
13

A Time- and Message-Optimal Distributed Algorithm
for Minimum Spanning Trees

GOPAL PANDURANGAN, University of Houston

PETER ROBINSON, City University of Hong Kong

MICHELE SCQUIZZATO, University of Padova

This article presents a randomized (Las Vegas) distributed algorithm that constructs a minimum spanning

tree (MST) in weighted networks with optimal (up to polylogarithmic factors) time and message complexity.

This algorithm runs in Õ (D +
√
n) time and exchanges Õ (m) messages (both with high probability), where

n is the number of nodes of the network, D is the hop-diameter, and m is the number of edges. This is the

first distributed MST algorithm that matches simultaneously the time lower bound of Ω̃(D +
√
n) [10] and the

message lower bound of Ω(m) [31], which both apply to randomized Monte Carlo algorithms.

The prior time and message lower bounds are derived using two completely different graph constructions;

the existing lower-bound construction that shows one lower bound does not work for the other. To com-

plement our algorithm, we present a new lower-bound graph construction for which any distributed MST

algorithm requires both Ω̃(D +
√
n) rounds and Ω(m) messages.

CCS Concepts: • Theory of computation → Distributed algorithms;

Additional Key Words and Phrases: Distributed algorithms, minimum spanning trees

ACM Reference format:

Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. 2019. A Time- and Message-Optimal Dis-

tributed Algorithm for Minimum Spanning Trees. ACM Trans. Algorithms 16, 1, Article 13 (November 2019),

27 pages.

https://doi.org/10.1145/3365005

1 INTRODUCTION

The minimum-weight spanning tree (MST) construction problem is one of the central and most
studied problems in distributed computing [43]. A long line of research aimed at developing ef-
ficient distributed algorithms for the MST problem started more than thirty years ago with the

A preliminary version of this paper [42] appeared in the Proceedings of the 49th Annual ACM Symposium on the Theory of

Computing (STOC 2017). G. Pandurangan was supported, in part, by NSF grants CCF-1527867, CCF-1540512, IIS-1633720,

and CCF-1717075, and by US-Israel Binational Science Foundation (BSF) grant 2016419. Most of this work was done while

M. Scquizzato was at the University of Houston supported, in part, by NSF grants CCF-1527867, CCF-1540512, and IIS-

1633720, and at KTH Royal Institute of Technology supported, in part, by the European Research Council (ERC) under the

European Union’s Horizon 2020 research and innovation programme under grant agreement No 715672.

Authors’ addresses: G. Pandurangan, Department of Computer Science, University of Houston, 3551 Cullen Blvd, Houston,

TX 77204, USA; email: gopalpandurangan@gmail.com; P. Robinson, Department of Computer Science, City University of

Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong; email: peter.robinson@cityu.edu.hk; M. Scquizzato, Department

of Mathematics, University of Padova, Via Trieste 63, 35121 Padova, Italy; email: scquizza@math.unipd.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1549-6325/2019/11-ART13 $15.00

https://doi.org/10.1145/3365005

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

https://doi.org/10.1145/3365005
mailto:permissions@acm.org
https://doi.org/10.1145/3365005

13:2 G. Pandurangan et al.

seminal article of Gallager et al. [14], which presented a distributed algorithm that constructs an
MST in O (n logn) rounds exchanging a total of O (m + n logn) messages, where n and m denote
the number of nodes and the number of edges of the network, respectively.1 The message com-
plexity of this algorithm is (essentially) optimal [31], but its time complexity is not. Hence, further
research concentrated on improving the time complexity. The time complexity was first improved
to O (n log logn) by Chin and Ting [5], further improved to O (n log∗ n) by Gafni [13], and then to
O (n) by Awerbuch [2] (see also [12]). The O (n) bound is existentially optimal in the sense that
there exist graphs for which this is the best possible.

This was the state of the art till the mid-nineties when Garay et al. [15] raised the question
of whether it is possible to identify graph parameters that can better capture the complexity of
distributed network computations. In fact, for many existing networks, their hop-diameter D is
significantly smaller than the number of vertices n, and therefore it is desirable to design proto-
cols whose running time is bounded in terms of D rather than in terms of n. Garay et al. [15] gave
the first such distributed algorithm for the MST problem with running time O (D + n0.614 log∗ n),
which was later improved by Kutten and Peleg [32] to O (D +

√
n log∗ n).2 However, both these

algorithms are not message-optimal,3 as they exchange O (m + n1.614) and O (m + n1.5) messages,
respectively. All the above results, as well as the one in this article, hold in the synchronous CON-
GEST model of distributed computing, a well-studied standard model of distributed computing [45]
(see Section 1.1).

The lack of progress in improving the result of [32], and in particular breaking the Õ (
√
n) bar-

rier,4 led to work on lower bounds for the distributed MST problem. Peleg and Rubinovich [46]
showed that Ω(D +

√
n/ logn) time is required by any distributed algorithm for constructing an

MST, even on networks of small diameter (D = Ω(logn)); thus, this result establishes the asymp-
totic near-tight optimality of the algorithm of [32]. The lower bound of Peleg and Rubinovich ap-

plies to exact, deterministic algorithms. Later, the lower bound was improved to Ω(D +
√
n/ logn)

and was shown for randomized (Monte Carlo) and approximation algorithms as well [7, 10].
To summarize, the state of the art for distributed MST algorithms is that there exist algorithms

which are either time-optimal (i.e., they run in Õ (D +
√
n) time) or message-optimal (i.e., they ex-

change Õ (m) messages), but not simultaneously both. Indeed, the time-optimal algorithms of [9,
32] (as well as the sublinear time algorithm of [15]) are not message-optimal, i.e., they require
asymptotically much more than Θ(m) messages. In contrast, the known message-optimal algo-
rithms for MST (in particular, [2, 14]) are not time-optimal, i.e., they take significantly more time

than Õ (D +
√
n). In their 2000 SICOMP paper [46], Peleg and Rubinovich raised the question of

whether one can design a distributed MST algorithm that is simultaneously optimal with respect
to time and message complexity. In 2011, Kor et al. [28] also raised this question and showed that
distributed verification of MST, i.e., verifying whether a given spanning tree is MST or not, can be
done in optimal messages and time, i.e., there exists a distributed verification algorithm that uses

Õ (m) messages and runs in Õ (D +
√
n) time, and that these are optimal bounds for MST verifica-

tion. However, the original question for MST construction remained open.
The above question addresses a fundamental aspect in distributed algorithms, namely the re-

lationship between the two basic complexity measures of time and messages. The simultane-
ous optimization of both time and message complexity has been elusive for several fundamental

1The original algorithm has a message complexity of O (m log n), but it can be improved to O (m + n log n).
2The log∗ n factor can, in all respective algorithms, be reduced to

√
log∗ n, by growing components to a size larger by a

factor
√

log∗ n in the respective first phase.
3In this article, henceforth, when we say “optimal” we mean “optimal up to a polylog(n) factor”.
4Õ (f (n)) and Ω̃(f (n)) denote O (f (n) · polylog(f (n))) and Ω(f (n)/ polylog(f (n))), respectively.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees 13:3

problems (including MST, shortest paths, and random walks), and consequently research in the last
three decades in distributed algorithms has focused mainly on optimizing either one of the two
measures separately. However, in various modern and emerging applications such as resource-
constrained communication networks and distributed computation of large-scale data, it is crucial
to design distributed algorithms that optimize both measures simultaneously [23, 27].

1.1 Model and Definitions

We first briefly describe the distributed computing model in which our algorithm (as well as all
the previously discussed MST algorithms [2, 5, 9, 13–15, 32]) is specified and analyzed. This is the
CONGEST model (see, e.g., [45]), which is now standard in the distributed computing literature.

A point-to-point communication network is modeled as an undirected weighted graph G =
(V ,E,w), where the vertices of V represent the processors, the edges of E represent the com-
munication links between them, and w (e) is the weight of edge e ∈ E. Without loss of generality,
we assume that G is connected. D denotes the hop-diameter (that is, the unweighted diameter) of
G, and in this paper by diameter we always mean hop-diameter. We also assume that the weights
of the edges of the graph are all distinct. This implies that the MST of the graph is unique. The
definitions and the results generalize readily to the case where the weights are not necessarily
distinct. Each node hosts a processor with limited initial knowledge. Specifically, we make the
common assumption that each node has unique identity numbers (this is not essential, but sim-
plifies presentation), and at the beginning of computation each vertex v accepts as input its own
identity number and the weights of the edges incident to it. Thus, a node has only local knowledge.
Specifically, we assume that each node has ports (each port having a unique port number); each
incident edge is connected to one distinct port. A node does not have any initial knowledge of the
other endpoint of its incident edge (which node it is connected to or the port number that it is
connected to). This model is referred to as the clean network model in [45] and is also sometimes
referred to as theKT0 model, i.e., the initial (K)nowledge of all nodes is restricted (T)ill radius 0 (i.e.,
just the local knowledge) [45]. The KT0 model is a standard model in distributed computing and
typically used in the literature (see e.g., [1, 35, 45, 49]), including all the prior results on distributed
MST (e.g., [2, 5, 14, 15, 32]) with a notable exception ([26], discussed in detail in Section 1.3).

The vertices are allowed to communicate through the edges of the graph G. It is assumed that
communication is synchronous and occurs in discrete rounds (time steps). In each time step, each
node v can send an arbitrary message of O (logn) bits through each edge e = (v,u) incident to
v , and each message arrives at u by the end of this time step. (If unbounded-size messages are
allowed—this is the so-called LOCAL model—the MST problem can be trivially solved in O (D)
time [45].) The weights of the edges are at most polynomial in the number of vertices n, and there-
fore the weight of a single edge can be communicated in one time step. This model of distributed
computation is called the CONGEST(logn) model or simply the CONGEST model [45]. We also
assume that each vertex has access to the outcome of unbiased private coin flips.

The efficiency of distributed algorithms is traditionally measured by their time and message
(or, communication) complexities. Time complexity measures the number of synchronous rounds
taken by the algorithm, whereas message complexity measures the total amount of messages sent
and received by all the processors during the execution of the algorithm. Both complexity mea-
sures crucially influence the performance of a distributed algorithm. We say that a problem enjoys
singular optimality if it admits a distributed algorithm whose time and message complexity are
both optimal. When the problem fails to admit such a solution, namely, algorithms with better
time complexity for it necessarily incur higher message complexity and vice versa, we say that the
problem exhibits a time-message tradeoff.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

13:4 G. Pandurangan et al.

Table 1. Summary of Upper Bounds on the Complexity of Distributed MST

Reference Time Complexity Message Complexity
Gallager et al. [14] O (n logn) O (m + n logn)
Awerbuch [2] O (n) O (m + n logn)
Garay et al. [15] O (D + n0.614 log∗ n) O (m + n1.614)
Kutten and Peleg [32] O (D +

√
n log∗ n) O (m + n1.5)

Elkin [9] Õ (μ (G,w) +
√
n)a O (m + n1.5)

This article Õ (D +
√
n) Õ (m)

aParameter μ (G, w) is called MST-radius—see Section 1.3.

1.2 Our Results

Distributed MST Algorithm. In this article, we present a distributed MST algorithm in the CON-
GEST model which is simultaneously time- and message-optimal. The algorithm is randomized

Las Vegas, and always returns the MST. The running time of the algorithm is Õ (D +
√
n) and the

message complexity is Õ (m), and both bounds hold with high probability.5 This is the first dis-

tributed MST algorithm that matches simultaneously the time lower bound of Ω̃(D +
√
n) [7, 10]

and the message lower bound of Ω(m) [31], which both apply even to randomized Monte Carlo al-
gorithms. In terms of the terminology introduced earlier, we can therefore say that the distributed
MST problem exhibits singular optimality up to polylogarithmic factors. Table 1 summarizes the
known upper bounds on the complexity of distributed MST.

Lower Bound. Both the aforementioned time and message lower bounds are existential, and are
derived using two completely different graph constructions. However, the graph used to show one
lower bound does not work for the other. To complement our main result, in Section 4 we present a

new graph construction for which any distributed MST algorithm requires bothΩ̃(D +
√
n) rounds

and Ω(m) messages.

1.3 Other Related Work

Given the importance of the distributed MST problem, there has been significant work over the
last 30 years on this problem and related aspects. Besides the prior work already mentioned in
Section 1, we now discuss other relevant work on distributed MST. Additional details can be found
in a recent survey on the problem [43].

Other Distributed MST Algorithms. Elkin [9] showed that a parameter called MST-radius captures
the complexity of distributed MST algorithms better. The MST-radius, denoted by μ (G,w), and
which is a function of the graph topology as well as the edge weights, roughly speaking is the
maximum radius each vertex has to examine to check whether any of its edges is in the MST.

Elkin devised a distributed protocol that constructs the MST in Õ (μ (G,w) +
√
n) time. The ratio

between diameter and MST-radius can be as large as Θ(n), and consequently, on some inputs, this
protocol is faster than the protocol of [32] by a factor of Ω(

√
n). However, a drawback of this

protocol (unlike the previous MST protocols [5, 13–15, 32]) is that it cannot detect the termination
of the algorithm in that time (unless μ (G,w) is given as part of the input). On the other hand, it can
be shown that for distributed MST algorithms that correctly terminate Ω(D) is a lower bound on
the running time [30, 46]. (In fact, Kutten et al. [30] shows that, for every sufficiently large n and
every function D (n) with 2 ≤ D (n) < n/4, there exists a graph G of n′ ∈ Θ(n) nodes and diameter

5Throughout, with high probability (w.h.p.) means with probability ≥ 1 − 1/nΩ(1) , where n is the network size.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees 13:5

D ′ ∈ Θ(D (n)) which requires Ω(D ′) rounds to compute a spanning tree with constant probability.)
We also note that the message complexity of Elkin’s algorithm is O (m + n1.5).

Some classes of graphs admit efficient MST algorithms that beat the general Ω̃(D +
√
n) time

lower bound. This is the case for planar graphs, graphs of bounded genus, treewidth, or path-
width [16, 21, 22], and graphs with small random walk mixing time [18].

Time Complexity. From a practical perspective, given that MST construction can take as much as

Ω(
√
n/ logn) time even in low-diameter networks, it is worth investigating whether one can design

distributed algorithms that run faster and output an approximate minimum spanning tree. The
question of devising faster approximation algorithms for MST was raised in [46]. Elkin [10] later
established a hardness result on distributed MST approximation, showing that approximating the
MST problem on a certain family of graphs of small diameter within a ratio H requires essentially

Ω(
√
n/H logn) time. Khan and Pandurangan [25] showed that there can be an exponential time gap

between exact and approximate MST construction by showing that there exist graphs where any
distributed (exact) MST algorithm takes Ω(

√
n/ logn) rounds, whereas an O (logn)-approximate

MST can be computed in O (logn) rounds. The distributed approximation algorithm of Khan and
Pandurangan is message-optimal but not time-optimal.

Das Sarma et al. [7] settled the time complexity of distributed approximate MST by showing that
this problem, as well as approximating shortest paths and about twenty other problems, satisfies

a time lower bound of Ω̃(D +
√
n). This applies to deterministic as well as randomized algorithms,

and to both exact and approximate versions. In other words, any distributed algorithm for com-

puting a H -approximation to MST, for any H ≥ 1, takes Ω̃(D +
√
n) time in the worst case.

Message Complexity. Kutten et al. [31] fully settled the message complexity of leader election in
general graphs, even for randomized algorithms and under very general settings. Specifically, they
showed that any randomized algorithm (including Monte Carlo algorithms with suitably large
constant success probability) requires Ω(m) messages; this lower bound holds for any n and m,
i.e., given any n andm, there exists a graph with Θ(n) nodes and Θ(m) edges for which the lower
bound applies. Since a distributed MST algorithm can also be used to elect a leader (where the root
of the tree is the leader, which can be chosen using O (n) messages once a tree is constructed), the
above lower bound applies to distributed MST construction as well, for all m ≥ cn, where c is a
sufficiently large constant.

The above bound holds even for non-comparison algorithms, that is algorithms that may also ma-
nipulate the actual value of node’s identities, not just compare identities with each other, and even
if nodes have initial knowledge of n,m, and D. It also holds for synchronous networks, and even
if all the nodes wake up simultaneously. Finally, it holds not only for the CONGEST model [45],
where sending a message ofO (logn) bits takes one unit of time, but also for the LOCAL model [45],
where the number of bits carried in a single message can be arbitrary. On the other hand, it can
be shown that an MST can be constructed usingO (m) messages (but time can be arbitrarily large)
in any synchronous network [31, 41].

The KT1 Variant. It is important to point out that this article and all the prior results discussed
above (including the prior MST results [2, 5, 9, 13–15, 32]) assume the so-called clean network

model, a.k.a. KT0 [45] (cf. Section 1.1), where nodes do not have initial knowledge of the identity of
their neighbors. However, one can assume a model where nodes do have such a knowledge. This
model is called theKT1 model. Although the distinction betweenKT0 andKT1 has clearly no bearing
on the asymptotic bounds for the time complexity, it is significant when considering message
complexity. Awerbuch et al. [3] show that Ω(m) is a message lower bound for MST in the KT1

model, if one allows only (possibly randomized Monte Carlo) comparison-based algorithms, i.e.,

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

13:6 G. Pandurangan et al.

algorithms that can operate on IDs only by comparing them. (We note that all prior MST algorithms
mentioned earlier are comparison-based, including ours.) Hence, the result of [3] implies that our
MST algorithm (which is comparison-based and randomized) is time- and message-optimal in the
KT1 model if one considers comparison-based algorithms only.

Awerbuch et al. [3] also show that the Ω(m) message lower bound applies even to non-
comparison based (in particular, algorithms that can perform arbitrary local computations) deter-

ministic algorithms in the CONGEST model that terminate in a time bound that depends only on
the graph topology (e.g., a function of n). On the other hand, for randomized non-comparison-based

algorithms, it turns out that the message lower bound of Ω(m) does not apply in the KT1 model.
Recently, King et al. [26] showed a surprising and elegant result: in the KT1 model one can give

a randomized Monte Carlo algorithm to construct an MST in Õ (n) messages (Ω(n) is a message

lower bound) and in Õ (n) time. This algorithm is randomized and not comparison-based. While
this algorithm shows that one can achieve o(m) message complexity (when m = ω (n polylogn)),
it is not time-optimal—it can take significantly more than Θ̃(D +

√
n) rounds. In subsequent work,

Mashreghi and King [36] presented another randomized, not comparison-based MST algorithm

with round complexity Õ (Diam(MST)) and with message complexity Õ (n). Very recently, new al-
gorithms with improved round complexity, but with worse bounds on the message complexity,
have been designed [17, 19]. It is an open question whether one can design a randomized (non-

comparison-based) algorithm that takes Õ (D +
√
n) time and Õ (n) messages in the KT1 model.

1.4 Subsequent Work

The preliminary version of this article [42] raised the open problem of whether there exists a deter-

ministic time- and message-optimal MST algorithm. We notice that our algorithm is randomized,
due to the use of the randomized cover construction of [9], even though the rest of the algorithm is
deterministic. Elkin [11], building on our work, answered this question affirmatively by devising a
deterministic MST algorithm that achieves essentially the same bounds as in this article, i.e., uses

Õ (m) messages and runs in Õ (D +
√
n) time.6

The main novelty in Elkin’s algorithm is to grow fragments up to diameter O (D), as opposed
to O (

√
n), in the first phase of the algorithm. This results in an (O (n/D),O (D))-MST forest as

the base forest, as opposed to an (O (
√
n),O (

√
n))-MST forest. Our algorithm is then executed on

top of this base forest. This simple change brings benefits to the case D ≥
√
n, for which now the

complexities of finding minimum-weight outgoing edges and of their subsequent upcast to the root
of the auxiliary BFS tree of the network are within the desired time and message bounds. Hence,
Phase 2 of Part 2 of our algorithm is bypassed, and since this phase contains the sole randomized
portion of the algorithm (that is, the randomized cover construction of [9]), the final result is a
fully deterministic algorithm.

Another round- and message-optimal algorithm for MST appeared very recently in [20], as an
application of a new distributed algorithm for computing simple functions over each part of a
given partition of the network.

2 HIGH-LEVEL OVERVIEW OF THE ALGORITHM

The time- and message-optimal distributed MST algorithm of this article builds on prior distributed
MST algorithms that were either message-optimal or time-optimal, but not both. We provide a
high-level overview of our algorithm and some intuition behind it; we also compare and contrast
it with previous MST algorithms. The full description of the algorithm and its analysis are given
in Section 3. The algorithm can be divided into two parts as explained next.

6Additionally, Elkin’s bounds improve those of our article by small polylogarithmic factors.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees 13:7

2.1 First Part: Controlled-GHS

We first run the so-called Controlled-GHS algorithm, which was first used in the sublinear-time
distributed MST algorithm of Garay et al. [15], as well as in the time-optimal algorithm of Kutten
and Peleg [32]. Controlled-GHS is the (synchronous version of the) classical Gallager-Humblet-
Spira (GHS) algorithm [14, 45], with some modifications. We recall that the synchronous GHS
algorithm, which is essentially a distributed implementation of Boruvka’s algorithm—see, e.g., [45],
consists of O (logn) phases. In the initial phase each node is an MST fragment, by which we mean
a connected subgraph of the MST. In each subsequent phase, every MST fragment finds a lightest
(i.e., minimum-weight) outgoing edge (LOE)—these edges are guaranteed to be in the MST by the
cut property [48]. The MST fragments are merged via the LOEs to form larger MST fragments.
The number of phases is O (logn), since the number of MST fragments gets at least halved in
each phase. The message complexity is O (m + n logn), which is essentially optimal, and the time
complexity is O (n logn). The time complexity is not optimal because much of the communication
during a phase uses only the MST fragment edges. Since the diameter of an MST fragment can be as
large as Ω(n) (and this can be significantly larger than the graph diameter D), the time complexity
of the GHS algorithm is not optimal.

The Controlled-GHS algorithm alleviates this situation by controlling the growth of the diam-
eter of the MST fragments during merging. At the end of Controlled-GHS, at most

√
n fragments

remain, each of which has diameterO (
√
n). These are called base fragments. Controlled-GHS can be

implemented using Õ (m) messages in Õ (
√
n) rounds. (Note that Controlled-GHS as implemented

in the time-optimal algorithm of [32] is not message-optimal—the messages exchanged can be

Õ (m + n1.5); however, a modified version can be implemented using Õ (m) messages, as explained
in Section 3.1.)

2.2 Second Part: Merging the
√
n Remaining Fragments

The second part of our algorithm, after the Controlled-GHS part, is different from the existing
time-optimal MST algorithms. The existing time-optimal MST algorithms [9, 32], as well as the
algorithm of [15], are not message-optimal since they use the Pipeline procedure of [15, 44]. The
Pipeline procedure builds an auxiliary breadth-first search (BFS) tree of the network, collects all
the inter-fragment edges (i.e., the edges between the

√
n MST fragments) at the root of the BFS tree,

and then finds the MST locally. The Pipeline algorithm uses the cycle property of the MST [48] to
eliminate those inter-fragment edges that cannot belong to the MST en route of their journey to
the root. While the Pipeline procedure, due to the pipelining of the edges to the root, takesO (

√
n)

time (since there are at most so many MST edges left to be discovered after the end of the first
part), it is not message-optimal: it exchanges O (m + n1.5) messages, since each node in the BFS
tree can send up to O (

√
n) edges leading to O (n1.5) messages overall (the BFS tree construction

takes O (m) messages).
Our algorithm uses a different strategy to achieve optimality in both time and messages. The

main novelty of our algorithm (Algorithm 1) is how the (at most)
√
n base fragments which remain

at the end of the Controlled-GHS procedure are merged into one resulting fragment (the MST).
Unlike previous time-optimal algorithms [9, 15, 32], we do not use the Pipeline procedure of [15,
44], since it is not message-optimal. Instead, we continue to merge fragments, Borůvka-style. Our
algorithm uses two main ideas to implement the Borůvka-style merging efficiently. (Merging is
achieved by renaming the IDs of the merged fragments to a common ID, i.e., all nodes in the com-
bined fragment will have this common ID.) The first idea is a procedure to efficiently merge when
D is small (i.e.,D = O (

√
n)) or when the number of fragments remaining is small (i.e.,O (n/D)). The

second idea is to use sparse neighborhood covers and efficient communication between fragments

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

13:8 G. Pandurangan et al.

to merge fragments when D is large and the number of fragments is large. Accordingly, the second
part of our algorithm can be divided into three phases, which are described next.

2.2.1 Phase 1: When D is O (
√
n). Phase 1 can be treated as a special case of Phase 3 (to be

described later). However, we describe Phase 1 separately as it helps in the understanding of the
other phases as well.

We construct a BFS tree on the entire network, and perform the merging process as follows:
Each base fragment finds its LOE by convergecasting within the fragment to the fragment leader.
This takesO (

√
n) time andO (n) messages overall. TheO (

√
n) LOE edges are sent by the leaders of

the respective base fragments to the root by upcasting (see, e.g., [45]). This takes O (D +
√
n) time

andO (D
√
n) messages, as each of the

√
n edges has to traverse up toD edges on the way to the root.

The root merges the fragments and sends the renamed fragment IDs to the respective leaders of the
base fragments by downcast (which has the same time and message complexity as upcast [45]). The
leaders of the base fragments broadcast the new ID to all other nodes in their respective fragments.
This takes O (

√
n) messages per fragment and hence O (n) messages overall. Thus, one iteration

of the merging can be done in O (D +
√
n) time and using O (D

√
n) messages. Since each iteration

reduces the number of fragments by at least half, the number of iterations isO (logn). At the end of
this iteration, several base fragments may share the same label. In subsequent iterations, each base
fragment finds its LOE (i.e., the LOE between itself and the other base fragments which do not have
the same label) by convergecasting within its own fragment and (the leader of the base fragment)
sends the LOE to the root; thus, O (

√
n) edges are sent to the root (one per base fragment), though

there is a lesser number of combined fragments (with distinct labels). The root finds the overall
LOE of the combined fragments and does the merging. This is still fine, since the time and message
complexity per merging iteration is O (D +

√
n) and O (D

√
n) = O (n), respectively, as required.

2.2.2 Phase 2: When D and the Number of Fragments are Large. When D is large (say n1/2+ε ,
for some 0 < ε ≤ 1/2) and the number of fragments is large (say, Θ(

√
n)) the previous approach of

merging via the root of the global BFS tree does not work directly, since the message complexity
would be O (D

√
n). The second idea addresses this issue: we merge in a manner that respects lo-

cality. That is, we merge fragments that are close by using a local leader, such that the LOE edges
do not have to travel too far. The high-level idea is to use a hierarchy of sparse neighborhood covers

to accomplish the merging.7 A sparse neighborhood cover is a decomposition of a graph into a set
of overlapping clusters that satisfy suitable properties (see Definition 3.4 in Section 3.4). The main
intuitions behind using a cover are the following: (1) the clusters of the cover have relatively small
diameter (compared to the strong diameter of the fragment,8 and is always bounded byD), and this
allows efficient communication for fragments contained within a cluster (i.e., the weak diameter
of the fragment is bounded by the cluster diameter); (2) the clusters of a cover overlap only a little,
i.e., each vertex belongs only to a few clusters; this allows essentially congestion-free (overhead
is at most polylog(n) per vertex) communication and hence operations can be done efficiently
in parallel across all the clusters of a cover. This phase continues until the number of fragments
reduces toO (n/D), when we switch to Phase 3. We next give more details on the merging process
in Phase 2.

7We use an efficient randomized cover construction algorithm due to Elkin [9]; this is the only randomization used in

our algorithm. Neighborhood covers were used by Elkin [9] to improve the running time of the Pipeline procedure of his

distributed MST algorithm; on the other hand, here we use them to replace the Pipeline part entirely in order to achieve

message optimality as well.
8Recall that the strong diameter diamF (F) of fragment F refers to the longest shortest path (ignoring weights) between

any two vertices in F that only passes through vertices in V (F), whereas the weak diameter diamG (F) allows the use of

vertices that are in V (G) \V (F).

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees 13:9

Communication-Efficient Paths. An important technical aspect of the merging process is the
construction of efficient communication paths between nearby fragments, which are main-
tained and updated by the algorithm in each iteration. The algorithm requires fragments to be
“communication-efficient”, in the sense that there is an additional set of short paths between the
leader of a fragment F and the fragment members. Such a path might use “shortcuts” through
vertices in V (G) \V (F) to reduce the distance. The following definition formalizes this idea:

Definition 2.1 (Communication-Efficient Fragment and Path). Let F be a fragment of G, and let
f ∈ F be a vertex designated as the fragment leader of F . We say that fragment F is communication-

efficient if, for each vertex v ∈ F , it is associated to a path between v and f (possibly including
vertices inV (G) \V (F)) of length O (diamG (F) +

√
n), where diamG (F) is the weak diameter of F .

Such a path is called communication-efficient path for F .

Section 3.2 defines the routing data structures that are used to maintain communication-efficient
paths. Later, in Section 3.4, we describe the construction of the paths (and routing data struc-
tures) inductively. We show that, in each iteration, all fragments find their respective LOEs in

time Õ (
√
n + D) and using a total of Õ (m) messages. While we cannot merge all fragments (along

their LOEs), as this will create long chains, we use a procedure called ComputeMaximalMatching

(Section 3.5) to merge fragments in a controlled manner. ComputeMaximalMatching finds a
maximal matching in the fragment graph Fi induced by the LOE edges. The crucial part is
using communication-efficient paths to communicate efficiently (both time- and message-wise)
between the fragment leader and the nodes in the fragment (while finding LOEs) as well
as between fragment leaders of adjacent fragments (while merging as well as implementing
ComputeMaximalMatching). The procedure FindLightest (see Section 3.3) describes the LOE find-
ing process assuming communication-efficient fragments. The maintenance of such efficient frag-
ments is shown recursively: the base fragments are efficient and after merging the resulting frag-
ments are also efficient.

We use a hierarchy of sparse neighborhood covers to construct communication-efficient frag-
ments (see Section 3.4). Each cover in the hierarchy consists of a collection of clusters of a certain
radius: the lowest cover in the hierarchy has clusters of radius O (

√
n) (large enough to contain at

least one base fragment, which has radius O (
√
n)); subsequent covers in the hierarchy have clus-

ters of geometrically increasing radii, and the last cover in the hierarchy is simply the BFS tree of
the entire graph. Initially, it is easy to construct communication-efficient paths in base fragments,
since they have strong diameterO (

√
n) (cf. Section 3.2, Lemma 3.2). In subsequent iterations, when

merging two adjacent fragments, the algorithm finds a cluster that is (just) large enough to contain
both the fragments. Figure 1 in Section 3.4 gives an example of this process. The neighborhood
property of the cluster allows the algorithm to construct communication-efficient paths between
merged fragments (that might take shortcuts outside the fragments, and hence have small weak

diameter) assuming that the fragments before merging are efficient. Note that it is important to
make sure that the number of fragments in a cluster is not too large in relation to the radius of
the cluster—otherwise, the message complexity would be high (as in the Pipeline scenario). Hence,
a key invariant maintained through all the iterations is that the cluster depth times the number of

fragments that are contained in the cluster of such depth is always bounded by Õ (n), and this helps in
keeping the message complexity low. This invariant is maintained by making sure that the num-
ber of fragments per cluster goes down enough to compensate for the increase in cluster radius
(Lemma 3.7 in Section 3.4). At the end of Phase 3, the invariant guarantees that when the cluster
radius is D, the number of fragments is O (n/D).

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

13:10 G. Pandurangan et al.

2.2.3 Phase 3: When the Cluster Radius Is D. When the cluster radius becomes D (i.e., the cover
is just the BFS tree), we switch to Phase 3. The number of remaining fragments will be O (n/D)
(which is guaranteed at the end of Phase 2). Phase 3 uses a merging procedure very similar to
that of Phase 1. In Phase 1, in every merging iteration, each base fragment finds its respective
LOEs, i.e., LOEs between itself and the rest of the fragments, by convergecasting to their respective
leaders; the leaders send at mostO (

√
n) edges to the root by upcast. The root merges the fragments

and sends out the merged information to the base fragment leaders by downcast. In Phase 3, we
treat the O (n/D) remaining fragments as the “base fragments” and repeat the above process. An
important difference to Phase 1 is that the merging leaves the leaders of these base fragments intact:
in the future iterations of Phase 3, each of these base fragments again tries to find an LOE using
the procedure FindLightest, whereby only edges that have endpoints in fragments with distinct
labels are considered as candidate for the LOE.

Note that the fragment leaders communicate with their respective nodes as well as the BFS root
via the hierarchy of communication-efficient routing paths constructed in Phase 2; these incur

only a polylogarithmic overhead. This takes Õ (D + n/D) time (per merging iteration) sinceO (n/D)
LOE edges are sent to the root of the BFS tree via communication-efficient paths (in every merging

iteration) and a message complexity of Õ (D · n/D) = Õ (n) (per merging iteration) since, in each

iteration, each of theO (n/D) edges takes Õ (D) messages to reach the root. Since there areO (logn)
iterations overall, we obtain the desired bounds.

3 DESCRIPTION AND ANALYSIS OF THE ALGORITHM

The algorithm operates on the MST forest, which is a partition of the vertices of a graph into a
collection of trees {T1, . . . ,T� } where every tree is a subgraph of the (final) MST. A fragment Fi is
the subgraph induced byV (Ti) inG. We say that an MST forest is an (α , β)-MST forest if it contains
at most α fragments, each with a strong diameter of at most β . Similarly, an MST forest is a weak

(α , β)-MST forest if it contains at most α fragments, each with a weak diameter of at most β .
We define the fragment graph, a structure that is used throughout the algorithm. The fragment

graph Fi consists of vertices {F1, . . . , Fk }, where each Fj (1 ≤ j ≤ k) is a fragment at the start of
iteration i ≥ 1 of the algorithm. The edges of Fi are obtained by contracting the vertices of each
Fj ∈ V (F) to a single vertex in G and removing all resulting self-loops of G. We sometimes call
the remaining edges inter-fragment edges. As our algorithm proceeds by finding lightest outgoing
edges (LOEs) from each fragment, we operate partly on the LOE graph Mi of iteration i , which
shares the same vertex set as Fi , i.e., Mi ⊆ Fi , but where we remove all inter-fragment edges
except for one (unique) LOE per fragment.

3.1 The Controlled-GHS Procedure

Our algorithm starts out by making an invocation to the Controlled-GHS procedure introduced
in [15] and subsequently refined in [32] and in [33] and [34].

Controlled-GHS (Algorithm 2) is a modified variant of the original GHS algorithm, whose pur-
pose is to produce a balanced outcome in terms of number and diameter of the resulting fragments
(whereas the original GHS algorithm allows an uncontrolled growth of fragments). This is achieved
by computing, in each phase, a maximal matching on the fragment forest, and merging fragments
accordingly. Here, we shall resort to the newest variant presented in [33] and [34], since it incurs
a lower message complexity than the two preceding versions. Each phase essentially reduces the
number of fragments by a factor of two, while not increasing the diameter of any fragment by
more than a factor of two. Since the number of phases of Controlled-GHS is capped at 	log

√
n
,9

9Throughout, log denotes logarithm to the base 2.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees 13:11

ALGORITHM 1: A Time- and Message-Optimal Distributed MST Algorithm.

** Part 1:
1: Run Controlled-GHS procedure (Algorithm 2).

2: Let F1 be the base fragments obtained from Controlled-GHS.

** Part 2:
* Start of Phase 1:

3: for every fragment F ∈ F1 do

4: Construct a BFS tree T of F rooted at the fragment leader.

5: Every u ∈ F sets upu (F , 1) to its BFS parent and downu (F , 1) to its BFS children.

6: Run the leader election algorithm of [31] to find a constant approximation of diameter D .

7: if D = O (
√

n) then set F ′ = F1 and skip to Phase 3 (Line 32).

* Start of Phase 2:

8: for i = 2, . . . , 	log(D/
√

n)
 do // All nodes start iteration i at the same time

9: Construct cover Ci = ComputeCover(6 · 2i+1 · c1
√

n), where c1 is a suitably chosen constant.

10: Every node locally remembers its incident edges of the directed trees in Ci .

11: for each fragment F1 ∈ V (Fi) do

12: Let (u, v) = FindLightest(F1) where u ∈ F1 and v ∈ F2. // (u, v) is the LOE of F1. See Section 3.3.

13: if v ∈ F2 has an incoming lightest edge e1 from F1 then

14: v forwards e1 to leader f2 ∈ F2 along its ((F2, 1), . . . , (F2, i − 1))-upward-path.

15: FindPath(F1, F2). // Find a communication-efficient path that connects leaders f1 ∈ F1 and f2 ∈ F2; this is

needed for merging and also for iteration i + 1. See Section 3.4.

// Merging of fragments:

16: for each fragment F1 ∈ V (Fi) do

17: if F1 has a weak diameter of ≤ 2i c1
√

n then F1 is marked active.

18: LetMi ⊆ Fi be the graph induced by the LOE edges whose vertices are the active fragments.

19: Let E′ be the edges output by running ComputeMaximalMatching on Mi . // We simulate inter-fragment com-

munication using communication-efficient paths.

20: for each edge (F , F ′) ∈ E′: Mark fragment pair for merging.

21: for each active fragment F not incident to an edge in E′: Mark LOE of F for merging.

22: Orient all edges marked for merging from lower to higher fragment ID. A fragment leader whose fragment does

not have an outgoing marked edge becomes dominator.

23: Every non-dominator fragment leader sends merge-request to its adjacent dominator.

24: for each dominating leader f do

25: if leader f received merge-requests from F1, . . . , F� then

26: Node f is the leader of the merged fragment F ∪ F1 ∪ · · · ∪ F� , where F is f ’s current fragment.

27: for j = 1, . . . , � do

28: f sends μ = 〈MergeWith, F 〉 along its (Fj , i)-path to the leader fj of Fj .

29: When fj receives μ , it instructs all nodes v ∈ Fj to update their fragment ID to F and update all entries

in up and down previously indexed with Fj , to be indexed with F .

30: Let Fi+1 be the fragment graph consisting of the merged fragments ofMi and the inter-fragment edges.

end of iteration i .

31: Let F ′ = F	log(D/
√

n)
+1.

* Start of Phase 3: // Compute final MST given a fragment graph F ′.
32: for Θ(log n) iterations do

33: Invoke FindLightest(F ′) for each fragment F ′ ∈ F ′ in parallel and then upcast the resulting LOE in a BFS tree of

G to a root u .

34: BFS’s root u receives the LOEs from all fragments in F ′ and computes the merging locally. It then sends the

merged labels to all the fragment leadersby downcast via the BFS tree.

35: Each fragment leader relays the new label (if it was changed) to all nodes in its own fragment via broadcast along

the communication-efficient paths.

36: At the end of this iteration, several fragments in F ′ may share the same label. At the start of the next iteration,

each fragment in F ′ individually invokes FindLightest, whereby only edges that have endpoints in fragments with

distinct labels are considered as candidates for the LOE.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

13:12 G. Pandurangan et al.

ALGORITHM 2: Procedure Controlled-GHS: builds a (
√
n,O (

√
n))-MST forest in the network.

1: procedure Controlled-GHS:

2: F = V (G) // initial MST forest

3: for i = 0, . . . , 	log
√

n
 do

4: C = set of connectivity components of F (i.e., maximal trees).

5: Each C ∈ C of diameter at most 2i determines the LOE of C and adds it to a candidate set S .

6: Add a maximal matching SM ⊆ S in the graph (C, S) to F .

7: If C ∈ C of diameter at most 2i has no incident edge in SM , it adds the edge it selected into S to F .

it produces a (
√
n,O (

√
n))-MST forest. The fragments returned by the Controlled-GHS procedure

are called base fragments, and we denote their set by F1.
The following lemma follows from some results in [33], described also in [40].

Lemma 3.1. Algorithm 2 outputs a (
√
n,O (

√
n))-MST forest in O (

√
n log∗ n) rounds and sends

O (m logn + n log2 n) messages.

Proof. The correctness of the algorithm is established by Lemma 6.15 and Lemma 6.17 of [33].
By Corollary 6.16 of [33], the ith iteration of the algorithm can be implemented in timeO (2i log∗ n).
Hence, the time complexity of Controlled-GHS is

O��
�

	log
√

n
∑

i=0

2i log∗ n��
�
= O
(√

n log∗ n
)

rounds.
We now analyze the message complexity of the algorithm. Consider any of the 	log

√
n
 iter-

ations of the algorithm. The message complexity for finding the lightest outgoing edge for each
fragment (Line 5) is O (m)—this follows from the analysis of the GHS algorithms. Then (Line 6) a
maximal matching is built using the Cole-Vishkin symmetry-breaking algorithm [6]. As argued in
the proof of Corollary 6.16 of [33], in every iteration of this algorithm, only one message per frag-
ment needs to be exchanged. Since the Cole-Vishkin algorithm terminates in O (log∗ n) iterations,
the message complexity for building the maximal matching is O (n log∗ n). Afterwards, adding se-
lected edges into S to F (Line 7) can be done with an additional O (n logn) message complexity.
The message complexity of algorithm Controlled-GHS is therefore O (m logn + n log2 n). �

3.2 Routing Data Structures for Communication-Efficient Paths

For achieving our complexity bounds, our algorithm maintains efficient fragments in each iter-
ation. To this end, nodes locally maintain routing tables. In more detail, every node u ∈ G has 2
two-dimensional arrays upu and downu (called routing arrays), which are indexed by a (fragment
ID,level)-pair, where level stands for the iteration number, i.e., the for loop variable i in Algorithm 1.
Array upu maps to one of the port numbers in {1, . . . ,du }, where du is the degree of u. In contrast,
array downu maps to a set of port numbers. Intuitively speaking, upu (F , i) refers to u’s parent on
a path p towards the leader of F where i refers to the iteration in which this path was constructed.
Similarly, we can think of downu (F , i) as the set ofu’s children in all communication efficient paths
originating at the leader of F and going through u and we use downu to disseminate information
from the leader to the fragment members. Oversimplifying, we can envision upu and downu as a
way to keep track of the parent-child relations in a tree that is rooted at the fragment leader. (Note
that level is an integer in the range [1, 	log(D/

√
n)
] that corresponds to the iteration number of

the main loop in which this entry was added; see Lines 8-30 of Algorithm 1.) For a fixed fragment
F and some value level = i , we will show that the up and down arrays induce directed chains of
incident edges.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees 13:13

Depending on whether we use array up or array down to route along a chain of edges, we
call the chain an (F , i)-upward-path or an (F , i)-downward-path. When we just want to emphasize
the existence of a path between a node v and a fragment leader f , we simply say that there is a
communication-efficient (F , i)-path between v and f and we omit “(F , i)” when it is not relevant.
We define the nodes specified by downu (F , i) to be the (F , i)-children of u and the node connected
to port upu (F , i) to be the (F , i)-parent of u. So far, we have only presented the definitions of our
routing structures. We will explain their construction in more detail in Section 3.4.

We now describe the routing of messages in more detail: Suppose thatu ∈ F generates a message
μ that it wants to send to the leader of F . Then, u encapsulates μ together with F ’s ID, the value
level = 1, and an indicator “up” in a message and sends it to its neighbor on port upu (F , 1); for
simplicity, we use F to denote both, the fragment and its ID. When node v receives μ with values
F and level = 1, it looks up upv (F , 1) and, if upv (F , 1) = a for some integer a, then v forwards the
(encapsulated) message along the specified port.10 This means that μ is relayed to the rootw of the
(F , 1)-upward-path. For node w , the value of upw (F , 1) is undefined and so w attempts to lookup
upw (F , 2) and then forwards μ along the (F , 2)-upward-path and so forth. In a similar manner, μ is
forwarded along the path segments p1 . . .pi (1 ≤ j ≤ i), where pj is the (F , j)-upward-path in the
ith iteration of the algorithm’s main-loop. We will show that the root of the (F , i)-upward-path
coincides with the fragment leader at the start of the ith iteration.

On the other hand, when the iteration leader u in the ith iteration wants to disseminate a
message μ to the fragment members, it sends μ to every port in the set downu (F , i). Similarly
to above, this message is relayed to each leaf v of each (F , i)-downward-path, for which the entry
downv (F , i) is undefined. When i > 1, nodev then forwards μ to the ports in downv (F , j), for each
j < i for which v is a root of the respective (F , j)-upward-path, and μ traverses the path segments
qi . . .q1 where q� (1 ≤ � ≤ i) is the (F , �)-downward-path. For convenience, we call the concatena-
tion of qi . . .q1 a ((F , i), . . . , (F , 1))-downward path (or simply ((F , i), . . . , (F , 1))-path), and define
a ((F , 1), . . . , (F , i))-upward path similarly.

We are now ready to describe the individual components of our algorithm in more detail. To
simplify the presentation, we will discuss the details of Algorithm 1 inductively. We assume that
every node u ∈ F ∈ F1 knows its parent and children in a BFS tree rooted at the fragment leader
f ∈ F . (BFS trees for spanning each fragment can easily be constructed: in fact, the Controlled-GHS

procedure provides trees of depthO (
√
n) for each base fragment.) Thus, node u initializes its rout-

ing arrays by pointing upu (F , 1) to its BFS parent and by setting downu (F , 1) to the port values
connecting its BFS children.

Lemma 3.2. At the start of the first iteration of the algorithm, for any fragment F and every u ∈ F ,

there is an (F , 1)-path between F ’s fragment leader and u with a path length of O (
√
n).

Proof. From the initialization of the routing tables up and down it is immediate that we reach
the leader when starting at a nodeu ∈ F and moving along the (F , 1)-upward-path. Similarly, start-
ing at the leader and moving along the (F , 1)-downward-path, allows us to reach any fragment
member. The bound on the path length follows from the strong diameter bound of the base frag-
ments, i.e., O (

√
n) (see Lemma 3.1). �

3.3 Finding the Lightest Outgoing Edges (LOEs): Procedure FindLightest

We now describe Procedure FindLightest(F), which enables the fragment leader f to obtain the
lightest outgoing edge, i.e., the lightest edge that has exactly one endpoint in F . Consider iteration

10Node v is free to perform additional computations on the received messages as described by our algorithms, e.g., v might

aggregate simultaneously received messages in some form. Here we only focus on the forwarding mechanism.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

13:14 G. Pandurangan et al.

i ≥ 1. As a first step, FindLightest(F) requires all fragment nodes to exchange their fragment IDs
with their neighbors to ensure that every node v knows its set of incident outgoing edges Ev . If
a node v is a leaf in the BFS tree of its base fragment, i.e., it does not have any (F , 1)-children, it
starts by sending the lightest edge in Ev along the ((F , 1), . . . , (F , i))-upward-path. In general, a
node u on an (F , j)-upward-path (j ≥ 1) waits to receive the lightest-edge messages from all its
(F , j)-children (or its (F , j − 1)-children if any), and then forwards the lightest outgoing edge that
it has seen to its parent in the ((F , j), . . . , (F , i))-upward-path.

The following lemma proves some useful properties of FindLightest. Note that we do not yet
claim any bound on the message complexity at this point, as this requires us to inductively argue
on the structure of the fragments, which relies on properties that we introduce in the subsequent
sections. Hence, we postpone the message complexity analysis to Lemma 3.12.

Lemma 3.3 (Efficient LOE Computation). Suppose that at the start of iteration i + 1 ≥ 2 every

fragment in F ∈ Fi is communication-efficient. Then, the fragment leader of F obtains the lightest

outgoing edge by executing Procedure FindLightest(F) in O (diamG (F) +
√
n) rounds.

Proof. To accurately bound the congestion, we must consider the simultaneous invocations of
FindLightest for each fragment in Fi . Since, by assumption, every fragment is communication-
efficient, every fragment node u can relay its lightest outgoing edge information to the fragment
leader along a path p of length O (diamG (F) +

√
n). Note that p is precisely the ((F , 1), . . . , (F , i))-

upward path to the leader starting at u. To bound the congestion, we observe that the (F , 1)-
upward subpath of p is confined to nodes in Fu where Fu is the base fragment that u was part of
after executing Controlled-GHS. As all base fragments are disjoint and lightest edge messages are
aggregated within the same base fragment, the base fragment leader (who might not be the leader
of the current fragment F) accumulates this information from nodes in Fu within O (

√
n) rounds

(cf. Lemma 3.2). After having traversed the (F , 1)-upward path (i.e., the first segment of p) of each
base fragment, the number of distinct messages carrying lightest edge information is reduced to
O (
√
n) in total. Hence, when forwarding any such message along a subsequent segment ofp, i.e., an

(Fj)-upward path for j > 1, the maximum congestion at any node can be O (
√
n). Using a standard

upcast (see, e.g., [45]) and the fact that the length of path p is O (diamG (F) +
√
n), it follows that

the fragment leader receives all messages in O (diamG (F) +
√
n) rounds, as required. �

3.4 Finding Communication-Efficient Paths: Procedure FindPath

After executing FindLightest(F1), the leader f1 of F1 has obtained the identity of the lightest out-
going edge e = (u,v) where v is in some distinct fragment F2. Before invoking our next building
block, Procedure FindPath(F1, F2), we need to ensure that both leaders are aware of e and hence
we instruct the node v to forward e along its ((F2, 1), . . . , (F2, i))-upward-path to its leader f2 (see
Lines 13–14 of Algorithm 1).

We now describe FindPath(F1, F2) in detail. The goal is to compute a communication-efficient
path between leaders f1 and f2 that can be used to route messages between nodes in this fragment.
In Section 3.5, we will see how to leverage these communication-efficient paths to efficiently merge
fragments.

A crucial building block for finding an efficient path are the sparse neighborhood covers that we
precompute at the start of each iteration (see Line 9 of Algorithm 1), and the properties of which
we recall here. Note that the cover definition concerns the underlying unweighted graph, i.e., all
distances are just the hop distances.

Definition 3.4. A sparse (κ,W)-neighborhood cover of a graph is a collection C of trees, each
called a cluster, with the following properties.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees 13:15

(1) (Depth property) For each tree τ ∈ C, depth(τ) = O (W · κ).
(2) (Sparsity property) Each vertex v of the graph appears in Õ (κ · n1/κ) different trees τ ∈ C.
(3) (Neighborhood property) For each vertex v of the graph there exists a tree τ ∈ C that con-

tains the entireW -neighborhood of vertex v .

Sparse neighborhood covers were introduced in [4], and were found useful in several applica-
tions. We will use an efficient distributed (randomized) cover construction due to Elkin [9], which
we recall here.11

Theorem 3.5 ([9, Theorem A.8]). There exists a distributed randomized Las Vegas algorithm,

which here we call ComputeCover, that constructs a (κ,W)-neighborhood cover in time O (κ2 · n1/κ ·
logn ·W) and using O (m · κ · n1/κ · logn) messages (both bounds hold with high probability) in the

CONGEST model.

In our MST algorithm, we shall invoke Elkin’s ComputeCover procedure with κ = logn, and
write ComputeCover(W), whereW is the neighborhood parameter.

We are now ready to describe the communication-efficient paths construction. As we want to
keep the overall message complexity low, we start at the smallest cover construction C1 and care-
fully probe for a cluster (tree) in C1 that induces a communication-efficient path between f1 and f2.
Recall that every node locally keeps track of its incident cluster edges for each of the precomputed
covers but we need to keep in mind that these structures are independent of the up and down

arrays. We instruct both leaders f1 and f2 to send a copy of their probe message to each of their
C1-parents. The parent nodes forward u’s probe message along their cluster tree to the root of
their respective cluster tree. Depending on whether a root receives the probe message in a timely
fashion, we consider two cases:

Case 1: If there exists Cw ∈ C1 such that f1, f2 ∈ Cw , then the probe message of both leaders

reaches, through some path p0 and p1, the root w ∈ Cw within Õ (6 · 22c1
√
n logn +

√
n log2 n)

rounds, where the first term is depth(C1) and the second term is to account for the congestion
caused by simultaneous probe messages from the other fragment leaders (cf. Lemma 3.8). Then,w
replies by sending a “success” message back to f1 and f2 by reversing paths p1 and p2 to inform
the leaders that they have found a communication-efficient path.

Note that it is possible for f1 to receive multiple “success” reply messages. However, since a
cluster root only sends a success message if it receives probe messages from both leaders, f1 and
f2 receive exactly the same set M of success messages. Thus, they both pick the same success
message sent by the cluster root node with the largest ID in M (without loss of generality, as-
sume that it is w) to identify the communication-efficient path and discard the other messages
in M .

Suppose that f1 received the message from w along a path p1 in cluster tree Cw . Then, f1 sends
a message along p1 and instructs every node v in p1 to set upv (F2, i + 1) to the port of its suc-
cessor (towards the root w) in p1 and points upv (F1, i + 1) to its predecessor in p1. When a node
v updates its upv (F2, i + 1) array to some port a, it contacts the adjacent node v ′ connected at
this port who in turn updates downv ′ (F2, i + 1) to point to v . Similarly, leader f2 and all nodes
on the path p2 proceeds updating their respective up and down entries with the information pro-
vided by p2 towards w . Then, f1 contacts its successor in p1 to update its routing information
whereas f2 sends a similar request to its successor in p2. After these requests reach the clus-
ter root w , the concatenated path p1 p2 is a communication-efficient path between leaders f1
and f2.

11Although the algorithm as described in [9] is Monte Carlo, it can be easily converted to Las Vegas.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

13:16 G. Pandurangan et al.

Fig. 1. Fragments F1, . . . , F4. In the first iteration, F1, F4 and F2, F3 form adjacent fragment pairs that com-

municate along communication-efficient paths. F1 and F4 execute FindPath and send probe messages along

clusters of covers C1, . . . ,C� and finally succeed to find a communication-efficient path in a clusterC1 ∈ C� ,

which goes through the cluster leader x1 ∈ C1. Similarly F2 and F3 obtain a communication-efficient path

in cluster C2 ∈ Ck , after sending probe messages in clusters of covers C1, . . . ,Ck . In the next iteration, the

merged fragments F1 ∪ F4 and F2 ∪ F3 are (respectively) adjacent and proceed to construct a communication-

efficient path in cluster C ′1 ∈ Cj , after probing covers C1, . . . ,Cj .

Case 2: On the other hand, if there is no appropriate cluster in C1 that covers both leader nodes,
then at least one of the two probe messages will arrive untimely at every cluster root and the
leaders do not receive any success messages. Then, f1 and f2 rerun the probing process by sending
a probe message along their incident C2 cluster edges and so forth. Note that all fragment leaders
synchronize before executing the probing process. We show in Lemma 3.7 that all fragments have
weak diameter at most 6 · 2ic1

√
n in iteration i . Notice the radius of Ci (see Line 9) ensures that f1

and f2 will arrive at a value k ≤ i , where Ck is the cover having the smallest depth such that f1
and f2 are covered by some cluster in Ck (but not by any cluster in Ck−1). Thus, we can apply Case
1 for Ck .

Figure 1 gives an example for the construction of communication-efficient paths.

Lemma 3.6. The number of probe messages that are generated by distinct fragment leaders and

that are in transit simultaneously during an iteration of FindPath is O (
√
n log2 n) w.h.p.

Proof. Since, by Lemma 3.1, there are O (
√
n) base fragments, the total number of leaders at

any point that are sending probe messages simultaneously is O (
√
n). Note that, when exploring

the communication efficient paths of a cover Cj , a leader needs to send a copy of its probe message

to its parent in each of its O (log2 n) clusters of Cj that it is contained in. �

Lemma 3.7. At the start of each iteration i + 1, the fragment graph Fi induces a weak (
√
n/2i , 6 ·

2ic1
√
n))-MST forest in G.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees 13:17

Proof. We adapt the proof of Lemmas 6.15 and 6.17 of [33] to show that the fragment graph is a
weak (

√
n/2i , 6 · 2ic1

√
n)-MST forest. For the case i = 1, the claim follows directly from Lemma 3.1.

We now focus on the inductive step i > 1.
Suppose thatFi is a weak (

√
n/2i , 6 · 2ic1

√
n)-MST forest. We first argue that every new fragment

in Fi+1 must have a weak diameter of at most 6 · 2i+1c1
√
n.

Consider the subgraph M of Fi induced by the edges marked for merging. By Lines 20–21 of
Algorithm 1, each component of M can contain at most one marked edge that was in the output of
ComputeMaximalMatching. Thus, analogously to Lemma 6.15 in [33], it follows that each com-
ponent in M contains at most one fragment of weak diameter > 2ic1

√
n, since only fragments of

weak diameter at most 2ic1
√
n become active and participate in the matching. Note that the maxi-

mality of the matching implies that each component of M has diameter (in the fragment subgraph
M) at most 3. Moreover, all except at most 1 fragment of such a component must have a weak
diameter of at most 2ic1

√
n since a fragment of a larger weak diameter does not select any edges

for merging in this iteration. It follows by the inductive hypothesis that the merged component
has a weak diameter of at most 6 · 2ic1

√
n + 3 · 2ic1

√
n ≤ 6 · 2i+1c1

√
n.

We now argue that each fragment contains at least 2ic2
√
n nodes at the start of iteration i > 1,

assuming that it is true for all j = 1, . . . , i − 1. To this end, consider the merging of fragments in
iteration i − 1. If a fragment F ∈ Fi contains less than 2ic2

√
n nodes, it must have a weak diameter

of at most 2ic2
√
n and hence marks itself as active in Line 17. By the description of the merging

process, F is guaranteed to merge with at least one other fragment F ′. By the inductive hypothesis,
both F and F ′ consist of at least 2i−1c2

√
n nodes and hence the merged fragment must have at least

2ic2
√
n nodes, as required. �

Lemma 3.8. Consider any iteration i ≥ 1. After the execution of FindPath(F1, F2), there exists a

communication-efficient path between leader f1 and leader f2 of length at mostO (2k
√
n), where k ≤ i

is the smallest integer such that there exists a cluster treeC ∈ Ck such that f1, f2 ∈ C . FindPath(F1, F2)
requires O (2k

√
n log2 n) messages and terminates in

Õ
(√

n log2 n +min{2k
√
n, diam(G)}

)

rounds with high probability.

Proof. By the description of FindPath, leaders f1 and f2 both start sending a probe message
along their incident Cj -edges towards the respective cluster roots, for j = 1, . . . , 	log

√
n
. First,

note that f1 and f2 will not establish an efficient communication path for a cluster C ′ in some Cj

(j < k), since, by definition, f1 and f2 are not both inC ′ and hence one of the probe messages will
not reach the root of C ′. To see that k ≤ i , note that Lemma 3.7 tells us that in iteration i every
fragment has weak diameter at most O (2i

√
n), whereas Ci has a cluster radius of Θ(2i+1

√
n logn).

We now argue the message complexity bound. Apart from the probe messages sent to discover
the communication-efficient path in a cluster of cover Ck , we also need to account for the probe
messages sent along cluster edges of covers C1, . . . ,Ck−1, thus generating at most

k∑

j=1

O (depth(Cj) log2 n) =
k∑

j=1

O (2j
√
n log2 n) ≤ 2k+1O (

√
n log2 n) = O (depth(Ck) log2 n)

messages, as required.
Since f1 and f2 can communicate efficiently via a path p leading through a cluster of cover Ck ,

then the length ofp is at most 2 depth(Ck). Applying Lemma 3.6 to take into account the additional

congestion caused by simultaneous probe messages, yields a time complexity of Õ (depth(Ck) +√
n log2 n). �

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

13:18 G. Pandurangan et al.

Lemma 3.9. Consider an iteration i and suppose that FindPath is invoked simultaneously for each

lightest outgoing edge. Then, the total message complexity of all invocations is O (n log3 n) and the

time complexity is Õ (diam(G) +
√
n) with high probability.

Proof. From Lemma 3.7, we know that every fragment in Fi has weak diameter of O (2i
√
n).

Thus, every pair of adjacent fragments F1, F2 ∈ Fi is covered by some cluster in cover Ci+1. In this
case, Lemma 3.8 tells us that a single invocation of FindPath requires O (2i+1

√
n log2 n) messages.

Lemma 3.7 tells us that there areO (
√
n/2i) fragments in Fi (and thus alsoO (

√
n/2i) LOEs). Hence,

the total number of messages incurred by all pairs of fragments connected by an LOE is

O (2i+1√n log2 n) ·O (
√
n/2i) = O (n log2 n).

Summing up over all i , we obtain the claimed bound on the message complexity.
Finally, we observe that Lemma 3.8 already takes into account the congestion caused by simul-

taneous invocations, which yields the bound on the time complexity. �

To summarize, Procedure FindPath enables leaders of adjacent fragments to communicate with
each other by sending messages along the communication-efficient paths given by the routing
tables up and down.

3.5 Merging Fragments

We will avoid long chains of merged fragments by using procedure ComputeMaximal-
Matching [33]. ComputeMaximalMatching outputs a maximal matching on a fragment forest,
where fragments in Fi are treated as super-vertices of a graph connected by inter-fragment edges.
Procedure ComputeMaximalMatching simulates the Cole-Vishkin symmetry-breaking distributed
algorithm, which terminates in O (log∗ n) iterations [33, Theorem 1.7]. We next show how to do
the simulation efficiently in the fragment graph.

Procedure FindPath enables communication via communication-efficient paths between adja-
cent fragment leaders inMi . In turn, this enables the simulation of procedure ComputeMaximal-
Matching on the network induced byMi , where the leaders inMi perform the computation re-
quired by ComputeMaximalMatching. The following lemma follows directly from Lemma 3.9:

Lemma 3.10. Suppose that every fragment in Fi is communication-efficient and letMi ⊂ Fi be the

lightest outgoing edge graph obtained by running FindPath. Then, ComputeMaximalMatching can

be simulated on the network defined byMi , requiring Õ (diam(G) +
√
n) rounds and Õ (n) messages.

Every non-dominator fragment F ′1 sends a 〈MergeReq〉 message to the leader f ′1 of an arbitrar-
ily chosen adjacent dominator fragment F . The dominator fragment processes all merge-requests
in parallel and replies by sending a 〈MergeWith, F 〉 message to the leader f ′ of each fragment F ′

from which it received 〈MergeReq〉; in turn, f ′ forwards this request along the ((F ′, i), . . . , (F ′, 1))-
downward path to every node in F ′. Upon receiving a 〈MergeWith, F 〉 message, node u ′ ∈ F ′ up-
dates its fragment ID to F , and also updates its routing table by setting upu′ (F , �) = upu′ (F

′, �) and
downu′ (F , �) = downu′ (F

′, �), for every value of �. Note that the leader of the dominator fragment
becomes the new leader of the merged fragment.

Lemma 3.11. Consider iteration i . If, for each j ≤ i , every fragment inFj is communication-efficient,

then the following hold:

(1) With high probability, the message complexity for merging fragments in iteration i is Õ (m)
and the process completes within Õ (diam(G) +

√
n) rounds.

(2) Every fragment in Fi+1 is communication-efficient.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees 13:19

Proof. To show (1), we argue recursively starting at iteration i , as follows: note that forwarding
the 〈MergeWith〉 and 〈MergeReq〉 messages requires communicating between neighboring frag-
ments and thus by Lemma 3.10 we require O (diam(G) +

√
n) rounds and O (n log2 n) messages.

Consider an adjacent pair of fragments F0 and F1 and suppose that F0 merges with the dominator
fragment F1. Since we eventually need to broadcast the new fragment ID to every node u ∈ F0, we
need to ensure that the routing tables upu (F1, ·) and downu (F1, ·) are updated correctly to route
messages towards the new leader f1 ∈ F1 (and vice-versa from f1 to all nodes in F1), when we com-
pute the lightest outgoing edge of the merged fragment F0 ∪ F1 in subsequent iterations. If i > 1,
then F0 might be composed of merged fragments F ′0 ∪ · · · ∪ F ′

�
that merged in previous iterations;

without loss of generality, suppose that this iteration is i − 1. By assumption, Fi−1 consisted of effi-
cient fragments. As nodes do not remove routing information from up and down, the leader f0 can
use the communication-efficient paths obtained by invoking FindPath in iteration i − 1 to forward
the new fragment ID to the leaders of the F ′0, . . . , F

′
�
, which we call the (i − 1)-iteration fragments.

Applying Lemma 3.10 toMi−1 reveals that we can use the paths obtained by invoking FindPath

in iteration i − 1 to relay the new fragment ID to (i − 1)-iteration fragments while incurring only
O (diam(G) +

√
n) rounds and O (n log2 n) messages in total. Recursively applying this argument

until iteration 1, allows us to reason that O ((diam(G) +
√
n) logn) rounds and O (n log3 n) mes-

sages are sufficient to relay all new fragment IDs to the base fragment leaders. At this point, every
base fragment leader uses the BFS tree of the base fragments to broadcast this information to the
base fragment nodes, requiring O (

√
n) rounds and O (m) messages.

To show (2), we observe that Fi consists of communication-efficient fragments, and hence every
fragment node u ∈ Fj of a newly merged fragment F = F1 ∪ · · · ∪ F� (� ≥ j) can already communi-
cate efficiently with the leader fj in its subfragment Fj , which has now become part of F . Moreover,
the paths obtained by FindPath ensure that fj can communicate efficiently with leader f ∈ F and
hence it follows transitively that u has a communication-efficient path to f , as required. �

The analysis of the message complexity of merging fragments allows us to obtain a bound on
the number of messages required for computing a lightest outgoing edge in each fragment.

Lemma 3.12. The total message complexity of all parallel invocations of FindLightest is Õ (m) w.h.p.

Proof. In the first step of FindLightest, each node exchanges messages with its neigh-
bors requiring Θ(m) messages. Let F = F1 ∪ · · · ∪ F� , where F1, . . . , F� are base fragments, and
consider some vertex u ∈ F1. As previously argued, u relays its LOE information along the
((F , 1), . . . , (F , i))-upward-path to the fragment leader and the segment formed by the (F , 1)-
upward path ends at the base fragment leader of F1, which are exactly the BFS trees yielded by
Controlled-GHS. A crucial observation is thatu only sends its LOE information to its parent in the
path, after receiving the LOE messages from all its children (see Section 3.3). This ensures that each

node sends exactly one message and hence we obtain a bound of
∑�

j=1 O (|V (Fj) |) = O (|V (F) |) on

the number of messages sent in the (F , 1)-upward-path of the nodes in F . This is subsumed in the
message complexity of exchanging messages with neighbors in the first step, which is O (m).

At this point, each base fragment leader fj of Fj (j = 1, . . . , �) holds exactly one (aggregated)
lightest outgoing edge information message μ j , which needs to be relayed to the fragment leader f
of F along the respective ((F , 2), . . . , (F , i))-upward-path ofO (diamG (F)) hops (see Definition 2.1).

By reversing the argument used for proving part (2) of Lemma 3.11, we can inductively apply
Lemma 3.10 to obtain a bound of O (n log3 n) messages per iteration, and thus the total message

complexity is O (m + n log3 n) = Õ (m). �

We now analyze the correctness and the complexities of Phase 3 of the algorithm.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

13:20 G. Pandurangan et al.

Lemma 3.13. Phase 3 of the algorithm requires Õ (m) messages and Õ (D +
√
n) time and ensures

that all fragments have the same label (i.e., are merged).

Proof. Note that our algorithm either executes Phase 3 directly after Phase 1 (thus skipping
Phase 2) or after executing Phase 2. First, we argue (for both cases) that all fragments have the same
fragment ID after the Θ(logn) iterations in Phase 3. To see that the number of fragment labels is
at least halved in each iteration, note that, when executing FindLightest, all nodes exchange their
fragment IDs with their neighbors (requiringO (m) messages) and then only choose candidate LOE
edges that have their endpoint in fragments with distinct IDs. This ensures that every fragment
pairs up with another fragment and hence one of the two distinct IDs will be removed; note that
long “chains” of fragments connected by LOE edges are possible and result in an even faster re-
duction of distinct labels—all fragments in the chain adapt the root fragment ID (cf. Phase 3 in the
pseudo code). Thus, after the last iteration of Phase 3, all fragments carry the same fragment ID
and no more LOE edges are required as all fragments are considered to be merged.

Now we consider the message and time complexity of Phase 3. According to Lemma 3.3, the

time complexity of finding the LOEs is O (D +
√
n), and according to Lemma 3.12, Õ (m) messages

are required to find the LOEs. This is true independently of whether we called Phase 3 directly
after Phase 1 or after Phase 2.

Now, consider the case where we execute Phase 3 directly after Phase 1 (thus skipping Phase 2),
i.e., D = O (

√
n). Here, FindLightest results in each node locally determining the incident LOE and

then aggregating the LOE to the base fragment leader. In addition to the base fragment BFS trees,
we also construct a global BFS tree T , which, has O (

√
n) diameter by assumption. The base frag-

ment leaders then forward their respective LOE along towards the rootu ofT . Since we haveO (
√
n)

distinct base fragments, there are at mostO (
√
n) LOE edges sent upward inT , thus resulting in an

additional message complexity ofO (D
√
n) = O (n). Taking into account that it takesO (

√
n) rounds

for the base fragment leaders to determine the LOE of their fragment, the time complexity amounts
to O (D +

√
n).

We now argue the message and time complexity for the case where we execute Phase 3 after
Phase 2. Here, we start with O (n/D) distinct fragments each having their own fragment ID and a
global BFS treeT of depthO (D). Since each fragment finds one LOE which is first aggregated at the
fragment leader and then forwarded alongT to the global BFS root, this requiresO (D · n/D) = O (n)
messages in total and O (D + n/D) = O (D) rounds, since by assumption D = Ω(

√
n). �

Combining the complexity bounds from the previous lemmas we obtain the following
theorem:

Theorem 3.14. Consider a synchronous network (in the KT0 model) of n nodes, m edges, and di-

ameter D, and suppose that at most O (logn) bits can be transmitted over each link in every round.

Algorithm 1 computes an MST and, with high probability, runs in Õ (D +
√
n) rounds and exchanges

Õ (m) messages.

4 A SIMULTANEOUSLY TIGHT LOWER BOUND

As mentioned in Section 1.2, the existing graph construction of [7] and [10] used to establish

the lower bound of Ω̃(D +
√
n) rounds does not simultaneously yield the message lower bound of

Ω(m); similarly, the existing lower bound graph construction of [31] that shows the message lower

bound of Ω(m) does not simultaneously yield the time lower bound of Ω̃(D +
√
n). Previously, Das

Sarma et al. [7] presented a sparse graph of O (n) edges to obtain the Ω̃(D +
√
n) time bound for

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees 13:21

almost all choices of D, while Kutten et al. [31] showed that Ω(m) messages are required to solve
broadcast and hence also for constructing a (minimum) spanning tree.12

The following result presents a “universal lower bound” for MST in the sense that it shows
that for essentially any n, m, and D, there exists a class of graphs of n nodes, m edges, and with

diameterD, such that any randomized MST algorithm takes Ω̃(D +
√
n) rounds and Ω(m) messages

on some of those graphs to succeed with constant probability. Our proof combines two lower
bound techniques: hardness of distributed symmetry breaking, used to show the lower bound on
message complexity [31], and communication complexity, used to show the lower bound on time
complexity [7].

Theorem 4.1. There exists a class of graphs of n nodes,m edges, and diameter D = Θ(n1/4),13 such

that any ε-error distributed MST algorithm for the KT0 model requires Ω̃(D +
√
n) time and Ω(m)

messages in expectation on some of those graphs, for any sufficiently small constant ε > 0. This holds

even if nodes have unique IDs (chosen from a range of size poly(n)), have knowledge of the network

size n, but do not know the diameter D.

4.1 Proof of Theorem 4.1

The Lower Bound Graph. Our lower bound graphG consists of the graph construction H of [46]
(and its subsequent refinement in [7]), combined with the dumbbell graph construction of [31].
We first outline the main features of H , and refer the reader to [7] for the details. The graph H
consists of two designated nodes s and t that are connected by Θ(

√
n) vertex-disjoint slow paths,

each having length Θ(
√
n) and one highway path of length D = Θ(n1/4), which determines the

diameter of H . Consider the nodes on each path as being enumerated starting from 0. To obtain
the required diameterD = Θ(n1/4), we add spoke edges (i.e., shortcuts) to each node on the highway
path: for each i ∈ [0,D], we connect the ith highway node to the (i · D)-th node on each slow path.

We modify the above graph by removing the edge between the two vertices u1 and u2 on the
highway path at distance �D/2� and 	D/2
 + 1 from s and connecting them to one vertex each of
a 	c1m/n
-regular graphC consisting of c2n nodes, where c1 and c2 are two positive constants. We
assume that C has a strong diameter of O (logn), where m ≥ cn, for a sufficiently large positive
constant c .14 We call the edges ofC switch edges. Note that the two vertices ofC that are connected
to u1 and u2 have degree 	c1m/n
 + 1.

To obtain a concrete graph from the lower bound construction, we assign unique IDs (chosen
from a range of size poly(n)), and specify a port mapping for each node u that maps [1, deg(u)]
to one of u’s neighbors. We point out that this port mapping function is not known in advance to
u. For a concrete graph G, we define the open graph G[e] as the graph where we have removed
edge e , and we define Gopen to be the set of open graphs obtained by all possible ways of removing
any of the switch edges inC . After removing an edge e that was connected at port i to node u, we
call i an open port. Note that this is different from the construction in [31], where Gopen consists
of all open graphs considering all possible edge removals. LetG ′[e ′],G ′′[e ′′] ∈ Gopen be two open
graphs with disjoint node IDs. By connecting the two open ports (due to removing edge e ′) of G ′

12Any algorithm that constructs a spanning tree using O (f (n)) messages can be used to elect a leader using O (f (n) +
n) messages in total, by first constructing a spanning tree and then executing any broadcast algorithm restricting its

communication to the O (n) spanning tree edges.
13Note that this can be strengthened to hold for diameter Θ(log n) as described in [7], but here we choose to describe the

result for a looser bound for the sake of readability.
14Such graphs exist since any random d-regular graph is known to be an expander (and hence its diameter is O (log n))
with high probability when d is sufficiently large (at least some constant).

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

13:22 G. Pandurangan et al.

to the two open ports in G ′′ we obtain the dumbbell graph denoted by Dumbbell (G ′[e ′],G ′′[e ′′]).
These two new edges are called bridge edges. See Figure 2.

4.1.1 Part 1: Symmetry Breaking.

The Complexity of Bridge Crossing and Broadcast. We define the input graph collection I to be the
set of all dumbbell graphs obtained by bridging ID-disjoint open graphs fromGopen, which contains
all possible 1-edge removals of all possible concrete graphs taking into account all possible port
numberings and ID assignments.

The bridge crossing problem was introduced in [31], and captures the hardness of discovering
a bridge edge without sending too many messages. In more detail, we say that an algorithm A
solves bridge crossing in an execution α on a graph I ∈ I, if some vertex sends a message in α
across one of the two bridge edges of I . We first bound the message complexity of deterministic
bridge crossing algorithms on this input class:

Lemma 4.2. Every deterministic algorithm A that achieves bridge crossing on at least 1/4 of the

dumbbell graphs in the collection I has expected message complexity Ω(m), if the graph is uniformly

sampled from I.

Lemma 4.2 is very similar to Lemma 3.6 in [31], with the difference that our input set I is
restricted to the possible dumbbell graph combinations for the switch edges that are inC , whereas,
in [31], any edge can be a switch edge. Nevertheless, the number of switch edges inC is sufficiently
large, i.e.,

|E (C) | = Θ(m
2n
|C |) = Θ(m) = Θ(|E (G) |),

and hence the same counting argument as in Lemmas 3.5 and 3.6 in [31] can be applied to show an
average message complexity of Ω(m) for solving bridge crossing with a deterministic algorithm
when choosing input graphs uniformly from I. As this does not require us to introduce any new
technical ideas, we only describe the overall idea of the proof and refer the reader to [31] for the
details: The main idea of the proof is to consider Dumbbell (G ′[e ′],G ′′[e ′′]), where each of G ′ and
G ′′ is a copy of G with a concrete port numbering and ID assignment. Let P be a bridge crossing
algorithm and consider the execution of P on the (disconnected) graph consisting of G ′ and G ′′

of 2n nodes. Comparing this with the execution of P on Dumbbell (G ′[e ′],G ′′[e ′′]), an easy indis-
tinguishability argument shows that P behaves exactly the same in both executions up until the
point where bridge crossing happens. In the execution on the disconnected graph, let t (e) be the
first time that P sends a message across e , for any e ∈ E (C), and let L = (e1, . . . , e�) be a list con-
taining the edges ofG ′ in increasing order of t (e), breaking ties in a predetermined way. It follows
that, when P sends the first message across ej in the dumbbell graph Dumbbell (G ′[e ′],G ′′[e ′′]),
which occurs at the j-th position in L, it must have sent at least j − 1 messages for e1, . . . , ej−1. We
obtain the average message complexity for deterministic algorithms by counting the total num-
ber of messages in all graphs in I divided by the number of graphs in the input collection (see
Lemma 3.5 in [31]).

Lemma 4.2 can be extended to randomized Monte Carlo algorithms via Yao’s Minimax Lemma
[50], yielding the following result:

Lemma 4.3. Let P be an ε-error randomized bridge crossing algorithm. Then, there exists a graph

G ∈ I such that the expected message complexity of P on G is Ω(m), where the expectation is taken

over the random bits of P.

4.1.2 Part 2: Communication Complexity.

Reduction from Set Disjointness. The lower bound for MST of [7] is shown by a reduction from the
spanning connected subgraph problem, which itself is used in a reduction from the set disjointness

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees 13:23

Fig. 2. The graph Dumbbell (G ′[e ′],G ′′[e ′′]) for the proof of Theorem 4.1.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

13:24 G. Pandurangan et al.

problem in 2-party communication complexity [29]. In the 2-party model, Alice receivesX and Bob
receives Y , for some b-bit vectors X and Y , and the players communicate along a communication
channel to decide if there is an index i such thatX [i] = Y [i] = 1. Razborov [47] showed that any ε-
error randomized communication protocol requires Ω(b) bits to solve set disjointness. Das Sarma
et al. [7] leverage this fact by showing how Alice and Bob can jointly simulate the execution of
a distributed MST algorithm A on a graph with a weight assignment depending on the inputs X
and Y to obtain a protocol for set disjointness.

Edge Weight Assignment. All slow path edges and all highway edges obtain weight 1 in G,
whereas the spoke edges that are not incident to s or t obtain weight ∞. We assign weight 1
to all edges in E (C). Recall from the description of the lower bound graph G that there are Θ(

√
n)

slow paths, and hence we set

b = Θ(
√
n).

For every i ∈ [1,b], the ith spoke edge incident to s is assigned weight 1 if X [i] = 0, and weight n
otherwise. Similarly, the ith spoke edge incident to t is assigned weight 1 if Y [i] = 0, and weight
n otherwise.

Consider, in the MST M ofG, the jth slow path ρ j connecting s and t . A crucial property is that
ρ j must contain exactly one spoke incident to either s or t as otherwise ρ j is either disconnected
from the rest of the graph or, if both spokes are part of M , the highway path forms a cycle with
ρ j . If X and Y are disjoint, then either the jth spoke incident to Alice has weight 1 or the jth spoke
incident to Bob; in this case, the spoke that has weight 1 is part of M . Consequently, we have the
following result:

Lemma 4.4 (see [7]). The MST contains one edge of weight n if and only ifX andY are not disjoint.

Simulating the MST algorithm. Alice and Bob createG, assign weights appropriately to the edges
incident to s and t , and then simulate the execution ofA onG. Note that Alice is unaware of Bob’s
input and hence she does not know the weights of the edges incident to t .

Therefore, Alice starts simulating all nodes except t and its neighbors and, similarly, Bob simu-
lates all nodes except s and its neighbors. For completeness, we describe the simulation argument
of [7] from Alice’s point of view: Alice and Bob need to keep the simulation of nodes s and t afloat,
while sending at most O (logn) bits per simulated round. As mentioned, Alice does not simulate t
and its neighbors and hence there are b + 1 boundary nodes (b of them are on slow paths and one
is on the highway path) among her simulated nodes that may receive messages from nodes that
are only simulated by Bob. Let v be Alice’s (current) boundary node that is on the highway path.
If, in the simulation, v is supposed to receive a message from it’s (highway) neighborw simulated
by Bob, then Bob simply sends this message to Alice, requiring O (logn) bits. On the other hand,
Bob does not send any messages to Alice if they concern her boundary nodes on the slow paths.
Thus, Alice stops simulating all of its boundary nodes that are on slow paths after the first round.
However, for now, she can still simulate the boundary node v on the highway path. We observe
that, in each round, Alice loses the ability to simulate one layer of boundary nodes on slow paths,
causing their respective neighbors (closer to Alice) to become boundary nodes in the next round.
Recall from the lower bound graph construction that v has spoke edges to a set S of Θ(

√
n) nodes

on slow paths. Thus, Alice stops simulating v after the round in which she stops simulating the
nodes in S , as Bob cannot afford to send all necessary messages that may originate from nodes
in S to Alice. In other words, Alice “loses” one of her simulated highway boundary vertices every
Θ(n1/4) rounds. Since the slow paths have length Θ(

√
n) and there are Θ(n1/4) many nodes on the

highway path, it follows that Alice can continue simulating s for Θ(
√
n) rounds.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees 13:25

Once A terminates, Alice knows which edges incident to s are in the MST and Bob knows the
same about t . Moreover, since the weight of the MST depends only on these incident edges, Alice
can compute the total weight incident to s and then send it to Bob, requiring O (logn) bits. From
this, Bob can reconstruct the total weight of the MST (since all other edges have weight 1). If the
MST does not contain any edge of weight n, then the total weight is n − 1 and, by Lemma 4.4, Bob
can conclude that X and Y are disjoint. On the other hand, if the MST does contain an edge of
weight n (which must be a spoke incident to either s or t) then there is some index where X and
Y intersect. It follows that the solution for MST solves set disjointness and, as described above,
each round of the simulation produces at most O (logn) bits. Consequently, the simulation can-
not terminate in o(b) = o(

√
n/ logn) rounds as this would result in o(b) bits being communicated

between Alice and Bob, contradicting the Ω(b) lower bound for set disjointness [47]. Since this
holds for a constant probability of error, an easy application of Markov’s inequality shows that the

expected time complexity must also be Ω̃(D +
√
n):

Lemma 4.5. There exists a weight function w such that, for any graphG ∈ I, executing algorithm

A on the weighted graphGw , where every edge e has weightw (e), takes Ω̃(D +
√
n) rounds in expec-

tation.

4.1.3 Putting Everything Together. We are now ready to combine the results of Lemma 4.3,
which we only argued for unweighted graphs so far, with Lemma 4.5. The next lemma directly
implies Theorem 4.1.

Lemma 4.6. For any MST algorithm A, there exists a weighted graph G such that A requires

Ω̃(D +
√
n) rounds in expectation and has an expected message complexity of Ω(m).

Proof. Consider an MST algorithm A and the worst-case weight assignment w provided by
Lemma 4.5. Applyw to every graph in the collection I yielding the collection of weighted graphs
Ī. For any G ∈ I, consider the corresponding weighted graph Ḡ ∈ Ī, and let C̄ ⊂ Ḡ denote the
weighted subgraph corresponding to the regular (unweighted) subgraph C ⊂ G (see Figure 2).
According to the edge weight assignment, all edges in E (C) are set to 1, and these are the only
edges that are used as switch edges when constructing the dumbbell graphs required for showing
Lemma 4.3. It follows that Lemma 4.3 also applies to the weighted graph collection Ī. Then, by
using Markov’s inequality to derive probabilities of 2/3 each for both the individual statements in
Lemma 4.3 and Lemma 4.5, the union bound yields that with probability at least 1/3 both the time
and the message lower bounds simultaneously hold. �

5 CONCLUSIONS

We have presented a new distributed algorithm for the fundamental minimum spanning tree prob-
lem which is simultaneously time- and message-optimal (to within polylog(n) factors).

An interesting open question is whether there exists a distributed MST algorithm with near-
optimal time and message complexities in the KT1 variant of the model.

Currently, it is not known whether other important problems such as shortest paths, minimum
cut, and random walks, enjoy singular optimality. These problems admit distributed algorithms
which are (essentially) time-optimal but not message-optimal [8, 24, 37, 38]. Some work in this di-
rection recently started to appear [20, 39], but further research is needed to address these questions.

REFERENCES

[1] Hagit Attiya and Jennifer Welch. 1998. Distributed Computing: Fundamentals, Simulations and Advanced Topics.

McGraw-Hill, Inc.

[2] Baruch Awerbuch. 1987. Optimal distributed algorithms for minimum weight spanning tree, counting, leader election,

and related problems. In Proceedings of the 19th ACM Symposium on Theory of Computing (STOC). 230–240.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

13:26 G. Pandurangan et al.

[3] Baruch Awerbuch, Oded Goldreich, David Peleg, and Ronen Vainish. 1990. A trade-off between information and

communication in broadcast protocols. J. ACM 37, 2 (1990), 238–256.

[4] Baruch Awerbuch and David Peleg. 1990. Sparse partitions. In Proceedings of the 31st Annual Symposium on Founda-

tions of Computer Science (FOCS). 503–513.

[5] Francis Chin and H. F. Ting. 1985. An almost linear time and O(n log n + e) messages distributed algorithm for

minimum-weight spanning trees. In Proceedings of the 26th IEEE Symposium on Foundations of Computer Science

(FOCS). 257–266.

[6] Richard Cole and Uzi Vishkin. 1986. Deterministic coin tossing and accelerating cascades: micro and macro techniques

for designing parallel algorithms. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC).

206–219.

[7] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Pandurangan, David Peleg,

and Roger Wattenhofer. 2012. Distributed verification and hardness of distributed approximation. SIAM J. Comput.

41, 5 (2012), 1235–1265.

[8] Atish Das Sarma, Danupon Nanongkai, Gopal Pandurangan, and Prasad Tetali. 2013. Distributed random walks.

J. ACM 60, 1, Article 2 (2013).

[9] Michael Elkin. 2006. A faster distributed protocol for constructing a minimum spanning tree. J. Comput. Syst. Sci. 72,

8 (2006), 1282–1308.

[10] Michael Elkin. 2006. An unconditional lower bound on the time-approximation trade-off for the distributed minimum

spanning tree problem. SIAM J. Comput. 36, 2 (2006), 433–456.

[11] Michael Elkin. 2017. A simple deterministic distributed MST algorithm, with near-optimal time and message com-

plexities. In Proceedings of the 2017 ACM Symposium on Principles of Distributed Computing (PODC). 157–163.

[12] Michalis Faloutsos and Mart Molle. 2004. A linear-time optimal-message distributed algorithm for minimum spanning

trees. Distributed Computing 17, 2 (2004), 151–170.

[13] Eli Gafni. 1985. Improvements in the time complexity of two message-optimal election algorithms. In Proceedings of

the 4th Symposium on Principles of Distributed Computing (PODC). 175–185.

[14] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. 1983. A distributed algorithm for minimum-weight span-

ning trees. ACM Trans. Program. Lang. Syst. 5, 1 (1983), 66–77.

[15] Juan A. Garay, Shay Kutten, and David Peleg. 1998. A sublinear time distributed algorithm for minimum-weight

spanning trees. SIAM J. Comput. 27, 1 (1998), 302–316.

[16] Mohsen Ghaffari and Bernhard Haeupler. 2016. Distributed algorithms for planar networks II: Low-congestion short-

cuts, MST, and min-cut. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).

202–219.

[17] Mohsen Ghaffari and Fabian Kuhn. 2018. Distributed MST and broadcast with fewer messages, and faster gossiping.

In Proceedings of the 32nd International Symposium on Distributed Computing (DISC). 30:1–30:12.

[18] Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. 2017. Distributed MST and routing in almost mixing time. In

Proceedings of the 2017 ACM Symposium on Principles of Distributed Computing (PODC). 131–140.

[19] Robert Gmyr and Gopal Pandurangan. 2018. Time-message trade-offs in distributed algorithms. In Proceedings of the

32nd International Symposium on Distributed Computing (DISC). 32:1–32:18.

[20] Bernhard Haeupler, D. Ellis Hershkowitz, and David Wajc. 2018. Round- and message-optimal distributed graph

algorithms. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing (PODC). 119–128.

[21] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. 2016. Low-congestion shortcuts without embedding. In Proceed-

ings of the 2016 ACM Symposium on Principles of Distributed Computing (PODC). 451–460.

[22] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. 2016. Near-optimal low-congestion shortcuts on bounded pa-

rameter graphs. In Proceedings of the 30th International Symposium on Distributed Computing (DISC). 158–172.

[23] James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardeshmukh, and Michele Scquizzato.

2015. Toward optimal bounds in the congested clique: Graph connectivity and MST. In Proceedings of the 2015 ACM

Symposium on Principles of Distributed Computing (PODC). 91–100.

[24] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2016. A deterministic almost-tight distributed

algorithm for approximating single-source shortest paths. In Proceedings of the 48th ACM Symposium on Theory of

Computing (STOC). 489–498.

[25] Maleq Khan and Gopal Pandurangan. 2008. A fast distributed approximation algorithm for minimum spanning trees.

Distributed Computing 20, 6 (2008), 391–402.

[26] Valerie King, Shay Kutten, and Mikkel Thorup. 2015. Construction and impromptu repair of an MST in a distributed

network with o (m) communication. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing

(PODC). 71–80.

[27] Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson. 2015. Distributed computation of

large-scale graph problems. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).

391–410.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees 13:27

[28] Liah Kor, Amos Korman, and David Peleg. 2013. Tight bounds for distributed minimum-weight spanning tree verifi-

cation. Theory Comput. Syst. 53, 2 (2013), 318–340.

[29] Eyal Kushilevitz and Noam Nisan. 1997. Communication Complexity. Cambridge University Press.

[30] Shay Kutten, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson. 2014. Distributed symmetry breaking

in hypergraphs. In Proceedings of the 28th International Symposium on Distributed Computing (DISC). 469–483.

[31] Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan. 2015. On the complexity of

universal leader election. J. ACM 62, 1, Article 7 (2015).

[32] Shay Kutten and David Peleg. 1998. Fast distributed construction of small k-dominating sets and applications.

J. Algorithms 28, 1 (1998), 40–66.

[33] Christoph Lenzen. 2016. Lecture Notes on Theory of Distributed Systems. https://www.mpi-inf.mpg.de/fileadmin/inf/

d1/teaching/winter15/tods/ToDS.pdf.

[34] Christoph Lenzen and Boaz Patt-Shamir. 2014. Improved distributed steiner forest construction. In Proceedings of the

2014 ACM Symposium on Principles of Distributed Computing (PODC). 262–271.

[35] Nancy Lynch. 1996. Distributed Algorithms. Morgan Kaufmann Publishers.

[36] Ali Mashreghi and Valerie King. 2017. Time-communication trade-offs for minimum spanning tree construction. In

Proceedings of the 18th International Conference on Distributed Computing and Networking (ICDCN). Article 8.

[37] Danupon Nanongkai. 2014. Distributed approximation algorithms for weighted shortest paths. In Proceedings of the

46th ACM Symposium on Theory of Computing (STOC). 565–573.

[38] Danupon Nanongkai, Atish Das Sarma, and Gopal Pandurangan. 2011. A tight unconditional lower bound on dis-

tributed randomwalk computation. In Proceedings of the 30th Annual ACM Symposium on Principles of Distributed

Computing (PODC). 257–266.

[39] Shreyas Pai, Gopal Pandurangan, Sriram V. Pemmaraju, Talal Riaz, and Peter Robinson. 2017. Symmetry breaking

in the Congest model: Time- and message-efficient algorithms for ruling sets. In Proceedings of the 31st International

Symposium on Distributed Computing (DISC). 38:1–38:16.

[40] Gopal Pandurangan. 2019. Distributed Network Algorithms. https://sites.google.com/site/gopalpandurangan/dna.

[41] Gopal Pandurangan, David Peleg, and Michele Scquizzato. 2016. Message lower bounds via efficient network synchro-

nization. In Proceedings of the 23rd International Colloquium on Structural Information and Communication Complexity

(SIROCCO). 75–91.

[42] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. 2017. A time- and message-optimal distributed algo-

rithm for minimum spanning trees. In Proceedings of the 49th Annual ACM Symposium on the Theory of Computing

(STOC). 743–756.

[43] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. 2018. The distributed minimum spanning tree problem.

Bulletin of the EATCS 125 (2018).

[44] David Peleg. 1998. Distributed matroid basis completion via elimination upcast and distributed correction of

minimum-weight spanning trees. In Proceedings of the 25th International Colloquium on Automata, Languages and

Programming (ICALP). 164–175.

[45] David Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathe-

matics.

[46] David Peleg and Vitaly Rubinovich. 2000. A near-tight lower bound on the time complexity of distributed minimum-

weight spanning tree construction. SIAM J. Comput. 30, 5 (2000), 1427–1442.

[47] Alexander A. Razborov. 1992. On the distributional complexity of disjointness. Theor. Comput. Sci. 106, 2 (1992), 385–

390.

[48] Robert Endre Tarjan. 1983. Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics.

[49] Gerard Tel. 1994. Introduction to Distributed Algorithms. Cambridge University Press.

[50] Andrew Chi-Chih Yao. 1977. Probabilistic computations: Toward a unified measure of complexity. In Proceedings of

the 18th Annual Symposium on Foundations of Computer Science (FOCS). 222–227.

Received March 2018; revised August 2019; accepted September 2019

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 13. Publication date: November 2019.

https://www.mpi-inf.mpg.de/fileadmin/inf/d1/teaching/winter15/tods/ToDS.pdf
https://www.mpi-inf.mpg.de/fileadmin/inf/d1/teaching/winter15/tods/ToDS.pdf
https://sites.google.com/site/gopalpandurangan/dna

