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Online Metric Matching

> Input:
> A metric space, with n points designated as servers
» One by one, n requests arrive at arbitrary points
» Task: Match each request to a yet unmatched server, minimizing
the total request-server distance

Introduced in 1991 by Khuller, Mitchell, and Vazirani, and independently
by Kalyanasundaram and Pruhs
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» Considered the most interesting special case, investigated since 1996
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Online Metric Matching on the Line

» Considered the most interesting special case, investigated since 1996

» Example: matching skiers to skis of approximately their height
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Matching on the Line: How Difficult can it Be?

Greedy algorithm: match each request to the closest server
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Matching on the Line: How Difficult can it Be?

Greedy algorithm: match each request to the closest server
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An Q(+/log n) Lower Bound - The Adversarial Input

I

Note: the adversarial input does not depend on ALG!
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An Q(+/log n) Lower Bound - Roadmap

Any randomized online matching algorithm ALG incurs an expected
Q(n) cost in each round.
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|

Then:

|\

E[ALG]  Q(nlogn)
E[OPT] ~ O(nv/iogn)

— Q(v/og )

The competitive ratio of any randomized online matching algorithm for
the line exceeds +/log,(n+1)/15 foralln=2"—1:i € N.
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Any randomized online matching algorithm ALG incurs an expected
Q(n) cost in each round.

Proof sketch:

If unmatched servers are roughly equidistant
d  E(d')=d/4
—>

on o—=o e—=o o= o
d
Elcost] = Q(d) - Q (g) - Q(n)
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An Q(+/log n) Lower Bound - ALG

Any randomized online matching algorithm ALG incurs an expected
Q(n) cost in each round.

Proof sketch:

If unmatched servers are roughly equidistant
d  E(d')=d/4
—>

o= @ LA 4 ® =—@ o—=—0—

If not

E[cost] can only be higher
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An Q(+/log n) Lower Bound - OPT
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An Q(+/log n) Lower Bound - OPT

» What's the value of r;?

n
1 i-th request is left of ¢-th leftmost server
£ z; ' ' { 0 otherwise

=

» E[r] = ¢, hence d = O(|r; — E[r]])
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An Q(+/log n) Lower Bound - OPT

» What's the value of r,?

= z":Xi X = { 1 i-th request is left of /-th leftmost server
i=1

0 otherwise

» E[r] = ¢, hence d = O(|r; — E[r]])
» Only log,(n+ 1) Xi's (one per round) are “truly” random variables
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An Q(+/log n) Lower Bound - OPT

» What's the value of r;?

n
1 i-th request is left of ¢-th leftmost server
= X: X =
g Z; ' ' { 0  otherwise

p

» E[r] ~ ¢, hence d = O(|r — E[re]|)
» Only log,(n+ 1) Xi's (one per round) are “truly” random variables

?
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» Thus |r, — E[rs]| is O(v/log n) in expectation
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