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Online Metric Matching

I Input:
I A metric space, with n points designated as servers
I One by one, n requests arrive at arbitrary points

I Task: Match each request to a yet unmatched server, minimizing

the total request-server distance

Introduced in 1991 by Khuller, Mitchell, and Vazirani, and independently
by Kalyanasundaram and Pruhs
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Online Metric Matching on the Line

I Considered the most interesting special case, investigated since 1996

I Example: matching skiers to skis of approximately their height

Requests

Servers

Competitive ratio: maxI
ALG(I )
OPT (I )
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Matching on the Line: How Difficult can it Be?

Greedy algorithm: match each request to the closest server

Requests

Servers

1.1 0.9 2 4

Competitive ratio: Ω(2n)
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The Story so Far

1

Randomized Deterministic

n
Kalyanasundaram and Pruhs, 1991

Khuller et al., 1991

4.591 Kalyanasundaram and Pruhs, 1996
9 Kalyanasundaram and Pruhs, 1996

9.001 Fuchs et al., 2005

log3 n Meyerson et al., 2006

log2 n Bansal et al., 2007

log n Gupta and Lewi, 2012

n0.58 Antoniadis et al., 2014

Nayyar and Raghvendra, 2017

Raghvendra, 2018

Is there an O(1)-competitive online algorithm for the line?

√
log n Peserico and Scquizzato, 2021
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An Ω(
√

log n) Lower Bound - The Adversarial Input

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Note: the adversarial input does not depend on ALG!
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An Ω(
√

log n) Lower Bound - Roadmap

Lemma

Any randomized online matching algorithm ALG incurs an expected

Ω(n) cost in each round.

Lemma

The expected distance between the `-th leftmost request and the `-th

leftmost server is O(
√

log n).

Then:
E[ALG ]

E[OPT ]
=

Ω(n log n)

O(n
√

log n)
= Ω(

√
log n)

Theorem

The competitive ratio of any randomized online matching algorithm for

the line exceeds
√

log2(n+1)/15 for all n = 2i − 1 : i ∈ N.
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An Ω(
√

log n) Lower Bound - ALG

Lemma

Any randomized online matching algorithm ALG incurs an expected
Ω(n) cost in each round.

Proof sketch:

If unmatched servers are roughly equidistant

d

d ′ E(d ′) = d/4

E[cost] = Ω (d) · Ω
( n
d

)
= Ω(n)

If not

E[cost] can only be higher
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An Ω(
√

log n) Lower Bound - OPT

Lemma

The expected distance between the `-th leftmost request and the `-th

leftmost server is O(
√

log n).

Proof sketch:

I d = distance between `-th leftmost request and `-th leftmost server

I r` = number of requests to the left of the `-th leftmost server

I Observe that d = O(|r` − `|)

`-th`-th

d

2 2
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An Ω(
√

log n) Lower Bound - OPT
I What’s the value of r`?

r` =
n∑

i=1

Xi Xi =

{
1 i-th request is left of `-th leftmost server

0 otherwise

I E[r`] ≈ `, hence d = O(|r` − E[r`]|)

I Only log2(n + 1) Xi ’s (one per round) are “truly” random variables

0 1 2 3 4 5 6 7 = ` 8 9 10 11 12 13 14 15 16

?

?

?

?

I Thus |r` − E[r`]| is O(
√

log n) in expectation
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0 1 2 3 4 5 6 7 = ` 8 9 10 11 12 13 14 15 16

?

?

?

?

I Thus |r` − E[r`]| is O(
√

log n) in expectation
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