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Abstract
In this paper we propose a new approach to the study of the communication requirements of
distributed computations, which advocates for the removal of the restrictive assumptions under
which earlier results were derived. We illustrate our approach by giving tight lower bounds on
the communication complexity required to solve several computational problems in a distributed-
memory parallel machine, namely standard matrix multiplication, stencil computations, compar-
ison sorting, and the Fast Fourier Transform. Our bounds rely only on a mild assumption on
work distribution, and significantly strengthen previous results which require either the compu-
tation to be balanced among the processors, or specific initial distributions of the input data, or
an upper bound on the size of processors’ local memories.
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1 Introduction

Communication is a major factor determining the performance of algorithms on current
computing systems, as the time and energy needed to transfer data between processing and
storage elements is often significantly higher than that of performing arithmetic operations.
The gap between computation and communication costs, which is ultimately due to basic
physical principles, is expected to become wider and wider as architectural advances allow to
build systems of increasing size and complexity. Hence, the cost of data movement will play
an even greater role in future years.

As in all endeavors where performance is systematically pursued, it is important to evaluate
the distance from optimality of a proposed algorithmic solution, by establishing appropriate
lower bounds. Given the well-known difficulty of establishing lower bounds, results are
often obtained under restrictive assumptions that may severely limit their applicability. It is
therefore important to progressively reduce or fully eliminate such restrictions.

In this spirit, we consider lower bounds on the amount of communication that is required
to solve some classical computational problems on a distributed-memory parallel system.
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Specifically, we revisit the assumptions and constraints under which preceding results were
derived, and prove new lower bounds which use much weaker hypotheses and thus have wider
applicability. Even when the functional form of the bounds remains the same, our results
do yield new insights to algorithm developers since they might reveal if some settings are
needed, or not, in order to obtain better performance.

We model the machine using the standard Bulk Synchronous Parallel (BSP) model of
computation [32], which consists of a collection of p processors, each equipped with an
unbounded private memory and communicating with each other through a communication
network. The distribution of inputs and outputs effectively forms a part of the problem
specification, thus restricting the applicability of upper and lower bounds. Much of previous
work on BSP algorithms considers a version of the BSP model equipped with an additional
external memory, which serves as the source of the input and the destination for the output
(see, e.g., [29]). This modification significantly alters the spirit of the BSP of serving as a
model for distributed-memory machines, making it very similar to shared-memory models
like the LPRAM [1]. In fact, in a distributed-memory machine, the inputs might already
be distributed in some manner prior to the invocation of the algorithm, and the outputs
are usually left distributed in the processors’ local memories at the end of the execution,
especially if the computation is a subroutine of a larger computation. Thus, lower bounds
that use this assumption, which essentially exploit this “hack” to guarantee that acquiring
the n input elements contributes to the communication cost of algorithms (as some processor
must read at least dn/pe input values), are not directly applicable to distributed-memory
architectures.

Other authors, within the original BSP model, assume specific distributions of the input
data. As we shall see later, it is usually assumed that the input is initially evenly distributed
among the p processors, that is, each processor is assigned either dn/pe or bn/pc pieces of the
input. However, this apparently reasonable hypothesis is somewhat restrictive, and actually
not part of the logic of the BSP model. In fact, the physical distribution of input data
across the processors may depend on several factors, ranging from how the input data set
gets acquired, to how the output of the preceding computation is distributed in the case of
algorithms being cascaded (that is, when the output of one is the input for the next), to file
system policies. Moreover, a uniform partition of the inputs postulates, but does not prove,
that unbalanced distributions may cause severe communication bottlenecks.

One possibility to circumvent both the issues discussed above is to require, in place of the
even distribution of the inputs and of the presence of an external memory, that algorithms
exhibit some level of load balancing of the computation. Typically, if W denotes the total
work required by any algorithm to solve the given problem, it is required that each processor
performs O (W/p) elementary computations. However, this way it is implicitly assumed,
but (as above) not proved, that optimal solutions balance computation. In fact, in general
there is a tradeoff between computation costs and communication costs. Some papers (see,
e.g., [22, 35]) quantify such tradeoffs by establishing lower bounds on the communication
cost of any algorithm as a function of its computation time. Nevertheless, results of this kind
usually indicate that the higher lower bounds on communication correspond only to perfectly
(to within constant factors) work-balanced computations, and such bounds are tight since
achieved by balanced algorithms. This leaves open the possibility that a substantial saving
on communication costs could actually be achieved at a price of a small unbalance of the
computation loads.

Another common assumption is putting an upper bound on the size of processors’ local
memories. However, current technological advances allow to build cheap memory and storage
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devices that, for many applications, allow a single machine to store the whole input data set
and the intermediate data. Moreover, results derived under this assumption are less general
than results that put no limits on the amount of storage available to processors; indeed,
lower bounds are relatively easier to establish, as the model essentially becomes a parallel
version of the standard external memory model for sequential computations, for which much
more results and techniques are known (see, e.g., [16, 2]).

In contrast, lower bounds presented in this paper do not hinge on any of the above
assumptions. We develop new lower bounds for a number of key computational problems,
namely standard matrix multiplication, stencil computations, comparison sorting, and the
Fast Fourier Transform, using the weak assumption that no processor performs more than a
constant fraction of the total required work. This requires more involved arguments, and
substantially strengthens previous work on communication lower bounds for distributed-
memory computations.

The model. The Bulk Synchronous Parallel (BSP) model of computation was introduced
by Valiant [32] as a bridging model for general-purpose parallel computing. The architectural
component of the model consists of p processing elements P0, P1, . . . , Pp−1, each equipped
with an unbounded local memory, interconnected by a communication medium. The execution
of a BSP algorithm consists of a sequence of supersteps, where each processor can perform
operations on data in its local memory, send/receive messages (each occupying a constant
number of words) and, at the end, execute a global synchronization. The running time of
the i-th superstep is expressed in terms of two parameters, g and `, as Ti = wi + hig + `,
where wi is the maximum number of local operations performed by any processor, and hi

is the maximum number of messages sent or received by any processor. The running time
TA of a BSP algorithm A is the sum of the times of its supersteps and can be expressed
as WA + HAg + SA`, where SA is the number of supersteps, WA =

∑SA
i=1 wi is the local

computation complexity, and HA =
∑SA

i=1 hi is the communication complexity.

Previous work. The complexity of communication on various models of computation has
received considerable attention. Lower bounds are often established through adaptations of
the techniques of Hong and Kung [16] for hierarchical memory, or by critical path arguments,
such as those in [1]. For applications of these and other techniques see [22, 2, 25, 15, 8, 6, 17,
24, 4, 9, 5] as well as [26] and references therein. In the following, we discuss previous work
on lower bounds for the communication complexity of the problems studied in this paper.

A standard computational problem is the multiplication of two n × n matrices. For
the classical Θ

(
n3) algorithm, an Ω

(
n2/p2/3) lower bound has been previously derived

for the BSP [31] and the LPRAM [1]. However, both results hinge on the hypothesis that
the input initially resides outside the processors’ local memories and thus must be read,
contributing to the communication complexity of the algorithms. As such, these results are
an immediate consequence of a result of [16] (then restated in [17]) which, loosely speaking,
bounds from above the amount of computation that can be performed with a given quantity
of data. When input is assumed to be initially evenly distributed across the p processors’
local memories, the same lower bound is claimed in [11]. Recently, Ballard et al. [3] obtained
a result of the same form by assuming perfectly balanced (to within constant factors)
computations, and disallowing any initial replication of inputs. The very same bound was
found also by Irony et al. [17], who restrict their attention to computations that take place
on machines where processors’ local memory size is assumed to be M = O

(
n2/p2/3) (see

also [4]). Finally, Solomonik and Demmel [28] investigate tradeoffs between input replication
and communication complexity.

STACS’14
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A class of computations ubiquitous in scientific computing is that of stencil computations,
where each computing node in a multi-dimensional grid is updated with weighted values
contributed by neighboring nodes. These computations include the diamond DAG in the
two-dimensional case and the cube DAG in three dimensions. For the former, Papadimitriou
and Ullman [22] present a communication-time tradeoff which yields a tight Ω (n) lower bound
on the communication complexity only for the case of balanced computations. Aggarwal
et al. [1] extend this result to all algorithms whose computational complexity is within a
constant factor of the number of nodes of the DAG. To the best of our knowledge, this is
the sole example of a tight lower bound that holds under the same hypothesis used in this
paper. By generalizing the technique in [22], Tiskin [31] establishes a tight bound for the
cube DAG, and claims its extension to higher dimensions. However, this results only hold
when the computational load is balanced among the p processors.

Another key problem is sorting. Many papers assume that the n inputs initially reside
outside processors’ local memories, thus obtaining an Ω (n/p) lower bound which turns out
to be tight when it is additionally assumed that problem instances have sufficient slackness,
that is, n >> p (e.g., p2 ≤ n is a common assumption). Under some technical assumptions,
a bound of the form Ω (n logn/(p log(n/p))), which is tight for all values of p ≤ n, was first
given within the LPRAM model [1]. This bound, however, includes the cost to read the
input from the shared memory. A similar lower bound was derived later by Goodrich [15]
within the BSP model, but the result holds only for the subclass of algorithms performing
supersteps of degree h = Θ (n/p), and when the inputs are evenly distributed among the
processors.

Previous work on the communication required to compute an FFT DAG of size n is
similar to previous work for sorting. By exploiting the property that, as shown in [34], the
cascade of three FFT networks has the topology of a full sorting network, the aforementioned
lower bounds for sorting also hold for the FFT DAG. In a recent paper [9], we obtain the
same result assuming that the maximum number of outputs held by any processor at the end
of the algorithm is at most n/2, and without assumptions on the distribution of the input
and of the computational loads; while these hypotheses are not equivalent to the one we are
using in this paper, the result in [9] is the closest to the one that we will develop in Section 5.

Our contribution. In this paper we present lower bounds on the communication complexity
required by key computational problems such as standard matrix multiplication, stencil
computations, comparison sorting, and the Fast Fourier Transform, when solved by parallel
algorithms on the BSP model. These results, which are all tight for the whole range of model
parameters, rely on the hypothesis that no processor performs more than a constant fraction
of the total required work. More formally, let W be the total work required by any algorithm
to solve the given problem (if the problem is represented by a directed acyclic graph, then W
is the number of nodes of the DAG, otherwise W is a lower bound on the computation time
required by any sequential algorithm), and letW be the maximum amount of work performed
by any BSP processor; then, W is assumed to satisfy the bound W ≤ εW , for some constant
ε ∈ (0, 1). The rationale behind this approach is that communication is the major bottleneck
of a distributed-memory computation unless the latter is sequential or “nearly sequential”,
in which case the main contribution to the running time T of an algorithm comes from
computation. Since it is directly linked to the running time metric, and it does not allow for
any other restrictive assumptions suggested by orthogonal constraints, we believe that this is
the right approach to perform a systematic analysis of the communication requirements of
distributed-memory computations.
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We emphasize that, in contrast to previous work, our lower bounds do not count the
communication required to acquire the input, allow for any initial distribution of the input
among the processors’ local memories, assume no upper bound on the sizes of the latter,
and do not require computations to be balanced. On the other hand, some of our results
make use of additional technical assumptions, such as the non-recomputation of intermediate
results in the course of the computation, or some restrictions on the replication of input
data. Such restrictions, however, were already in place in almost all of the corresponding
state-of-the-art lower bounds.

A full version of the paper can be found in [27].

2 Matrix Multiplication

In this section we consider the problem of multiplying two n× n matrices, A and B, using
only semiring operations, that is, addition and multiplication. Hence, each element ci,j of
the output matrix C is an explicit sum of products ai,k · bk,j , which are called multiplicative
terms. This rules out, e.g., Strassen’s algorithm and the Boolean matrix multiplication
algorithm of Tiskin [30]. As shown in [19], any algorithm using only semiring operations
must compute at least n3 distinct multiplicative terms.

In this section we establish a lower bound on the communication complexity of any
parallel algorithm for matrix multiplication on a BSP with p processors. This result is
derived assuming that no processor performs more than a constant fraction of the n3 total
work required by any algorithm, measured as the number of scalar multiplications, and that
each input element is initially stored in the local memory of exactly one processor. The
bound has the form of Ω

(
W 2/3), where W is the maximum number of multiplicative terms

evaluated by a processor, and is tight for all values of p between two and n2. The argument
through which we establish such a result is a repeated application of a “bandwidth” argument
which, loosely speaking, is as follows. Consider a processor which performs the maximum
amount of work. If this processor initially holds “few” input values, then, since it computes at
least n3/p multiplicative terms, it must receive “many” inputs from the submachine including
the other processors; otherwise, if it initially holds “many” inputs, then it has to send many
of them to the other processors, because it cannot perform too much work on its own, and
thus the other processors have to perform at least a constant fraction of the total work. The
lower bound applies to any distribution of input and output matrices, and only requires that
the input matrices are not initially replicated.

Towards this end, we first establish a lower bound of Ω
(
n2) under the same hypotheses

outlined above for two processors. This result is derived using a bandwidth argument that
bounds from below the amount of data that must travel across the communication network
of a two-processor machine. A bound of the same form can be found in [17, Section 6],
which holds only when the elements of the input matrices A and B are evenly, or almost
evenly, distributed among the two processors. Our result, which instead allows any initial
distribution of the input matrices (without replication), establishes the same bound by using
a mild hypothesis on the maximum computation load faced by the processors. Due to space
constraints, the proof of the result is deferred to the full version of the paper.

I Lemma 1. Let A be any algorithm for computing the matrix product C = AB, using only
semiring operations, on a BSP with two processors. If each processor computes at most εn3

multiplicative terms, where ε is an arbitrary constant in [1/2, 1), and the input matrices are
not initially replicated, then the communication complexity of the algorithm is

HA(n, p) = Ω
(
n2) .

STACS’14
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Now we can prove the main result of this section. The following theorem establishes an
Ω
(
W 2/3) lower bound to the communication complexity of any standard algorithm, where

W denotes the maximum number of multiplicative terms evaluated by a processor. By the
result of [19] and by the pigeonhole principle, there exists a processor that computes at least
n3/p multiplicative terms, from which the standard Ω

(
n2/p2/3) lower bound follows.

I Theorem 2. Let A be any algorithm for computing the matrix product C = AB, using only
semiring operations, on a BSP with p processors, where 1 < p ≤ n2, and let W be the max-
imum number of multiplicative terms evaluated by a processor. If W ≤ max{n3/p, n3/113},
and the input matrices are not initially replicated, then the communication complexity of the
algorithm is

HA(n, p) = Ω
(
W 2/3

)
.

Proof. Without loss of generality, we assume that any multiplicative term computed by the
processors is actually used towards the computation of some entry of the output matrix C
(that is, processors do not perform “useless” computations). Consider one of the processors
that compute W multiplicative terms, and without loss of generality let P0 denote such a
processor. Let I be the number of input elements initially held by this processor in its local
memory.

Consider first the case I ≤W 2/3/5. By [16, Lemma 6.1], a processor that computes W
multiplicative terms either accesses, during the whole execution of algorithm A, at least
(W/2)2/3 input elements, or computes multiplicative terms relative to at least (W/2)2/3

elements of the output matrix. In the first case, since P0 initially holds I ≤W 2/3/5 input
elements, it must receive at least (W/2)2/3− I = Ω

(
W 2/3) data words from other processors,

and the theorem follows. On the other hand, suppose P0 computes multiplicative terms
relative to (W/2)2/3 entries of the output matrix, and partition such entries into three groups:
G1, the set of entries whose multiplicative terms have all been computed by the processor;
G2, the set of entries produced by the processor but for which some multiplicative term
or partial sum has been communicated by some other processor; G3, the set of entries not
produced by the processor. Clearly, at least one of these three groups must have size at
least (W/2)2/3/3. If |G1| ≥ (W/2)2/3/3, then P0 must have computed at least n(W/2)2/3/3
multiplicative terms, and since any entry of the input matrices occurs in only n of such
terms, the processor must have received (W/2)2/3/3 − I = Ω

(
W 2/3) elements from other

processors. A similar argument applies to both G2 and G3.
Now suppose I > W 2/3/5 and p ≥ 113. Note that in this case, since p ≥ 113, it holds

that W ≤ n3/113. Assume, without loss of generality, that P0 initially holds at least I/2
elements of matrix A. Since any entry of the input matrices occurs in n multiplicative terms,
there are at least In/2 multiplicative terms that depend on the entries of A initially held by
the processor. Since W multiplicative terms are computed by the processor, the remaining
In/2−W ≥W 2/3n/10−W 2/3n/11 = W 2/3n/110 ones are computed by other processors.
Since, by hypothesis, each entry of A is initially non-replicated and a processor can compute at
most n multiplicative terms using a single entry of A, we have that (In/2−W )/n ≥W 2/3/110
messages are required for sending the appropriate entries of A to the processors that will
compute the remaining entries. Hence, HA(n, p) ≥W 2/3/110.

Finally, when I > W 2/3/5 and p < 113, the sought lower bound follows by Lemma 1.
Indeed, the p processors can be virtually partitioned into two subsets, each consisting of
exactly p/2 processors; in particular, processor P ∗0 will be identified with the submachine
including the first half of the p processors, and P ∗1 with the submachine including the second
half. Since p < 113, by hypothesis each BSP processor computes at most n3/p multiplicative
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terms, and thus both P ∗0 and P ∗1 compute at most (n3/p)(p/2) = n3/2 multiplicative terms
overall. Hence we can apply Lemma 1 to processors P ∗0 and P ∗1 , obtaining the desired
result. J

The proposed bound is tight and is matched by the algorithm that decomposes the
problem into n3/W ≤ p subproblems of size W 1/3 ×W 1/3, and then solves each subproblem
sequentially in each round. Since W ≥ n3/p, the minimum communication complexity is
Ω
(
n2/p2/3), which is achieved by the standard 3D algorithm (see, e.g., [17]).

3 Stencil Computations

A stencil defines the computation of an element in a (d− 1)-dimensional spatial grid at time
t as a function of neighboring grid elements at time t − 1, . . . , t − τ , for some value τ ≥ 1
and constant d > 1 (see, e.g., [14]). We provide an Ω

(
nd−1/p(d−2)/(d−1)) lower bound to the

communication complexity of any algorithm evaluating n time steps of a (d− 1)-dimensional
stencil. For simplicity we assume τ = 1, however our bounds still apply in the general case.
The bound follows by investigating the (n, d)-stencil problem, which consists in evaluating
all nodes of a d-dimensional array DAG of size n. A d-dimensional array DAG has nd nodes
〈i0, . . . , id−1〉, for each 0 ≤ i0, . . . , id−1 < n, and there is an arc from 〈i0, . . . , ik, . . . , id−1〉
to 〈i0, . . . , ik + 1, . . . , id−1〉, for each 0 ≤ k < d and 0 ≤ i0, . . . , id−1 < n− 1. Observe that
〈0, . . . , 0〉 and 〈n− 1, . . . , n− 1〉 are the single input and output nodes, respectively. A lower
bound to the (n, d)-stencil problem applies to the computation of n steps of a stencil: indeed,
the DAG given by the (d−1)-dimensional grid plus the time dimension spans a d-dimensional
spacetime containing an (n/2, d)-array as a subgraph.

Our result hinges on the restriction on the nature of the computation whereby each vertex
of the DAG is computed exactly once. In this setting, the crucial property is that for each arc
(u, v) such that u is computed by processor P and v is computed by processor P ′, P 6= P ′,
there corresponds a message from P to P ′ (which may also cross other processors). Such
arcs are referred to as communication arcs.

We now introduce some preliminary definitions, which will be used throughout the section.
We envision an (n, d)-stencil DAG as partitioned into pd/(d−1) smaller d-dimensional arrays,
called blocks, of size n/p1/(d−1), and denote each block with Bi0,...,id−1 for 0 ≤ i0, . . . , id−1 <

p1/(d−1). Block Bi0,...,id−1 contains nodes 〈i′0, . . . , i′d−1〉, for each ikn/p1/(d−1) ≤ i′k < (ik +
1)n/p1/(d−1). A block has nd/pd/(d−1) nodes, and is said `-owned if more than half of its
nodes are evaluated by processor P`, with 0 ≤ ` < p. A block is owned if there exists some
`, with 0 ≤ ` < p, such that it is `-owned; it is shared otherwise. Two blocks Bi0,...,id−1

and Bi′0,...,i′
d−1

are said to be adjacent if their coordinates differ in just one position k and
|ik − i′k| = 1 (i.e., they share a face). For the sake of simplicity, we assume that n and p
are powers of 2d−1 and thus the previous values (e.g., n/p1/(d−1)) are integral: since d is a
constant, this assumption is verified by suitably increasing n and decreasing p by a constant
factor which does not asymptotically affect our lower bounds.

In order to establish our main lower bound, we need two preliminary lemmas (whose
proofs are deferred to the full version). The first one gives a slack lower bound based on the
d-dimensional version of the Loomis-Whitney geometric inequality [21], and resembles the
result of Theorem 2 for matrix multiplication when d = 3.

I Lemma 3. Let Ad be any algorithm solving the (n, d)-stencil problem, without recomputa-
tion, on a BSP with p processors, where 1 < p ≤ nd−1, and denote with W the maximum
number of nodes evaluated by a processor. If W ≤ εnd, for an arbitrary constant ε ∈ (0, 1),

STACS’14
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then the communication complexity of the algorithm is

HAd
(n, p) = Ω

(
W (d−1)/d

)
.

Now we need a second lemma that bounds from below the number of messages exchanged
by a processor P` while evaluating nodes in an `-owned block and in an adjacent block which
is not `-owned.

I Lemma 4. Consider an `-owned block B adjacent to a shared or `′-owned block B′, with
` 6= `′. Then, the number of messages exchanged by processor P` for evaluating, without
recomputation, nodes in B and B′ is Ω

(
nd−1

p

)
.

The next theorem gives the claimed Ω
(
nd−1/(p(d−2)/(d−1))

)
lower bound, and its proof is

inspired by the argument in [31] for the cube DAG (which however assumes balanced work).
The lower bound is matched by the balanced algorithm given in [31], which decomposes the
(n, d)-stencil into pd/(d−1) subDAGs of dimension d and size n/p1/(d−1). The proof of the
theorem is deferred to the full version.

I Theorem 5. Let Ad be any algorithm for solving the (n, d)-stencil problem, without
recomputation, on a BSP with p processors, where 1 < p ≤ nd−1, and let W be the maximum
number of nodes evaluated by a processor. If W ≤ εnd, for an arbitrary constant ε ∈ (0, 1),
then the communication complexity of the algorithm is

HAd
(n, p) = Ω

(
nd−1

p(d−2)/(d−1)

)
.

4 Sorting

In this section we give a lower bound to the communication complexity of comparison-based
sorting algorithms. Comparison sorting is defined as the problem in which a given set X of
n input keys from an ordered set has to be sorted, such that the only operations allowed on
members of X are pairwise comparisons. Our bound only requires that no processor does
more than a constant fraction ε of the Θ (n logn) comparisons required by any comparison
sorting algorithm, for any ε ∈ (0, 1), and does not impose any protocol on the distribution
of the inputs and the outputs on the processors, nor upper bounds to the size of their
local memories, or specific communication patterns. As for previous work, we still need the
technical assumptions that the inputs are not initially replicated, and that the processors
store only a constant number of copies of any input key at any moment during the execution
of the algorithm.

The main result follows from the application of two lemmas, each of which provides a
different and independent lower bound to the communication complexity of sorting. Both
rely on non-trivial counting arguments, adapted from [2, 1], that hinge on the fact that any
comparison sorting algorithm must be able to distinguish between all the n! permutations of
the n inputs. The first lemma provides a lower bound as a function of the maximum number
S of input keys initially held by a processor. The second gives a lower bound as a function
of the number Π of permutations that can be distinguished before any communications take
place. We begin by stating the first lemma.

I Lemma 6. Let A be any algorithm sorting n keys on a BSP with p processors, with
1 < p ≤ n, and let S denote the maximum number of input keys initially held by a processor.
If each processor performs at most ε(n logn) comparisons, with ε being an arbitrary constant
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in (0, 1), and the input is not initially replicated, then the communication complexity of the
algorithm is

HA(n, p) = Ω (S) .

We now provide a second lemma, which bounds from below the communication complexity
of sorting in BSP as a function of the number Π of permutations that can be distinguished
before any communications take place, that is, when processors can only compare their local
inputs.

I Lemma 7. Let A be any algorithm sorting n keys on a BSP with p processors, where
1 < p ≤ n, and let Π be the number of distinct permutations that can be distinguished by A
before the second superstep, that is, by comparing the inputs that (possibly) reside initially in
the processors’ local memories. If A stores only a constant number of copies of any key at
any time instant, then the communication complexity of the algorithm is

HA(n, p) = Ω
(
n logn− log Π
p log(n/p)

)
.

Now we are ready to prove the main result of this section, an Ω ((n logn)/(p log(n/p)))
lower bound to the communication complexity of any comparison sorting algorithm. The
result follows by combining the bounds given by the previous two lemmas. Both bounds are
not tight when considered independently, the first (Lemma 6) because it is weak when at the
beginning the input keys tend to be distributed evenly among the processors, the second
(Lemma 7) because it is weak when the input keys tend to be concentrated on one or few
processors. However, the simultaneous application of both provides the sought (tight) lower
bound. Once again, the proof of the following theorem is deferred to the full version.

I Theorem 8. Let A be any algorithm for sorting n keys on a BSP with p processors, with
1 < p ≤ n. If each processor performs at most ε(n logn) comparisons, with ε being an
arbitrary constant in (0, 1), the inputs are not initially replicated, and the p processors store
only a constant number of copies of any key at any time instant, then the communication
complexity of the algorithm is

HA(n, p) = Ω
(

n logn
p log(n/p)

)
.

5 Fast Fourier Transform

In this section we consider the problem of computing the Discrete Fourier Transform of n
values using the n-input FFT DAG. In the FFT DAG, a vertex is a pair 〈w, l〉, with 0 ≤ w < n

and 0 ≤ l ≤ logn, and there exists an arc between two vertices 〈w, l〉 and 〈w′, l′〉 if l′ = l+ 1,
and either w and w′ are identical or their binary representations differ exactly in the l′-th
bit. We show that, when no processor computes more than a constant fraction of the total
number of vertices of the DAG, the communication complexity is Ω (n logn/(p log(n/p))).
Our bound does not assume any particular I/O protocol, and only requires that every input
resides in the local memory of exactly one processor before the computation begins; as for
preceding results, our bound also hinges on the restriction on the nature of the computation
whereby each vertex of the FFT DAG is computed exactly once. The bound is tight for any
p ≤ n, and is achieved by the well-known recursive decomposition of the DAG into two sets
of smaller

√
n-input FFT DAGs with each set containing

√
n of such subDAGs (see, e.g., [7]).
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We will first establish a lemma which, under the same hypothesis of the main result,
provides a lower bound to the communication complexity as a function of the maximum
work performed by any processor. The proof of the lemma (which, for space limitations, is
deferred to the full version) is based on a bandwidth argument, which exploits the fact that
an FFT DAG can perform all cyclic shifts (see, e.g., [20]), and on the following technical
result which is implicit in the work of Hong and Kung (a simplified proof is due to Aggarwal
and Vitter [2]).

I Lemma 9 ([16]). Consider the computation of the n-input FFT DAG. During the com-
putation, if a processor accesses at most S nodes of the DAG, then it can evaluate at most
2S logS nodes, for any S ≥ 2.

I Lemma 10. Let A be any algorithm computing, without recomputation, an n-input FFT
DAG on a BSP with p processors, with 1 < p ≤ n, and let W be the maximum number of
nodes of the FFT DAG computed by a processor. If W ≤ ε(n logn), for an arbitrary constant
in (0, 1), and the inputs are not initially replicated, then the communication complexity of
the algorithm is

HA(n, p) = Ω
(

W

logW

)
.

The main result of this section follows by a simple application of the preceding lemma
and of a result implicit in the proof of the lower bound due to Bilardi et al. [9, Corollary 1].
The proof is deferred to the full version.

I Theorem 11. Let A be any algorithm computing, without recomputation, an n-input FFT
DAG on a BSP with p processors, where 1 < p ≤ n. If each processor computes at most
ε(n logn) nodes, for an arbitrary constant in (0, 1), of the FFT DAG and the inputs are not
initially replicated, then the communication complexity of the algorithm is

HA(n, p) = Ω
(

n logn
p log(n/p)

)
.

6 Conclusions

We have presented new lower bounds on the amount of communication required to solve
some key computational problems in distributed-memory parallel architectures. All our
bounds have the same functional form of previous results that appear in the literature;
however, the latter are built by making a critical use of some assumptions that rule out a
large part of possible algorithms. The novelty and the significance of our results stem from
the assumptions under which our lower bounds are developed, which are much weaker than
those used in previous work.

Our bounds are derived within the BSP model of computation, but can be easily extended
to other models for distributed computations based on or similar to the BSP, such as LogP [13]
and MapReduce [18, 23]. Moreover, we believe that our results can be also ported to models
for multicore computing (see, e.g., [10, 33, 12]), since our proofs are based on some techniques
that have already been exploited in this scenario.

There is still much to do towards the establishment of a definitive theory of communication-
efficient algorithms. In fact, we were not able to remove all the restrictions there were in place
in previous work: in some cases our lower bounds still make use of some technical assumptions,
such as the non-recomputation of intermediate results, or restrictions on the replication of
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input data. Although it seems that such restrictions can be relaxed to encompass a small
amount of recomputation or input replication, it is an open question to assess whether these
assumptions are inherent to our proof techniques or can be removed. In particular, it is
not clear, in general, when recomputation has the power to reduce communications, since
many lower bound techniques do not apply in this more general scenario (see, e.g., [5]).
Providing tight lower bounds that hold also when recomputation is allowed is a fascinating
and challenging avenue for future research.
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