Matching on the line admits no $o(\sqrt{\log n})$ -competitive algorithm

Enoch Peserico and **Michele Scquizzato** University of Padova

ICALP 2021

Online Metric Matching

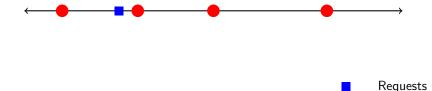
Input:

- A metric space, with *n* points designated as *servers*
- One by one, n requests arrive at arbitrary points
- **Task**: Match each request to a yet unmatched server, minimizing the total request-server distance

Introduced in 1991 by Khuller, Mitchell, and Vazirani, and independently by Kalyanasundaram and Pruhs

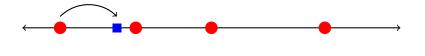
- Considered the most interesting special case, investigated since 1996
- Example: matching skiers to skis of approximately their height

- Considered the most interesting special case, investigated since 1996
- Example: matching skiers to skis of approximately their height



Servers

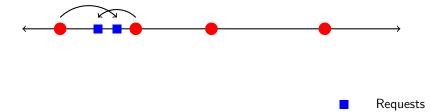
- Considered the most interesting special case, investigated since 1996
- Example: matching skiers to skis of approximately their height



- Considered the most interesting special case, investigated since 1996
- Example: matching skiers to skis of approximately their height

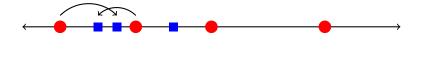


- Considered the most interesting special case, investigated since 1996
- Example: matching skiers to skis of approximately their height



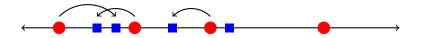
Servers

- Considered the most interesting special case, investigated since 1996
- Example: matching skiers to skis of approximately their height

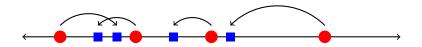


- Considered the most interesting special case, investigated since 1996
- Example: matching skiers to skis of approximately their height

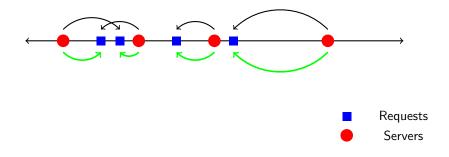
- Considered the most interesting special case, investigated since 1996
- Example: matching skiers to skis of approximately their height



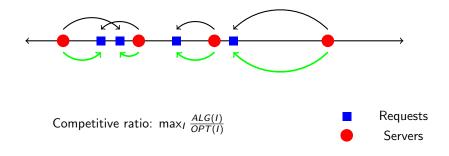
- Considered the most interesting special case, investigated since 1996
- Example: matching skiers to skis of approximately their height



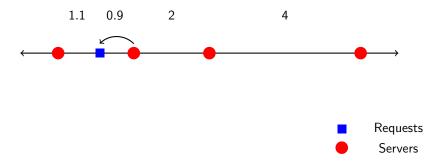
- Considered the most interesting special case, investigated since 1996
- Example: matching skiers to skis of approximately their height

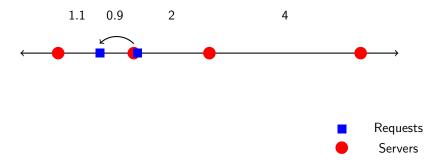


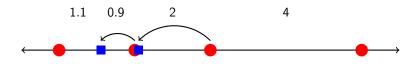
- Considered the most interesting special case, investigated since 1996
- Example: matching skiers to skis of approximately their height

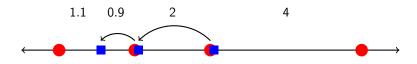


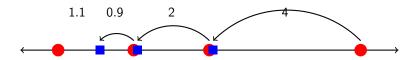


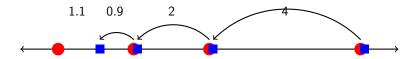


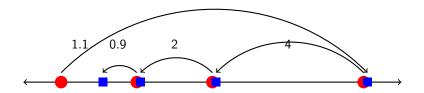


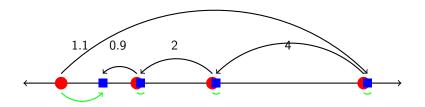




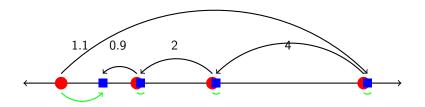








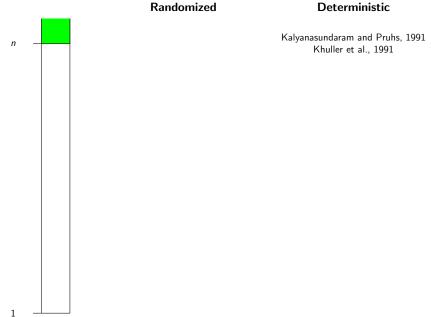
Greedy algorithm: match each request to the closest server

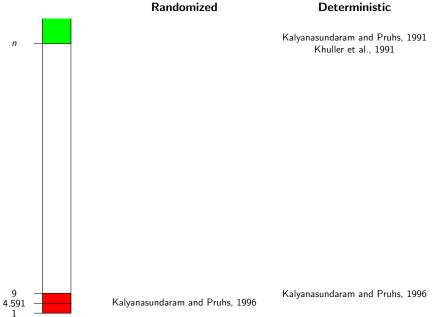


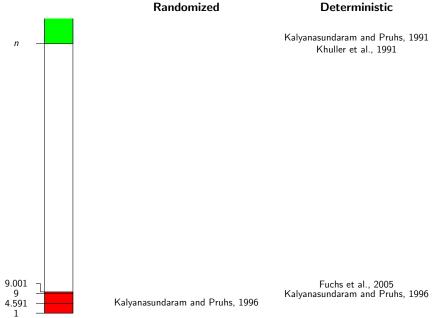
Competitive ratio: $\Omega(2^n)$

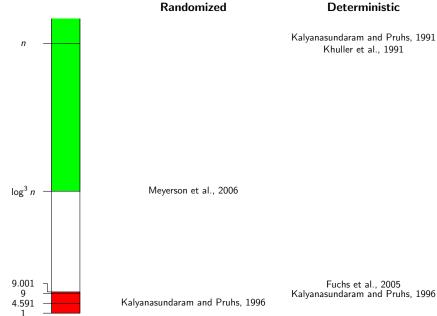
Randomized

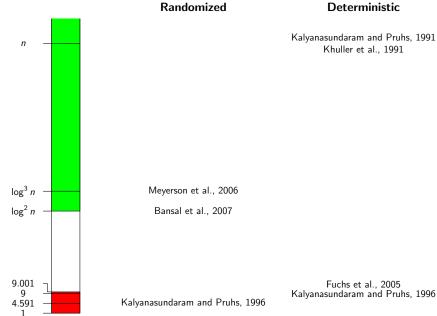
Deterministic







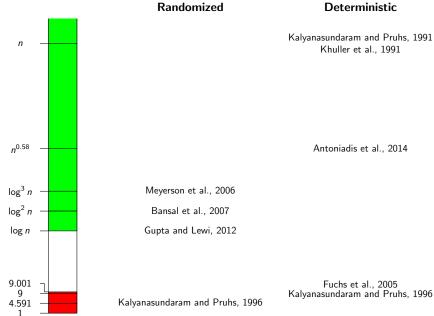






Deterministic

Kalyanasundaram and Pruhs, 1991 Khuller et al., 1991

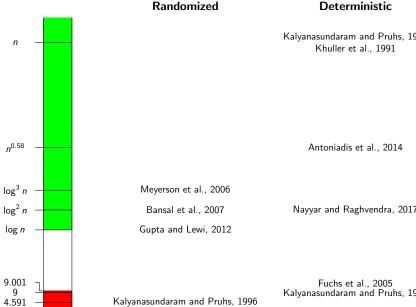


Deterministic

Kalyanasundaram and Pruhs, 1991 Khuller et al., 1991

Antoniadis et al., 2014

1

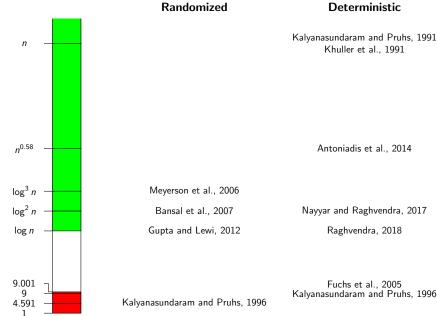


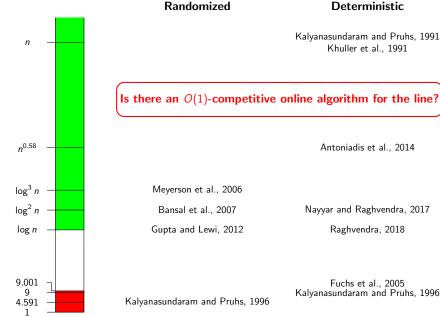
Deterministic

Kalyanasundaram and Pruhs, 1991

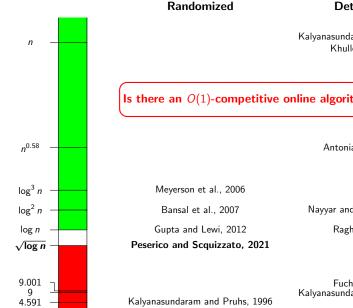
Nayyar and Raghvendra, 2017

Kalyanasundaram and Pruhs, 1996





1



Deterministic

Kalvanasundaram and Pruhs, 1991 Khuller et al., 1991

Is there an O(1)-competitive online algorithm for the line?

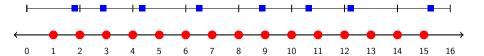
Antoniadis et al., 2014

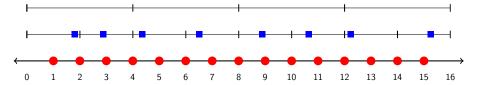
Nayyar and Raghvendra, 2017

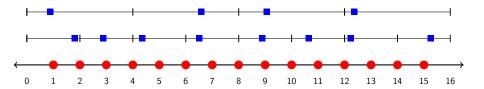
Raghvendra, 2018

Fuchs et al., 2005 Kalvanasundaram and Pruhs, 1996

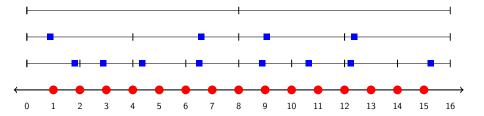




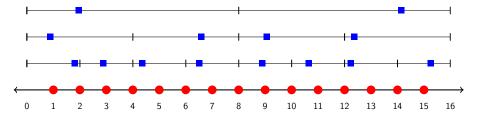




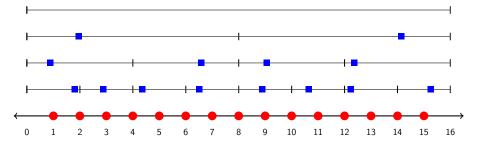
An $\Omega(\sqrt{\log n})$ Lower Bound - The Adversarial Input

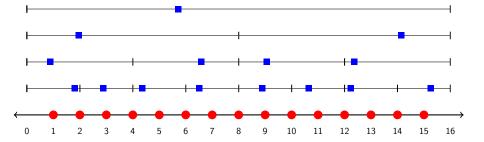


An $\Omega(\sqrt{\log n})$ Lower Bound - The Adversarial Input

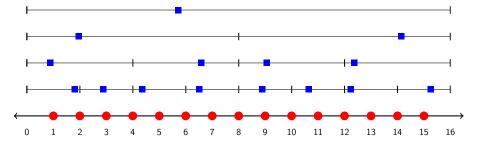


An $\Omega(\sqrt{\log n})$ Lower Bound - The Adversarial Input





An $\Omega(\sqrt{\log n})$ Lower Bound - The Adversarial Input



Note: the adversarial input does not depend on ALG!

Lemma

Any randomized online matching algorithm ALG incurs an expected $\Omega(n)$ cost in each round.

Lemma

Any randomized online matching algorithm ALG incurs an expected $\Omega(n)$ cost in each round.

Lemma

The expected distance between the ℓ -th leftmost request and the ℓ -th leftmost server is $O(\sqrt{\log n})$.

Lemma

Any randomized online matching algorithm ALG incurs an expected $\Omega(n)$ cost in each round.

Lemma

The expected distance between the ℓ -th leftmost request and the ℓ -th leftmost server is $O(\sqrt{\log n})$.

Then:

$$\frac{\mathrm{E}[ALG]}{\mathrm{E}[OPT]} = \frac{\Omega(n \log n)}{O(n \sqrt{\log n})} = \Omega(\sqrt{\log n})$$

Lemma

Any randomized online matching algorithm ALG incurs an expected $\Omega(n)$ cost in each round.

Lemma

The expected distance between the ℓ -th leftmost request and the ℓ -th leftmost server is $O(\sqrt{\log n})$.

Then:

$$\frac{\mathrm{E}[ALG]}{\mathrm{E}[OPT]} = \frac{\Omega(n \log n)}{O(n \sqrt{\log n})} = \Omega(\sqrt{\log n})$$

Theorem

The competitive ratio of any randomized online matching algorithm for the line exceeds $\sqrt{\log_2(n+1)}/15$ for all $n = 2^i - 1$: $i \in \mathbb{N}$.

Lemma

Any randomized online matching algorithm ALG incurs an expected $\Omega(n)$ cost in each round.

Lemma

Any randomized online matching algorithm ALG incurs an expected $\Omega(n)$ cost in each round.

Proof sketch:

Lemma

Any randomized online matching algorithm ALG incurs an expected $\Omega(n)$ cost in each round.

Proof sketch:

Lemma

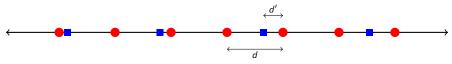
Any randomized online matching algorithm ALG incurs an expected $\Omega(n)$ cost in each round.

Proof sketch:

Lemma

Any randomized online matching algorithm ALG incurs an expected $\Omega(n)$ cost in each round.

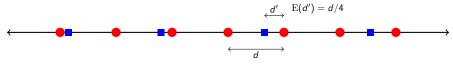
Proof sketch:



Lemma

Any randomized online matching algorithm ALG incurs an expected $\Omega(n)$ cost in each round.

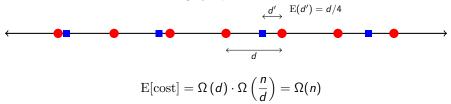
Proof sketch:



Lemma

Any randomized online matching algorithm ALG incurs an expected $\Omega(n)$ cost in each round.

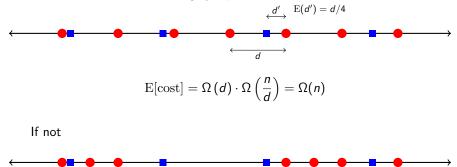
Proof sketch:



Lemma

Any randomized online matching algorithm ALG incurs an expected $\Omega(n)$ cost in each round.

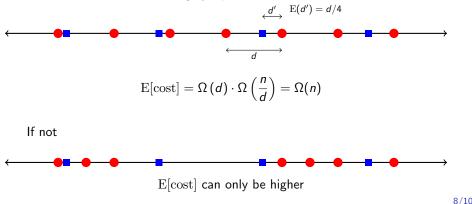
Proof sketch:



Lemma

Any randomized online matching algorithm ALG incurs an expected $\Omega(n)$ cost in each round.

Proof sketch:



Lemma

The expected distance between the ℓ -th leftmost request and the ℓ -th leftmost server is $O(\sqrt{\log n})$.

Lemma

The expected distance between the l-th leftmost request and the l-th leftmost server is $O(\sqrt{\log n})$.

- ▶ d = distance between l-th leftmost request and l-th leftmost server
- ▶ r_{ℓ} = number of requests to the left of the ℓ -th leftmost server

Lemma

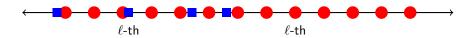
The expected distance between the ℓ -th leftmost request and the ℓ -th leftmost server is $O(\sqrt{\log n})$.

- ▶ $d = \text{distance between } \ell$ -th leftmost request and ℓ -th leftmost server
- ▶ r_{ℓ} = number of requests to the left of the ℓ -th leftmost server
- Observe that $d = O(|r_{\ell} \ell|)$

Lemma

The expected distance between the ℓ -th leftmost request and the ℓ -th leftmost server is $O(\sqrt{\log n})$.

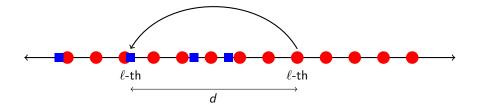
- ▶ $d = \text{distance between } \ell$ -th leftmost request and ℓ -th leftmost server
- ▶ r_{ℓ} = number of requests to the left of the ℓ -th leftmost server
- Observe that $d = O(|r_{\ell} \ell|)$



Lemma

The expected distance between the ℓ -th leftmost request and the ℓ -th leftmost server is $O(\sqrt{\log n})$.

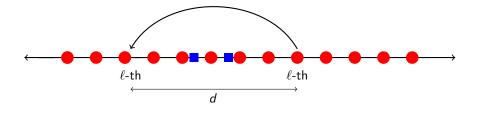
- ▶ $d = \text{distance between } \ell$ -th leftmost request and ℓ -th leftmost server
- r_{ℓ} = number of requests to the left of the ℓ -th leftmost server
- Observe that $d = O(|r_{\ell} \ell|)$



Lemma

The expected distance between the ℓ -th leftmost request and the ℓ -th leftmost server is $O(\sqrt{\log n})$.

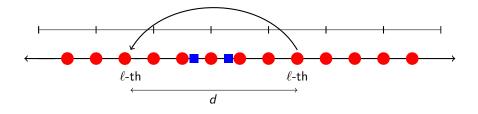
- ▶ $d = \text{distance between } \ell$ -th leftmost request and ℓ -th leftmost server
- r_{ℓ} = number of requests to the left of the ℓ -th leftmost server
- Observe that $d = O(|r_{\ell} \ell|)$



Lemma

The expected distance between the ℓ -th leftmost request and the ℓ -th leftmost server is $O(\sqrt{\log n})$.

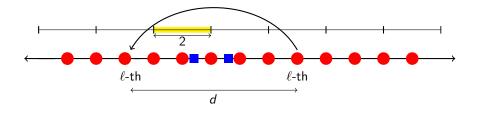
- ▶ $d = \text{distance between } \ell$ -th leftmost request and ℓ -th leftmost server
- r_{ℓ} = number of requests to the left of the ℓ -th leftmost server
- Observe that $d = O(|r_{\ell} \ell|)$



Lemma

The expected distance between the ℓ -th leftmost request and the ℓ -th leftmost server is $O(\sqrt{\log n})$.

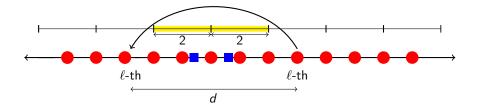
- ▶ $d = \text{distance between } \ell$ -th leftmost request and ℓ -th leftmost server
- ▶ r_{ℓ} = number of requests to the left of the ℓ -th leftmost server
- Observe that $d = O(|r_{\ell} \ell|)$



Lemma

The expected distance between the ℓ -th leftmost request and the ℓ -th leftmost server is $O(\sqrt{\log n})$.

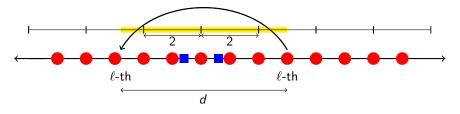
- ▶ $d = \text{distance between } \ell$ -th leftmost request and ℓ -th leftmost server
- r_{ℓ} = number of requests to the left of the ℓ -th leftmost server
- Observe that $d = O(|r_{\ell} \ell|)$



Lemma

The expected distance between the ℓ -th leftmost request and the ℓ -th leftmost server is $O(\sqrt{\log n})$.

- $d = \text{distance between } \ell$ -th leftmost request and ℓ -th leftmost server
- r_{ℓ} = number of requests to the left of the ℓ -th leftmost server
- Observe that $d = O(|r_{\ell} \ell|)$



• What's the value of r_{ℓ} ?

$$r_{\ell} = \sum_{i=1}^{n} X_i \qquad X_i = \begin{cases} 1 & 0 \\ 0 & 0 \end{cases}$$

i-th request is left of $\ell\text{-th}$ leftmost server otherwise

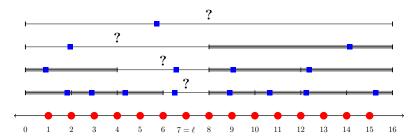
• $\operatorname{E}[r_{\ell}] \approx \ell$, hence $d = O(|r_{\ell} - \operatorname{E}[r_{\ell}]|)$

• What's the value of r_{ℓ} ?

 $r_{\ell} = \sum_{i=1}^{n} X_i$ $X_i = \begin{cases} 1 & i \text{-th request is left of } \ell \text{-th leftmost server} \\ 0 & \text{otherwise} \end{cases}$

►
$$E[r_{\ell}] \approx \ell$$
, hence $d = O(|r_{\ell} - E[r_{\ell}]|)$

• Only $\log_2(n+1) X_i$'s (one per round) are "truly" random variables

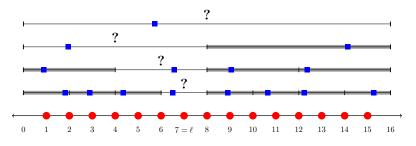


• What's the value of r_{ℓ} ?

 $r_{\ell} = \sum_{i=1}^{n} X_i$ $X_i = \begin{cases} 1 & i \text{-th request is left of } \ell \text{-th leftmost server} \\ 0 & otherwise \end{cases}$

•
$$\operatorname{E}[r_{\ell}] \approx \ell$$
, hence $d = O(|r_{\ell} - \operatorname{E}[r_{\ell}]|)$

• Only $\log_2(n+1) X_i$'s (one per round) are "truly" random variables



▶ Thus $|r_{\ell} - E[r_{\ell}]|$ is $O(\sqrt{\log n})$ in expectation