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Motivated by the increasing need to understand the algorithmic foundations of distributed large-scale graph

computations, we study a number of fundamental graph problems in a message-passing model for distributed

computing where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n ≫ k). The
input graph is assumed to be initially randomly partitioned among the k machines, a common implementation

in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of

communication rounds of the computation.

Our main result is an (almost) optimal distributed randomized algorithm for graph connectivity. Our

algorithm runs in Õ(n/k2) rounds (Õ notation hides a polylog(n) factor and an additive polylog(n) term). This

improves over the best previously known bound of Õ(n/k) [Klauck et al., SODA 2015], and is optimal (up to a

polylogarithmic factor) in light of an existing lower bound of Ω̃(n/k2). Our improved algorithm uses a bunch

of techniques, including linear graph sketching, that prove useful in the design of efficient distributed graph

algorithms. Using the connectivity algorithm as a building block, we then present fast randomized algorithms

for computing minimum spanning trees, (approximate) min-cuts, and for many graph verification problems.

All these algorithms take Õ(n/k2) rounds, and are optimal up to polylogarithmic factors. We also show an

almost matching lower bound of Ω̃(n/k2) rounds for many graph verification problems by leveraging lower

bounds in random-partition communication complexity.
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1 INTRODUCTION
The focus of this paper is on distributed computation on large-scale graphs, which is becoming

increasingly important with the rise of massive graphs such as the Web graph, social networks,
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biological networks, and other graph-structured data, and the consequent need for fast algorithms

to process such graphs. The size of the graphs that we encounter in such contexts is usually so large

(i.e., in the order of billions of nodes and hundreds of billions of edges) that makes their processing

possible only with the use of dedicated distributed platforms. This has led to the appearance of

novel frameworks for distributed computing such as MapReduce, Pregel, Giraph, and Spark. It is

therefore a key task to design practical distributed algorithms with good theoretical guarantees for

basic graph problems.

In this paper we study a number of fundamental graph problems in a computational model

which abstracts the essence of these graph-processing systems, and present almost tight bounds

on the time complexity needed to solve these problems. In this model, introduced in [24] and

explained in detail in Section 1.1, the input graph is distributed across a group of k ≥ 2 machines

that are pairwise interconnected via a communication network. The k machines jointly perform

computations on an arbitrary n-vertex input graph, where typically n ≫ k . The input graph is

assumed to be initially randomly partitioned among the k machines, a common implementation in

many real world graph processing systems (e.g., Pregel [33]). Communication is point-to-point via

message passing. The computation advances in synchronous rounds, and there is a constraint on

the amount of data that can cross each link of the network in each round. The goal is to minimize

the time complexity, i.e., the number of rounds required by the computation. This model is aimed

at investigating the amount of “speed-up” possible vis-a-vis the number of available machines, in

the following sense: when k machines are used, how does the time complexity scale in k? Which

problems admit linear scaling? Is it possible to achieve super-linear scaling?

Klauck et al. [24] present lower and upper bounds for several fundamental graph problems

in the k-machine model. In particular, assuming that each link has a bandwidth of one bit per

round, they show a lower bound of Ω̃(n/k2) rounds1 for the graph connectivity problem.
2
They

also present an Õ(n/k)-round algorithm for graph connectivity and spanning tree (ST) verification.

This algorithm thus exhibits a scaling linear in the number of machines k . The question of existence

of a faster algorithm, and in particular of an algorithm matching the Ω̃(n/k2) lower bound, was left

open in [24]. In this paper we answer this question affirmatively by presenting an Õ(n/k2)-round

algorithm for graph connectivity, thus achieving a speedup quadratic in k . This is optimal up to

polylogarithmic (in n) factors.
This result is important for two reasons. First, it shows that there are non-trivial graph problems

for which we can obtain superlinear (in k) speed-up. To elaborate further on this point, we shall

take a closer look at the proof of the lower bound for the graph connectivity problem shown in [24].

Using communication complexity techniques, that proof shows that any (possibly randomized)

algorithm for connectivity must exchange Ω̃(n) bits of information across the k machines, for any

k ≥ 2. Since there are k(k − 1)/2 links in a complete network with k machines, when each link

can carryO(polylog(n)) bits per round, in each single round the network can deliver at most Θ̃(k2)

bits, and thus a lower bound of Ω̃(n/k2) rounds follows. The result of this paper shows that it is

possible to exploit in full the available bandwidth, thus achieving a speed-up of Θ̃(k2). Second,

this implies that many other important graph problems can be solved in Õ(n/k2) rounds as well.

These include computing a spanning tree, minimum spanning tree (MST), approximate min-cut,

and many verification problems such as spanning connected subgraph, cycle containment, and

bipartiteness.

It is important to note that under a different output requirement (explained next) there exists

a Ω̃(n/k)-round lower bound for computing a spanning tree of a graph [24], which also implies

1
Throughout this paper Õ (f (n)) denotes O (f (n) polylogn + polylogn), and Ω̃(f (n)) denotes Ω(f (n)/polylogn).

2
If each link has bandwidth of B bits per round, then this bound generalizes to Ω̃(n/Bk2) rounds.
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the same lower bound for other fundamental problems such as computing an MST, breadth-first

tree, and shortest paths tree. However, this lower bound holds under the requirement that each

vertex (i.e., the machine which hosts the vertex) must know at the end of the computation the

“status” of all of its incident edges, that is, whether they belong to an ST or not, and output their

respective status. (This is the output criterion usually required for distributed algorithms [32, 43].)

The proof of the lower bound exploits this criterion to show that any algorithm requires some

machine receiving Ω(n) bits of information, and since any machine has k − 1 incident links, this

results in a Ω̃(n/k) lower bound. On the other hand, if we relax the output criterion to require the

final status of each edge to be known by some machine, then we show that this can be accomplished

in Õ(n/k2) rounds using the fast connectivity algorithm of this paper.

1.1 The Model
We now describe the adopted model of distributed computation, the k-machine model (a.k.a. the
Big Data model), introduced in [24] and further investigated in [5, 10, 42, 45]. The model consists

of a set of k ≥ 2 machines N = {M1,M2, . . . ,Mk } that are pairwise interconnected by bidirectional

point-to-point communication links. Each machine executes an instance of a distributed algorithm.

The computation advances in synchronous rounds where, in each round, machines can exchange

messages over their communication links and perform some local computation. Machines do not

share any memory and have no other means of communication. Each link is assumed to have

a bandwidth of O(polylog(n)) bits per round, where n is the input size, i.e., O(polylog(n)) bits
can be transmitted over each link in each round. (As discussed in [24, Theorem 4.1], it is easy to

rewrite bounds to scale in terms of the actual inter-machine bandwidth.) There is an alternate

(but equivalent) way to view this communication restriction: instead of putting a bandwidth

restriction on the links, we can put a restriction on the amount of information that each machine
can communicate (i.e., send/receive) in each round. The results we obtain in the bandwidth-restricted

model also apply to the latter model [24]. Local computation within a machine is considered to

happen instantaneously at zero cost, while the exchange of messages between machines is the

costly operation. (However, we note that in all the algorithms of this paper, every machine in every

round performs a computation bounded by a polynomial in n.) We assume that each machine has

access to a private source of true random bits.

Although the k-machine model is a general model of distributed computation that can be applied

to study any (large-scale data) problem, in this paper we aim at investigating graph problems in it.

Specifically, we are given an input graphG with n vertices, each associated with a unique integer ID

from [n], andm edges. To avoid trivialities, we will assume thatn ≥ k (typically,n ≫ k). Initially, the
entire graphG is not known by any single machine, but rather partitioned among the k machines in

a “balanced” fashion, i.e., the nodes and/or edges of G are partitioned approximately evenly among

the machines. We assume a vertex-partition model, whereby vertices, along with information of

their incident edges, are partitioned across machines. Specifically, the type of partition that we will

assume throughout is the random vertex partition (RVP), that is, each vertex of the input graph is

assigned randomly to one machine.
3
(This is the typical way used by many real systems, such as

Pregel [33], to initially distribute the input graph among the machines. See also [9, 46].) However,

we notice that our upper bounds also hold under the much weaker assumption whereby it is only

required that nodes and edges of the input graph are partitioned approximately evenly among the

3
In Section 1.3 we will discuss an alternate partitioning model, the random edge partition (REP) model, where each edge

of G is assigned independently and randomly to one of the k machines, and show how the results in the random vertex

partition model can be related to the random edge partition model.
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machines; on the other hand, lower bounds under RVP clearly apply to worst-case partitions as

well.

More formally, in the random vertex partition variant, each vertex ofG is assigned independently

and uniformly at random to one of the k machines. If a vertex v is assigned to machineMi we say

thatMi is the home machine of v and, with a slight abuse of notation, write v ∈ Mi . When a vertex

is assigned to a machine, all its incident edges are assigned to that machine as well; i.e., the home

machine knows the IDs of the neighbors of that vertex as well as the identity of the home machines

of the neighboring vertices (and the weights of the corresponding edges in case G is weighted).

Note that an immediate property of the RVP model is that the number of vertices at each machine

is balanced, i.e., each machine is the home machine of Θ̃(n/k) vertices with high probability. A

convenient way to implement the RVP model is through hashing: each vertex (ID) is hashed to one

of the k machines. Hence, if a machine knows a vertex ID, it also knows where it is hashed to.

Eventually, each machine Mi must set a designated local output variable oi (which need not

depend on the set of vertices assigned toMi ), and the output configuration o = ⟨o1, . . . ,ok ⟩ must

satisfy the feasibility conditions of the problem at hand. For example, for the minimum spanning

tree problem each oi corresponds to a set of edges, and the edges in the union of such sets must

form an MST of the input graph.

In this paper, we show results for distributed Monte Carlo algorithms. Recall that a Monte

Carlo algorithm is a randomized algorithm whose output may be incorrect with some probability.

Formally, we say that an algorithm computes a function f with ϵ-error if for every input it outputs

the correct answer with probability at least 1−ϵ , where the probability is over the random partition

and the random bit strings used by the algorithm (if any). The round (time) complexity of an

algorithm is the maximum number of communication rounds until termination. For any n and

problem P on n-node graphs, we let the time complexity of solving P with ϵ error probability in

the k-machine model, denoted by Tϵ (P), be the minimum T (n) such that there exists an ϵ-error
protocol that solves P and terminates in T (n) rounds. For any 0 ≤ ϵ ≤ 1, graph problem P and

function T : Z+ → Z+, we say that Tϵ (P) = O(T (n)) if there exists an integer n0 and a real c such
that for all n ≥ n0, Tϵ (P) ≤ cT (n). Similarly, we say that Tϵ (P) = Ω(T (n)) if there exists an integer

n0 and a real c such that for all n ≥ n0, Tϵ (P) ≥ cT (n). For our upper bounds, we will usually
have ϵ = 1/n, which means high probability algorithms, i.e., succeeding with probability at least

1 − 1/n. In this case, we will sometimes omit ϵ and simply say the time bound applies “with high

probability.”

1.2 Contributions and Techniques
The main result of this paper, presented in Section 2, is a randomized Monte Carlo algorithm for the

k-machine model that determines the connected components of an undirected graph G correctly

with high probability and that terminates in Õ(n/k2) rounds with high probability.
4
This improves

upon the previous best bound of Õ(n/k) [24], since it is strictly superior in the wide range of

parameter k = Θ(nϵ ), for all constants ϵ ∈ (0, 1). Improving over this bound is non-trivial since

various attempts to design a faster connectivity algorithm fail due to the fact that they end up

creating congestion at a particular machine, i.e., up to n bits may need to be sent/received by a

machine, leading to a Õ(n/k) bound at best. For example, a simple algorithm for connectivity is

simply flooding: each vertex floods the lowest labeled vertex that it has seen so far; at the end

each vertex will have the label of the lowest labeled vertex in its component.
5
It can be shown that

4
Since the focus is on the scaling of the time complexity with respect to k , we omit the polylogarithmic factors in our time

bounds. Moreover, the cumulative polylogarithmic factor is not large: O (log
3 n).

5
This algorithm has been implemented in a variant of Giraph [48].
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the above algorithm takes Θ(n/k + D) rounds (where D is the graph diameter) in the k-machine

model by using the Conversion Theorem of [24]. Hence new techniques are needed to break the

n/k-round barrier.

Our connectivity algorithm is the result of the application of the following three techniques.

1. Randomized Proxy Computation. This technique, similar to known techniques used in ran-

domized routing algorithms [49], is used to load-balance congestion at any given machine by

redistributing it evenly across the k machines. This is achieved, roughly speaking, by re-assigning

the executions of individual nodes uniformly at random among the machines. It is crucial to

distribute both computation and communication across the machines to avoid congestion at any

particular machine. In fact, this allows one to move away from the communication pattern imposed

by the topology of the input graph (which can cause congestion at a particular machine) to a more

balanced communication.

2. Distributed Random Ranking (DRR). DRR [8] is a simple technique that will be used to build

trees of low height in the connectivity algorithm. Our connectivity algorithm is divided into phases,

in each of which we do the following: each current component (in the first phase, each vertex is a

component by itself) chooses one outgoing edge and then components are combined by merging

them along outgoing edges. If done naively, this may result in a long chain of merges, resulting in

a component tree of high diameter; thus, communication along this tree would take a long time.

To avoid this we resort to DRR, which suitably reduces the number of merges. With DRR, each

component chooses a random rank, which is simply a random number, say in the interval [1,n3]; a

component Ci then merges with the component Cj on the other side of its selected outgoing edge

if and only if the rank of Cj is larger than the rank of Ci . Otherwise, Ci does not merge with Cj ,

and thus it becomes the root of a DRR tree, which is a tree induced by the components and the set

of the outgoing edges that have been used in the above merging procedure. It can be shown that

the height of a DRR tree is bounded by O(logn) with high probability.

3. Linear Graph Sketching. Linear graph sketching [1, 2, 34] is crucially helpful in efficiently

finding an outgoing edge of a component. A sketch for a vertex (or a component) is a short (say,

O(polylogn) bits) bit vector that efficiently encodes the adjacency list of the vertex. Sampling from

this sketch gives a random (outgoing) edge of this vertex (component). A very useful property is the

linearity of the sketches: adding the sketches of a set of vertices gives the sketch of the component

obtained by combining the vertices; the edges between the vertices (i.e., the intra-component edges)

are automatically “cancelled”, leaving only a sketch of the outgoing edges. Linear graph sketches

were originally used to process dynamic graphs in the (centralized) streaming model [1, 2, 34].

Here, in a distributed setting, we use them to reduce the amount of communication needed to find

an outgoing edge; in particular, graph sketches will avoid us from checking whether an edge is an

inter-component or an intra-component edge, and this will crucially reduce communication across

machines. We note that earlier distributed algorithms such as the classical GHS algorithm [15] for

the MST problem would incur too much communication since they involve checking the status of

each edge of the graph.

We observe that it does not seem straightforward to effectively exploit these techniques in the

k-machine model: for example, linear sketches can be easily applied in the distributed streaming

model by sending to a coordinator machine the sketches of the partial stream, which then will be

added to obtain the sketch of the entire stream. Mimicking this trivial strategy in the k-machine

model model would cause too much congestion at one node, leading to a Õ(n/k) time bound.

Using the above techniques and the fast connectivity algorithm, in Section 3 we give algorithms

for many other important graph problems. In particular, we present a Õ(n/k2)-round algorithm for

computing an MST (and hence an ST). We also present Õ(n/k2)-round algorithms for approximate
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min-cut, and for many graph verification problems including spanning connected subgraph, cycle

containment, and bipartiteness. All these algorithms are optimal up to a polylogarithmic factor.

In Section 4 we show a lower bound of Ω̃(n/k2) rounds for many verification problems by

simulating the k-machine model in a 2-party model of communication complexity where the inputs

are randomly assigned to the players.

1.3 Related Work
The theoretical study of large-scale graph computations in distributed systems is relatively new.

Several works have been devoted to developing algorithm for MapReduce (see, e.g., [22, 27, 30]

and references therein). We note that the flavor of the theory developed for MapReduce is quite

different compared to the one for the k-machine model. Minimizing communication is also the

key goal in MapReduce algorithms; however this is usually achieved by making sure that the data

is made small enough quickly (that is, in a small number of MapReduce rounds) to fit into the

memory of a single machine (see, e.g., the MapReduce algorithm for MST in [27]).

For a comparison of the k-machine model with other models for parallel and distributed process-

ing, including Bulk-Synchronous Parallel (BSP) model [50], MapReduce [22], and the congested

clique, we refer to [51]. In particular, according to [51], “Among all models with restricted commu-

nication the “big data” [k-machine] model is the one most similar to the MapReduce model".

The k-machine model is closely related to the BSP model; it can be considered as a simplified

version of BSP, where the costs of local computation and of synchronization (which happens at

the end of every round) are ignored. Unlike the BSP and refinements thereof, which have several

different parameters that make the analysis of algorithms complicated [51], the k-machine model is

characterized by just one parameter, the number of machines; this makes the model simple enough

to be analytically tractable, thus easing the job of designing and analyzing algorithms, while at the

same time it still captures the key features of large-scale distributed computations.

The k-machine model is also related to the classical CONGESTmodel [43], and in particular to the

congested clique model, which recently has received considerable attention (see, e.g., [7, 13, 17, 18,

28, 29, 31, 36]). The main difference is that the k-machine model is aimed at the study of large-scale

computations, where the size n of the input is significantly bigger than the number of available

machines k , and thus many vertices of the input graph are mapped to the same machine, whereas

the two aforementioned models are aimed at the study of distributed network algorithms, where

n = k and each vertex corresponds to a dedicated machine. More “local knowledge” is available

per vertex (since it can access for free information about other vertices in the same machine) in

the k-machine model compared to the other two models. On the other hand, all vertices assigned

to a machine have to communicate through the links incident on this machine, which can limit

the bandwidth (unlike the other two models where each vertex has a dedicated processor). These

differences manifest in the time complexity. In particular, the fastest known distributed algorithm

in the congested clique model for a given problem may not give rise to the fastest algorithm in

the k-machine model. For example, the fastest algorithms for MST in the congested clique model

([17, 18, 31]) require Θ(n2) messages; implementing these algorithms in the k-machine model

requires Θ(n2/k2) rounds. Conversely, the slower GHS algorithm [15] gives an Õ(n/k) bound in the

k-machine model. The recently developed techniques (see, e.g., [12–14, 18, 37]) used to prove time

lower bounds in the CONGEST model and in the congested clique model are not directly applicable

here.

The work closest in spirit to ours is the recent work of Woodruff and Zhang [52]. This paper

considers a number of basic statistical and graph problems in a distributed message-passing model

similar to the k-machine model. However, there are some important differences. First, their model
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is asynchronous, and the cost function is the communication complexity, which refers to the total

number of bits exchanged by the machines during the computation. Second, aworst-case distribution
of the input is assumed, while we assume a random distribution. Third, which is an important

difference, they assume an edge partition model for the problems on graphs, that is, the edges of

the graph (as opposed to its vertices) are partitioned across the k machines. In particular, for the

connectivity problem, they show a message complexity lower bound of Ω̃(nk) which essentially

translates to a Ω̃(n/k) round lower bound in the k-machine model (assuming an initial worst-case

edge partition); it can be shown by using their proof technique that this lower bound also applies

to the random edge partition (REP) model, where edges are partitioned randomly among machines,

as well. On the other hand, it is easy to show an Õ(n/k) upper bound for connectivity and MST

in the REP model.
6
Hence, in the REP model, Θ̃(n/k) is a tight bound for connectivity and other

related problems such as MST. In contrast, in the RVP model (arguably, a more natural partition

model), we show that Θ̃(n/k2) is the tight bound.

From the technical point of view, [23] also uses an idea similar to linear sketching. Their technique

might also be useful in the context of the k-machine model.

2 THE CONNECTIVITY ALGORITHM
In this section we present our main result, a Monte Carlo randomized algorithm for the k-machine

model that determines the connected components of an undirected graphG correctly with high

probability and that terminates in Õ(n/k2) rounds with high probability. This algorithm is optimal,

up to polylog(n)-factors, by virtue of a lower bound of Ω̃(n/k2) rounds [24].

Before delving into the details of our algorithm, as a warm-up we briefly discuss simpler, but

less efficient, approaches. The easiest way to solve any problem in our model is to first collect all

available graph data at a single machine and then solve the problem locally. For example, one could

first elect a referee among the machines, which requires O(1) rounds [26], and then instruct every

machine to send its local data to the referee machine. Since the referee machine needs to receive

O(m) information in total but has only k − 1 links of bounded bandwidth, this requires Ω(m/k)
rounds.

A more refined approach to obtain a distributed algorithm for the k-machine model is to use the

Conversion Theorem of [24], which provides a simulation of a congested clique algorithm A in

Õ(M/k2+∆′T /k) rounds in the k-machine model, whereM is the message complexity ofA,T is its

round complexity, and ∆′
is an upper bound to the total number of messages sent (or received) by a

single node in a single round. (All these parameters refer to the performance of A in the congested

clique model.) Unfortunately, existing algorithms (e.g., [15, 47]) either require ∆′
to scale to the

maximum node degree, and thus the converted time complexity bound in the k-machine model is

no better than Õ(n/k), or, as is the case of the recent fast algorithms [17, 18, 31], have a high (Θ(n2))

message complexity and thus cannot run in less than Θ(n2/k2) rounds in the k-machine model. The

recent MST algorithm of Pemmaraju and Sardeshmukh [44] is both message- and time-efficient in

the congested clique: it uses Õ(n)messages and runs inO(logn) rounds. However, there are several
steps in this algorithm where a single node receives Θ(n) messages, and thus directly applying

the Conversion Theorem of [24] to this algorithm gives only an Õ(n/k)-round algorithm in the

k-machine model. Therefore, in order to break the Ω̃(n/k) barrier, we must develop new techniques

that directly exploit the additional locality available in the k-machine model.

6
The high-level idea of the MST algorithm in the REP model is: (1) First “filter” the edges assigned to one machine using the

cut and cycle properties of a MST [21]; this leaves each machine with O (n) edges; (2) Convert this edge distribution to a

RVP which can be accomplished in Õ (n/k ) rounds via hashing the vertices randomly to machines and then routing the

edges appropriately; then apply the RVP bound.
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In the next subsection we give a high level overview of our algorithm, and then formally present

all the technical details in the subsequent subsections.

2.1 Overview of the Algorithm
Our algorithm follows a Borůvka-style strategy [6], that is, it repeatedly merges adjacent components
of the input graph G , which are connected subgraphs of G , to form larger (connected) components.

The output of each of these phases is a labeling of the nodes of G such that nodes that belong to

the same current component have the same label. At the beginning of the first phase, each node is

labeled with its own unique ID, forms a distinct component, and is also the component proxy of its

own component. Note that, at any phase, a component contains up to n nodes, which might be

spread across different machines; we use the term component part to refer to all those nodes of the

component that are held by the same machine. Hence, at any phase every component is partitioned

in at most k component parts. At the end of the algorithm each vertex has a label such that any

two vertices have the same label if and only if they belong to the same connected component of G.
Our algorithm relies on linear graph sketches as a tool to enable communication-efficient merging

of multiple components. Intuitively speaking, a (random) linear sketch su of a node u’s graph
neighborhood returns a sample chosen uniformly at random from u’s incident edges. Interestingly,
such a linear sketch can be represented as matrices using onlyO(polylog(n)) bits [19, 34]. A crucial

property of these sketches is that they are linear: that is, given sketches su and sv , the combined
sketch su + sv (“+” refers to matrix addition) has the property that, w.h.p., it yields a random sample

of the edges incident to (u,v) in a graph where we have contracted the edge (u,v) to a single node.

We describe the technical details in Section 2.3.

We now describe how to communicate these graph sketches in an efficient manner: Consider

a component C that is split into j parts P1, P2, . . . , Pj , the nodes of which are hosted at machines

M1,M2, . . . ,Mj . To find an outgoing edge for C , we first instruct each machineMi to construct a

linear sketch of the graph neighborhood of each of the nodes in part Pi . Then, we sum up these

|Pi | sketches, yielding a sketch sPi for the neighborhood of part Pi . To combine the sketches of the

j distinct parts, we now select a random component proxy machineMC,r for the current component

C at round r (see Section 2.2). Next, machineMi sends sPi to machineMC,r ; note that this causes at

most k messages to be sent to the component proxy. Finally, machineMC,r computes sC =
∑j

i=1
sPi ,

and then uses sC to sample an edge incident to some node inC , which, by construction, is guaranteed
to have its endpoint in a distinct component C ′

. (See Section 2.4.)

At this point, each component proxy has sampled an inter-component edge inducing the edges

of a component graph C where each vertex corresponds to a component. To enable the efficient

merging of components, we employ the distributed random ranking technique of [8] to break

up any long paths of C into more manageable directed trees of depth O(logn). To this end, each

component chooses a rank independently and uniformly at random from [0, 1], and then (virtually)

connects to its neighboring component (according to C) via a (conceptual) directed edge if and

only if the latter has a higher rank. Thus, this process results in a collection of disjoint rooted trees,

rooted at the node of highest (local) rank.

The merging of the components of each tree T proceeds from the leafs upward (in parallel for

each tree). In the first merging phase, each leaf Cj of T merges with its parent C ′
by relabeling

the component labels of all of their nodes with the label of C ′
. Note that the proxyMCj knows the

labeling ofC ′
, as it has computed the outgoing edge from a vertex inCj to a vertex inC

′
. Therefore,

machineMCj sends the label ofCj to all the machines that hold a part ofCj . In Section 2.5 we show

that this can be done in parallel (for all leafs of all trees) in Õ(n/k2) rounds.
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Finally, in Section 2.6 we prove that O(logn) repetitions of the above process suffice to ensure

that the components at the end of the last phase correspond to the connected components of the

input graph G.

2.2 Communication via Random Proxy Machines
Recall that our algorithm iteratively groups vertices into components and subsequently merges

such components according to the topology of G. Each of these components may be split into

multiple component parts spanning multiple machines. Hence, to ensure efficient load balancing

of the messages that machines need to send on behalf of the component parts that they hold, the

algorithm performs all communication via proxy machines.
Our algorithm proceeds in phases, and each phase consists of iterations. Consider the ρ-th

iteration of the j-th phase of the algorithm, with ρ, j ≥ 1. We construct a “sufficiently” random

hash function hj,ρ , such that, for each component C , the machine with ID hj,ρ (C) ∈ [k] is selected

as the proxy machine for component C . First, machineM1 generates ℓ = Θ̃(n/k) random bits from

its private source of randomness.M1 will distribute these random bits to all other machines via the

following simple routing mechanism that proceeds in sequences of two rounds. M1 selects k bits

b1,b2, . . . ,bk−1 from the set of its ℓ private random bits that remain to be distributed, and sends

bit bi across its i-th link to machine Mi+1. Upon receiving bi , machine Mi+1 broadcasts bi to all

machines in the next round. This ensures that bits b1,b2, . . . ,bk−1 become common knowledge

within two rounds. Repeating this process to distribute all the ℓ = Θ̃(n/k) bits takes Õ(n/k2) rounds,

after those all the machines have the ℓ random bits generated byM1. We leverage a result of [3]

(cf. in its formulation as Theorem 2.1 in [4]), which tells us that we can generate a random hash

function such that it is d-wise independent by using only O(d logn) true random bits. We instruct

machineM1 to disseminate d = ℓ logn = n polylog(n)/k of its random bits according to the above

routing process and then each machine locally constructs the same hash function hj,ρ , which is

then used to determine the component proxies throughout iteration ρ of phase j.
We now show that communication via such proxy machines is fast in the k-machine model.

Lemma 2.1. Suppose that each machineM generates a message of size O(polylog(n)) bits for each
component part residing on M ; letmi denote the message of part Pi and let C be the component of
which Pi is a part. If eachmi is addressed to the proxy machineMC of componentC , then all messages
are delivered within Õ(n/k2) rounds with high probability.

Proof. Observe that, except for the very first phase of the algorithm, the claim does not im-

mediately follow from a standard balls-into-bins argument because not all the destinations of the

messages are chosen independently and uniformly at random, as any two distinct messages of the

same component have the same destination.

Let us stipulate that any component part held by machineMi is the i-th component part of its

component, and denote this part with Pi, j , i ∈ [k], j ∈ [n], where Pi, j = ∅ means that in machine i
there is no component part for component j . Suppose that the algorithm is in phase j ′ and iteration
ρ. By construction, the hash function hj′,ρ is Θ̃(n/k)-wise independent, and all the component parts

held by a single machine are parts of different components. SinceMi has at most Θ̃(n/k) distinct
component parts w.h.p., it follows that all the proxy machines selected by the component parts

held by machineMi are distributed independently and uniformly at random. Let y be the number

of distinct component parts held by a machineMi that is, y = |{Pi, j : Pi, j , ∅}| = Õ(n/k) (w.h.p.).
Consider a link of Mi connecting it to another machine M1. Let Xt be the indicator variable

that takes value 1 if M1 is the component proxy of part t (of Mi ), and let Xt = 0 otherwise. Let

X =
∑y

i=1
Xi be the number of component parts that chose their proxy machine at the endpoint of
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link (Mi ,M1). Since Pr(Xi = 1) = 1/(k − 1), we have that the expected number of messages that

have to be sent by this machine over any specific link is E[X ] = y/(k − 1).

First, consider the case y ≥ 11k logn. As the Xi ’s are Θ̃(n/k)-wise independent, all proxies by
the component parts ofMi are chosen independently and thus we can apply a standard Chernoff

bound (see, e.g., [35]), which gives

Pr

(
X ≥

7y

4(k − 1)

)
≤ e−3y/16(k−1) < e

−2k logn
k <

1

n2
.

By applying the union bound over the k ≤ n machines we conclude that w.h.p. every machine

sends Õ(n/k2) messages to each proxy machine, and this requires Õ(n/k2) rounds.

Consider now the case y < 11k logn. It holds that 6E[X ] = 6y/(k − 1) < 6 · 11k logn/(k − 1) ≤

132 logn, and thus, by a standard Chernoff bound [35, Theorem 4.4 (3)],

Pr (X ≥ 132 logn) ≤ 2
−132 logn =

1

n132
.

Applying the union bound over the k ≤ n machines yields the result. □

2.3 Linear Graph Sketches
As we will see in Section 2.5, our algorithm proceeds by merging components across randomly

chosen inter-component edges. In this subsection we show how to provide these sampling capabil-

ities in a communication-efficient way in the k-machine model by implementing random linear

graph sketches. Our description follows the notation of [34].

Recall that each vertex u ofG is associated with a unique integer ID from [n] (known to its home

machine) which, for simplicity, we also denote by u.7 For each vertex u we define the incidence
vector au ∈ {−1, 0, 1}(

n
2
) of u, which describes the incident edges of u, as follows:

au [(x ,y)] =


1 if u = x < y and (x ,y) ∈ E,
−1 if x < y = u and (x ,y) ∈ E,
0 otherwise.

Note that the vector au + av corresponds to the incidence vector of the contracted edge (u,v).
Intuitively speaking, summing up incidence vectors “zeroes out” edges between the corresponding

vertices, hence the vector

∑
u ∈C au represents the outgoing edges of a component C .

Since each incidence vector au requires polynomial space, it would be inefficient to directly

communicate vectors to component proxies. Instead, we construct a random linear sketch su of

polylog(n)-size that has the property of allowing us to sample uniformly at random a nonzero entry

of au (i.e., an edge incident to u). (This is referred to as ℓ0-sampling in the streaming literature, see

e.g. [34].) It is shown in [19] that ℓ0-sampling can be performed by linear projections. Therefore, at

the beginning of each phase j of our algorithm, we instruct each machine to create a new (common)

polylog(n) ×
(n

2

)
sketch matrix Lj , which we call phase j sketch matrix.8 Then, each machine M

creates a sketch su = Lj · au for each vertex u that resides onM . Hence, each su can be represented

by a polylogarithmic number of bits.

Observe that, by linearity, we have Lj · au + Lj · av = Lj · (au + av ). In other words, a crucial

property of sketches is that the sum su + sv is itself a sketch that allows us to sample an edge

incident to the contracted edge (u,v). We summarize these properties in the following statement.

7
Note that the asymptotics of our results do not change if the size of the ID space is O (polylog(n)).

8
Here we describe the construction as if nodes have access to a source of shared randomness (to create the sketch matrix).

In Section 2.3.1 we show how to remove this assumption.
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Lemma 2.2. Consider a phase j, and let P a subgraph of G induced by vertices {u1, . . . ,uℓ}. Let
su1
, . . . , suℓ be the associated sketches of vertices in P constructed by applying the phase j sketch

matrix to the respective incidence vectors. Then, the combined sketch sP =
∑ℓ

i=1
sui can be represented

using O(polylog(n)) bits and, by querying sP , it is possible (w.h.p.) to sample a random edge incident
to P (in G) that has its other endpoint in G \ P .

2.3.1 Constructing Linear Sketches Without Shared Randomness. Our construction of the linear

sketches described so far requires Õ(n) fully independent random bits that would need to be shared

by all machines. However, it is shown in [11, Theorem 1] that there exists an ℓ0-sampler, having the

same linearity properties, that uses Θ(n) random bits which are only Θ(logn)-wise independent.
Analogously as in Section 2.2, we can generate the required Θ(log

2 n) true random bits at machine

M1, distribute them among all other machines in O(1) rounds, and then invoke Theorem 2.1 of [4]

at each machine in parallel to generate the required (shared) Θ(logn)-wise independent random
bits for constructing the sketches.

2.4 Outgoing Edge Selection
Now that we know how to construct a sketch of the graph neighborhood of any set of vertices, we

will describe how to combine these sketches in a communication-efficient way in the k-machine

model. The goal of this step is, for each (current) component C , to find an outgoing edge that

connects C to some other component C ′
.

Recall thatC itself might be split into parts P1, P2, . . . , Pj across multiple machines. Therefore, as

a first step, each machineMi locally constructs the combined sketch for each part that resides in

Mi . By Lemma 2.2, the resulting sketches have polylogarithmic size each and present a sketch of

the incidences of their respective component parts. Next, we combine the sketches of the individual

parts of each component C to a sketch of C , by instructing the machines to send the sketch of

each part Pi (of component C) to the proxy machine of C . By Lemma 2.1, all of these messages are

delivered to the component proxies within Õ(n/k2) rounds. Finally, the component proxy machine

ofC combines the received sketches to yield a sketch ofC , and randomly samples an outgoing edge

of C (see Lemma 2.2). Thus, at the end of this procedure, every component (randomly) selected

exactly one neighboring component. We now show that the complexity of this procedure is Õ(n/k2)

w.h.p.

Lemma 2.3. Every component can select exactly one outgoing edge in Õ(n/k2) rounds with high
probability.

Proof. Clearly, since at every moment each node has a unique component’s label, each machine

holds Õ(n/k) component’s parts w.h.p. Each of these parts selected at most one edge, and thus each

machine “selected” Õ(n/k) edges w.h.p. All these edges have to be sent to the corresponding proxy.

By Lemma 2.1, this requires Õ(n/k2) rounds.

The procedure is completed when the proxies communicate the decision to each of the at most k
components’ parts. This entails as many messages as in the first part to be routed using exactly

the same machines’ links used in the first part, with the only difference being that messages now

travel in the opposite direction. The lemma follows. □

2.5 Merging of Components
After the proxy machine of each component C has selected one edge connecting C to a different

component, all the neighboring components are merged so as to become a new, bigger component.

This is accomplished by relabeling the nodes of the graph such that all the nodes in the same (new)

component have the same label. Notice that the merging is thus only virtual, that is, component
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parts that compose a new component are not moved to a common machine; rather, nodes (and

their incident edges) remain in their home machine, and just get (possibly) assigned a new label.

We can think of the components along with the sampled outgoing edges as a component graph
C. We use the distributed random ranking (DRR) technique [8] to avoid having long chains of

components (i.e., long paths in C). That is, we will (conceptually) construct a forest of directed

trees that is a subgraph (modulo edge directions) of the component graph C and where each tree

has depthO(logn).9 The component proxy of each componentC chooses a rank independently and

uniformly at random from [0, 1]. (It is easy to see that an accuracy of Θ(logn) bits suffices to break

ties w.h.p.) Then, the proxy machine of C (virtually) connects C to its neighboring component C ′
if

and only if the rank chosen by the latter’s proxy is higher. In this case, we say that C ′
becomes the

parent of C and C is a child of C ′
.

Lemma 2.4. After Õ(n/k2) rounds, the structure of the DRR-tree is completed with high probability.

Proof. We need to show that every proxy machine of a non-root component knows its higher-

rank parent component and that every root proxy machine knows that it is root. Note that during

this step the proxy machines of the child components communicate with the respective parent proxy

machines. Moreover, the number of messages sent for determining the ordering of the DRR-trees is

guaranteed to be O(n) with high probability, since C has only O(n) edges. By Lemma 2.1, it follows

that the delivery of these messages can be completed in Õ(n/k2) rounds w.h.p.

Since links are bidirectional, the parent proxies are able to send their replies within the same

number of rounds, by re-running the message schedule of the child-to-parent communication in

reverse order. □

If a component has the highest rank among all its neighbors (in C), we call it a root component.
Since every component except root components connects to a component with higher rank, the

resulting structure is a set of disjoint rooted trees.

In the next step, we will merge all components of each tree into a single new component such

that all vertices that are part of some component in this tree receive the label of the root. Consider

a tree T . We proceed level-wise (in parallel for all trees) and start the merging of components at

the leafs that are connected to a (lower-ranking) parent component C .

Lemma 2.5. There is a distributed algorithm that merges all trees of the DRR forest in Õ(dn/k2)

rounds with high probability, where d is the largest depth of any tree.

Proof. We proceed in d iterations by merging the (current) leaf components with their parents

in the tree. Thus it is sufficient to analyze the time complexity of a single iteration. To this end, we

describe a procedure that changes the component labels of all vertices that are in leaf components

in the DRR forest to the label of the respective parent in Õ(n/k2) rounds.

At the beginning of each iteration, we select a new proxy for each component C by querying

the shared hash function hj,ρ (C), where j is the index of the current phase and ρ is the index of

the current iteration. This ensures that there are no dependencies between the proxies used in

each iteration. We know from Lemma 2.4 that there is a message schedule such that leaf proxies

can communicate with their respective parent proxy in Õ(n/k2) rounds (w.h.p.) and vice versa,

and thus every leaf proxy knows the component label of its parent. We have already shown in

Lemma 2.3 that we can deliver a message from each component part to its respective proxy (when

combining the sketches) in Õ(n/k2) rounds. Hence, by re-running this message schedule, we can

9
In place of DRR trees, an alternative and simpler idea is the following. Let every component select a number in [0, 1]. A

merging can be done only if the outgoing edge connects a component with ID 0 to a component with ID 1. One can show

that this merging procedure also gives the same time bound.
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broadcast the parent label from the leaf proxy to each component part in the same time. Each

machine that receives the parent label locally changes the component label of the vertices that are

in the corresponding part. □

The following result is given in [8]. To keep the paper self-contained, in the Appendix we provide

a more direct and simpler proof for this result.

Lemma 2.6 ([8, Theorem 11]). The depth of each DRR tree is O(logn) with high probability.

2.6 Analysis of the Time Complexity
We now show that the number of phases required by the algorithm to determine the connected

components of the input graph isO(logn). At the beginning of each phase i , distributed across the k
machines there are ci distinct components. At the beginning of the algorithm each node is identified

as a component, and thus c0 = n. The algorithm ends at the completion of phase φ, where φ is the

smallest integer such that cφ = cc(G), where cc(G) denotes the number of connected components of

the input graph G. If pairs of components were merged in each phase, it would be straightforward

to show that the process would terminate in O(logn) phases. However, in our algorithm each

component connects to its neighboring component if and only if the latter has a higher rank.

Nevertheless, it is not difficult to show that this slightly different process also terminates inO(logn)
phases w.h.p. (that is, components gets merged “often enough”). The intuition for this is that, since

components’ ranks are taken randomly, for each component the probability that its neighboring

component has a higher rank is exactly one half. Hence, on average half of the components will

not be merged with their own neighbor: each of these components thus becomes a root of one

component, which means that, on average, the number of new components is half as well.

Lemma 2.7. After 12 logn phases, the component labels of the vertices correspond to the connected
components of G with high probability.

Proof. Replace the ci ’s with corresponding random variables Ci ’s, and consider the stochastic

process defined by the sequence C0,C1, . . . ,Cφ . Let C̄i be the random variable that counts the

number of components that actually participate at the merging process of phase i , because they do

have an outgoing edge to another component. Call these components participating components.
Clearly, by definition, C̄i ≤ Ci .

We now show that, for every phase i ∈ [φ − 1], E[E[C̄i+1 | C̄i ]] ≤ E[C̄i ]/2. To this end, fix a

generic phase i and a random ordering of its C̄i participating components. Define random variables

Xi,1,Xi,2, . . . ,Xi,C̄i where Xi, j takes value 1 if the j-th participating component will be a root of

a participating tree/component for phase i + 1, and 0 otherwise. Then, C̄i+1 | C̄i =
∑C̄i

j=1
Xi, j is

the number of participating components for phase i + 1, assuming that there are Ci participating

components for phase i . As we noticed before, for any i ∈ [φ − 1] and j ∈ [C̄i ], the probability that

a participating component will not be merged to its neighboring component, and thus become a

root of a tree/component for phase i + 1 is exactly one half. Therefore,

Pr(Xi, j = 1) ≤ 1/2.

Hence, by the linearity of expectation, we have that

E[C̄i+1 | C̄i ] =

C̄i∑
j=1

E[Xi, j ] =

C̄i∑
j=1

Pr(Xi, j = 1) ≤
C̄i

2

.
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Then, using again the linearity of expectation,

E[E[C̄i+1 | C̄i ]] ≤ E

[
C̄i

2

]
=

E[C̄i ]

2

.

We now leverage this result to prove the claimed statement. Let us call a phase successful if it
reduces the number of participating components by a factor of at most 3/4. By Markov’s inequality,

the probability that phase i is not successful is

Pr

(
E[C̄i+1 | C̄i ] >

3

4

E[C̄i ]

)
<

E[E[C̄i+1 | C̄i ]]

(3/4)E[C̄i ]
≤

E[C̄i ]

2

·
4

3E[C̄i ]
=

2

3

,

and thus the probability that a phase of the algorithm is successful is at least 1/3. Now consider

a sequence of 12 logn phases of the algorithm. We shall prove that within that many phases the

algorithm w.h.p. has reduced the number of participating components a sufficient number of times

so that the algorithm has terminated, that is, φ ≤ 12 logn w.h.p. Let Xi be an indicator variable that

takes value 1 if phase i is successful, and 0 otherwise (this also includes the case that the i-th phase

does not take place because the algorithm already terminated). Let X =
∑

12 logn
i=1

Xi be the number

of successful phases out of the at most 12 logn phases of the algorithm. Since Pr(Xi = 1) ≥ 1/3, by

the linearity of expectation we have that

E[X ] =

12 logn∑
i=1

E[Xi ] =

12 logn∑
i=1

Pr(Xi = 1) ≥
12 logn

3

= 4 logn.

As the Xi ’s are independent we can apply a standard Chernoff bound, which gives

Pr(X ≤ logn) ≤ e−4 logn(3/4)2/2 = e−
9

8
logn <

1

n
.

Hence, with high probability 12 logn phases are enough to determine all the components of the

input graph. □

Theorem 2.8. There exists a distributed algorithm for the k-machine model that determines the
connected components of a graph G in Õ(n/k2) rounds with high probability.

Proof. By Lemma 2.7, the algorithm finishes inO(logn) phases with high probability. To analyze
the time complexity of an individual phase, recall that it takes Õ(n/k2) rounds to sample an outgoing

edge (see Lemma 2.3). Then, building the DRR forest requires Õ(n/k2) additional rounds, according

to Lemma 2.4. Merging each DRR tree T in a level-wise fashion (in parallel) takes Õ(dn/k2) rounds

(see Lemma 2.5), where d is the depth of T which, by virtue of Lemma 2.6, is bounded by O(logn).
Since each of these time bounds hold with high probability, and the algorithm consists of O(logn)
phases with high probability, by the union bound we conclude that the total time complexity of the

algorithm is Õ(n/k2) with high probability. □

We conclude the section by noticing that it is easy to output the actual number of connected

components after the termination of the algorithm: every machine just needs to send, for each

component label it holds, one message to the proxy machine of that component containing the

component’s label; then, such proxies locally count the number of distinct labels received, and

send such a count to one predetermined machine. Since the communication is performed via the

components’ proxies, it follows from Lemma 2.1 that the first step takes Õ(n/k2) rounds w.h.p.,

while the second step takes only one round.
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3 APPLICATIONS
In this section we describe how to use our fast connectivity algorithm as a building block to solve

several other fundamental graph problems in the k-machine model in time Õ(n/k2).

3.1 Constructing a Minimum Spanning Tree
Given a weighted graph where each edge e = (u,v) has an associated weightw(e), initially known

to both the home machines of u and v , the minimum spanning tree (MST) problem asks to output a

set of edges that form a tree, connect all nodes, and have the minimum possible total weight. Klauck

et al. [24] show that Ω̃(n/k) rounds are necessary for constructing any spanning tree (ST), assuming

that, for every spanning tree edge e = (u,v), the home machine of u and the home machine of v
must both output (u,v) as being part of the ST. Here we show that we can break the Ω̃(n/k) barrier,
under the slightly less stringent requirement that each spanning tree edge e is returned by at least

one machine, but not necessarily by both the home machines of u and v .
Our algorithm mimics the multi-pass MST construction procedure of [1], originally devised for

the (centralized) streaming model. To this end wemodify our connectivity procedure of Section 2, by

ensuring that when a component proxy C chooses an outgoing edge e , this is the minimum-weight
outgoing edge (MWOE) of C with high probability.

We now describe the i-th phase of this MST construction in more detail. Analogously to the

connectivity algorithm, the proxy of each component C determines an outgoing edge e0 which, by

the guarantees of our sketch construction (Lemma 2.2), is chosen uniformly at random from all

possible outgoing edges of C .
We then repeat the following edge-elimination process t = Θ(logn) times: The proxy broadcasts

w(e0) to every component part of C . By Lemma 2.3 this communication is possible in Õ(n/k2)

rounds. Upon receiving this message, the machineM of a part P of C constructs a new sketch su
for each u ∈ P , but first zeroes out all entries in au that refer to edges of weight > w(e0). (See

Section 2.3 for a more detailed description of au and su .) Again, we combine the sketches of all

vertices of all parts of C at the proxy of C , which in turn samples a new outgoing edge e1 for C .
Since each time we sample a randomly chosen edge and eliminate all higher weight edges, it is

easy to see that the edge et is the MWOE of C w.h.p. Thus, the proxy machine of C includes the

edge et as part of the MST output. Note that this additional elimination procedure incurs only a

logarithmic time complexity overhead.

At the end of each phase, we proceed by (virtually) merging the components along their MWOEs

in a similar manner as for the connectivity algorithm (see Section 2.5), thus requiring Õ(n/k2)

rounds in total.

Let E be the set of added outgoing edges. Since the components of the connectivity algorithm

eventually match the actual components of the input graph, the graph H on the vertices V (G)
induced by E connects all vertices of G. Moreover, since components are merged according to the

trees of the DRR-process (see Section 2.5), it follows that H is cycle-free.

We can now fully classify the complexity of the MST problem in the k-machine model.

Theorem 3.1. There exists a distributed algorithm for the k-machine model that outputs an MST in

• Õ(n/k2) rounds, if each MST-edge is output by at least one machine, or in
• Õ(n/k) rounds, if each MST-edge e is output by both machines that hold an endpoint of e .

Both bounds are tight up to polylogarithmic factors.

3.2 Approximate Min-Cut
Here we show the following result for the min-cut problem in the k-machine model.

ACM Transactions on Parallel Computing, Vol. 5, No. 1, Article 4. Publication date: June 2018.



4:16 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato

Theorem 3.2. There exists an O(logn)-approximation algorithm for the min-cut problem in the
k-machine model that runs in Õ(n/k2) rounds with high probability.

Proof. We use exponentially growing sampling probabilities for sampling edges and then check

connectivity, leveraging a result by [20]. This procedure was derived in [16] for the CONGEST

model, and can be implemented in the k-machine model as well, where we use our fast connectivity

algorithm (in place of Thurimella’s algorithm [47] used in [16]). The time complexity is dominated

by the connectivity-testing procedure, and thus is Õ(n/k2) w.h.p. □

3.3 Algorithms for Graph Verification Problems
It is well known that graph connectivity is an important building block for several graph verification

problems (see, e.g., [12]).We now analyze some of such problems, formally defined, e.g., in Section 2.4

of [12], in the k-machine model.

Theorem 3.3. There exist algorithms for the k-machine model that solve the following verification
problems in Õ(n/k2) rounds with high probability: spanning connected subgraph, cycle containment,
e-cycle containment, cut, s-t connectivity, edge on all paths, s-t cut, bipartiteness.

Proof. We discuss each problem separately.

Cut verification Remove the edges of the given cut fromG , and then check whether the resulting

graph is connected.

s-t connectivity verification Run the connectivity algorithm and then verify whether s and t
are in the same connected component by checking whether they have the same label.

Edge on all paths verification Since e lies on all paths between u and v iff u and v are dis-

connected in G \ {e}, we can simply use the s-t connectivity verification algorithm of previous

point.

s-t cut verification To verify if a subgraph is an s-t cut, simply verify s-t connectivity of the graph
after removing the edges of the subgraph.

Bipartiteness verification Use the connectivity algorithm and the reduction presented in Sec-

tion 3.3 of [1].

Spanning connected subgraph, cycle containment, and e-cycle containment verification
These also follow from the reductions given in [12]. □

4 LOWER BOUNDS FOR VERIFICATION PROBLEMS
In this section we show that Ω̃(n/k2) rounds is a fundamental lower bound for many graph

verification problems in the k-machine model. To this end we will use results from the classical

theory of communication complexity [25], a popular way to derive lower bounds in distributed

message-passing models [12, 38, 39].

Even though many verification problems are known to satisfy a lower bound of Ω̃(D +
√
n) in

the classic distributed CONGEST model [12], the reduction of [12] encodes a Θ(
√
n)-instance of

set disjointness, requiring at least one node to receive Θ̃(
√
n) information across a single short

“highway” path or viaΘ(
√
n) longer paths of lengthΘ(

√
n). Moreover, we assume the random vertex

partition model, whereas the results of [12] assume a worst case distribution. Lastly, any pair of

machines can communicate directly in the k-machine model, thus breaking the Ω(D) bound for the
CONGEST model.

Our complexity bounds follow from the communication complexity of 2-player set disjointness
in the random input partition model (see [24]). While in the standard model of communication

complexity there are 2 players, Alice and Bob, and Alice (resp., Bob) receives an input vector X
(resp., Y ) of b bits [25], in the random input partition model Alice receives X and, in addition, each
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bit of Y has probability 1/2 to be revealed to Alice. Bob’s input is defined similarly with respect to

X . In the set disjointness problem, Alice and Bob must output 1 if and only if there is no index i
such that X [i] = Y [i] = 1. The following result holds.

Lemma 4.1 ([24, Lemma 3.2]). For some constant ϵ > 0, every randomized communication protocol
that solves set disjointness in the random input partition model of 2-party communication complexity
with probability at least 1 − ϵ , requires Ω(b) bits.

Now we can show the main result of this section.

Theorem 4.2. There exists a constantγ > 0 such that anyγ -error algorithmA has round complexity
of Ω̃(n/k2) on an n-vertex graph of diameter 2 in the k-machine model, ifA solves any of the following
problems: connectivity, spanning connected subgraph, cycle containment, e-cycle containment, s-t-
connectivity, cut, edge on all paths, and s-t-cut.

Proof. The high-level idea of the proof is similar to the simulation theorem of [12]. We present

the argument for the spanning connected subgraph (SCS) problem, defined next. Following [12],

similar arguments can be established for each of the other problems.

In the spanning connected subgraph problem we are given a graph G and a subgraph H ⊆ G
and we want to verify whether H spans G and is connected. We will show, through a reduction

from 2-party set disjointness, that any algorithm for SCS in the k-machine model requires Ω̃(n/k2)

rounds.

Given an instance of the 2-party set disjointness problem in the random partition model we will

construct the following input graphs G and H . The nodes of G consist of 2 special nodes s and
t , and nodes u1, . . . ,ub , v1, . . . ,vb , for b = (n − 2)/2. (For clarity of presentation, we assume that

(n − 2)/2 and k/2 are integers.) The edges of G consist of the edges (s, t), (ui ,vi ), (s,ui ), (vi , t), for
1 ≤ i ≤ b.

Let MA be the set of machines simulated by Alice, and let MB be the set of machines simulated

by Bob, where |MA | = |MB | = k/2. First, Alice and Bob use shared randomness to choose the

machines MX and MY that receive the vertices s and t . If MX , MY , then Alice assigns t to a

machine chosen randomly from MA, and Bob assigns s to a random machine in MB . Otherwise, if

MX andMY denote the same machine, Alice and Bob output 0 and terminate the simulation.

The subgraph H is determined by the disjointness input vectors X and Y as follows: H contains

all nodes of G and the edges (ui ,vi ), (s, t), 1 ≤ i ≤ b. Recall that, in the random partition model, X
and Y are randomly distributed between Alice and Bob, but Alice knows all X and Bob knows all

of Y . Hence, Alice and Bob mark the corresponding edges as being part of H according to their

respective input bits. That is, if Alice received X [i] (i.e. Bob did not receive X [i]), she assigns the
node ui to a random machine inMA and adds the edge (s,ui ) to H if and only if X [i] = 0. Similarly,

the edge (vi , t) is added to H if and only if Y [i] = 0 (by either Alice or Bob depending on who

receives Y [i]). See Figure 1. Note that, since X and Y were assigned according to the random input

partition model, the resulting distribution of vertices to machines adheres to the random vertex

partition model. Clearly, H is an SCS if and only if X and Y are disjoint.

We describe the simulation from Alice’s point of view (the simulation for Bob is similar): Alice

locally maintains a counter rA, initialized to 1, that represents the current round number. Then,

she simulates the run of A on each of her k/2 machines, yielding a set of ℓ messagesm1, . . . ,mℓ

of O(polylog(n)) bits each that need to be sent to Bob to simulate the algorithm on his machines

in the next round. By construction, we have that 0 ≤ ℓ ≤ ⌈k2/4⌉. To send these messages in

the (asynchronous) 2-party random partition model of communication complexity, Alice sends a

message ⟨ℓ, (M1,m1,M2), . . . , (Mℓ,mℓ,Mℓ+1)⟩ to Bob, where a tuple (Mi ,mi ,Mi+1) corresponds to

a messagemi generated by machineMi simulated by Alice and destined to machineMi+1 simulated
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s

u1

...

ui

...

ub

t

v1

...

vi

...

vb

Fig. 1. The graph construction for the spanning connected subgraph problem, given a set disjointness instance
where X [1] = 0, Y [1] = 1, X [i] = 1, Y [i] = 0, and X [b] = Y [b] = 0. The thick edges are the edges of subgraph
H . The subgraph H contains all edges (ui ,vi ) (1 ≤ i ≤ b) and (s, t); the remaining edges of H are determined
by the input vectors X and Y of the set disjointness instance.

at Bob. Upon receiving this message, Bob increases its own round counter and then locally simulates

the next round of his machines by delivering the messages to the appropriate machines. Adding

the source and destination fields to each message incurs an overhead of only O(logk) = O(logn)
bits, hence the total communication generated by simulating a single round of A is upper bounded

by Õ(k2). Therefore, if A takes T rounds to solve SCS in the k-machine model, then this gives us

an O(Tk2
polylog(n))-bit communication complexity protocol for set disjointness in the random

partition model, as the communication between Alice and Bob is determined by the communication

across the Θ(k2) links required for the simulation, each of which can carry O(polylog(n)) bits per
round. Note that if A errs with probability at most γ , then the simulation errs with probability at

most γ + 1/k , where the extra 1/k term comes from the possibility that machinesMX andMY refer

to the same machine. For large enough k and small enough γ we have γ + 1/k < ϵ . It follows that
we need to simulate at least T = Ω̃(n/k2) many rounds, since by Lemma 4.1 the set disjointness

problem requires Ω(b) bits in the random partition model, when the error is smaller than ϵ . □

Interestingly, our lower bounds hold even for graphs of diameter 2, which is in contrast to the

analogous results for the classic distributed CONGEST model assumed in [12]. We remark that the

lower bound for connectivity verification was already shown in [24].

5 CONCLUSIONS
There are several natural directions for future work. Our connectivity algorithm is randomized:

it would be interesting to study the deterministic complexity of graph connectivity in the k-
machine model. Specifically, does graph connectivity admit a Õ(n/k2) deterministic algorithm?

Investigating higher-order connectivity, such as 2-edge/vertex connectivity, is also an interesting

research direction. A general question motivated by the algorithms presented in this paper is

whether one can design algorithms that have superlinear scaling in k for other fundamental graph

problems. Some recent results in this directions are in [42]. When designing algorithms for real-

world graph processing systems, besides minimizing the round complexity, it is also important that

the total number of messages exchanged be kept as low as possible; this direction, not new in the

field of distributed computing (see, e.g., [41]), is also worth pursuing.
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APPENDIX
A.1 Proof of Lemma 2.6

Proof. Consider one phase of the algorithm, and suppose that during that phase there are n
components. (In one phase there are c ≤ n components, thus setting c = n gives a valid upper

bound to the height of each DRR tree in that phase.) Each component picks a random rank from

[0, 1]. Thus, all ranks are distinct with high probability. If the target component’s rank is higher,

then the source component connects to it, otherwise the source component becomes a root of a

DRR tree.

Consider an arbitrary component of the graph, and consider the (unique) path P starting form

the node that represents the component to the root of the tree that contains it. Let |P | be the number

of nodes of P , and assign indexes to the |P | nodes of P according to their position in the path from

the selected node to the root. (See Figure 2.)

X4

X3

X2

X1

Fig. 2. One DRR tree, and one path from one node to the root of the tree. Nodes of the path are labeled with
the indicator variable associated to them, indexed by the position of the node in the path.

For each i ∈ [|P |], define Xi as the indicator variable that takes value 1 if node i is not the root of

P , and 0 otherwise. Then, X =
∑ |P |

i=1
Xi is the length of the path P . Because of the random choice

for the outgoing edge made by components’ parts, the outgoing edge of each component is to a

random (and distinct) component. This means that, for each j ≤ |P |, the ranks of the first j nodes
of the path form a set of j random values in [0, 1]. Hence, the probability that a new random value

in [0, 1] is higher than the rank of the j-th node of the path is the probability that the new random

value is higher than all the j previously chosen random values (that is, the probability its value is

the highest among all the first j values of the path), and this probability is at most 1/(j + 1). Thus,

Pr(Xi = 1) ≤ 1/(i + 1). Hence, by the linearity of expectation, the expected height of a path in a
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tree produced by the DRR procedure is

E[X ] =

|P |∑
i=1

E[Xi ] ≤

n∑
i=1

E[Xi ] =

n∑
i=1

Pr(Xi = 1) ≤

n∑
i=1

1

i + 1

≤ log(n + 1).

Notice that the Xi ’s are independent (but not identically distributed) random variables, since the

probability that the i-th smallest ranked node is not a root depends only on the random neighbor

that it picks, and is independent of the choices of the other nodes. Thus, applying a standard

Chernoff bound (see, e.g., [35]) we have

Pr(X ≥ 6 log(n + 1)) ≤ 2
−6 log(n+1) =

1

(n + 1)6
.

Applying the union bound over all the at most n paths concludes the proof. □
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