). The message

complexity of this algorithm is (essentially) optimal,
2

but its time

complexity is not. Hence further research concentrated on improv-

ing the time complexity. The time complexity was �rst improved to

O (n log logn) by Chin and Ting [5], further improved toO (n log∗ n)
by Gafni [12], and then toO (n) by Awerbuch [2] (see also Faloutsos

and Molle [11]). The O (n) bound is existentially optimal in the

sense that there exist graphs for which this is the best possible.

This was the state of the art till the mid-nineties when Garay,

Kutten, and Peleg [14] raised the question of whether it is possi-

ble to identify graph parameters that can better capture the com-

plexity of distributed network computations. In fact, for many ex-

isting networks, their diameter
3 D is signi�cantly smaller than

the number of vertices n, and therefore it is desirable to design

protocols whose running time is bounded in terms of D rather

than in terms of n. Garay, Kutten, and Peleg [14] gave the �rst

such distributed algorithm for the MST problem with running time

O (D + n0.614 log∗ n), which was later improved by Kutten and Pe-

leg [23] toO (D+
√
n log∗ n). However, both these algorithms are not

message-optimal,
4

as they exchangeO (m+n1.614) andO (m+n1.5)
messages, respectively. All the above results, as well as the one

in this paper, hold in the synchronous CONGEST model of dis-

tributed computing, a well-studied standard model of distributed

computing [30] (see Section 1.1).

The lack of progress in improving the result of [23], and in partic-

ular breaking the Õ (
√
n) barrier,

5
led to work on lower bounds for

the distributed MST problem. Peleg and Rubinovich [31] showed

that Ω(D +
√
n/ logn) time is required by any distributed algo-

rithm for constructing an MST, even on networks of small diameter

(D = Ω(logn)); thus, this result establishes the asymptotic near-

tight optimality of the algorithm of [23]. The lower bound of Peleg

and Rubinovich applies to exact, deterministic algorithms. Later,

1
The original algorithm has a message complexity of O (m logn), but it can be im-

proved to O (m + n logn).
2
It has been shown in [22] that the message complexity lower bound of leader election

(and hence any spanning tree as well) is Ω(m), and this applies even to randomized

Monte Carlo algorithms. On the other hand, it can be shown that an MST can be con-

structed using O (m) messages (but time can be arbitrarily large) in any synchronous

network [22, 28].

3
In this paper, by diameter we always mean unweighted diameter.

4
In this paper, henceforth, when we say “optimal” we mean “optimal up to a polylog(n)

factor”.

5Õ (f (n)) and Ω̃(f (n)) denote O (f (n) · polylog(f (n))) and

Ω(f (n)/ polylog(f (n))), respectively.
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the same lower bound of Ω̃(D +
√
n) was shown for randomized

(Monte Carlo) and approximation algorithms as well [6, 9].

To summarize, the state of the art for distributed MST algorithms

is that there exist algorithms which are either time-optimal (i.e.,

they run in Õ (D +
√
n) time) or message-optimal (i.e., they ex-

change Õ (m) messages), but not simultaneously both. Indeed, the

time-optimal algorithms of [8, 23] (as well as the sublinear time

algorithm of [14]) are not message-optimal, i.e., they require asymp-

totically much more than Θ(m) messages. In contrast, the known

message-optimal algorithms for MST (in particular, [2, 13]) are not

time-optimal, i.e., they take signi�cantly more time than Õ (D+
√
n).

Peleg and Rubinovich [31] in their 2000 SICOMP paper raise the

question of whether one can design a distributed MST algorithm

that is simultaneously optimal with respect to time and message

complexity. In 2011, Kor, Korman, and Peleg [20] also raise this ques-

tion and showed that distributed veri�cation of MST, i.e., verifying

whether a given spanning tree is MST or not, can be done in opti-

mal messages and time, i.e., there exists a distributed veri�cation

algorithm that uses Õ (m) messages and runs in Õ (D +
√
n) time,

and that these are optimal bounds for MST veri�cation. However,

the original question for MST construction remained open.

The above question addresses a fundamental aspect in distributed

algorithms, namely the relationship between the two basic complex-

ity measures of time and messages. The simultaneous optimization

of both time and message complexity has been elusive for several

fundamental distributed problems (including MST, shortest paths,

and random walks), and consequently research in the last three

decades in distributed algorithms has focused mainly on optimizing

either one of the two measures separately. However, in various

modern and emerging applications such as resource-constrained

communication networks and distributed computation of large-

scale data, it is crucial to design distributed algorithms that optimize

both measures simultaneously [15, 19].

1.1 Model and De�nitions
We �rst brie�y describe the distributed computing model in which

our algorithm (as well as all the previously discussed MST algo-

rithms [2, 5, 8, 12–14, 23]) is speci�ed and analyzed. This is the

CONGEST model (see, e.g., the book by Peleg [30]), which is now

standard in the distributed computing literature.

A point-to-point communication network is modeled as an undi-

rected weighted graph G = (V ,E,w ), where the vertices ofV repre-

sent the processors, the edges of E represent the communication

links between them, and w (e ) is the weight of edge e ∈ E. Without

loss of generality, we assume that G is connected. We also assume

that the weights of the edges of the graph are all distinct. This

implies that the MST of the graph is unique. The de�nitions and

the results generalize readily to the case where the weights are not

necessarily distinct. Each node hosts a processor with limited ini-

tial knowledge. Speci�cally, we make the common assumption that

each node has unique identity numbers (this is not essential, but

simpli�es presentation), and at the beginning of computation each

vertex v accepts as input its own identity number and the weights

of the edges incident to it. Thus, a node has only local knowledge.

Speci�cally we assume that each node has ports (each port having

a unique port number); each incident edge is connected to one

distinct port. A node does not have any initial knowledge of the

other endpoint of its incident edge (which node it is connected to or

the port number that it is connected to). This model is referred to as

the clean network model in [30] and is also sometimes referred to as

the KT0 model, i.e., the initial (K)nowledge of all nodes is restricted

(T)ill radius 0 (i.e., just the local knowledge) [30]. The KT0 model is

a standard model in distributed computing and typically used in the

literature (see e.g., [1, 25, 30, 33]), including all the prior results on

distributed MST (e.g., [2, 5, 8, 12–14, 23]) with a notable exception

([18], discussed in some detail in Section 1.3).

The vertices are allowed to communicate through the edges of

the graph G . It is assumed that communication is synchronous and

occurs in discrete rounds (time steps). In each time step, each node

v can send an arbitrary message of O (logn) bits through each edge

e = (v,u) incident to v , and each message arrives at u by the end

of this time step. (If unbounded-size messages are allowed—this

is the so-called LOCAL model—the MST problem can be trivially

solved in O (D) time [30].) The weights of the edges are at most

polynomial in the number of vertices n, and therefore the weight

of a single edge can be communicated in one time step. This model

of distributed computation is called the CONGEST(logn) model or

simply the CONGEST model [30].

SingularOptimality vs. Time-MessageTradeo�.The e�ciency

of distributed algorithms is traditionally measured by their time

and message (or, communication) complexities. Time complexity

measures the number of synchronous rounds taken by the algo-

rithm, whereas message complexity measures the total amount

of messages sent and received by all the processors during the

execution of the algorithm. Both complexity measures crucially

in�uence the performance of a distributed algorithm. We say that

a problem enjoys singular optimality when it admits a distributed

algorithm whose time and message complexity are both optimal.

When the problem fails to admit such a solution, namely, algorithms

with better time complexity for it necessarily incur higher mes-

sage complexity and vice versa, we say that the problem exhibits a

time-message tradeo�.

1.2 Our Results
DistributedMSTAlgorithm. In this paper we present a distributed

MST algorithm in the CONGEST model which is simultaneously

time- and message-optimal. The algorithm is randomized Las Ve-

gas, and always returns the MST. The running time of the algo-

rithm is Õ (D +
√
n) and the message complexity is Õ (m), and both

bounds hold with high probability.
6

This is the �rst distributed

MST algorithm that matches simultaneously the time lower bound

of Ω̃(D +
√
n) [6, 9] and the message lower bound of Ω(m) [22],

which both apply even to randomized Monte Carlo algorithms, thus

closing a more than thirty-year-old line of research in distributed

computing. In terms of the terminology introduced earlier, we can

therefore say that the distributed MST problem exhibits singular

optimality up to polylogarithmic factors. Table 1 summarizes the

known upper bounds on the complexity of distributed MST. We

also observe that in our algorithm the local computation performed

by the vertices is not very heavy.

6
Throughout, with high probability (w.h.p.) means with probability > 1 − 1/nΩ(1)

,

where n is the network size.
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Table 1: Summary of upper bounds on the complexity of dis-
tributed MST.

Reference Time Complexity Message Complexity

Gallager et al. [13] O (n logn) O (m + n logn)
Awerbuch [2] O (n) O (m + n logn)
Garay et al. [14] O (D + n0.614 log∗ n) O (m + n1.614)
Kutten and Peleg [23] O (D +

√
n log∗ n) O (m + n1.5)

Elkin [8] Õ (µ (G,w ) +
√
n) O (m + n1.5)

This paper Õ (D +
√
n) Õ (m)

Lower Bound. Both the aforementioned time and message lower

bounds are existential, and are derived using two completely dif-

ferent graph constructions. However, the graph used to show one

lower bound does not work for the other. To complement our main

result, in Section 4 we present a new graph construction for which

any distributed MST algorithm requires both Ω̃(D +
√
n) rounds

and Ω(m) messages.

1.3 Other Related Work
Given the importance of the distributed MST problem, there has

been signi�cant work over the last 30 years on this problem and re-

lated aspects. Besides the prior work already mentioned in Section 1,

we now discuss other relevant work on distributed MST.

Other Distributed MST Algorithms. Elkin [8] showed that a pa-

rameter called “MST-radius” captures the complexity of distributed

MST algorithms better. He devised a distributed protocol that con-

structs the MST in Õ (µ (G,w ) +
√
n) time, where µ (G,w ) is the

“MST-radius” of the graph [8] (is a function of the graph topology

as well as the edge weights). The ratio between diameter and MST-

radius can be as large as Θ(n), and consequently, on some inputs,

this protocol is faster than the protocol of [23] by a factor of Ω(
√
n).

However, a drawback of this protocol (unlike the previous MST

protocols [5, 12–14, 23]) is that it cannot detect the termination of

the algorithm in that time (unless µ (G,w ) is given as part of the

input). On the other hand, it can be shown that for distributed MST

algorithms that correctly terminate Ω(D) is a lower bound on the

running time [21, 31]. (In fact, [21] shows that for every su�ciently

large n and every function D (n) with 2 6 D (n) < n/4, there exists

a graph G of n′ ∈ Θ(n) nodes and diameter D ′ ∈ Θ(D (n)) which

requires Ω(D ′) rounds to compute a spanning tree with constant

probability.) We also note that the message complexity of Elkin’s

algorithm is O (m + n3/2).
Time Bounds. From a practical perspective, given that MST con-

struction can take as much as Ω(
√
n/ logn) time even in low-

diameter networks, it is worth investigating whether one can de-

sign distributed algorithms that run faster and output an approx-

imate minimum spanning tree. The question of devising faster

approximation algorithms for MST was raised in [31]. Elkin [9]

later established a hardness result on distributed MST approxima-

tion, showing that approximating the MST problem on a certain

family of graphs of small diameter (e.g., O (logn)) within a ratio

H requires essentially Ω(
√
n/H logn) time. Khan and Panduran-

gan [17] showed that there can be an exponential time gap between

exact and approximate MST construction by showing that there

exist graphs where any distributed (exact) MST algorithm takes

Ω(
√
n/ logn) rounds, whereas an O (logn)-approximate MST can

be computed inO (logn) rounds. The distributed algorithm of Khan

and Pandurangan [17] outputs a O (logn)-approximate MST, and is

message-optimal but not time-optimal.

Das Sarma et al. [6] settled the time complexity of distributed

approximate MST by showing that this problem, as well as approx-

imating shortest paths and about twenty other problems, satis�es

a time lower bound of Ω̃(D +
√
n). This applies to deterministic as

well as randomized algorithms, and to both exact and approximate

versions. In other words, any distributed algorithm for comput-

ing a H -approximation to MST, for any H > 0, takes Ω̃(D +
√
n)

time in the worst case. Lower bounds are known even for quantum

algorithms [10].

Message Bounds. Kutten et al. [22] fully settled the message com-

plexity of leader election in general graphs, even for randomized al-

gorithms and under very general settings. Speci�cally, they showed

that any randomized algorithm (including Monte Carlo algorithms

with suitably large constant success probability) requires Ω(m)
messages; this lower bound holds for any n andm, i.e., given any

n and m, there exists a graph with Θ(n) nodes and Θ(m) edges for

which the lower bound applies. Since a distributed MST algorithm

can also be used to elect a leader (where the root of the tree is

the leader, which can be chosen using O (n) messages once a tree

is constructed) the above lower bound applies to distributed MST

construction as well, for allm > cn, where c is a su�ciently large

constant. The above bound holds even for non-comparison algo-

rithms, that is algorithms that may also manipulate the actual value

of node’s identities, not just compare identities with each other,

and even if nodes have initial knowledge of n,m, and D. They also

hold for synchronous networks, and even if all the nodes wake

up simultaneously. Finally, they hold not only for the CONGEST

model [30], where sending a message of O (logn) bits takes one

unit of time, but also for the LOCAL model [30], where the number

of bits in a message is allowed to be arbitrary.

Optimality in the KT1 Model: Comparison-Based and Ran-
domized Algorithms. It is important to point out that this paper

and all the prior results discussed above (including the prior MST re-

sults [2, 5, 8, 12–14, 23]) assume the so-called clean network model,
a.k.a. KT0 [30] (cf. Section 1.1), where nodes do not have initial

knowledge of the identity of their neighbors. However, one can

assume a model where nodes have initial knowledge of the identity

of their neighbors. This model is called the KT1 model. We note that

the time lower bound of Ω̃(D +
√
n) holds in the KT1 model as well.

Awerbuch et al. [3] show that Ω(m) is a message lower bound for

MST for the KT1 model, if one allows only comparison-based algo-

rithms (i.e., algorithms that can operate on IDs only by comparing

them); this lower bound for comparison-based algorithms applies

to randomized algorithms as well. (We note that all prior MST algo-

rithms mentioned earlier are comparison-based, including ours.)

Hence, the result of [3] implies that our MST algorithm (which is

comparison-based and randomized) is message- and time-optimal
in the KT1 model if one considers comparison-based algorithms.
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Awerbuch et al. [3] also show that the Ω(m) message lower

bound applies even to non-comparison based (in particular, algo-

rithms that can perform arbitrary local computations) determin-
istic algorithms in the CONGEST model that terminate in a time

bound that depends only on the graph topology (e.g., a function

of n). On the other hand, for randomized non-comparison-based
algorithms, it turns out that the message lower bound of Ω(m)
does not apply in the KT1 model. Recently, King et al. [18] showed

a surprising and elegant result: in the KT1 model one can give a

randomized Monte Carlo algorithm to construct a MST in Õ (n)
messages (Ω(n) is a message lower bound) and in Õ (n) time (this al-

gorithm uses randomness and is not comparison-based). While this

algorithm shows that one can get o(m) message complexity (when

m = ω (n polylogn)), it is not time-optimal (it can take signi�cantly

more than Θ̃(D +
√
n) rounds). It is an open question whether one

can design a randomized (non-comparison based) algorithm that

takes Õ (D +
√
n) time and Õ (n) messages in the KT1 model.

2 HIGH-LEVEL OVERVIEW OF THE
ALGORITHM

The time- and message-optimal distributed MST algorithm of this

paper builds on prior distributed MST algorithms that were either

message-optimal or time-optimal but not both. We provide a high-

level overview of our algorithm and some intuition behind it; we

also compare and contrast it with previous MST algorithms. The full

description of the algorithm and its analysis are given in Section 3.

The algorithm can be divided into two parts as explained below.

2.1 First Part: Controlled-GHS
We �rst run the so-called Controlled-GHS algorithm, which was

�rst used in the sublinear-time distributed MST algorithm of Garay,

Kutten, and Peleg [14], as well as in the time-optimal algorithm of

Kutten and Peleg [23]. Controlled-GHS is the (synchronous version

of the) classical Gallager-Humblet-Spira (GHS) algorithm [13, 30],

with some modi�cations. We recall that the synchronous GHS

algorithm, which is essentially a distributed implementation of

Boruvka’s algorithm—see, e.g., [30], consists of O (logn) phases. In

the initial phase each node is an MST fragment, by which we mean

a connected subgraph of the MST. In each subsequent phase, every

MST fragment �nds a lightest (i.e., minimum-weight) outgoing

edge (LOE)—these edges are guaranteed to be in the MST by the cut

property [32]. The MST fragments are merged via the LOEs to form

larger MST fragments. The number of phases is O (logn), since the

number of MST fragments gets at least halved in each phase. The

message complexity is O (m + n logn) (which essentially matches

the optimal message bound of Ω̃(m)) and the time complexity is

O (n logn). The time complexity is not optimal because much of the

communication during a phase uses only the MST fragment edges.
Since the diameter of an MST fragment can be as large as Ω(n) (and

this can be signi�cantly larger than the graph diameter D), the time

complexity of the GHS algorithm is not optimal.

The Controlled-GHS algorithm alleviates this situation by con-

trolling the growth of the diameter of the MST fragments during

merging. At the end of Controlled-GHS,

√
n fragments remain,

each of which has diameter O (
√
n). These are called as base frag-

ments. Controlled-GHS can be implemented using Õ (m) messages

in Õ (
√
n) rounds. (Note that Controlled-GHS as implemented in

the time-optimal algorithm of [23] is not message-optimal—the

messages exchanged can be Õ (m + n3/2); however, a modi�ed ver-

sion can be implemented using Õ (m) messages as explained in

Section 3.1.)

2.2 Second Part: Merging the
√
n Remaining

Fragments
The second part of our algorithm, after the Controlled-GHS part,

is di�erent from the existing time-optimal MST algorithms. The

existing time-optimal MST algorithms [8, 23], as well as the algo-

rithm of [14], are not message-optimal since they use the Pipeline
procedure of [14, 29]. The Pipeline procedure builds a breadth-�rst

search (BFS) tree of the network, collects all the inter-fragment
edges (these are edges between the

√
n MST fragments) at the root

of the BFS tree and then �nds the MST locally. The Pipeline algo-

rithm uses the cycle property of the MST [32] to eliminate those

inter-fragment edges that cannot belong to the MST en route of

their journey to the root. While the Pipeline procedure (due to the

pipelining of the edges to the root) takes O (
√
n) time (since there

are at most so many MST edges left to be discovered after the end

of the �rst part), it is not message-optimal. The Pipeline procedure

exchanges O (m + n1.5) messages, since each node in the BFS tree

can send up to O (
√
n) edges leading to O (n1.5) messages overall

(the BFS tree construction takes O (m) messages).

Our algorithm uses a di�erent strategy to achieve optimality

in both time and messages. The main novelty of our algorithm

(Algorithm 1) is how we merge the

√
n base fragments which re-

main at the end of the Controlled-GHS procedure into one resulting

fragment (the MST) in a time- and message-e�cient way. Unlike

previous time-optimal algorithms [8, 14, 23], we do not use the

Pipeline procedure of [14, 29] which is not message-optimal (as

explained above). Instead, we continue to merge fragments, a la

Boruvka-style. Our algorithm uses two main ideas to implement the

Boruvka-style merging e�ciently. (Merging is achieved by renam-

ing the IDs of the merged fragments to a common ID, i.e., all nodes

in the combined fragment will have this common ID.) The �rst idea

is a procedure to e�ciently merge whenD is small (i.e.,D = O (
√
n))

or when the number of fragments remaining is small (i.e., O (n/D)).
The second idea is to use sparse neighborhood covers and e�cient

communication between fragments to merge fragments when D is

large and the number of fragments is large. Accordingly, the second

part of our algorithm can be divided into three phases, which are

described next.

2.2.1 Phase 1: When D is O (
√
n). Phase 1 can be treated as a

special case of Phase 3 (as in Algorithm 1). However, we describe

Phase 1 separately as it helps in the understanding of the other

phases as well.

We construct a BFS tree on the entire network and do the merg-

ing process as explained below. Each base fragment �nds its LOE

by convergecasting within each of its fragments. This takes O (
√
n)

time and O (
√
n) messages per base fragment, leading to O (n) mes-

sages overall. The O (
√
n) LOE edges are sent by the leaders of the

respective base fragments to the root by upcasting (see, e.g., [30]).

This takes O (D +
√
n) time and O (D

√
n) messages, as each of the

√
n edges has to traverse up to D edges on the way to the root. The
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root merges the fragments and sends the renamed fragment IDs to

the respective leaders of the base fragments by downcast (which

has the same time and message complexity as upcast [30]). The

leaders of the base fragments broadcast the new ID to all other

nodes in their respective fragments. This takes O (
√
n) messages

per fragment and hence O (n) messages overall. Thus one iteration

of the merging can be done in O (D +
√
n) time and using O (D

√
n)

messages. Since each iteration reduces the number of fragments by

at least half, the number of iterations is O (logn). At the end of this

iteration, several base fragments may share the same label. In sub-

sequent iterations, each base fragment �nds its LOE (i.e., the LOE

between itself and the other base fragments which do not have the

same label) by convergecasting within its own fragment and (the

leader of the base fragment) sends the LOE to the root; thusO (
√
n)

edges are sent to the root (one per base fragment), though there are

a lesser number of combined fragments (with distinct labels). The

root �nds the overall LOE of the combined fragments and does the

merging. This is still �ne, since the time and message complexity

per merging iteration is O (D +
√
n) time and O (D

√
n) = O (n)

messages respectively, which are as required.

2.2.2 Phase 2: When D and the Number of Fragments are Large.
When D is large (say n1/2+ε , for some 0 < ε 6 1/2) and the num-

ber of fragments is large (say, Θ(
√
n)) the previous approach of

merging via the root of the global BFS tree does not work directly,

since the message complexity would be O (D
√
n). The second idea

addresses this issue: we merge in a manner that respects locality.

That is, we merge fragments that are close by using a local leader

(thus the LOE edges do not have to travel too far). The high-level

idea is to use a hierarchy of sparse neighborhood covers to accomplish

the merging.
7

A sparse neighborhood cover is a decomposition of a

graph into a set of overlapping clusters that satisfy suitable proper-

ties (see De�nition 3.4 in Section 3.4). The main intuitions behind

using a cover are the following: (1) the clusters of the cover have

relatively smaller diameter (compared to the strong diameter of

the fragment and is always bounded by D) and this allows e�cient

communication for fragments contained within a cluster (i.e., the

weak diameter of the fragment is bounded by the cluster diameter);

(2) the clusters of a cover overlap only a little, i.e., each vertex be-

longs only to a few clusters; this allows essentially congestion-free

(overhead is at most polylog(n) per vertex) communication and

hence operations can be done e�ciently in parallel across all the

clusters of a cover. This phase continues till the number of frag-

ments reduces toO (n/D), when we switch to Phase 3. We next give

more details on the merging process in Phase 2.

Communication-E�cient Paths. An important technical aspect

in the merging process is constructing e�cient communication

paths between nearby fragments; the algorithm maintains and

updates these e�cient paths during the algorithm. Our algorithm

requires fragments to be “communication-e�cient”, in the sense

that there is an additional set of short paths between the fragment

leader f and fragment members. Such a path might use “shortcuts”

7
We use an e�cient randomized cover construction algorithm due to Elkin [8]; this

is the only randomization used in our algorithm. We note that neighborhood covers

was used by Elkin [8] to improve the running time of the Pipeline procedure of his

distributed MST algorithm; on the other hand, here we use it to replace the Pipeline
part entirely in order to achieve message optimality as well.

through vertices inV (G )\V (F ) to reduce the distance. The following

de�nition formalizes this idea.

De�nition 2.1 (Communication-E�cient Fragment and Path). Let

F be a fragment of G, and let f ∈ F be a vertex designated as the

fragment leader of F . We say that fragment F is communication-
e�cient if, for each vertex v ∈ F , there exists a path between

v and f (possibly including vertices in V (G ) \ V (F )) of length

O (diamG (F ) +
√
n), where diamG (F ) is the weak diameter of F .

Such a path is called communication-e�cient path for F .

Section 3.2 de�nes the routing data structures that are used

to maintain communication-e�cient paths. Later, in Section 3.4,

we describe the construction of the paths (and routing data struc-

tures) inductively. We show that, in each iteration, all fragments

�nd their respective LOEs in time Õ (
√
n + D) and using a total of

Õ (m) messages. While we cannot merge all fragments (along their

LOEs), as this will create long chains, we use a procedure called

ComputeMaximalMatching (Section 3.5) to merge fragments in a

controlled manner. ComputeMaximalMatching �nds a maximal

matching in the fragment graph Fi induced by the LOE edges. The

crucial part is using communication-e�cient paths to communi-

cate e�ciently (both time and message-wise) between the fragment

leader and the nodes in the fragment (while �nding LOEs) as well as

between fragment leaders of adjacent fragments (while merging as

well as implementing ComputeMaximalMatching). The procedure

FindLightest (see Section 3.3) describes the LOE �nding process

assuming communication-e�cient fragments. The maintenance of

such e�cient fragments is shown recursively: the base fragments

are e�cient and after merging the resulting fragments are also

e�cient.

We use a hierarchy of sparse neighborhood covers to construct

communication-e�cient fragments (see Section 3.4). Each cover in

the hierarchy consists of a collection of clusters of certain radius—

the lowest cover in the hierarchy has clusters of radius O (
√
n)

(large enough to contain at least one base fragment which have

radius O (
√
n); subsequent covers in the hierarchy have clusters

of geometrically increasing radii (the last cover in the hierarchy

is simply the BFS tree of the entire graph). Initially, it is easy to

construct communication-e�cient paths in base fragments, since

they have strong diameter O (
√
n) (cf. Section 3.2, Lemma 3.2). In

subsequent iterations, when merging two adjacent fragments, the

algorithm �nds a cluster that is (just) large enough to contain both

the fragments. Figure 1 gives an example of this process. The neigh-

borhood property of the cluster allows the algorithm to construct

communication-e�cient paths between merged fragments (that

might take shortcuts outside the fragments, and hence have small

weak diameter) assuming that the fragments before merging are

e�cient. Note that it is important to make sure that the number

of fragments in a cluster is not too large in relation to the radius

of the cluster—otherwise the message complexity will be high (as

in the Pipeline scenario). Hence, a key invariant that is maintained

through all the iterations is that the cluster depth times the number
of fragments that are contained in the cluster of such depth is always
bounded by Õ (n), and this helps in keeping the message complexity

low. This invariant is maintained by making sure that the number

of fragments per cluster goes down enough to compensate for the

increase in cluster radius (Lemma 3.8 in Section 3.4). At the end of
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Phase 3, the invariant guarantees that when the cluster radius is D,

the number of fragments is O (n/D).

2.2.3 Phase 3: When the Cluster Radius is D. When the cluster

radius becomes D (i.e., the cover is just the BFS tree), we switch

to Phase 3. The number of remaining fragments will be O (n/D)
(which is guaranteed at the end of Phase 2). Phase 3 uses a merging

procedure very similar to that of Phase 1. In Phase 1, in every merg-

ing iteration, each base fragment �nds their respective LOEs (i.e.,

LOEs between itself and the rest of the fragments) by converge-

casting to their respective leaders; the leaders send at most O (
√
n)

edges to the root by upcast. The root merges the fragments and

sends out the merged information to the base fragment leaders by

downcast. In Phase 3, we treat the O (n/D) remaining fragments as

the “base fragments” and repeat the above process. An important

di�erence to Phase 1 is that the merging leaves the leaders of these

base fragments intact: in the future iterations of Phase 3, each of

these base fragments again tries to �nd an LOE using the procedure

FindLightest, whereby only edges that have endpoints in fragments

with distinct labels are considered as candidate for the LOE.

Note that the fragment leaders communicate with their respec-

tive nodes as well as the BFS root via the hierarchy of communication-

e�cient routing paths constructed in Phase 2; these incur only a

polylogarithmic overhead. This takes Õ (D+n/D) time (per merging

iteration) since O (n/D) LOE edges are sent to the root of the BFS

tree via communication-e�cient paths (in every merging iteration)

and a message complexity of Õ (D · n/D) = Õ (n) (per merging it-

eration) since, in each iteration, each of the O (n/D) edges takes

Õ (D) messages to reach the root. Since there areO (logn) iterations

overall, we obtain the desired bounds.

3 DESCRIPTION AND ANALYSIS OF THE
ALGORITHM

The algorithm operates on the MST forest, which is a partition of

the vertices of a graph into a collection of trees {T1, . . . ,T` } where

every tree is a subgraph of the (�nal) MST. A fragment Fi is the

subgraph induced by V (Ti ) in G. We say that an MST forest is an

(α ,β )-MST forest if it contains at most α fragments, each with a

strong diameter
8

of at most β . Similarly, an MST forest is a weak
(α ,β )-MST forest if it contains at most α fragments each of (weak)

diameter at most β .

We de�ne the fragment graph, a structure that is used through-

out the algorithm. The fragment graph Fi consists of vertices

{F1, . . . ,Fk }, where each Fj (1 6 j 6 k) is a fragment at the start of

iteration i > 1 of the algorithm. The edges of Fi are obtained by

contracting the vertices of each Fj ∈ V (F ) to a single vertex in G
and removing all resulting self-loops of G. We sometimes call the

remaining edges inter-fragment edges. As our algorithm proceeds

by �nding lightest outgoing edges (LOEs) from each fragment, we

operate partly on the LOE graphMi of iteration i , which shares

the same vertex set as Fi , i.e.,Mi ⊆ Fi , but where we remove all

inter-fragment edges except for one (unique) LOE per fragment.

8
Recall that the strong diameter diamF (F ) of fragment F refers to the longest shortest

path (ignoring weights) between any two vertices in F that only passes through

vertices inV (F ), whereas the weak diameter diamG (F ) allows the use of vertices that

are in V (G ) \V (F ).

3.1 The Controlled-GHS Procedure
Our algorithm starts out by running the Controlled-GHS procedure

introduced in [14] and subsequently re�ned in [23] and in [24].

Algorithm 2 Procedure Controlled-GHS: builds a (
√
n,O (

√
n))-

MST forest in the network.

1: procedure Controlled-GHS:

2: F = ∅ // initial MST forest

3: for i = 0, . . . , dlog
√
ne do

4: C = set of connectivity components of F (i.e., maximal

trees).

5: Each C ∈ C of diameter at most 2
i

determines the LOE of C
and adds it to a candidate set S .

6: Add a maximal matching SM ⊆ S in the graph (C,S ) to F .

7: If C ∈ C of diameter at most 2
i

has no incident edge in SM ,

it adds the edge it selected into S to F .

Controlled-GHS (Algorithm 2) is a modi�ed variant of the origi-

nal GHS algorithm, whose purpose is to produce a balanced out-

come in terms of number and diameter of the resulting fragments

(whereas the original GHS algorithm allows an uncontrolled growth

of fragments). This is achieved by computing, in each phase, a

maximal matching on the fragment forest, and merging fragments

accordingly. Here we shall resort to the newest variant presented

in [24], since it incurs a lower message complexity than the two

preceding versions. Each phase essentially reduces the number of

fragments by a factor of two, while not increasing the diameter

of any fragment by more than a factor of two. Since the num-

ber of phases of Controlled-GHS is capped at dlog
√
ne,9 it pro-

duces a (
√
n,O (

√
n))-MST forest. The fragments returned by the

Controlled-GHS procedure are called the base fragments, and we

denote their set by F1.

The following result about Controlled-GHS procedure follows

from [24].

Lemma 3.1. Algorithm 2 outputs a (
√
n,O (

√
n))-MST forest in

O (
√
n log∗ n) rounds and sends O (m logn + n log2 n) messages.

Proof. The correctness of the algorithm is established trough

Lemma 6.15 and Lemma 6.17 of [24]. By Corollary 6.16 of [24],

the i-th iteration of the algorithm can be implemented in time

O (2i log∗ n). Hence the time complexity of Controlled-GHS is

O*.
,

dlog
√
n e∑

i=0
2
i
log
∗ n+/

-
= O

(√
n log∗ n

)
rounds.

We now analyze the message complexity of the algorithm. Con-

sider any of the dlog
√
ne iterations of the algorithm. The mes-

sage complexity for �nding the lightest outgoing edge for each

fragment (Line 5) is O (m). Then (Line 6) a maximal matching is

built using the Cole-Vishkin symmetry-breaking algorithm. As ar-

gued in the proof of Corollary 6.16 of [24], in every iteration of

this algorithm, only one message per fragment needs to be ex-

changed. Since the Cole-Vishkin algorithm terminates in O (log∗ n)

9
Throughout, log denotes logarithm to the base 2.
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Algorithm 1 A Time- and Message-Optimal Distributed MST Algorithm.

** Part 1:
1: Run Controlled-GHS procedure (Algorithm 2).

2: Let F1 be the base fragments obtained from Controlled-GHS.

** Part 2:
* Start of Phase 1:
3: for every fragment F ∈ F1 do
4: Construct a BFS tree T of F rooted at the fragment leader.

5: Every u ∈ F sets upu (F ,1) to its BFS parent and downu (F ,1) to its BFS children.

6: Run the leader election algorithm of [22] to �nd a constant approximation of diameter D.

7: if D = O (
√
n) then set F ′ = F1 and skip to Phase 3 (Line 32).

* Start of Phase 2:
8: for i = 1, . . . , dlog(D/

√
n)e do // All nodes start iteration i at the same time

9: Construct cover Ci = ComputeCover(2ic1
√
n) (c1 is a suitably chosen constant).

10: Every node locally remembers its incident edges of the directed trees in Ci .

11: for each fragment F1 ∈ V (Fi ) do
12: Let (u,v ) = FindLightest(F1) where u ∈ F1 and v ∈ F2. // (u,v ) is the LOE of F1. See Section 3.3.

13: if v ∈ F2 has an incoming lightest edge e1 from F1 then
14: v forwards e1 to leader f2 ∈ F2 along its ((F2,1), . . . , (F2,i ))-upward-path.

15: FindPath(F1,F2). // Find a communication-e�cient path for the merged fragment that connects leaders f1 ∈ F1 and f2 ∈ F2; this is

needed for merging of fragments and also for iteration i + 1. See Section 3.4.

// Merging of fragments:
16: for each fragment F1 ∈ V (Fi ) do
17: if F1 has a weak diameter of 6 2

ic1
√
n then F1 is marked active.

18: LetMi ⊆ Fi be the graph induced by the LOE edges whose vertices are the active fragments.

19: Let D be the edges output by running ComputeMaximalMatching onMi . // We simulate inter-fragment communication using the

communication-e�cient paths.

20: for each edge (F ,F ′) ∈ D: Mark fragment pair for merging.

21: for each fragment F not incident to an edge in D: Mark LOE of F for merging.

22: Orient all edges marked for merging from lower to higher fragment ID. A fragment leader whose fragment does not have an outgoing

marked edge becomes dominator.
23: Every non-dominator fragment leader sends merge-request to its adjacent dominator.

24: for each dominating leader f do
25: if leader f received merge-requests from F1, . . . ,F` then
26: Node f is the leader of the merged fragment F ∪ F1 ∪ · · · ∪ F` , where F is f ’s current fragment.

27: for j = 1, . . . , ` do
28: f sends µ = 〈MergeWith,F 〉 along its (Fj ,i )-path to the leader fj of Fj .
29: When fj receives µ, it instructs all nodes v ∈ Fj to update their fragment ID to F and update all entries in up and down

previously indexed with Fj , to be indexed with F .

30: Let Fi+1 be the fragment graph consisting of the merged fragments ofMi and the inter-fragment edges.

end of iteration i.
31: Let F ′ = Fdlog(D/

√
n)e+1.

* Start of Phase 3: // Compute �nal MST given a fragment graph F ′.

32: for Θ(logn) iterations do
33: Invoke FindLightest(F ′) for each fragment F ′ ∈ F ′ in parallel and then upcast the resulting LOE in a BFS tree of G to a root u.

34: Node u receives the LOEs from all fragments in F ′ and computes the merging locally. It then sends the merged labels to all the

fragment leaders by downcast via the BFS tree.

35: Each fragment leader relays the new label (if it was changed) to all nodes in its own fragment via broadcast along the communication-

e�cient paths.

36: At the end of this iteration, several fragments in F ′ may share the same label. At the start of the next iteration, each fragment in

F ′ individually invokes FindLightest, whereby only edges that have endpoints in fragments with distinct labels are considered as

candidates for the LOE.

iterations, the message complexity for building the maximal match-

ing is O (n log∗ n). Afterwards, adding selected edges into S to F

(Line 7) can be done with an additional O (n logn) message com-

plexity. The message complexity of algorithm Controlled-GHS is

therefore O (m logn + n log2 n). �

749



STOC’17, June 2017, Montreal, Canada G. Pandurangan et al.

3.2 Routing Data Structures for
Communication-E�cient Paths

For achieving our complexity bounds, our algorithm maintains

e�cient fragments in each iteration. To this end, nodes locally

maintain routing tables. In more detail, every nodeu ∈ G has 2 two-

dimensional arrays upu and downu (called routing arrays), which

are indexed by a (fragment ID,level)-pair, where level stands for

the iteration number, i.e., the for loop variable i in Algorithm 1.

Array upu maps to one of the port numbers in {1, . . . ,du }, where

du is the degree of u. In contrast, array downu maps to a set of

port numbers. Intuitively speaking, upu (F ,i ) refers to u’s parent

on a path p towards the leader of F where i refers to the iteration

in which this path was constructed. Similarly, we can think of

downu (F ,i ) as the set of u’s children in all communication e�cient

paths originating at the leader of F and going through u and we use

downu to disseminate information from the leader to the fragment

members. Oversimplifying, we can envision upu and downu as

a way to keep track of the parent-child relations in a tree that is

rooted at the fragment leader. (Note that level is an integer in the

range [1,Θ(log
√
n)] that corresponds to the iteration number of

the main loop in which this entry was added; see Lines 8-30 of

Algorithm 1.) For a �xed fragment F and some value level = i , we

will show that the up and down arrays induce directed chains of

incident edges.

Depending on whether we use array up or array down to route

along a chain of edges, we call the chain an (F ,i )-upward-path
or an (F ,i )-downward-path. When we just want to emphasize the

existence of a path between a fragment node v and its leader f ,

we simply say that there is a communication-e�cient (F ,i )-path
between v and f and we omit “(F ,i )” when it is not relevant. We

de�ne the nodes speci�ed by downu (F ,i ) to be the (F ,i )-children
of u and the node connected to port upu (F ,i ) to be the (F ,i )-parent
of u. So far, we have only presented the de�nitions of our routing

structures. We will explain their construction in more detail in

Section 3.4.

We now describe the routing of messages in more detail: Suppose

that u ∈ F generates a message µ that it wants to send to the leader

of F . Then,u encapsulates µ together with F ’s ID, the value level = 1,

and an indicator “up” in a message and sends it to its neighbor on

port upu (F ,1); for simplicity, we use F to denote both, the fragment

and its ID. When node v receives µ with values F and level = 1, it

looks up upv (F ,1) and, if upv (F ,1) = a for some integer a, then

v forwards the (encapsulated) message along the speci�ed port.
10

This means that µ is relayed to the rootw of the (F ,1)-upward-path.

For node w , the value of upw (F ,1) is unde�ned and so w attempts

to lookup upw (F ,2) and then forwards µ along the (F ,2)-upward-

path and so forth. In a similar manner, µ is forwarded along the path

segments p1 . . .pi where pj is the (F , j )-upward-path (1 6 j 6 i)
in the i-th iteration of the algorithm’s main-loop. We will show

that the root of the (F ,i )-upward-path coincides with the fragment

leader at the start of the i-th iteration.

On the other hand, when the iteration leader u in the i-th itera-

tion wants to disseminate a message µ to the fragment members, it

10
Node v is free to perform additional computations on the received messages as

described by our algorithms, e.g.,v might aggregate simultaneously received messages

in some form. Here we only focus on the forwarding mechanism.

sends µ to every port in the set downu (F ,i ). Similarly to above, this

message is relayed to the root v of each (F ,i )-downward-path, for

which the entry downv (F ,i ) is unde�ned. When i > 1, nodev then

forwards µ to the ports in downv (F ,i − 1) and µ traverses the path

segments qi . . .q1 where qj is the (F , j )-downward-path. For con-

venience we call the concatenation of qi . . .q1 a ((F ,i ), . . . , (F ,1))-
downward path (or simply ((F ,i ), . . . , (F ,1))-path), and de�ne a

((F ,1), . . . , (F ,i ))-upward path similarly.

We are now ready to describe the individual components of

our algorithm in more detail. To simplify the presentation, we will

discuss the details of Algorithm 1 inductively.

We assume that every node u ∈ F ∈ F1 knows its parent and

children in a BFS tree rooted at the fragment leader f ∈ F . (BFS trees

for spanning each respective fragment can easily be constructed

in O (
√
n) time and using a total of O (m) messages—this is because

the fragments in F1 are disjoint and have strong diameter O (
√
n).)

Thus, node u initializes its routing arrays by pointing upu (F ,1)
to its BFS parent and by setting downu (F ,1) to the port values

connecting its BFS children.

Lemma 3.2. At the start of the �rst iteration, for any fragment F
and every u ∈ F , there is an (F ,1)-path between F ’s fragment leader
and u with a path length of O (

√
n).

Proof. From the initialization of the routing tables up and down
it is immediate that we reach the leader when starting at a node

u ∈ F and moving along the (F ,1)-upward-path. Similarly, starting

at the leader and moving along the (F ,1)-downward-path, allows

us to reach any fragment member. The bound on the path length

follows from the strong diameter bound of the base fragments, i.e.,

O (
√
n) (see Lemma 3.1). �

3.3 Finding the Lightest Outgoing Edges (LOEs):
Procedure FindLightest

We now describe Procedure FindLightest(F ), which enables the

fragment leader f to obtain the lightest outgoing edge, i.e., the

lightest edge that has exactly 1 endpoint in F . Consider iteration

i > 1. Initially, FindLightest(F ) requires all fragment nodes to

exchange their fragment IDs with their neighbors to ensure that

every node v knows its set of incident outgoing edges Ev . If a node

v is a leaf in the BFS trees of its base fragment, i.e., it does not

have any (F ,1)-children, it starts by sending the lightest edge in

Ev along the ((F ,1), . . . , (F ,i ))-upward-path. In general, a node u
on an (F , j )-upward-path (j > 1) waits to receive the lightest-edge

messages from all its (F , j )-children (or its (F , j − 1)-children if any),

and then forwards the lightest outgoing edge that it has seen to its

parent in the ((F , j ), . . . , (F ,i ))-upward-path.

The following lemma proves some useful properties of FindLightest.
Note that we do not yet claim any bound on the message complexity

at this point, as this requires us to inductively argue on the structure

of the fragments, which requires properties that we introduce in the

subsequent sections. Hence we postpone the message complexity

analysis to Lemma 3.12.

Lemma 3.3 (Efficient LOE Computation). Suppose that every
fragment in F ∈ Fi is communication-e�cient at the start of iteration
i > 1. Then, the fragment leader of F obtains the lightest outgoing
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edge by executing Procedure FindLightest(F ) in O (
√
n + diamG (F ))

rounds.

Proof. To accurately bound the congestion, we must consider

the simultaneous invocations of FindLightest for each fragment

in Fi . Since, by assumption, every fragment is communication-

e�cient, every fragment node u can relay its lightest outgoing

edge information to the fragment leader along a path p of length

O (diamG (F ) +
√
n). Note that p is precisely the ((F ,1), . . . , (F ,i ))-

upward path to the leader starting atu. To bound the congestion, we

observe that the (F ,1)-upward subpath of p is con�ned to nodes in

Fu where Fu is the base fragment that u was part of after executing

Controlled-GHS. As all base fragments are disjoint and lightest

edge messages are aggregated within the same base fragment, the

base fragment leader (who might not be the leader of the current

fragment F ) accumulates this information from nodes in Fu within

O (
√
n) rounds (cf. Lemma 3.2). After having traversed the (F ,1)-

upward path (i.e., the �rst segment of p) of each base fragment, the

number of distinct messages carrying lightest edge information

is reduced to O (
√
n) in total. Hence, when forwarding any such

message along a subsequent segment of p, i.e., an (Fj )-upward path

for j > 1, the maximum congestion at any node can be O (
√
n).

Using a standard upcast (see, e.g., [30]) and the fact that the length

of path p is O (diamG (F ) +
√
n), it follows that the fragment leader

receives all messages inO (diamG (F )+
√
n) rounds, as required. �

3.4 Finding Communication-E�cient Paths:
Procedure FindPath

After executing FindLightest(F0), the leader f0 of F0 has obtained

the identity of the lightest outgoing edge e = (u,v ) where v is in

some distinct fragment F1. Before invoking our next building block,

Procedure FindPath(F0,F1), we need to ensure that both leaders

are aware of e and hence we instruct the node v to forward e along

its ((F1,1), . . . , (F1,i ))-upward-path to its leader f1 (see Lines 13-14

of Algorithm 1).

We now describe FindPath(F0,F1) in detail. The main goal is to

compute a communication-e�cient path between leaders f0 and f1
that can be used to route messages between nodes in this fragment.

In Section 3.5, we will see how to leverage these communication-

e�cient paths to e�ciently merge fragments.

A crucial building block for �nding an e�cient path are the

sparse neighborhood covers, which we precompute initially (see

Line 9 of Algorithm 1), and which we recall here. (Note that the

cover de�nition assumes the underlying unweighted graph, i.e., all

distances are just the hop distances.)

De�nition 3.4. A sparse (κ,W )-neighborhood cover of a graph

is a collection C of trees, each called a cluster, with the following

properties.

(1) (Depth property) For each tree τ ∈ C, depth(τ ) = O (W · κ).
(2) (Sparsity property) Each vertex v of the graph appears in

Õ (κ · n1/κ ) di�erent trees τ ∈ C.

(3) (Neighborhood property) For each vertex v of the graph

there exists a tree τ ∈ C that contains the entire

W -neighborhood of vertex v .

Sparse neighborhood covers were introduced in [4], and were

found very useful for various applications. We will use an e�cient

f1

f2

f3

f4

F1

F2 F3

F4

C1 ∈ C`

C2 ∈ Ck

C ′
1 ∈ Cj

x1

x2

x3

Figure 1: Fragments F1, . . . ,F4. In the �rst iteration, F1,F4 and
F2,F3 form adjacent fragment pairs that communicate along
communication-e�cient paths. F1 and F4 execute FindPath
and send probe messages along clusters of covers C1, . . . ,C`
and �nally succeed to �nd a communication-e�cient path
in a cluster C1 ∈ C` , which goes through the cluster leader
x1 ∈ C1. Similarly F2 and F3 obtain a communication-
e�cient path in cluster C2 ∈ Ck , after sending probe mes-
sages in clusters of covers C1, . . . ,Ck . In the next iteration,
themerged fragments F1∪F4 and F2∪F3 are (respectively) ad-
jacent and proceed to construct a communication-e�cient
path in cluster C ′

1
∈ Cj , after probing covers C1, . . . ,Cj .

distributed (randomized) cover construction due to Elkin [8], which

we recall here.
11

Theorem 3.5 ([8, Theorem A.8]). There exists a distributed ran-
domized (Las Vegas) algorithm (which we call ComputeCover) that
constructs a (κ,W )-neighborhood cover in timeO (κ2 ·n1/κ · logn ·W )

and using O (m · κ · n1/κ · logn) messages (both bounds hold with
high probability) in the CONGEST model.

In our MST algorithm, we shall invoke Elkin’s ComputeCover
procedure with κ = logn, and write ComputeCover(W ), whereW
is the neighborhood parameter.

We are now ready to describe the communication-e�cient paths

construction. As we want to keep the overall message complex-

ity low, we start at the smallest cover construction C1 and care-

fully probe for a cluster (tree) in C1 that induces a communication-

e�cient path between f0 and f1. Recall that every node locally

keeps track of its incident cluster edges for each of the precom-

puted covers but we need to keep in mind that these structures are

11
Although the algorithm as described in [8] is Monte Carlo, it can be easily converted

to Las Vegas.
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independent of the up and down arrays. We instruct both leaders

f0 and f1 to send a copy of their probe message to each of their C1-

parents. The parent nodes forward u’s probe message along their

cluster tree to the root of their respective cluster tree. Depending

on whether a root receives the probe message in a timely fashion,

we consider two cases:

Case 1: If there exists a Cw ∈ C1 such that f0, f1 ∈ Cw , then the

probe message of both leaders reaches the root w ∈ Cw within

2
1c1
√
n +O (

√
n log2 n) rounds, where the �rst term is depth(C1)

and the second term is to account for congestion caused by si-

multaneous probe messages from the other fragment leaders (cf.

Lemma 3.7). Suppose that w receives the probe message from f0
on path p0 and f1’s probe message on path p1 within 2

1c1
√
n +

O (
√
n log2 n) rounds. Then, w replies by sending a “success” mes-

sage back to f0 and f1 by reversing p0 and p1 to inform the leaders

that they have found a communication-e�cient path.

Note that it is possible for f0 to receive multiple “success” re-

ply messages. However, since a cluster root only sends a success

message if it receives probe messages from both leaders, f0 and f1
receive exactly the same set M of success messages. Thus they both

pick the same success message sent by the cluster root node with

the largest ID in M (without loss of generality, assume that it is w)

to identify the communication-e�cient path and discard the other

messages in M .

Suppose that f0 received the message from w along a path p0 in

cluster tree Cw . Then, f0 sends a message along p0 and instructs

every node v in p0 to set upv (F1,i ) to the port of its successor

(towards the root w) in p0 and points upv (F0,i ) to its predecessor

in p0. When a node v updates its upv (F1,i ) array to some port

a, it contacts the adjacent node v ′ connected at this port who in

turn updates downv ′ (F1,i ) to point to v . Similarly, leader f1 and

all nodes on the path p1 proceeds updating their respective up and

down entries with the information provided by p1 towardsw . Then,

f0 contacts its successor in p0 to update its routing information

whereas f1 sends a similar request to its successor in p1. After these

requests reach the cluster root w , the concatenated path p0 p1 is a

communication-e�cient path between leaders f0 and f1.

Case 2: On the other hand, if there is no appropriate cluster in C1

that covers both leader nodes, then at least one of the two probe

messages will arrive untimely at every cluster root and the leaders

do not receive any success messages. Then, f0 and f1 rerun the

probing process by sending a probe message along their incident

C2 cluster edges and so forth. Note that all fragment leaders syn-

chronize before executing the probing process. Eventually, f0 and

f1 obtain a value k , where Ck is the cover having the smallest depth

such that f0 and f1 are covered by some cluster in Ck (but not by

any cluster in Ck−1) and we can apply Case 1.

Figure 1 gives an example for the construction of communication-

e�cient paths.

Lemma 3.6. The number of probe messages that are generated
by distinct fragment leaders and that are in transit simultaneously
during an iteration of FindPath is O (

√
n log2 n) w.h.p.

Proof. Since, by Lemma 3.1, there are O (
√
n) base fragments,

the total number of leaders at any point that are sending probe

messages simultaneously is O (
√
n). Note that, when exploring the

communication e�cient paths of a cover Cj , a leader needs to send

a copy of its probe message to its parent in each of its O (log2 n)
clusters of Cj that it is contained in. �

Lemma 3.7. After the execution of FindPath(F0,F1), there exists
a communication-e�cient path between leader f0 and leader f1 of
length at most 2kc1

√
n, where k is the smallest integer such that there

exists a cluster tree C ∈ Ck such that f0, f1 ∈ C . FindPath(F0,F1)
requires O (2k

√
n log2 n) messages and terminates in

O
(√

n log2 n +min{2k
√
n,diam(G )}

)
rounds with high probability.

Proof. By description of FindPath, leaders f0 and f1 both start

sending a probe message along their incident Cj -edges towards

the respective cluster roots, for j = 1, . . . , dlog
√
ne. First, note that

f0 and f1 will not establish an e�cient communication path for a

cluster C ′ in some Cj (j < k), since, by de�nition, f0 and f1 are not

both in C ′ and hence one of the probe messages will not reach the

root of C ′. Let w be the root of C .

We now argue the message complexity bound. Apart from the

probe messages sent to discover the communication-e�cient path

in a cluster of cover Ck , we also need to account for the probe

messages sent along cluster edges of covers C1, . . . ,Ck−1, thus gen-

erating at most

k∑
j=1

O (depth(Cj ) log2 n) =
k∑
j=1

O (2j
√
n log2 n)

6 2
k+1O (

√
n log2 n)

= O (depth(Ck ) log
2 n)

messages, as required.

Since f0 and f1 can communicate e�ciently via a path p leading

through a cluster of cover Ck , it follows that the length of p is

6 2depth(Ck ). Applying Lemma 3.6 to take into account the addi-

tional congestion caused by simultaneous probe messages, yields a

time complexity of O (depth(Ck ) +
√
n log2 n). �

Lemma 3.8. At the start of each iteration i , the fragment graph Fi
induces a weak (O (

√
n/2i ),O (2i

√
n))-MST forest in G.

Proof. We adapt the proof of Lemmas 6.15 and 6.17 of [24]. For

the case i = 0, the claim follows directly from Lemma 3.1. We now

focus on the inductive step i > 0.

Suppose that Fi is a weak (
√
n/2i ,2ic1

√
n)-MST forest. We �rst

argue that every new fragment in Fi+1 must have a weak diameter

of at most 6 · 2i+1c1
√
n.

Consider the subgraph M of Fi induced by the edges marked

for merging. By Lines 20-21 of Algorithm 1, each component of

M can contain at most one marked edge that was in the output

of ComputeMaximalMatching. Thus, analogously to Lemma 6.15

in [24], it follows that each component in M contains at most one

fragment of weak diameter > 2
ic1
√
n, since only fragments of

weak diameter at most 2
ic1
√
n participate in the matching. As the

maximality of the matching implies that each component of M has

diameter (in the fragment subgraph M) at most 3 and hence all

but (at most) 1 fragment of such a component must have a weak

diameter of at most 2
ic1
√
n. It follows that the merge component
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has a weak diameter of at most 6 · 2ic1
√
n + 3 · 2ic1

√
n + 3 6

6 · 2i+1c1
√
n.

We now argue that each fragment contains at least 2
ic2
√
n nodes

at the start of iteration i > 0, assuming that it is true for all

j = 0, . . . ,i − 1. To this end, consider the merging of fragments

in iteration i − 1. If a fragment F ∈ Fi has fewer than 2
ic2
√
n nodes

it must have a weak diameter of at most 2
ic2
√
n and hence marks

itself as active in Line 17. By the description of the merging process,

F is guaranteed to merge with at least one other fragment F ′. By

the inductive hypothesis, both F and F ′ consist of at least 2
i−1c2

√
n

nodes and hence the merged fragment must have at least 2
ic2
√
n

nodes, as required. �

Lemma 3.9. Consider an iteration i and suppose that FindPath is
invoked simultaneously for each lightest outgoing edge. Then, the
total message complexity of all invocations is O (n log3 n) and the
time complexity is O (

√
n + diam(G )) with high probability.

Proof. From Lemma 3.8, we know that every fragment in Fi
has weak diameter of O (2i

√
n). Thus, every pair of adjacent frag-

ments F0,F1 ∈ Fi is covered by some cluster in cover Ci+1. In this

case, Lemma 3.7 tells us that a single invocation of FindPath re-

quiresO (2i+1
√
n log2 n) messages. Lemma 3.8 tells us that there are

O (
√
n/2i ) fragments in Fi (and thus also O (

√
n/2i ) LOEs). Hence

the total number of messages incurred by all pairs of fragments

connected by an LOE is

O (2i+1
√
n log2 n) ·O (

√
n/2i ) = O (n log2 n).

Summing up over all i , we obtain the claimed bound on the message

complexity.

Finally we observe that Lemma 3.7 already takes into account

the congestion caused by simultaneous invocations, which yields

the bound on the time complexity. �

To summarize, Procedure FindPath enables leaders of adjacent

fragments to communicate with each other by sending messages

along the communication-e�cient paths given by the routing tables

up and down.

3.5 Merging Fragments
We will avoid long chains of merged fragments by using procedure

ComputeMaximalMatching. ProcedureComputeMaximalMatching
in [24] outputs a maximal matching on a fragment forest, where

fragments in Fi are treated as super-vertices of a graph connected

by inter-fragment edges. Procedure ComputeMaximalMatching
simulates the Cole-Vishkin symmetry-breaking distributed algo-

rithm, which terminates in O (log∗ n) iterations [24, Theorem 1.7].

We next show how to do the simulation e�ciently in the fragment

graph.

Procedure FindPath enables communication via communication-

e�cient paths between any two adjacent fragment leaders inMi .

This allows us to simulate ComputeMaximalMatching on the net-

work induced byMi , where the leaders inMi perform the com-

putation required by ComputeMaximalMatching. The following

lemma follows directly from Lemma 3.9.

Lemma 3.10. Suppose that every fragment in Fi is e�cient and let
Mi ⊂ Fi be the lightest outgoing edge graph obtained by running
FindPath. Then, we can simulate ComputeMaximalMatching on the

network de�ned byMi , requiring Õ (diam(G ) +
√
n)) rounds and

Õ (n) messages.

Every non-dominator fragment F ′
1

sends a 〈MergeReq〉 message

to the leader f ′
1

of an arbitrarily chosen adjacent dominator frag-

ment F . The dominator fragment processes all merge-requests in

parallel and replies by sending a 〈MergeWith,F 〉 message to the

leader f ′ of each fragment F ′ from which it received 〈MergeReq〉;

in turn, f ′ forwards this request along the ((F ′,i ), . . . , (F ′,1))-
downward path to every node in F ′. Upon receiving a 〈MergeWith,F 〉
message, node u ′ ∈ F ′ updates its fragment ID to F , and also

updates its routing table by setting upu′ (F , `) = upu′ (F
′, `) and

downu′ (F , `) = downu′ (F ′, `), for every value of `. Note that the

leader of the dominator fragment becomes the new leader of the

merged fragment.

Lemma 3.11. Consider iteration i . If, for every j 6 i , every fragment
in Fj is communication-e�cient, then the following hold.

(1) With high probability, the message complexity for merging
fragments in iteration i is Õ (m) and the process completes
within Õ (diam(G ) +

√
n) rounds.

(2) Every fragment in Fi+1 is communication-e�cient.

Proof Sketch. To show (1), we argue recursively starting at

iteration i , as follows: note that forwarding the 〈MergeWith〉 and

〈MergeReq〉 messages requires communicating between neighbor-

ing fragments and thus by Lemma 3.10 we requireO (diam(G )+
√
n)

rounds andO (n log2 n) messages. Consider an adjacent pair of frag-

ments F0 and F1 and suppose that F0 merges with the dominator

fragment F1. Since we eventually need to broadcast the new frag-

ment ID to every node u ∈ F0 we need to ensure that the routing

tables upu (F1, ·) and downu (F1, ·) are updated correctly to route

messages towards the new leader f1 ∈ F1 (and vice versa from f1
to all nodes in F1), when we compute the lightest outgoing edge

of the merged fragment F0 ∪ F1 in subsequent iterations. If i > 1,

then F0 might be composed of merged fragments F ′
0
∪ · · · ∪ F ′

`
that

merged in previous iterations; without loss of generality, suppose

that this iteration is i − 1. By assumption, Fi−1 consisted of e�cient

fragments. As nodes do not remove routing information from up
and down, the leader f0 can use the communication-e�cient paths

obtained by invoking FindPath in iteration i −1 to forward the new

fragment ID to the leaders of the F ′
0
, . . . ,F ′

`
, which we call the (i−1)-

iteration fragments. Applying Lemma 3.10 toMi−1 reveals that we

can use the paths obtained by invoking FindPath in iteration i − 1
to relay the new fragment ID to (i − 1)-iteration fragments while

incurring only O (diam(G ) +
√
n) rounds and O (n log2 n) messages

in total. Recursively applying this argument until iteration 1, allows

us to reason that O ((diam(G ) +
√
n) logn) rounds and O (n log3 n)

messages are su�cient to relay all new fragment IDs to the base

fragment leaders. At this point, every base fragment leader uses the

BFS tree of the base fragments to broadcast this information to the

base fragment nodes, requiring O (
√
n) rounds and O (m) messages.

To show (2), we observe that Fi consists of communication-

e�cient fragments, and hence every fragment node u ∈ Fj of a

newly merged fragment F = F1 ∪ · · · ∪ F` (` > j) can already

communicate e�ciently with the leader fj in its subfragment Fj ,
which has now become part of F . Moreover, the paths obtained by

FindPath ensure that fj can communicate e�ciently with leader

753



STOC’17, June 2017, Montreal, Canada G. Pandurangan et al.

f ∈ F and hence it follows transitively that u has a communication-

e�cient path to f , as required. �

The analysis of the message complexity of merging fragments

allows us to obtain a bound on the number of messages required

for computing a lightest outgoing edge in each fragment.

Lemma 3.12. The message complexity of all parallel invocations
of FindLightest is Õ (m) in total w.h.p.

Proof Sketch. In the �rst step of FindLightest, each node ex-

changes messages with its neighbors requiring Θ(m) messages. Let

F = F1 ∪ · · · ∪ F` where F1, . . . ,F` are base fragments and con-

sider some u ∈ F1. As argued above, u relays its LOE information

along the ((F ,1), . . . , (Fi ))-upward path to the fragment leader and

the segment formed by the (F ,1)-upward path ends at the base

fragment leader of F1, which are exactly the BFS trees yielded by

Controlled-GHS. A crucial observation is that u only sends its LOE

information to its parent in the path, after receiving the LOE mes-

sages from all its children (see Section 3.3). This ensures that each

node sends exactly one message and hence we obtain a bound of∑`
j=1O ( |V (Fj ) |) = O ( |V (F ) |) on the number of messages sent in

the (F ,1)-upward path of the nodes in F . This is subsumed in the

message complexity of exchanging messages with neighbors in the

�rst step, which is O (m).
At this point, each base fragment leader fj of Fj (j = 1, . . . , `)

holds exactly one (aggregated) lightest outgoing edge information

message µ j , which needs to be relayed to the fragment leader f of F
along the respective ((F ,2), . . . , (F ,i ))-upward path ofO (diamG (F ))
hops (see De�nition 2.1).

By reversing the argument used for proving part (2) of Lemma 3.11,

we can inductively apply Lemma 3.10 to �nally obtain a bound of

O (n log3 n) messages per iteration and thus the total message com-

plexity is O (m + n log3 n) = Õ (m). �

Lemma 3.13. Phase 3 of the algorithm requires Õ (m) messages
and Õ (D +

√
n) time and ensures that all fragments have the same

label (i.e., are merged).

Proof. Note that our algorithm either executes Phase 3 directly

after Phase 1 (thus skipping Phase 2) or after executing Phase 2.

First we argue (for both cases) that all fragments have the same

fragment ID after the Θ(logn) iterations in Phase 3. To see that

the number of fragment labels is at least halved in each iteration,

note that, when executing FindLightest, all nodes exchange their

fragment IDs with their neighbors (requiring O (m) messages) and

then only choose candidate LOE edges that have their endpoint in

fragments with distinct IDs. This ensures that every fragment pairs

up with another fragment and hence one of the two distinct IDs

will be removed; note that long “chains” of fragments connected

by LOE edges are possible and result in an even faster reduction of

distinct labels—all fragments in the chain adapt the root fragment

ID (cf. Phase 3 in the pseudo code). Thus, after the last iteration of

Phase 3, all fragments carry the same fragment ID and no more LOE

edges are required as all fragments are considered to be merged.

Now we consider the message and time complexity of Phase 3.

According to Lemma 3.3, the time complexity of �nding the LOEs

is O (D +
√
n), and according to Lemma 3.12 Õ (m) messages are

required to �nd the LOEs. This is true independently of whether

we called Phase 3 directly after Phase 1 or after Phase 2.

Now, consider the case where we execute Phase 3 directly after

Phase 1 (thus skipping Phase 2), i.e.,D = O (
√
n). Here, FindLightest

results in each node locally determining the incident LOE and then

aggregating the LOE to the base fragment leader. In addition to

the base fragment BFS trees, we also construct a global BFS tree

T , which, has O (
√
n) diameter by assumption. The base fragment

leaders then forward their respective LOE along towards the root u
ofT . Since we haveO (

√
n) distinct base fragments, there are at most

O (
√
n) LOE edges sent upward inT , thus resulting in an additional

message complexity ofO (D
√
n) = O (n). Taking into account that it

takesO (
√
n) rounds for the base fragment leaders to determine the

LOE of their fragment, the time complexity amounts toO (D +
√
n).

We now argue the message and time complexity for the case

where we execute Phase 3 after Phase 2. Here, we start out with

O (n/D) distinct fragments each having their own fragment ID and

a global BFS tree T of depth O (D). Since each fragment �nds 1

LOE which is �rst aggregated at the fragment leader and then

forwarded along T to the global BFS root, this requires O ( nDD) =
O (n) messages in total and O (D + n/D) = O (D) rounds, since

D = Ω(
√
n) by assumption, completing the proof. �

Combining the complexity bounds from the previous lemmas

we obtain the following theorem.

Theorem 3.14. Consider a synchronous network (in the KT0model)
ofn nodes,m edges, and diameterD, and suppose that at mostO (logn)
bits can be transmitted over each link in every round. Algorithm 1
computes an MST and, with high probability, runs in Õ (D +

√
n)

rounds and exchanges Õ (m) messages.

4 A SIMULTANEOUSLY TIGHT LOWER
BOUND

As mentioned in Section 1.2, the existing graph construction of

[6, 9] that shows the time lower bound of Ω̃(D +
√
n) rounds does

not simultaneously yield the message lower bound of Ω̃(m); sim-

ilarly the existing lower bound graph construction of [22] that

shows the message lower bound of Ω̃(m) does not simultaneously

yield the time lower bound of Ω̃(D +
√
n) (note that these lower

bound constructions apply to randomized algorithms). Previously,

[6] presented a sparse graph ofO (n) edges to obtain the Ω̃(D+
√
n)

time bound for almost all choices of D, while [22] showed that

Ω(m) messages are required to solve broadcast and hence also for

constructing a (minimum) spanning tree.
12

The following result presents a “universal lower bound” for MST

in the sense that it shows that for essentially any n,m, and D, there

exists a class of graphs of n nodes,m edges, and a diameter of D, for

which every randomized MST algorithm takes Ω̃(D +
√
n) rounds

and Ω(m) messages to succeed with constant probability. Our proof

combines two lower bound techniques: hardness of distributed

symmetry breaking, used to show the lower bound on message

complexity [22], and communication complexity, used to show the

12
Any algorithm that constructs an spanning tree usingO (f (n)) messages can be used

to elect a leader using O (f (n) +n) messages in total, by �rst constructing a spanning

tree and then executing any broadcast algorithm restricting its communication to the

O (n) spanning tree edges.
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lower bound on time complexity [6]. The full proof is deferred to

the full version of the paper.

Theorem 4.1. There is a class of graphs of n nodes,m edges (for
n 6 m 6

(n
2

)
), and diameter D = Ω(logn) for which every ε-

error distributed MST algorithm requires Ω(m) messages and Ω̃(D +
√
n) time in expectation in the KT0 model, for any su�ciently small

constant ε > 0. This holds even if nodes have unique IDs and have
knowledge of the network size n.

5 CONCLUSION
We presented a distributed algorithm for the fundamental minimum

spanning tree problem which is simultaneously time- and message-

optimal (up to polylog(n) factors). This algorithm is randomized:

an intriguing open question is whether randomization is necessary

to simultaneously achieve time and message optimality.

Currently, it is not known whether other important problems,

such as shortest paths and random walks, enjoy singular optimality.

These problems admit distributed algorithms which are (essentially)

time-optimal but not message-optimal [7, 16, 26, 27]. Further work

is needed to address these questions.
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