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Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph

computations, we study some fundamental graph problems in a message-passing model for distributed

computing where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n ≫ k). The
input graph is assumed to be initially randomly partitioned among the k machines, a common implementation

in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of

communication rounds of the computation.

Our main contribution is the General Lower Bound Theorem, a theorem that can be used to show non-trivial

lower bounds on the round complexity of distributed large-scale data computations. This result is established

via an information-theoretic approach that relates the round complexity to the minimal amount of information

required by machines to solve the problem. Our approach is generic and this theorem can be used in a

“cookbook” fashion to show distributed lower bounds for several problems, including non-graph problems. We

present two applications by showing (almost) tight lower bounds on the round complexity of two fundamental

graph problems, namely PageRank computation and triangle enumeration. These applications show that our

approach can yield lower bounds for problems where the application of communication complexity techniques

seems not obvious or gives weak bounds, including and especially under a stochastic partition of the input.

We then present distributed algorithms for PageRank and triangle enumeration with a round complexity

that (almost) matches the respective lower bounds; these algorithms exhibit a round complexity that scales

superlinearly in k , improving significantly over previous results [Klauck et al., SODA 2015]. Specifically, we

show the following results:

• PageRank:We show a lower bound of Ω̃(n/k2) rounds, and present a distributed algorithm that computes

an approximation of the PageRank of all the nodes of a graph in Õ(n/k2) rounds.
• Triangle enumeration: We show that there exist graphs withm edges where any distributed algorithm

requires Ω̃(m/k5/3) rounds. This result also implies the first non-trivial lower bound of Ω̃(n1/3) rounds
for the congested clique model, which is tight up to logarithmic factors. We then present a distributed

algorithm that enumerates all the triangles of a graph in Õ(m/k5/3 + n/k4/3) rounds.
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1 INTRODUCTION
Distributed processing of large-scale data, in particular graph data, is becoming increasingly

important with the rise of massive graphs such as the Web graph, social networks, biological

networks, and other graph-structured data. Several large-scale graph processing systems such as

Pregel [45] and Giraph [1] have been recently designed based on the message-passing distributed
computing model [44, 58]. In these systems, the input graph, which is simply too large to fit into a

single machine, is distributed across a group of machines connected via a communication network,

and the machines jointly perform computation in a distributed fashion by exchanging messages. A

key goal in distributed Big Data computing is to minimize the amount of communication across

machines, as this typically dominates the overall cost of the computation [60].

We study fundamental graph problems in a message-passing distributed computing model

and present almost tight bounds on the number of communication rounds needed to solve these

problems. In the adopted model, called the k-machine model [34], the input is distributed across

a group of k machines that are pairwise interconnected via a communication network. The k
machines jointly perform computations on an arbitrary n-vertex input graph (where typically

n ≫ k) distributed among the machines. Communication is point-to-point via message passing.

The goal is to minimize the round complexity, i.e., the number of communication rounds, given some

(bandwidth) constraint on the amount of data that each link of the network can deliver in one

round. We address a fundamental issue in distributed computing of large-scale data: What is the

distributed (round) complexity of solving problems when each machine can see only a portion of
the input and there is a limited bandwidth for communication? We would like to quantify the round

complexity of solving problems as a function of the size of the input and the number of machines
used in the computation. In particular, we would like to quantify how the round complexity scales

with the number of machines used: more precisely, does the number of rounds scale linearly (or

even super-linearly) in k? And what is the best possible round complexity for various problems?

The main contribution of this paper is a technique that can be used to show non-trivial lower

bounds on the distributed complexity (number of communication rounds) of large-scale data

computations, and its application to graph problems.

1.1 The Model
We now describe the adopted model of distributed computation, the k-machine model, introduced
in [34] and further investigated, e.g., in [6, 26, 29, 35, 55]. The model consists of a set of k ≥ 2

machines {M1,M2, . . . ,Mk } that are pairwise interconnected by bidirectional point-to-point com-

munication links. Each machine executes an instance of a distributed algorithm. The computation

advances in synchronous rounds where, in each round, machines can exchange messages over

their communication links and perform some local computation. Each link is assumed to have a

bandwidth of B bits per round, i.e., B bits can be transmitted over each link in each round; unless

otherwise stated, we assume B = Θ(polylogn).1 Machines do not share any memory and have

1
There is an alternative (but equivalent) way to view this communication restriction: instead of putting a bandwidth

restriction on the links, we can put a restriction on the amount of information that each machine can communicate (i.e.,
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no other means of communication. We assume that each machine has access to a private source

of true random bits. We say that algorithm A has ϵ-error if, in any run of A, the output of the

machines corresponds to a correct solution with probability at least 1 − ϵ . The round complexity of

an algorithmA is the maximum number of communication rounds required by any machine when

executing A.

Local computation within a machine is considered to happen instantaneously at zero cost, while

the exchange of messages between machines is the costly operation. This assumption is standard

in the context of large-scale data processing. In fact, even assuming communication links with a

bandwidth of order of gigabytes per second, the amount of data that typically has to be exchanged

can be in the order of tera- or peta-bytes, and this generally dominates the overall computation

cost [42]. However, we note that in all the algorithms of this paper, every machine in every round

performs lightweight computations; in particular, these computations are bounded by a polynomial

(typically, even linear) in the size of the input assigned to that machine.

In this paper we focus on investigating graph problems in this model. Specifically, we are given

an input graph G with n vertices, each associated with a unique integer ID from [n], andm edges.

To avoid trivialities, we will assume that n ≥ k (typically, n ≫ k). Initially, the entire graph G is

not known by any single machine, but rather partitioned among the k machines in a “balanced”

fashion, i.e., the nodes and/or edges of G must be partitioned approximately evenly among the

machines. We assume a vertex-partition model, whereby vertices (and their incident edges) are

partitioned across machines. Specifically, the type of partition that we will assume throughout

is the random vertex partition (RVP), i.e., vertices (and their incident edges) of the input graph

are assigned randomly to machines. This is the typical way used by many real graph processing

systems, such as Pregel [45] and Giraph [1, 13], to partition the input graph among the machines;

it is easy to accomplish, e.g., via hashing.

More formally, in the random vertex partition model each vertex ofG is assigned independently

and uniformly at random to one of the k machines.
2
If a vertex v is assigned to machineMi we say

thatMi is the home machine of v and, with a slight abuse of notation, write v ∈ Mi . When a vertex

is assigned to a machine, all its incident edges are known to that machine as well, i.e., the home

machine initially knows the IDs of the neighbors of that vertex as well as the identities of their

home machines (and the weights of the corresponding edges in case G is weighted). For directed

graphs, we assume that out-edges of vertices are known to the assigned machine. (However, we

note that our lower bounds hold even if both in- and out-edges are known to the home machine.)

An immediate property of the RVP model is that the number of vertices at each machine is balanced,
i.e., each machine is the home machine of Θ̃(n/k) vertices with high probability (see [34]); we shall

assume this throughout the paper. A convenient way to implement the RVP model is through

hashing: each vertex (ID) is hashed to one of the k machines. Hence, if a machine knows a vertex

ID, it also knows where it is hashed to.

Eventually, in a computation each machineMi , for each 1 ≤ i ≤ k , must set a designated local

output variable oi (which need not depend on the set of vertices assigned to machineMi ), and the

output configuration o = ⟨o1, . . . ,ok ⟩ must satisfy certain feasibility conditions w.r.t. problem P.

For example, when considering the PageRank problem, each oi corresponds to PageRank values (of

one or more nodes), such that the PageRank value of each node of the graph should be output by at

least one machine.

send/receive) in each round. The results that we obtain in the bandwidth-restricted model will also apply to the latter

model [34]. Also, our bounds can be easily rewritten in terms of the B parameter.

2
An alternative partitioning model is the so-called random edge partition (REP) model [55, 72]: here, each edge of G is

assigned independently and randomly to one of the k machines. One can extend our results to get bounds for the REP model

since it is easy to show that one can transform the input partition from one model to the other in Õ (m/k2 + n/k ) rounds.
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1.2 Our Results
We present a general information-theoretic approach for showing non-trivial round lower bounds

for certain graph problems in the k-machine model. This approach can be useful for showing

round lower bounds for many other (including non-graph) problems in a distributed setting where

the input is partitioned across several machines and the output size is large, complementing the

approach based on communication complexity (see, e.g., [18, 21, 22, 34, 47, 50, 52, 53, 55, 59] and

references therein). Using our approach we show almost tight (up to logarithmic factors) lower

bounds for two fundamental, seemingly unrelated, graph problems, namely PageRank computation

and triangle enumeration. These lower bounds apply to distributed computations in essentially all

point-to-point communication models, since they apply even to a synchronous complete network

model (where k = n), and even when the input is partitioned randomly, and thus they apply to

worst-case balanced partitions as well (unlike some previous lower bounds, e.g., [72], which apply

only under some worst-case partition).

To demonstrate the near-tightness of our lower bounds we present optimal (up to a polylog(n)
factor) distributed algorithms for these problems. All these algorithms exhibit a round complexity

that scales superlinearly in k , improving significantly over previous results.

1. PageRank Computation. In Section 2.3 we show an almost tight lower bound of Ω̃(n/k2) rounds.3

In Section 3.1 we present an algorithm that computes the PageRank of all nodes of a graph in

Õ(n/k2) rounds, thus improving over the previously known bound of Õ(n/k) rounds [34].
2. Triangle Enumeration. In Section 2.4 we show that there exist graphs withm edges where

any distributed algorithm requires Ω̃(m/k5/3) rounds. In Section 3.2 we present an algorithm that

enumerates all the triangles of a graph in Õ(m/k5/3 + n/k4/3) rounds. This improves over the

previously known bound of Õ(n7/3/k2) rounds [34].
Our technique can be used to derive lower bounds in other models of distributed computing

as well. Specifically, the approach used to show the lower bound for triangle enumeration can be

adapted for the popular congested clique model (discussed in Section 1.4), yielding an Ω(n1/3/logn)
lower bound for the same problem.

4
(Notice that this does not contradict the result of [21], which

states that proving any super-constant lower bound for the congested clique would give new lower

bounds in circuit complexity: in particular, because of the size required by any solution for triangle

enumeration, Remark 3 in [21] does not apply.) To the best of our knowledge, this is the first

super-constant lower bound known for the congested clique model. (Previous bounds were known

for weaker versions of the model, which, e.g., allowed only broadcast communication, or which

applied only to deterministic algorithms [21], or for implementations of specific algorithms [12].)

Our bounds for triangle enumeration also apply to the problem of enumerating all the open
triads, that is, all the sets of three vertices with exactly two edges. Our techniques and results can

be generalized to the enumeration of other small subgraphs such as cycles and cliques.

1.3 Overview of Techniques
Lower Bounds. In Theorem 2.1 we give a general result, the General Lower Bound Theorem, which

relates the round complexity in the k-machine model to the minimal amount of information

required by machines for correctly solving a problem. This theorem gives two probabilistic bounds

that must be satisfied in order to obtain a lower bound on the round complexity of any problem.

The two bounds together capture the decrease in uncertainty (called surprisal, see Section 2) that

3
Notation Ω̃ hides a 1/polylog(n) factor, and Õ hides a polylog(n) factor and an additive polylog(n) term.

4
A preliminary version of this paper, appeared on arXiv [54], contained a slightly worse lower bound of the form

Ω(n1/3/log3 n); later, a subsequent work by Izumi and Le Gall [30] showed a lower bound of the form Ω(n1/3/logn)
using our information-theoretic approach.
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happens to some machine as a result of outputting the solution. We can show that this “surprisal

change” represents the maximum expected “Information Cost” over all machines which can be

used to lower bound the run time. The proof of the General Lower Bound Theorem makes use of

information-theoretic machinery, yet its application requires no knowledge of information theory.

The General Lower Bound Theorem gives, in a fairly straightforward way, non-trivial lower

bounds for problems where the application of communication complexity techniques seems not

obvious, including and especially under a stochastic/random partition of the input. As an example,

the work of Klauck et al. [34] showed a (tight) lower bound of Ω̃(n/k2) for connectivity by appealing
to random-partition communication complexity. This involved proving a lower bound for the

classical set disjointness function assuming the inputs are randomly—rather than adversarially—

distributed to the players, and this required non-trivial work. On the other hand, a lower bound

of the same form for MST can be shown directly via the General Lower Bound Theorem—with a

possible lower bound graph being the complete graph with random edge weights.

We also note that tight round complexity lower bounds do not always directly follow from

exploitingmessage (bit) complexity lower bounds obtained by leveraging communication complexity

results. For example, for the problem of triangle enumeration, even assuming the highest possible

message lower bound of Ω(m), this would directly imply a round lower bound of Ω̃(m/k2) (since
Θ(k2) messages can be exchanged in one round) and not the tight Ω̃(m/k5/3) shown in this paper.

Furthermore, our approach can show round-message tradeoffs giving stronger message lower

bounds for algorithms constrained to run in a prescribed round bound compared to what one can

obtain using communication complexity approaches. In particular, for triangle enumeration, we

show that any round-optimal algorithm that enumerates all triangles with high probability in the

k-machine model needs to exchange a total of Ω̃(mk1/3) messages in the worst case.

We emphasize that our General Lower Bound theorem gives non-trivial lower bounds only when

the output size is large enough, but it still works seamlessly across all output sizes. To illustrate

this, we note that the triangle enumeration lower bound of Ω̃(m/k5/3) is true only for dense graphs,
i.e.,m = Θ(n2). In fact, the real lower bound derived through our theorem is Ω̃((t/k)2/3/k), where t
is the number of triangles in the input graph; this bound can be shown to apply even for sparse

(random) graphs by extending our analysis.

Entropy-based information-theoretic arguments have been used in prior work, such as in [34],

where it was shown that Ω̃(n/k) is a lower bound for computing a spanning tree (ST) of a graph.

However, this lower bound holds under the criterion that the machine that hosts the vertex (i.e.,

its home machine) must know at the end of the computation the status of all of its incident edges,

that is, whether they belong to the ST or not. The lower bound proof exploits this criterion to

show that any algorithm will require some machine receiving Ω(n) bits of information, and since

any machine has k − 1 links, this gives a Ω̃(n/k) lower bound. This argument fails if we require

the final status of each edge to be known by some machine (different machines might know the

status of different edges); indeed under this output criterion, it can be shown that MST can be

solved in Õ(n/k2) rounds [55]. On the other hand, the lower bound proof technique of this paper

applies to the less restrictive (and more natural) criterion that any machine can output any part

of the solution. In [7], a direct sum theorem is shown that yields a communication complexity

lower bound for set disjointness. The method of [7] can be applied to obtain lower bounds for

functions F that can be “decomposed” as F (x, y) = f (д(x1,y1), . . . ,д(xn ,yn)), by reduction from

the information complexity of the function д. These methods do not seem applicable to our setting

as we are considering problems where the output size is large.

Upper Bounds. The Conversion Theorem of [34] directly translates algorithms designed for a

message passing model for network algorithms to the k-machine model, and almost all the previous
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algorithms [15, 34] were derived using this result. In contrast, the present paper does not use the

Conversion Theorem; instead, it gives direct solutions for the problems at hand in the k-machine

model, leading to improved algorithms with significantly better round complexity.

While our algorithms use techniques specific to each problem, we point out a simple, but key,

unifying technique that proves very useful in designing fast algorithms, called randomized proxy
computation. Randomized proxy computation is crucially used to distribute communication and
computation across machines to avoid congestion at any particular machine, which instead is

redistributed evenly across all the machines. This is achieved, roughly speaking, by re-assigning

the executions of individual nodes uniformly at random among the machines. (Similar ideas have

been used in parallel and distributed computation in different contexts, see, e.g., [65, 66].) Proxy

computation allows one to move away from the communication pattern imposed by the topology

of the input graph, which can cause congestion at a particular machine, to a more balanced commu-

nication overall. For example, a simple use of this strategy in the triangle enumeration algorithm

(see Section 3.2) is as follows: each edge in the graph is assigned a random machine as its proxy;

the proxy does computation “associated” with the edge. This alleviates the congestion associated

with machines having high-degree nodes. A slightly more sophisticated use of randomized proxy

computation is made in our PageRank algorithm (see Section 3.1).

1.4 Related Work
Klauck et al. [34] present lower and upper bounds for several fundamental graph problems in the

k-machine model. In particular, they presented weaker upper bounds for PageRank and triangle

verification (which also works for triangle enumeration), which are substantially improved in this

paper. They do not present any non-trivial lower bound for any of these problems. Also, as pointed

out earlier, some lower bounds shown in [34], most notably the Ω(n/k2) lower bound of MST (under

random input partition and under the requirement that each MST edge has to be output by some
machine), can be shown in a simpler way using the General Lower Bound Theorem of this paper.

Pandurangan et al. [55] showed Õ(n/k2)-round algorithms in the k-machine model for connectivity,

MST, approximate min-cut, and other graph verification problems. Except for the randomized proxy

computation, the algorithmic techniques used in [55] do not apply for PageRank computation and

triangle enumeration. This model has been further investigated in, e.g., [6, 26, 29, 35].

Another popular model serving as an abstraction of many modern large-scale data processing

frameworks is the Massively Parallel Computation (MPC) model [33]. The distinguishing feature of

this model is that a single machine of a large cluster cannot store the entirety of the input, but just a

sublinear fraction of it. In particular, if N denotes the size of the input, the memory of each machine

is assumed to have size s = O(N 1−ϵ ) for some constant ϵ > 0. Observe that limiting the amount

of local memory also implicitly limits the communication bandwidth—you can only send what

you have in your memory; and vice versa, if you have limited communication bandwidth as in the

k-machine model and a fast algorithm, you do not have time to accumulate a large amount of data

in your local memory. Hence, these two models often lead to similar algorithm design challenges.

On the other hand, because of the relatively large available communication bandwidth, there are

barriers to achieving super-constant lower bounds in the MPC model, and thus only conditional
lower bounds are known—see [48] and references therein.

The k-machine model is also closely related to the classical Congest model [58], and in particular

to the congested clique model, which recently has received considerable attention (see, e.g., [12,

21, 25, 28, 32, 40, 41, 43, 46]). The main difference is that the k-machine model is aimed at the

study of large-scale computations, where the size n of the input is significantly bigger than the

number of available machines k , and thus many vertices of the input graph are mapped to the
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same machine, whereas the two aforementioned models are aimed at the study of distributed

network algorithms, where n = k and each vertex corresponds to a dedicated machine. More “local

knowledge” is available per vertex (since it can access for free information about other vertices in

the same machine) in the k-machine model compared to the other two models. On the other hand,

all vertices assigned to a machine have to communicate through the links incident on this machine,

which can limit the bandwidth—in contrast with the other two models, where each vertex has a

dedicated processor. These differences manifest in the design of fast algorithms for these models. In

particular, the best distributed algorithm for the congested clique may not directly yield the fastest

algorithm in the k-machine model [55].

For a more detailed comparison of the k-machine model with other parallel and distributed

models for large-scale data processing, such as the MPC model [33], the Bulk Synchronous Parallel

(BSP) model [67], the message-passing model [72] and the congested clique, we refer to [55, 68].

PageRank and triangle enumeration have received considerable attention in other models of

distributed computing—see, e.g., [27, 36–38, 57] and references therein. However, none of these

results and techniques therein can be translated to yield the bounds shown in this paper.

1.5 Preliminaries
PageRank. PageRank is one of the most important measures to rank the importance of nodes in

a graph, and was first proposed to rank Web pages [11]. The PageRank of a graph G = (V ,E) is
defined as follows. Let ϵ be a small fixed constant. The PageRank (vector) of a graph (e.g., see

[3, 5, 8, 17]) is the stationary distribution vector π of the following special type of random walk: at

each step of the random walk, with probability ϵ the random walk restarts from a node chosen

uniformly at random among all nodes in the graph, and with probability 1 − ϵ the walk follows a

randomly chosen outgoing (neighbor) edge from the current node and moves to that neighbor. ϵ is
called the reset probability. The computation of PageRank and its variants has been of tremendous

research interest in both academia and industry. For a detailed survey of PageRank see, e.g., [8, 39].

There are mainly two broad approaches to the PageRank computation (see, e.g., [4]). One is the

use of linear algebraic techniques (e.g., the Power Iteration [51]), and the other is Monte Carlo

methods [3]. In the Monte Carlo method, the basic idea is to approximate PageRank by directly

simulating the corresponding random walk and then estimating the stationary distribution with

the performed walk’s distribution [3, 19].

Triangle enumeration. The triangle enumeration problem is to enumerate all the triangles in a

graph, where a triangle is a set of three vertices all adjacent to each other.
5
This problem has

attracted much interest because of its numerous practical applications, including the analysis of

social processes in networks [23, 71], community detection [10], dense subgraph mining [69], joins

in databases [49], and the solution of systems of geometric constraints [24]. The interested reader

may refer to [9, 14] for additional applications.

Triangle detection and triangle counting are also well-studied problems, and potentially sig-

nificantly easier than triangle enumeration; however, we emphasize that for many applications,

including all the aforementioned ones, triangle detection or triangle counting is not enough, and a

complete enumeration of all the triangles is required.

In general, the enumeration of small subgraphs, cliques, or triplets of vertices that consist of

exactly two edges (usually called open triads), also has numerous applications [9, 14, 69, 70].

5
Sometimes this problem is also referred to as triangle listing, although there is a small difference: in triangle listing the

output must be generated and stored in memory, whereas in triangle enumeration the output is not required to be stored.

This distinction is relevant in bounded-memory models.
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2 LOWER BOUNDS
2.1 A General Lower Bound Theorem
In this section we present a result, called General Lower Bound Theorem, which provides a general

way to obtain round lower bounds in the k-machine model. In Section 2.2 we provide the full

proof of this result. We will then apply it to derive lower bounds for two graph problems, namely,

PageRank computation (Section 2.3) and triangle enumeration (Section 2.4).

Consider an n-vertex input graph G partitioned across the machines via the random-vertex

partition in the k-machine model. Note that the input graph G is sampled from a probability

distribution on a (suitably chosen) set of graphs G. (For example, in the case of PageRank, G is

the set of all possible instantiations of the lower bound graph H shown in Figure 1.) Consider a

partition p = (p1, . . . ,pk ) of an input graph G. We use boldface p to denote a vector, and pi to
denote the i-th entry of p. In our analysis, we frequently condition on the event that a subgraph

pi ⊆ G is assigned to a certain machineMi . To simplify notation, we also use pi to denote the event
that this happens, e.g., Pr[E | pi ] is the probability of event E conditioned on the assignment of pi
to machineMi .

Let Πi be the random variable representing the transcript of the messages received by machine

Mi across its k − 1 links when executing a given algorithm A for (at most) T rounds, and let GP

be the set of all possible partitions of the graphs in G among the k machines. The execution of

algorithm A is fully determined by the given input partitioning p ∈ GP and the public random

bit string r ∈ RS, where RS is the set of all possible strings that are used as random bit string

by the algorithm. We use R to denote the random variable of the sampled public random string.

Similarly as above, we write Pr[E | pi , r ] when conditioning event E on the events that the public

random string is r and machineMi obtains subgraph pi as its input, where p = (p1, . . . ,pi , . . . ,pk )
and (p, r ) ∈ GP × RS. We use the random variable Outi to denote the output of machine Mi
when executing the given algorithm. To simplify notation, we simply write “x” to denote the event

{X =x}, for random variable X . For technical reasons, we assume that the output also includes

Mi ’s initial graph input pi and the public random string r .6

Theorem 2.1 (General Lower Bound Theorem). Let IC = IC(n,k) be a positive integer-valued
function called information cost, and let Z be a random variable depending only on the input graph,
where IC ≤ H[Z ] and where H[Z ] is the entropy of Z . Consider a T -round ϵ-error algorithm A, for
some ϵ = o(IC/H[Z ]). Let Good ⊆ GP×RS be a set of pairs (p, r ) where p = (p1, . . . ,pk ) is an input
partition and r is a public random string, and |Good| ≥ (1− ϵ −n−Ω(1))|GP ×RS|. Suppose that, for
every (p, r ) ∈ Good, there exists a machineMi receiving input graph pi and outputtingAi (p, r ), such
that

Pr[Z = z | pi , r ] ≤
(
1

2

)H[Z ]−o(IC)
, (1)

Pr[Z = z | Ai (p, r ),pi , r ] ≥
(
1

2

)H[Z ]−IC
, (2)

for every z that has nonzero probability conditioned on events Outi = Ai (p, r ), Pi = pi , and R =
r . Moreover, assume that, for all (p, r ) ∈ GP × RS, and every i ∈ [k], it holds that H[Z ] ≥
H[Z | Outi =Ai (p, r )]. Then, if B denotes the per-round communication link bandwidth, it holds that

T = Ω

(
IC

Bk

)
. (3)

6
Any given algorithm can be modified to achieve this behavior without increasing the complexity.
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On the Distributed Complexity of Large-Scale Graph Computations 9

Intuition. We can think of Premise (1) as bounding the initial knowledge of the machines about the

random variable Z , which will usually be some function of the input graph. For instance, when

considering triangle enumeration in Section 2.4, Z will be the list of all edges. On the other hand,

Premise (2) shows that at least one machine is able to increase its knowledge about the value of Z
eventually, which we formalize by conditioning on its output in addition to the initial knowledge.

In the context of triangle enumeration, this means that some machine must learn about many

edges in the graph. Then, if there is a large set (called Good) of inputs where these premises hold,

then our theorem says that the worst-case time of the algorithm must be sufficiently large. These

insights are formally captured by the self-information or surprisal of an event E, which is defined

as log
2
(1/Pr[E]) [61] and measures the “amount of surprise” or information contained in observing

an event E. Premises (1) and (2) imply that, from some machineMi ’s point of view, the occurrence

of {Z =z} is “Ω(IC) more surprising” given its initial knowledge, compared to observing this event

after computing the output. We can show that this surprisal change IC bounds from below the

maximum communication cost over all machines. Consequently, (3) tells us that the running time

of the algorithm is roughly a (1/kB)-fraction of the maximum expected information cost.

We point out that the premise H[Z ] ≤ H[Z | Outi =Ai (p, r )] turns out to be a very minor

restriction: for the choices of Z in our applications of this theorem, it is immediate that conditioning

on the output of one machine does not increase the (expected) uncertainty of Z .

2.2 Proof of the General Lower Bound Theorem
In the proof of Theorem 2.1 we make use of some standard definitions in information theory, which

we now recall (and which can be found, e.g., in [16]). Consider random variables X , Y , andW .

The entropy of X is defined as H[X ] = −
∑

x Pr[X = x] log
2
Pr[X = x], and the conditional entropy

is defined as

H[X | Y ] =
∑
y

Pr[Y =y] H[X | Y = y]. (4)

The mutual information between X and Y given some event {W =w} is denoted by I[X ;Y |W =w],
and given by

I[X ;Y |W =w] = H[X |W =w] − H[X | Y ,W =w]. (5)

From this it immediately follows that

H[X |W =w] ≥ I[X ;Y |W =w]. (6)

For a given input graph partition p and a random string r , we are interested in identifying the

machine that has the maximum expected value of the amount of information that its transcript

reveals about the random variable Z . This motivates us to define the critical index function as

ℓ(p, r ) := argmax

1≤i≤k
I[Πi ;Z | pi , r ], (7)

and define random variables

Π∗(p, r ) = Πℓ(p,r )(p, r ) and Out∗(p, r ) = Outℓ(p,r )(p, r ). (8)

Intuitively speaking, for each (p, r ) ∈ GP × RS, the random variable Out∗ is the output of the
machineMi (where i depends on p, r ) that attains the maximum mutual information between its

output and the random variable Z . For a given (p, r ), we use

p∗ = pℓ(p,r ) (9)
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10 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato

to denote the input partition of machine Mℓ(p,r ). Note that Z depends only on the input graph,

whereas Π∗, P∗, and Out∗ depend on the input graph and, in addition, also on the chosen partition

p and random string r .

Lemma 2.2. For every (p, r ) ∈ GP ×RS where p = (p1, . . . ,p∗, . . . ,pk ), and every i ∈ [k], it holds
that

I[Π∗;Z | p∗, r ] ≥ max

1≤i≤k
I[Outi ;Z | pi , r ].

Proof. Consider a (p, r ) ∈ GP × RS as described in the premise of the lemma. It holds that

I[Π∗;Z | p∗, r ] ≥ max

1≤i≤k
I[Πi ;Z | pi , r ] (by (7))

= max

1≤i≤k
(H[Z | pi , r ] − H[Z | Πi ,pi , r ]). (by (5))

The random variable Outi which represents the output of machineMi is fully determined by the

transcript Πi , Mi ’s input graph assignment (i.e., the random variable Pi ), and the random bits.

Therefore, by the data processing inequality (see [16]), we can use the bound H[Z | Πi ,pi , r ] ≤
H[Z | Outi ,pi , r ] in the right-hand side of the above inequality to obtain

I[Π∗;Z | p∗, r ] ≥ max

1≤i≤k
(H[Z | pi , r ] − H[Z | Outi ,pi , r ]) = max

1≤i≤k
I[Outi ;Z | pi , r ]

and the lemma follows. □

Lemma 2.3. For all (p, r ) ∈ Good where p = (p1, . . . ,pk ), there is an i ∈ [k] (which satisfies (1) and
(2) in the premise of the theorem) such that I[Outi ;Z | pi , r ] ≥ IC − o(IC).

Proof. For a given (p, r ) ∈ Good, let Mi be a machine satisfying (2) (in addition to (1)). By

definition,

I[Outi ;Z | pi , r ] = H[Z | pi , r ] − H[Z | Outi ,pi , r ]. (10)

We will now bound the terms on the right-hand side. By definition, we obtain

H[Z | pi , r ] = −
∑
z

Pr[Z = z | pi , r ] log2 Pr[Z = z | pi , r ]

≥ (H[Z ] − o(IC))
∑
z

Pr[Z = z | pi , r ] (by (1))

= H[Z ] − o(IC), (11)

where the last equality follows from

∑
z Pr[Z = z | pi , r ] = 1.

In the remainder of the proof, we derive an upper bound on H[Z | Outi ,pi , r ]. Since machineMi
includes its input pi and the public random string r in its output, we have

H[Z | Outi ,pi , r ] = H[Z | Outi ], (12)

and thus we will proceed by proving an upper bound on the latter term. To simplify notation, we

use “Ai (p, r )” as a shorthand for the event “Outi = Ai (p, r )”. By definition, we have

H[Z | Outi ] =
∑
(p,r )

Pr[Ai (p, r )] H[Z | Ai (p, r )]

=
∑

(p,r )∈Good

Pr[Ai (p, r )] H[Z | Ai (p, r )] +
∑

(p,r )<Good

Pr[Ai (p, r )] H[Z | Ai (p, r )]
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Recalling that the premise of Theorem 2.1 states H[Z | Ai (p, r )] ≤ H[Z ], we can plug this bound

into the second term of the sum on the right-hand side to obtain

H[Z | Outi ] ≤
∑

(p,r )∈Good

Pr[Ai (p, r )] H[Z | Ai (p, r )] + H[Z ]
©­«

∑
(p,r )<Good

Pr[Ai (p, r )]
ª®¬. (13)

Intuitively speaking, the first sum in (13) represents the remaining uncertainty of Z upon termina-

tion, assuming machines start with a hard input assignment (i.e., in Good), whereas the second term
is weighted by the probability that either the input was easy or the algorithm failed (i.e. < Good).
The following claim bounds the entropy term in the first sum of (13), where (p, r ) is restricted to

the set Good.

Claim 1. H[Z | Ai (p, r )] ≤ H[Z ] − IC.

Proof of Claim 1. From the definition of entropy, we obtain

H[Z | Ai (p, r )] = −
∑
z

Pr[Z = z | Ai (p, r )] log2 Pr[Z =z | Ai (p, r )]. (14)

Since we assume that machineMi also outputs its initial graph assignment (i.e., pi ) and the public

random string r , it holds that

H[Z | Ai (p, r )] = H[Z | Ai (p, r ),pi , r ],

which allows us to rewrite (14) as

H[Z | Ai (p, r )] = −
∑
z

Pr[Z = z | Ai (p, r ),pi , r ] · log2 Pr[Z =z | Ai (p, r ),pi , r ].

Recalling thatMi satisfies (2), we get

H[Z | Ai (p, r )] ≤ (H[Z ] − IC)
∑
z

Pr[Z = z | Ai (p, r ),pi , r ] = H[Z ] − IC,

since

∑
z Pr[Z = z | Ai (p, r ),pi , r ] = 1. □

We will now derive an upper bound on the second sum in (13).

Claim 2.

∑
(p,r )<Good Pr[Ai (p, r )] ≤ ϵ + n−Ω(1).

Proof of Claim 2. Consider the set (GP×RS)\Good. According to our model, the input graph

and its partitioning among the machines correspond to choosing, uniformly at random, an element

from GP, whereas the random string r is uniformly selected from RS. Since the output of machine

Mi is fully determined by (p, r ), we have∑
(p,r )<Good

Pr[Ai (p, r )] =
∑

(p,r )<Good

Pr[(p, r )] = Pr[(GP × RS) \ Good].

From the lower bound on the size of Good in the theorem premise, we obtain an upper bound such

that ∑
(p,r )<Good

Pr[Ai (p, r )] = Pr[(GP × RS) \ Good] ≤ ϵ + n−Ω(1),

thus proving the claim. □
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12 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato

Plugging the bounds in Claims 1 and 2 into (13), we get

H[Z | Outi ] ≤ (H[Z ] − IC)
∑

(p,r )∈Good

Pr[Ai (p, r )] + H[Z ]
(
ϵ + n−Ω(1)

)
≤ (H[Z ] − IC) + H[Z ]

(
ϵ + n−Ω(1)

)
.

Assuming a sufficiently large constant in the exponent of n−Ω(1), we observe thatH[Z ] ·n−Ω(1) = o(1)
since Z depends only on the input graph. By the premise of Theorem 2.1, we have ϵ = o(IC/H[Z ])
and IC ≤ H[Z ], hence ϵ · H[Z ] = o(IC). From this and (12) we conclude that

H[Z | Outi ,pi , r ] ≤ H[Z ] − IC + o(IC).

Plugging this upper bound and the lower bound of (11) into the right-hand side of (10), completes

the proof of Lemma 2.3. □

Recall that Lemma 2.2 holds for any (p, r ) ∈ GP × RS; in particular, even if we restrict our

choice to the set Good. Thus, for (p, r ) ∈ Good, where p = (p1, . . . ,pk ), let i ∈ [k] be the index for
which Lemma 2.3 holds (which is the index of the machine satisfying Premises (1) and (2)). This

yields

H[Π∗ | p∗, r ] ≥ I[Π∗;Z | p∗, r ] (by (6))

≥ I[Outi ;Z | pi , r ] (by Lemma 2.2)

≥ IC − o(IC), (15)

where the last inequality follows from Lemma 2.3. To complete the proof of Theorem 2.1, we will

argue that the worst-case running time needs to be large, as otherwise the entropy of machine

Mℓ(p,r )’s transcript Π∗ would be less than IC − o(IC). The value of H[Π∗ | p∗, r ] is maximized if the

distribution of (Π∗ | p∗, r ) is uniform over all possible choices. In the next lemma we show that,

during T rounds of the algorithm, the transcript can take at most 2
(B+1)(k−1)T

distinct values, and

thus

H[Π∗ | p∗, r ] ≤ log
2

(
2
(B+1)(k−1)T

)
= O(B k T ). (16)

Lemma 2.4. Suppose that some machine Mi can receive a message of at most B bits on each of its
k − 1 links in a single round. Let Γ be the bits received by Mi over its k − 1 links during T rounds.
Then, Γ can take at most 2(k−1)(B+1)T distinct values.

Proof. Since in a synchronous model one can convey information even by not sending any bits in
a given round, there are at most 2

B + 1 < 2
B+1

distinct possibilities for the communication received

over a single link of bandwidth B in any given round. Thus, we can view the communication

received overMi ’s k − 1 links as a word ω1 of length k − 1, where each character of ω1 is chosen

from an alphabet of size (at most) 2
B+1

, resulting in 2
(B+1)(k−1)

possible choices for ω1. Finally,

we view Γ, i.e., the communication received over the T rounds, as a word of length T , where the
alphabet size of each character is at most 2

(B+1)(k−1)
, yielding 2

(B+1)(k−1)T
many choices in total. □

Recall that the running timeT is the maximum time required by any machineMi , over all random

strings and input assignments, i.e., T = max(p,r ) T (p, r ). Combining (15) and (16), it follows that

T = max

(p,r )
T (p, r ) = Ω

(
IC

Bk

)
.

This completes the proof of Theorem 2.1.
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2.3 A Lower Bound for PageRank Computation
Theorem 2.5. Let A be an algorithm that computes a δ -approximation of the PageRank vector

of an n-node graph for a small constant δ > 0 (depending on the reset probability), and suppose that
A succeeds with probability at least 1 − o(1/k). Then, the running time of A is Ω

(
n

B ·k2

)
, assuming

a communication link bandwidth of B bits per round and k = Ω(log2 n) machines. This holds even
when the input graph is assigned to the machines via random vertex partitioning.

We first give a high-level overview of the proof. As input graph G, we construct a weakly con-

nected directed graph where the direction of certain “important” edges is determined by a random

bit vector, and assign random IDs to all the vertices. Flipping the direction of an important edge

changes the PageRank of connected vertices by a constant factor and hence any (correct) algorithm

needs to know about these edge directions. It is crucial that the vertex IDs are chosen randomly,

to ensure that knowing just the direction of important edges is not sufficient for computing the

PageRank of the adjacent nodes, as these random vertex IDs “obfuscate the position” of a vertex

in the graph. This means that a machine needs to know both, the direction of an important edge

and the IDs of the connected vertices to be able to output a correct result. By using a Chernoff

bound, we can show that the random vertex partitioning of the input graph does not reveal too

many edge-directions together with the matching vertex IDs to a single machine. This sets the

stage for applying our generic lower bound theorem (Theorem 2.1) to obtain a lower bound on the

running time.

The Lower Bound Graph. We consider the following directed graph H (see Figure 1) of n vertices

and m = n − 1 edges; for simplicity, assume that m/4 is an integer. Let X = {x1,x2, . . . ,xm/4},
U = {u1,u2, . . . ,um/4}, T = {t1, t2, . . . , tm/4}, V = {v1,v2, . . . ,vm/4}, and let V (G) = {X ∪ U ∪
T ∪V ∪ {w}}. The edges between these vertices are given as follows: For 1 ≤ i ≤ m/4, there is a
directed edge ui → ti , a directed edge ti → vi , and a directed edge vi → w . The edges between

ui and xi (these are the “important” edges mentioned above) are determined by a bit vector b of
lengthm/4 where each entry bi of b is determined by a fair coin flip: If bi = 0 then there is an edge

ui → xi , otherwise there is an edge xi → ui . Lemma 2.6 shows that, for any 1 ≤ i ≤ m/4 and for

any ϵ < 1, there is a constant factor separation between the PageRank of any node vi if we switch
the direction of the edge between xi and ui .

Lemma 2.6. The following holds for the PageRank value of vertices vi of G, for 1 ≤ i ≤ n/4: If
bi = 0, then PageRank(vi ) =

(2.5−2ϵ+ϵ 2/2)ϵ
n . Otherwise, if bi = 1, then PageRank(vi ) ≥

(3−3ϵ+ϵ 2)ϵ
n .

For any ϵ < 1, there is a constant factor separation between the two cases.

Proof. We will determine an estimate of PageRank(vi ) using the distributed random walk

approach described at the beginning of Section 3.1, in which the expected number of random walk

tokens addressed to one node, multiplied by ϵ/cn logn, gives a high-probability estimate of the

PageRank value of the node. Ifψvi denotes the number of random walk tokens addressed to node

vi , then

E
[
ψvi |bi = 0

]
= c logn

(
1 + (1 − ϵ) +

(1 − ϵ)2

2

)
and

E
[
ψvi |bi = 1

]
= c logn

(
1 + (1 − ϵ) + (1 − ϵ)2 + (1 − ϵ)3

)
.

Therefore,

PageRank(vi ) =
(2.5 − 2ϵ + ϵ2/2)ϵ

n
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x1

x2

...

xm/4

u1

u2

...

um/4

t1

t2

...

tm/4

v1

v2

...

vm/4

w

X[1] = 1

X[1] = 0

X[2] = 1

X[2] = 0

X[m/4] = 1

X[m/4] = 0

Fig. 1. The graph H used to derive a lower bound on the round complexity of PageRank computations.

if bi = 0, and

PageRank(vi ) ≥
(3 − 3ϵ + ϵ2)ϵ

n

if bi = 1. □

The Input Graph Distribution. We now build our input graph G as follows. Letm = n − 1, and let

ID be the random variable representing a set of n unique integers chosen uniformly at random

from {S ⊂ [1, poly(n)] : |S | = n}. Assigning to each vertex of H a unique integer drawn uniformly

and without repetitions from ID yields a graph G. Let G denote the set of graphs G determined by

all possible (different) ID assignments to all possible instances of H considering all possible edge

directions. Let GP be the set of all input graph partitions (i.e., the set of all graphs in G and all

their possible input partitions) among the k machines, and let RS be the set of all random strings

used by a given PageRank algorithmA. Let Bal ⊆ GP be the set of all input partitions where each

machine receives Θ̃(n/k) vertices of the input graph. Note that (p, r ) ∈ GP × RS fully determines

the run of A. We assume that each machine Mi outputs a set {(π1, id1), . . . , (πℓ, idℓ)}, where πj
refers to the PageRank value of the vertex with ID idj . Note that we make assumptions neither on

which machine outputs the PageRank of a specific vertex v (which therefore could be a machine

that has no initial knowledge about v), nor on the individual sizes of these output sets.

Discovering Weakly Connected Paths of Vertices. By the random vertex partitioning, each machine

Mi initially holds Θ̃(n/k) vertices in total. More specifically, Mi receives random sets Xi ⊆ X ,
Ui ⊆ U , Ti ⊆ T , and Vi ⊆ V , each containing O(n log(n)/k) vertices. As machine Mi also gets

to know the incident edges of these vertices, Mi can locally check if a path induced by some

(x j1 ,uj2 , tj3 ,vj4 ) ∈ Xi × Ui × Ti × Vi is weakly connected, i.e., j1 = · · · = j4. Since Mi learns the

output pair (PageRank(v), idv ) at zero cost, we upper bound the number of such paths that the

machines learn initially by using a Chernoff bound.
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Lemma 2.7. With probability at least 1 − n−4, the initial graph partition reveals at mostO
(
n logn
k2

)
weakly connected paths between vertices in X and V to every machine.

Proof. Fix one machineMi . If a vertex is assigned toMi , then machineMi knows its incident

edges and the IDs of their endpoints. Therefore,Mi can discover a weakly connected path (between

X and V ) in one of the following ways: (1) Mi obtains x j ∈ X and tj ∈ T ; (2) Mi obtains uj ∈ U
and vj ∈ V . The argument is similar in both cases and hence we focus on (1) for the rest of this

proof. By the random vertex partition process, the probability that x j and tj both are assigned to

machine Mi is
1

k2
. Since all vertices are assigned independently at random, a standard Chernoff

bound shows that with high probability O(n logn/k2) matching vertex pairs (x j , tj ) are assigned to

machineMi . Applying the union bound over the k machines completes the proof. □

Good Inputs. We define Good ⊆ Bal × RS to be the set of all (balanced) inputs and random strings

where (1) A correctly outputs the PageRank of each vertex, (2) partition p is “balanced”, i.e., each

machine is assigned O(n logn/k) vertices (and hence O(n logn/k) edges sincem = O(n)), and (3)

the partitioning is such that each machine knows at most O((n logn)/k2) weakly connected paths

initially; we define Bad = GP × RS \ Good.

Lemma 2.8. (A) For any (p, r ) ∈ Good, algorithm A is correct and there must be at least one
machineMi whose output list contains Ω(n/k) vertices ofV . (B) |Good| ≥

(
1 − o(1/k) − n−Ω(1)

)
|GP×

RS|.

Proof. Part (A) follows directly from the definition of set Good. For (B), note that A succeeds

with probability at least 1 − o(1/k). Moreover, the random vertex partitioning ensures that each

machine receives Θ̃(n log(n)/k) vertices with probability at least 1 − n−4. Hence, the above is true
for at least a

(
1 − o(1/k) − n−4

)
-fraction of the possible graph partition and random string pairs in

GP × RS. □

To instantiate Theorem 2.1, we show in Lemma 2.9 and Lemma 2.10 that we can satisfy the

Premises (1) and (2), by setting IC = m/4k = Θ(n/k). Plugging the above value of IC in (3) then

gives the claimed lower bound.

Lemma 2.9. Let Z be the random variable representing the set {(b1,v1), . . . , (bm/4,vm/4)}, where
bj refers to the direction of the edge (x j ,uj ) in the weakly connected path (x j ,uj , tj ,vj ) of the input
graph of Figure 1. Then, for each (p, r ) ∈ Good, where p = (p1, . . . ,pk ), and for every possible choice
of z,

Pr[Z = z | pi , r ] ≤ 2
−(m/4−O (n log(n)/k2)).

Proof. Consider a (p, r ) ∈ Good where p = (p1, . . . ,pi , . . . ,pk ). By Lemma 2.8, part (A), algo-

rithm A correctly computes the PageRank, and some machine (without loss of generality) Mi
outputs at least Ω(n/k) PageRank values.

By Lemma 2.6, we know that algorithm A can only correctly output PageRank(vj ) at machine

Mi ifMi knows the direction of the edge between uj and x j (from Lemma 2.6, since the direction

of the corresponding edge can be derived from the PageRank value). This means that if machine

Mi outputs the PageRank for vj as a pair (πj ,vj ), then it can reconstruct the pair (bj ,vj ), for any
1 ≤ j ≤ m/4.

Since (p, r ) ∈ Good, it follows by Lemma 2.7 that eachmachineMi learns atmostη = O(n log(n)/k2)
output entries ofV for free by inspecting its assigned input. In addition to these η entries,Mi might

know partial information about the remaining Ω(n) − η pairs.

It follows that, for each of the other weakly connected paths that are not concerned with its η
already known PageRank values,Mi either has initial knowledge of the index ℓ of the respective
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vertex vℓ ∈ Vi , or it knows the edge direction bℓ between xℓ and uℓ , but not both. Notice that
knowledge of the vertex ID of vℓ reveals no additional information about the index ℓ since we
choose vertex IDs uniformly at random. We refer to these paths as being partially known toMi .

It follows that, for each index j for which the path is partially known to Mi , there are two

possibilities (0,vj ) and (1,vj ), each of which is equally likely, according to the input distribution.

Therefore, taking into account the initial input assignment, we still have at least 2
m/4−O (n log(n)/k2)

possible choices for z, i.e., the output ofMi concerning vertices inV , each of which is equally likely

without conditioning on further knowledge. Thus,

Pr[Z = z | pi , r ] ≤ 2
−(m/4−O (n log(n)/k2)),

completing the proof of the lemma. □

Lemma 2.10. For each (p, r ) ∈ Good, where p = (p1, . . . ,pk ), there exists a machineMi with output
Ai (p, r ) such that, for every choice of z for Z (defined in Lemma 2.9) that has nonzero probability
conditioned on Ai (p, r ),pi , r , it holds that Pr[Z = z | Ai (p, r ),pi , r ] ≥ 1/2

m
4
−m

4k .

Proof. By Lemma 2.8, we know that there is a machineMi that outputs at leastm/4k PageRank
values of vertices in V . Let λ be the total number of pairs (bj ,vj ), where bj is the direction of the

edge (x j ,uj ) in the weakly connected path (x j ,uj , tj ,vj ) (cf. Lemma 2.9) that remain unknown to

machineMi conditioned on its input pi , random string r , and its output oi .
Observing that the size of its output oi is at leastm/4k , and from the fact that we can recover the

pair (bj ,vj ) ifMi outputs the PageRank ofvj (see proof of Lemma 2.9), it follows that λ ≤ m/4−m/4k ,

and thus there are 2

m
4
−m

4k distinct choices for z. The probability bound is minimized if each of the

remaining possible choices of z are equally likely. This implies that Pr[Z | oi ,pi , r ] ≥ 1/2
m
4
−m

4k , as

desired. □

2.4 A Lower Bound for Triangle Enumeration
We first give a high-level overview of the proof. The input graphs that we use for our lower

bounds are sampled according to theGn,1/2 Erdös-Renyi random graph model. We will argue that

enumerating triangles implies a large reduction of the entropy of the characteristic vector of edges

Z , i.e., Z is a bit vector whose entries reflect the presence/absence of an edge in the input graph.

We prove that initially the machines do not have significant knowledge of Z , which is equivalent to

having a small probability for the event {Z = z}, for any z. Then, we show that any machine that

outputs t/k triangles, for a parameter t , must have reduced its uncertainty aboutZ by approximately

(t/k)2/3 bits. In other words, the information obtained by such a machine throughout the course of

the algorithm is high. We apply Theorem 2.1 to obtain a lower bound on the running time of any

algorithm. This yields the following result.

Theorem 2.11. There exists a class of graphs G of n nodes for which every distributed algorithm
that solves triangle enumeration in thek-machinemodel has a time complexity ofΩ

(
n2

B ·k5/3

)
, assuming

a link bandwidth of B bits per round, k = Ω(logn)machines, and an error probability of ϵ = o(k−2/3).
This holds even when the input graph is assigned to the machines via random vertex partitioning.

The Input Graph Distribution. We choose our input graphs according to the Erdös-Renyi random

graph model Gn,1/2, which samples an n-node graph where each possible edge is included indepen-

dently with probability 1/2. We use GP to denote the set of all possible partitions of all possible

sampled n-node graphs and, similarly to before, denote the set of all random strings used by the

algorithm by RS.
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On the Distributed Complexity of Large-Scale Graph Computations 17

Let Z be the characteristic vector of the edges
7
of the input graph G. Note that the execution of

A is fully determined by the given graph input partition p = (p1, . . . ,pk ) ∈ GP and the shared

(among all machines) random bit string r ∈ RS, where RS is the set of all possible strings that are

used as random bit string by the algorithm. Hence we have |GP × RS| possible outcomes when

running A on a graph sampled from G.

Good Inputs. We define Good ⊆ GP×RS to be the set of input pairs (p, r ) such that (1)A performs

correctly for the graph partition p of graphG and the random string r , (2) partition p is “balanced”,

i.e., each machine is assigned O(n log(n)/k) vertices (and hence O(n2 log(n)/k) edges), and (3) G
has at least t triangles, for some fixed t = Θ(

(n
3

)
).

Lemma 2.12 (Good Inputs). (A) For every (p, r ) ∈ Good, at least one machine outputs at least
t/k triangles when executing algorithm A with (p, r ), and (B) |Good| ≥ (1 − ϵ ′)|GP × RS|, where
ϵ ′ = ϵ + n−Ω(1).

Proof. Part (A) is immediate from the definition of Good. For (B), note that A succeeds with

probability at least 1 − ϵ and the random vertex partitioning guarantees a balanced partition with

probability at least 1 − n−4. From [31, Equation 4.10] we know that the number of triangles in a

input graphG sampled fromGn,1/2 is Θ(
(n
3

)
) with probability at least 1 − e−Ω(1), and hence the set

Good contains all except at most a (1 − ϵ − n−3)-fraction of the graphs in GP × RS. □

Lemma 2.13. Let random variable Z denote the characteristic vector of the edges of the sampled
input graphG. For every (p, r ) ∈ Good where p = (p1, . . . ,pk ) and every characteristic edge vector z,
it holds that Pr[Z =z | pi , r ] ≤ 1/2(

n
2
)−O(n2

log(n)/k), for every i ∈ [1,k].

Proof. For any (p, r ) ∈ Good, each machine has initial knowledge of O(n2 logn/k) edges. Con-
sider any machineMi . Since the random vertex partitioning and the sampling of the input graph

are independent, there are at least 2
(n
2
)−O (n2

log(n)/k )
choices for the remaining edges, all of which

are equally likely according to the random graph model, giving the claim. □

Lemma 2.14. Let (p, r ) ∈ Good, where p = (p1, . . . ,pk ). There exists a machine Mi with output
Ai (p, r ) such that, for every edge vector z that has non-zero probability conditioned on Ai (p, r ), pi ,
r ,

Pr[Z = z | Ai (p, r ),pi , r ] ≥ 1/2(
n
2
)−O (n2

log(n)/k)−Ω((t/k )2/3).

Proof. By assumption (p, r ) ∈ Good, which means that the machines output all t = Θ(
(n
3

)
) trian-

gles. Thus there is some machineMi that outputs at least t/k triangles. We will bound from below

the number of edges known by machineMi conditioned on its output and its input assignment.

Initially, Mi discovers t3 = t3(Pi ) “local” triangles (for which it knows all threes edges) by

inspecting its assigned portion of the input graph given by Pi . Since we are restricting the inputs
to be in Goodi , we know that the edges known toMi are bounded by O(n2 logn/k) and hence the

number of triangles formed using these edges is

t3 = O((n
2
logn/k)3/2) = O(n3 log3/2(n)/k3/2).

We call a triangle λ undetermined w.r.t. Mi if Mi is unaware of at least one edge of λ initially.

Formally, λ is undetermined if there are two input graphs G and G ′ where λ exists in G but not in

G ′ and both graphs are compatible with the input pi assigned to machineMi .

By the above, we have at least (t/k) − t3 undetermined triangles that are output by Mi . From

Equation (10) in [62], we know that the number of distinct edges necessary for representing ℓ

7
The characteristic vector specifies the graph G . Order the

(n
2

)
possible edges in some fixed ordering; if the jth edge in this

ordering appears in G , then Z j = 1, otherwise it is 0.
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18 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato

triangles is Ω(ℓ2/3). This means that at least ((t/k) − t3)
2/3

edges are required for representing the

undetermined triangles of Mi . We can divide the undetermined triangles into two sets, one set

T1 contains triangles that have a vertex allocated to Mi , and the other set T2 contains triangles
that have no vertex allocated toMi . Set T1 contributes |T1 |/(n logn/k) unknown edges, since the

number of vertices allocated to this machine is O(n logn/k), whereas T2 contributes 1/3 · (|T2 |)
2/3

unknown edges. These two sets of unknown edges might overlap, hence we need to consider the

maximum over them, which can be shown to be Ω(((t/k) − t3)
2/3). Hence it is possible to recover

Ω(((t/k) − t3)
2/3) edges from Mi ’s output that were unknown to Mi initially. Let η denote the

number of unknown edges of Z when Mi outputs its solution. Taking into account the initially

known edges, we have

η ≤

(
n

2

)
− Ω

( t
k
− t3

)2/3
−O

(
n2 logn

k

)
=

(
n

2

)
−O

(
n2 logn

k

)
− Ω

( t
k

)2/3
(17)

possible edges that are unknown toMi , since t3 = o(t/k). Since we have sampled the edges of the

input graph following the Gn,1/2 random graph model, it follows that, for any z that has nonzero
probability givenMi ’s output and initial assignment, Pr[Z = z | oi ,pi , r ] = 2

−η
. The lemma follows

by applying (17). □

Proof of Theorem 2.11. We are now ready to instantiate Theorem 2.1 where Z is the characteristic

vector of edges as defined above. Note that Lemma 2.13 and Lemma 2.14 satisfy Premises (1) and (2).

Note that Ω(t/k)2/3 = Ω(n2/k2/3). Setting IC = Θ
(
n2/k2/3

)
completes the proof of Theorem 2.11.

A tight lower bound in the congested clique. Our analysis extends in a straightforward way to the

congested clique model where, in a synchronous complete network of n machines, every machine

u receives exactly one input vertex of the input graph and gets to know all its incident edges.

Together with the deterministic upper bound of O(n1/3) shown in [20], this implies the following:

Corollary 2.15. The round complexity of enumerating all triangles in the congested clique of n
nodes with high probability of success is Ω

(
n1/3

B

)
, assuming a link bandwidth of B bits. This bound is

tight up to logarithmic factors.

Message lower bounds. We point out that it is possible to extend Theorem 2.1 to yield new message

lower bounds for algorithms that attain an efficient time complexity. We outline the high-level ar-

gument for triangle enumeration. Consider an algorithm matching the time bound of Theorem 2.11,

i.e., T = Õ(n2/k5/3) assuming a bandwidth of B = O(logn) bits. In the k-machine model, in T
rounds each machine can receive at most µ = Õ(n2/k2/3) bits in total. Lemma 2.13 tells us that every

machine has very little initial knowledge about the t triangles in the graph given its initial graph

assignment, when considering inputs chosen from Good. On the other hand, inspecting the proof

of Lemma 2.14, we can observe that a machineMj who outputs tj triangles needs to receive Ω̃(t
2/3

j )

bits of information. If we restrict the algorithm to terminate within T rounds, this means that each

machine can output at mostO(n3/k) triangles, as this requires µ = O((n3/k)2/3) bits of information.

This implies that the output per machine must be roughly balanced and every machine needs to

receive Ω(µ) bits of information, yielding a message complexity of Ω̃(k · n2/k2/3) = Ω̃(n2k1/3). In
particular, this rules out algorithms that aggregate all input information at a single machine (which

would only require O(m) messages in total). From the above, we have the following.

Corollary 2.16. LetA by any algorithm that enumerates all triangles with high probability and
terminates in Õ( n

2

k5/3 ) rounds. Then, the total message complexity in the k-machine model of A is
Ω̃(n2k1/3). For Õ(n1/3)-rounds algorithms in the congested clique, the message complexity is Ω̃(n7/3).
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3 UPPER BOUNDS
3.1 An Almost Optimal Algorithm for PageRank Approximation
In this section we present a simple distributed algorithm to approximate the PageRank vector of
an input graph in the k-machine model. This algorithm has a round complexity of Õ(n/k2), which
significantly improves over the previous Õ(n/k)-round solution [34].

We first recall the distributed random-walk-basedMonte-Carlo algorithm for computingPageRank,
for a given reset probability ϵ , as described in [19]. This algorithm is designed and analyzed in the

standard Congest model, where each vertex of the graph executes the algorithm. The algorithm is

as follows. Initially, each vertex creates c logn random walk tokens, where c = c(ϵ) is a parameter

defined in [19], which are then forwarded according to the following process: when a node u
receives some random walk token ρ, with probability ϵ it terminates the token, and with probability

1 − ϵ it forwards the token to a neighbor node chosen uniformly at random. Each machine keeps a

variable ψv , for each of its nodes v , which counts the number of random walk tokens that were

addressed to v (i.e., the total number of all random walks that visit v). Each node v then estimates

its PageRank by computing
ϵψv

cn logn . It can be shown that this estimate gives a δ -approximation,

for any constant δ > 0, to the PageRank value of each node v with high probability, and that this

algorithm terminates inO(logn/ϵ) rounds with high probability [19]. The key idea to obtain such a

fast runtime is to send only the counts of the random walks, instead of keeping track of the random

walks from different sources. Clearly, only the number (i.e., count) of the random walks visiting a

node at any step is required to estimate the PageRank.
Note that a straightforward implementation of the above random walk-based algorithm might

yield a suboptimal running time in the k-machine model. (In fact, applying the Conversion Theorem

of [34] to implement the above algorithm gives only Õ(n/k) time.) The main issue is that some

machine might receive too many randomwalks destined for the nodes in that machine. For example,

during some step of the random walk it might happen that n different walks are destined to different

nodes in the same machine, causing Ω(n) congestion at some machine leading to a Ω(n/k) bound.
For example, in a star-like topology, the center vertex c which resides at some machineM1 might

need to receive n random walks from its neighbors, hence causing a round complexity of Ω̃(n/k).
In the above example, since there is only one high degree vertex, we can get around this problem

by sending only the counts. However, the situation is less clear if Ω(n) tokens are destined for

different nodes in the same machine.

To avoid the above pitfalls, we describe an approach tailored to the k-machine model. On the

one hand, our goal is to reduce the total amount of communication while, on the other hand, we

need to ensure that the incurred message complexity is balanced for the available machines. This

motivates us to treat vertices differently depending on how many tokens they hold. We say that a

vertex u is light in iteration r if, conceptually, the machine that hosts u considers less than k tokens

to be held at u. Otherwise, we say that u is heavy in iteration r .
In our algorithm (Algorithm 1), each machine M stores an array tokens[u], which has an entry

for each vertex u hosted atM . Initially, we generate Θ(logn) tokens for each vertex which we use

as the initialization value of tokens. Then, we mimic the (parallel) random walk steps of [19] by

performing Θ(log(n)/ϵ) iterations where, in each iteration, each machine M first considers the

tokens stored for its light vertices. For each such token held at one of its vertices u,M uniformly

at random selects a neighboring vertex v and keeps track of how many tokens have chosen v
in a separate array α[v]. In particular, M also increments the same entry α[v] if v is chosen as

the destination for some token of a distinct light vertex w , u at M . Then, M sends a message

⟨α[v], dest:v⟩ for each v where α[v] is nonzero, which is subsequently delivered to the destination
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machine using random routing (cf. Lemma 3.3). This ensures that all the messages are delivered in

Õ(n/k2) rounds.
We now describe how high-load vertices are processed, each of which can hold up to O(n logn)

tokens. To avoid potentially sending a large number of messages for a single high-load vertex u,
machine M considers the index set I of machines that host at least one neighbor of u. Then, for
each token of u, machineM samples an index from I according to the degree distribution of u (see

Line 23 in Algorithm 1) and keeps track of these counts in an array β , which has an entry for each

machine in I . Finally,M generates one message of type ⟨β[j], src:u⟩, for each entry j where β[j] > 0

and sends this count message directly to the respective destination machine. We show that these

messages can be delivered in Õ(n/k2) rounds by proving that, with high probability, each machine

holds Õ(n/k2) high-load vertices in any given iteration of the algorithm.

Proposition 3.1. Algorithm 1 correctly computes the PageRank with high probability.

Proof. In [19] it is shown that the random walk process, where each token is either terminated

with probability ϵ or forwarded with probability 1 − ϵ to a neighbor chosen uniformly at random,

approximates the PageRank of the graph. Thus it is sufficient to show that Algorithm 1 adheres to

this random walk process.

Consider a node u and suppose that u holds ℓ tokens. If ℓ < k , then according to Lines 8-16, we

increment the corresponding entry of array α[v], for some uniformly at random chosen neighbor

v of u and send a message ⟨cv ,dest : v⟩ to the machineM ′ hosting v . Upon receiving the message,

M ′ increases its token count of v , as required.
Now, suppose that ℓ ≥ k and consider an arbitrary neighbor v of u, hosted on machineM ′ and

assume that M ′ hosts nu ≥ 1 neighbors of u in total. For any token of u, it follows from Line 23

that we choose machineM ′ with probability nu/du , where du is the degree of u in the graph.

The algorithm then sends a message of type ⟨cu , src : u⟩ to machineM ′ where cu is the number

of tokens of u for whichM ′ was sampled as the destination machine. Upon processing this message

in Lines 31-36, M ′ delivers each token to its locally hosted neighbors of u uniformly at random,

and hence a specific neighbor v receives a token with with probability 1/nu .
Combining these observations, we conclude thatv receives a tokenwith probabilitynu/du ·1/nu =

1/du , conditioned on the token not having been terminated in Line 6 with probability ϵ , which
corresponds to the random walk process of [19]. □

Lemma 3.2. Every machineMi sends at most O(n log(n)/k) messages in any iteration r with high
probability.

Proof. First, we consider messages thatMi needs to send on behalf of its hosted light vertices.

We classify the light vertices into send bins S0, S1, . . . , S ⌈logk ⌉−1, according to the number of distinct

messages that they require to be sent and, for each j, 0 ≤ j ≤ ⌈log
2
k⌉ − 1, we define the bin

S j =

{
v ∈ V (G)

���� k

2
j+1 ≤ tokens[v] <

k

2
j

}
. (18)

By definition, the total number of messages generated for any light vertex in iteration r is at most

k − 1, and hence every light v is in some bin S j .
Since Θ(logn) tokens are generated initially for each vertex, we have Θ(n logn) tokens in total,

which implies that |S j | ≤
2
j+1n logn

k , for all j. By the random vertex partitioning, we know that a

machineMi receives at mostO(|S j | log(n)/k) vertices from S j with probability ≥ 1−n−4; we denote
this vertex set by Si, j . Taking a union bound over the iterations of the algorithms (assuming a
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Algorithm 1 Approximating the PageRank with reset probability ϵ > 0. Code for machineMi .

1: Let Vi denote the vertices hosted by machineMi
2: Initalize array tokens[u] ← ⌈c logn⌉, for u ∈ Vi , where c > 0 is a suitable constant ▷ tokens[u]

represents the current number of tokens at vertex u
3: for Θ(log(n)/ϵ) iterations do
4: for u ∈ Vi do
5: sample t from distribution Binomial(tokens[u], ϵ)
6: tokens[u] ← tokens[u] − t ▷ Terminate each token with probability ϵ

7:

8: Initialize array α[v] ← 0, for each v ∈ V ▷ Process the light vertices
9: for each vertex u ∈ Vi where tokens[u] < k do
10: let Nu ⊆ V be the set of neighbors of vertex u
11: while tokens[u] > 0 do
12: sample v uniformly at random from Nu
13: α[v] ← α[v] + 1
14: tokens[u] ← tokens[u] − 1
15: for each v ∈ Vi where α[v] > 0 do
16: send message ⟨α[v], dest: v⟩ to the machine hosting vertex v using random routing

17:

18: for each vertex u ∈ Vi where tokens[u] ≥ k do ▷ Process the heavy vertices

19: let I ⊆ [k] be the index set of the machines that host a neighbor of u
20: initialize array β[j] ← 0, for each j ∈ I
21: while tokens[u] > 0 do
22: let nj,u be number of neighbors of u hosted at machineMj and let du be u’s degree

23: sample index j from distribution

(
n1,u
du
, . . . ,

nk,u
du

)
24: β[j] ← β[j] + 1
25: tokens[u] ← tokens[u] − 1
26: for each j ∈ I where β[j] > 0 do
27: send message ⟨β[j], src: u⟩ to machineMj

28:

29: for each received message of type ⟨cw , dest:w⟩ do
30: tokens[w] ← tokens[w] + cw
31: for each received message of type ⟨cv , src: v⟩ do
32: while cv > 0 do
33: let Nv ⊆ V be the set of neighbors of v hosted atMi
34: samplew uniformly at random from Nv
35: tokens[w] ← tokens[w] + 1
36: cv ← cv − 1

constant reset probability ϵ), the O(log
2
k) distinct bins, and over the k machines, it follows that

∀Mi ∀j ∈ {0, . . . , ⌈log2 k⌉ − 1} : |Si, j | = O
(
2
j+1n logn

k2

)
, (19)

with probability ≥ 1 − n−2. According to (18), each vertex in bin S j holds less than k/2
j
tokens, and

thus by (19) the total number of messages produced by vertices in S j that are located on machine
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Mi is

O

(
|Si, j | ·

k

2
j

)
= O

(
2
j+1n logn

k2
k

2
j

)
= O

(
n logn

k

)
.

Since we have Θ(logk) bins, the total number of messages generated by machineMi for its light

vertices is O(n log(n)/k) · Θ(logk) = Õ(n/k) with high probability.

Now, consider the heavy vertices atMi . By definition, each heavy vertex has at least k tokens and

hence there are at most O(n log(n)/k) heavy vertices at any point of the algorithm. Therefore, the

random vertex partitioning implies that each machine will hold most O(n log(n)/k2) many heavy

vertices w.h.p. For processing the tokens of a heavy vertex u, we recall from Algorithm 1 that we

need to send at most one message to each machine that holds a neighbor of u. This means that

all messages generated for u can be sent and delivered in one round and hence by taking a union

bound over all the machines, it follows that each machine can send all tokens for its heavy vertices

in O(n log(n)/k2) rounds.
Finally, the lemma follows by taking a union bound over the O(log(n)/ϵ) iterations of the

algorithm. □

A key ingredient in the analysis of the algorithm is the following simple lemma, which quantifies

how fast some specific routing can be done in the k-machine model.

Lemma 3.3. Consider a complete network of k machines, where each link can carry one message
ofO(polylogn) bits at each round. If each machine is source ofO(x)messages whose destinations are
distributed independently and uniformly at random, or each machine is destination ofO(x)messages
whose sources are distributed independently and uniformly at random, then all the messages can be
routed in O((x logx)/k) rounds w.h.p.

Proof. We shall prove the statement for the case in which each machine is the source of O(x)
messages. The other case and its analysis are symmetric.

Since destinations of messages are chosen randomly, we choose to route each message to its

(random) destination machine through the link that directly connects the source to the destination

machine (which always exists because the network is complete). By a classic balls-into-bins result,

each of the k − 1 links of each machine is responsible for carrying O((x logx)/k) messages w.h.p.,

and the result follows. □

Lemma 3.4. Consider any iteration r of Algorithm 1. Then, with high probability, all messages
generated at iteration r can be delivered in Õ(n/k2) rounds.

Proof. We first consider the messages generated due to a heavy vertexu. Recall fromAlgorithm 1

that each machine directly sends the messages that it generated for u to the destination machines,

which requires just one round. As we have argued in Lemma 3.2, there are at most O(n log(n)/k2)
many heavy vertices per machine w.h.p., and hence all of their messages can be delivered within

O(n log(n)/k2) rounds.
In the remainder of the proof, we focus on messages generated while processing light vertices. To

this end, we argue that each machine needs to receive at most Õ(n/k)messages that were generated

due to light vertices in Line 16, which according to the random routing result, can be delivered in

Õ(n/k2) rounds. We proceed similarly to the analysis in Lemma 3.2. That is, we define receive bins
R0,R1, . . . ,R ⌈logk ⌉−1, where

R j =

{
v ∈ V (G) |

k

2
j+1 ≤ λv ≤

k

2
j

}
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and λv is the random variable that counts the number of tokens generated for light vertices that are

received by v in iteration r . Consider any v ∈ V (G) located at some machineM . The crucial point

is that each v must be in exactly one of these bins, since Line 16 ensures that machineM receives

at most one message of type ⟨α[v], dest:v⟩ that is addressed to v from each distinct machineM ′.
Similarly as in Lemma 3.2, it follows by the properties of the random vertex partitioning that

each machine holds Õ(|R j |/k) vertices from R j with high probability, and hence the total number of

messages that each machine needs to receive (over all receive bins) is Õ(n/k). Thus, by Lemma 3.3,

all of these messages can be delivered in Õ(n/k2) rounds. Finally, it is shown in [19] that all tokens

are terminated in O(log(n)/ϵ) steps and thus, assuming that ϵ > 0 is a small constant, the claim

follows by a union bound over the iterations of the algorithm. □

From Lemma 3.4 we conclude that all messages generated in a single iteration of Algorithm 1 can

be delivered in Õ(n/k2) rounds with high probability. A union bound implies the following result.

Theorem 3.5. Algorithm 1 computes a δ -approximation of the PageRank vector of ann-node graph
in the k-machine model with high probability in Õ(n/k2) rounds, for any constant δ > 0.

3.2 An Almost Optimal Algorithm for Triangle Enumeration
In this section we present a randomized algorithm that enumerates all the triangles of an input

graph G = (V ,E), and that terminates in Õ(m/k5/3 + n/k4/3) rounds w.h.p. This bound does not

match the (existential) Ω̃(m/k5/3) lower bound provided in Section 2.4 only for very sparse graphs.

Our algorithm is a generalization of the algorithm TriPartition of Dolev et al. for the congested

clique model [20], with some crucial differences explained next. The key idea, which in its generality

can be traced back to [2], is to partition the setV of nodes ofG in k1/3 subsets of n/k1/3 nodes each,
and to have each of the k machines to examine the edges between pairs of subsets in one of the

(k1/3)3 = k possible triplets of subsets (repetitions are allowed).

The algorithm is as follows. Each node picks independently and uniformly at random one color

from a set C of k1/3 distinct colors through a hash function h : V → C initially known by all

the machines. This gives rise to a color-based partition of the vertex set V into k1/3 subsets of
Õ(n/k1/3) nodes each, w.h.p. A deterministic assignment of triplets of colors, hard-coded into the

algorithm, logically assigns each of the k possible triplets of such subsets to one distinct machine.

Each machine then collects all the edges between pairs of subsets in its triplet. This is accomplished

in two steps: (1) For each of the edges it holds, each machine designates one random machine

(among the k machines) as the edge proxy for that edge, and sends all its edges to the respective

edge proxies. The designation of an edge itself is done by the following proxy assignment rule (this
is necessary to avoid congestion at any one machine): A machine that has a node v whose degree

is at least 2k logn requests all other machines to designate the respective edge proxies for each

of the incident edges of node v . If two machines request each other to designate the same edge

(since their endpoints are hosted by the respective machines), then such a tie is broken randomly.

(2) In the second step, all the machines collect their required edges from the respective proxies:

since each edge proxy machine knows the hash function h as well as the deterministic assignment

of triplets, it can send each edge to the machines where it is needed. Then, each machine simply

enumerates all the triangles in its local subgraph.

Our algorithm differs from the one in [20] in theway thek1/3 subsets of vertices are constructed, in
the use of proxy computation and in the routing of messages, which in our algorithm is randomized

and hence requires a more involved analysis, allowing for a better time complexity for graphs

where the number of edgesm is o(n2).

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2021.



24 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato

We now argue that the above algorithm correctly enumerates all the triangles of a graph G, and
analyze its round complexity. A key step in the analysis of the complexity is to bound from above

the number of edges assigned to each machine. Observe that the number of edges between pairs

of subsets of one triplet is no larger than the number of edges in the subgraph of G induced by

the nodes of one triplet; in turn, because of the random color-based partition of the vertices made

by the algorithm, the latter quantity is asymptotically equivalent to the number of edges in the

subgraph ofG induced by a set of (in this case, Õ(n/k1/3)) randomly-chosen nodes of a graph. Thus,

we shall concentrate on the latter quantity (which is of interest in its own right). To this end, we

will use the following concentration result due to Rödl and Ruciński [63].
8

Proposition 3.6 ([63, Proposition 1]). Let, for a graph G = (V ,E), m < ηn2, and let R be a
random subset of V of size |R | = t such that t ≥ 1/3η. Let e(G[R]) denote the number of edges in the
subgraph induced by R. Then,

Pr

[
e(G[R]) > 3ηt2

]
< t · e−ct

for some c > 0.9

We are now ready to analyze the algorithm.

Theorem 3.7. There is a distributed algorithm for the k-machine model that enumerates all the
triangles of an n-node,m-edge graph in Õ(m/k5/3 + n/k4/3) rounds with high probability.

Proof. Since there are (k1/3)3 = k possible triplets of non-intersecting subsets of n/k1/3 nodes,
all possible triangles are examined by the algorithm, and this proves its correctness.

We now argue that the algorithm terminates in Õ(m/k5/3 + n/k4/3) rounds w.h.p. As part of
the argument used to prove Lemma 4.1 of [34] it is shown that every machine initially stores

Õ(m/k + ∆) edges, where ∆ is the maximum degree of the graph. If we apply Lemma 3.3 directly,

the communication phase that assigns the edges to their random proxies takes Õ(m/k2 + ∆/k)
rounds w.h.p. We now argue that the proxy assignment rule allows us to show an Õ(m/k5/3) bound
for this phase for every non-sparse graph.

Clearly, by the random proxy assignment, each machine receives only Õ(m/k) messages. We

next argue that each machine is responsible for designating only Õ(m/k) edges w.h.p. Then, by
Lemma 3.3, the time to send all the designation messages is Õ(m/k2) rounds.
For the sake of the analysis, we partition the non-isolated nodes of the input graph into logn

sets, based on their degree: the i-th set contains all the nodes whose degree is in [∆/2i ,∆/2i+1),
0 ≤ i ≤ logn−1. We now focus on the number of messages sent by some machineM . By a standard

Chernoff bound, a node vi with degree di in the i-th set has Õ(di/k) neighbors in M w.h.p. If ni
is number of nodes in the i-th set, then the total number of neighbors (and hence messages) that

M will send with respect to nodes in this set is Õ(nidi/k) w.h.p. Summing over all the logn sets

we have that the total number of messages sent by M is

∑
logn−1
i=0 Õ(nidi/k) = Õ(m/k) w.h.p. (via

the union bound). Applying the union bound over all the machines, we have that the same bound

holds for every machine.

The above argument does not take into account the messages sent by a machine initially to

request the designation of an edge. A machine needs one round (to broadcast to all the other

8
Observe that one cannot simply apply a Chernoff bound, since edges are not chosen independently; also, mimicking the

argument for the proof of Lemma 4.1 in [34] would give a bound of the form Õ (m/k1/3), which is weaker since we would

be overcounting edges (as we would be counting also those edges with just one endpoint in the given machine).

9
A careful inspection of the argument used by Rödl and Ruciński to establish this result reveals that the additional condition

t ≥ 1/3η, missing from their statement, is necessary for the result to hold. In fact, as stated, their result is implicitly

assuming that both n and t grow to infinity [64].

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2021.



On the Distributed Complexity of Large-Scale Graph Computations 25

machines) to request such a designation. If some machine M sends f ≥ k polylogn requests,

then M must have f nodes with degree at least 2k logn. By the RVP, this implies that with high

probability the total number of nodes with degree at least 2k logn is at least Ω(f k). Hence the
number of edges in the graph ism = Ω̃(f k2). Therefore the number of rounds needed for broadcast,

Õ(f ), is subsumed by Õ(m/k5/3).
Next, we analyze the re-routing of each edge e from its edge proxy to all the machines that are

assigned a copy of both of the endpoints of e . Observe that any two nodes, and therefore any edge,

can be held by at most k1/3 different machines: consider an edge (a,b), and pick one machineM that

has to receive it because, among its three subsets of nodes, one (call it A) contains a and one (call it

B) contains b. Edge (a,b) can be assigned only to those machines which contain both subsets A and

B, and there are only k1/3 − 1 such machines in addition toM . Hence, re-routing the edges entails

mk1/3 messages to be traveling across the network.
10
We first bound the number of edges received

by each machine. Fix one machine M . We shall apply Proposition 3.6 with t = dn logn/k1/3 for
some positive constant d . We have two cases. If m ≥ nk1/3/6d logn then m ≥ n2/6t , which in

turn implies 2m/n2 ≥ 1/3t , and thus we can apply Proposition 3.6 with η = 2m/n2 obtaining, for
machineM ,

Pr

[
e(G[R]) > 3

2m

n2

(
dn logn

k1/3

)
2

]
< t · e−cdn logn/k1/3

,

that is, since k ≤ n,

Pr

[
e(G[R]) ≤

6d2m log
2 n

k2/3

]
> 1 − e−Ω(logn).

Hence we can apply Lemma 3.3 with x = Õ(m/k2/3), which yields a round complexity of Õ(m/k5/3)
w.h.p. Now observe that each proxy has to send Õ(m/k2/3) edges. We can apply Lemma 3.3 with

x = Õ(m/k2/3), which implies that the number of rounds needed for the proxies to send their edges

is Õ(m/k5/3) w.h.p., completing the analysis for the casem ≥ nk1/3/6d logn.
On the other hand, if m < nk1/3/6d logn we shall apply Proposition 3.6 with η = 1/3t =

k1/3/3dn logn, obtaining

Pr

[
e(G[R]) > 3

k1/3

3dn logn

(
dn logn

k1/3

)
2

]
< t · e−cdn logn/k1/3

,

that is, since k ≤ n,

Pr

[
e(G[R]) ≤

dn logn

k1/3

]
> 1 − e−Ω(logn).

As in the previous case, we apply Lemma 3.3, now with x = Õ(n/k1/3). The theorem follows. □

4 CONCLUSIONS
We presented a general technique for proving lower bounds on the round complexity of distributed

computations in a general message-passing model for large-scale computation, and showed its

application for two prominent graph problems, PageRank and triangle enumeration. We also

presented near-optimal algorithms for these problems, which can be efficiently implemented in

practice.

10
Notice that each node is replicated k2/3 times in the system, and therefore each edge is replicated k4/3 times; however, we

only need to re-route copies of edges that are internal to the triplets, and therefore copies of edges that have one endpoint

in one triplet and the other endpoint in a different triplet need not be communicated. Hence, the total number of edges to

be communicated ismk1/3 and notmk2/3.
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Our lower bound technique works by relating the size of the output to the number of commu-

nication rounds needed, and could be useful in showing lower bounds for other problems where

the output size is large (significantly more than the number of machines), such as sorting, matrix

multiplication, shortest paths, matching, and clustering.
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