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We present a simple proof that no randomized online matching algorithm for the line can be (
√
log

2
(𝑛+1)/15)-competitive against

an oblivious adversary for any 𝑛 = 2
𝑖 −1 : 𝑖 ∈ N. This is the first super-constant lower bound for the problem, and disproves as a

corollary a recent conjecture on the topology-parametrized competitiveness achievable on generic spaces.
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1 ONLINE MATCHING, ON THE LINE

In online metric matching [8, 11] 𝑛 points of a metric space are designated as servers. One by one 𝑛 additional points

are designated as requests, and each must be immediately matched to a yet-unmatched server at a cost equal to their

distance. Matchings should minimize the ratio between the total cost and the minimum cost attainable offline, i.e. if all

requests were known beforehand. A randomized matching algorithm is 𝑐 (𝑛)-competitive if said ratio does not exceed

𝑐 (𝑛) in expectation under any placement of servers and requests independent of the algorithm’s random choices (the

so-called oblivious adversary model).

It is widely acknowledged [1, 12, 17] that the line is the most interesting metric space for the problem. Matching on

the line models many scenarios, like a shop that must rent to customers skis of approximately their height, where a

stream of requests must be serviced with minimally mismatched items from a known store. Despite matching being

specifically studied on the line since at least 1996 [9] no tight competitiveness bounds are known.

As for upper bounds, the line is a doubling space and thus admits an𝑂 (log𝑛)-competitive randomized algorithm [6].

A sequence of recent results [1, 14, 16] yielded the same ratio without randomization. Better bounds have been obtained

only in specific cases, such as when requests are drawn independently from a known probability distribution [5]; or

by algorithms with additional capabilities, such as re-assigning past requests [7, 13] or predicting future ones [2], or

matching up to two requests to each server [10].

As for lower bounds, the competitive ratio cannot be less than 4.591 for randomized algorithms and 9 for deterministic

ones since the cow-path problem is a special case of matching on the line [9]. These bounds were conjectured tight [9]
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until a complex adversarial strategy yielded a lower bound of 9.001 for deterministic algorithms [4]. Beyond some

Ω(log𝑛) bounds for restricted classes of algorithms [3, 12, 14] there has been no further progress on the lower-bound

side before this work.

2 AN Ω(
√
log𝑛) COMPETITIVENESS BOUND

We prove a simple Ω(
√
log𝑛) lower bound on the competitive ratio of randomized online matching algorithms for the

line.

For any 𝑛 = 2
𝑖 − 1 with 𝑖 ∈ N consider the [0, 𝑛+1] interval. For each positive integer 𝑗 ≤ 𝑛 place a server at 𝑗 . Then

place 𝑛 requests over log
2
(𝑛+1) rounds, as in Figure 1: on the 𝑟 th round partition the main interval into (𝑛+1)/2𝑟

sub-intervals of length 2
𝑟
, choose within each uniformly and independently at random an origin point, and for each

origin (in an arbitrary order) place a request on the closest integer multiple of 2
−𝑛

breaking ties arbitrarily. “Discretizing”

requests instead of directly using the corresponding origins prevents some technical difficulties – see our remark at the

end of the section.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

r = 1

r = 2

r = 3

r = 4

Fig. 1. An input instance for 𝑛 = 15. Servers are red circles, requests/origins blue squares.

We prove in Lemma 2.1 that any online matching algorithm ALG incurs an expected cost Ω(𝑛) in any given round,

for a total cost Ω(𝑛 log𝑛). Conversely, we prove in Lemma 2.2 that the expected distance between the ℓ th leftmost

server and the ℓ th leftmost origin is 𝑂 (
√
log𝑛), so servers and requests can be matched with an expected offline cost

𝑂 (𝑛
√
log𝑛). We combine the two results in Theorem 2.3 to prove that on some request sequence ALG incurs Ω(

√
log𝑛)

times the minimum offline cost.

Lemma 2.1. Any randomized online matching algorithm incurs an expected cost greater than (𝑛+1)/12 in each round.

Proof. Consider an origin placed uniformly at random in a sub-interval of size 2
𝑟
during the 𝑟 th round. Assume

𝑚 ≥ 0 unmatched servers in the interior points of that sub-interval divide it into𝑚 + 1 segments of (integer) length

𝑑0, . . . , 𝑑𝑚 . Then the probability an origin falls inside a segment of length 𝑑 is 𝑑/2𝑟 , in which case the expected distance

of both the origin and the corresponding request from the segment’s closer endpoint is 𝑑/4. Adding over all the 𝑠𝑟

segments in all the round’s sub-intervals, applying Jensen’s inequality, and noting that 𝑠𝑟 does not exceed the number

of sub-intervals (i.e. (𝑛+1)/2𝑟 ) plus the total number of unmatched servers (i.e. (𝑛+1)/2𝑟−1 − 1), the expected cost to
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service all requests in the round is at least

𝑠𝑟∑
ℎ=1

𝑑ℎ

4

· 𝑑ℎ
2
𝑟
≥ 1

4 · 2𝑟 𝑠𝑟
(
𝑛+1
𝑠𝑟

)
2

>
(𝑛+1)2
4 · 2𝑟 · 2

𝑟

3(𝑛+1) =
𝑛+1
12

. □

Lemma 2.2. For 1 ≤ ℓ ≤ 𝑛 the expected distance between the ℓ th leftmost server and the ℓ th leftmost origin (breaking ties

arbitrarily) is at most
√
log

2
(𝑛+1) + 3.

Proof. Assume origins and servers are all distinct, since the probability they are not is 0. Let 𝑆ℓ be ℓ
th

leftmost

server, 𝑔ℓ the number of origins to its left, and 𝑑ℓ its distance to the ℓ th leftmost origin 𝑂ℓ .

For any ℎ ≥ 0, if 𝑔ℓ = ℓ + ℎ or 𝑔ℓ = (ℓ − 1) − ℎ, then ℎ origins lie between 𝑆ℓ and 𝑂ℓ ; and since the first round placed

one origin in every sub-interval of size 2, then 𝑑ℓ < 3 + 2ℎ. In other words, ∀𝜖 ∈]0, 1[, 𝑑ℓ < 3 + 2⌊|𝑔ℓ − (ℓ − 𝜖) |⌋. One
can thus bound 𝑑ℓ by bounding 𝛾ℓ = |𝑔ℓ − (ℓ − ℓ

𝑛+1 ) | = |𝑔ℓ − 𝑛
𝑛+1 ℓ |, which is the absolute deviation from the mean of 𝑔ℓ

since the expected density of origins equals
𝑛

𝑛+1 at every non-integer point of the [0, 𝑛+1] interval.
𝑔ℓ is the sum of 𝑛 independent indicator random variables, each denoting whether a given origin was placed to the

left of 𝑆ℓ . At most one such variable in a given round has variance greater than 0 (the variable corresponding to the

origin placed in a sub-interval with 𝑆ℓ strictly in its interior) and none greater than 1/4; thus the variance 𝐸 [𝛾2
ℓ
] of their

sum is at most log
2
(𝑛+1)/4. By Jensen’s inequality 𝐸 [𝛾ℓ ] ≤

√
𝐸 [𝛾2

ℓ
], so 𝐸 [𝑑ℓ ] ≤ 2𝐸 [𝛾ℓ ] + 3 ≤

√
log

2
(𝑛+1) + 3. □

Theorem 2.3. No randomized online matching algorithm for the line can be (
√
log

2
(𝑛+1)/15)-competitive against an

oblivious adversary for any 𝑛 = 2
𝑖 − 1 : 𝑖 ∈ N.

Proof. Let 𝐶𝐴 (𝜎) be the expected cost incurred by a randomized online matching algorithm ALG on a request

sequence 𝜎 , and𝐶𝑂 (𝜎) the minimum offline cost; and let 𝑝𝜎 be the probability of generating 𝜎 through the origin-request

process described earlier. Since (∑𝑖 𝑎𝑖 )/(
∑
𝑖 𝑏𝑖 ) is for all positive 𝑎𝑖 , 𝑏𝑖 a convex linear combination of the individual

ratios 𝑎𝑖/𝑏𝑖 , focusing on the case

√
log

2
(𝑛+1)/15 ≥ 1 in which

√
log

2
(𝑛+1) + 3 + 2

−𝑛 < (5/4)
√
log

2
(𝑛+1) we have

max

𝜎 :𝑝𝜎≠0

𝐶𝐴 (𝜎)
𝐶𝑂 (𝜎) ≥

∑
𝜎 :𝑝𝜎≠0

𝐶𝐴 (𝜎)𝑝𝜎∑
𝜎 :𝑝𝜎≠0

𝐶𝑂 (𝜎)𝑝𝜎
>

(𝑛+1) log
2
(𝑛+1)/12

𝑛(
√
log

2
(𝑛+1) + 3 + 2

−𝑛)
>

√
log

2
(𝑛+1)

15

. □

Remark. Without discretized requests the term

∑
𝜎 :𝑝𝜎≠0𝐶𝐴 (𝜎)𝑝𝜎 in the theorem’s proof would have been an

integral, potentially ill-defined: for example, if ALG serviced requests for rational points in an interval with one server

and for irrational points with another.

3 CONCLUSIONS

The “major open question [of] whether there exists an𝑂 (1)-competitive online algorithm (deterministic or randomized)

on the line” [13] for the metric matching problem has a negative answer – via a simple, self-contained proof.

A related question on online matching algorithms defined on all metric spaces then has a negative answer, too.

Consider a space with a non-zero metric. For any set𝑋 of 𝑛 points, let 𝑑𝑋 be its diameter and 𝑐𝑋 the length of its shortest

circuit; and let 𝜇 = sup𝑋 :𝑑𝑋≠0 (𝑐𝑋 /𝑑𝑋 ). Recent work proved no deterministic algorithm can be 𝑜 (𝜇)-competitive on any

space; developed a deterministic algorithm 𝑂 (𝜇 log2 𝑛)-competitive on every space; and asked whether there might be

one with a similarly universal 𝑂 (𝜇) competitive ratio [14]. An Ω(
√
log𝑛) competitiveness bound on the line, where

𝜇 = 2, implies this is not the case. Note that in any space with only 2 (distinct) points 𝜇 = 2 and the greedy algorithm’s
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competitive ratio is 1 = 𝑂 (𝜇) = 𝑜 (𝜇
√
log𝑛); so 𝜇 might not be the “right” parameter to capture the competitive ratio

achievable on generic spaces.

In fact, the Ω(
√
log𝑛) competitiveness bound applies even to online algorithms with significant extra power in terms

of lookahead or request re-assignment. In particular, Lemma 2.1 holds even if an algorithm can observe all requests in a

given round before servicing any, or equivalently if it is allowed to re-assign any of the current round’s requests. Also,

it holds asymptotically even if one ignores the cost of all requests save those in an arbitrary fixed sub-interval of length

Ω(𝑛). Finally, Ω(log𝑛) rounds are sufficient to translate Lemma 2.1 into the main Ω(
√
log𝑛) competitiveness bound.

The bound then applies asymptotically for any 𝜖 = Ω(1) even to online algorithms with advance knowledge of the next

𝑛1−𝜖 requests and the power to re-assign the most recent 𝑛1−𝜖 ; and/or with advance knowledge of, and the power to

re-assign, all requests save the final 𝑛𝜖 .
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