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Problem

The distributed construction of a minimum span-
ning tree (MST) by a network where nodes can
communicate by message passing.

Model of Computation

CONGEST, the standard model for distributed
network computing. It consists of a communication
network, modeled by a graph, where the n vertices
represent computational entities and the m edges
represent bidirectional communication links. Com-
putation proceeds in synchronous rounds, and in
every round each of the n nodes may send messages
of O(log n) bits to each of its neighbors. Complex-
ity measures:
•Time complexity: total number of rounds;
•Message complexity: total number of messages
exchanged.

Definition

We say that a problem enjoys singular optimality
if it admits a distributed algorithm whose time and
message complexity are both optimal.

Question

Does MST enjoy singular optimality?

Lower Bounds

• Ω̃(D +
√
n) rounds [3];

• Ω(m) messages [6].

Both apply to randomized Monte Carlo algorithms.

Previous Results

Reference Time Complexity Message Complexity
Gallager et al. [4] O(n log n) O(m + n log n)
Awerbuch [1] O(n) O(m + n log n)
Garay et al. [5] O(D + n0.614 log∗ n) O(m + n1.614)
Kutten and Peleg [7] O(D +

√
n log∗ n) O(m + n1.5)

Elkin [2] Õ(µ(G,w) +
√
n) O(m + n1.5)

Main Result
A randomized Las Vegas distributed algorithm that constructs a minimum spanning tree in weighted
networks in Õ(D +

√
n) rounds and exchanging Õ(m) messages, with high probability.

The Algorithm, in a Nutshell

1 Simultaneously and independently, grow MST
fragments by merging them through min-weight
outgoing edges (“blue rule”), until at most

√
n

fragments, each of diameter O(
√
n), remain.

2 Keep merging fragments, using
• an auxiliary BFS tree on the network if D = O(

√
n) or

when the number of remaining fragments is O(n/D);
• a hierarchy of sparse neighborhood covers otherwise.

Key Ideas

Replace the 2nd phase of sublinear-time algorithms
(which uses the “red rule”, and which is not
message-efficient) with a continuation of the 1st
phase. This introduces the problem of fragments
with diameter > D (hence communication within
fragments may require > D time). Solution: use
neighborhood covers, a collection of clusters with
•diameter smaller than D and smaller than that
of the fragments they contain;

• small overlap, which implies low-congestion
communication across clusters.

Neighborhood Covers for the 2nd
Phase
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Figure 1: MST fragments F1, . . . , F4, and communication-
efficient paths within clusters Ci of covers Cj. Used when
D = ω(

√
n) and the number of fragments is large.

Further Result

A graph construction for which every ε-error ran-
domized distributed MST algorithm runs in Ω̃(D+√
n) rounds and exchanges Ω(m) messages in ex-

pectation.

Open Problems

• Investigate whether MST also enjoys singular
optimality under the assumption that nodes
initially have knowledge of the IDs of their
neighbors (a.k.a. KT1 variant).

• Investigate whether other fundamental problems,
such as shortest paths, enjoy singular optimality.
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