COMPITO di LOGICA MATEMATICA 18 marzo 2008

Nome: Matricola:

Esercizio 1

Si consideri la seguente proposizione

$$(\forall x. \exists y. (P(x) \to Q(y)) \to ((\exists x. P(x)) \to (\exists y. Q(y)))$$

Se ne dia una dimostrazione in deduzione naturale e se ne determini un ticket.

Soluzione.

La seguente è una possibile prova della formula considerata in deduzione naturale intuizionista.

$$\frac{[\forall x. \exists y. P(x) \to Q(y)]_3}{\frac{\exists y. P(x) \to Q(y)}{\exists y. Q(y)}} \frac{\frac{[P(x) \to Q(y)]_1}{Q(y)}}{\frac{Q(y)}{\exists y. Q(y)}} 1$$

$$\frac{\exists x. P(x)}{\frac{\exists y. Q(y)}{(\exists x. P(x)) \to (\exists y. Q(y))}} 2$$

$$\frac{\exists y. Q(y)}{(\exists x. P(x)) \to (\exists y. Q(y))} 3$$

$$(\forall x. \exists y. (P(x) \to Q(y)) \to ((\exists x. P(x)) \to (\exists y. Q(y)))) 3$$

È ora facile ricostruire, guidati dalla prova in deduzione naturale, il ticket desiderato. Infatti, se chiamiamo z il generico ticket per $\forall x. \exists y. P(x) \to Q(y)$ e w il generico ticket per $\exists x. P(x)$ allora $\pi_2(w)$ è un ticket per $P(\pi_1(w))$ e quindi $z(\pi_1(w))$ è un ticket per $\exists y. P(\pi_1(w)) \to Q(y)$.

Perciò $\pi_2(z(\pi_1(w)))$ è un ticket per $P(\pi_1(w)) \to Q(\pi_1(z(\pi_1(w))))$ e quindi $\pi_2(z(\pi_1(w)))(\pi_2(w))$ è un ticket per $Q(\pi_1(z(\pi_1(w))))$.

Ne segue perciò che $\langle \pi_1(z(\pi_1(w))), \pi_2(z(\pi_1(w)))(\pi_2(w)) \rangle$ è un ticket per $\exists y. Q(y)$ e quindi il ticket da noi cercato è

$$\lambda z.\lambda w.\langle \pi_1(z(\pi_1(w))), \pi_2(z(\pi_1(w)))(\pi_2(w))\rangle$$

Esercizio 2

Si considerino le seguenti formule

- 1. $\forall x. \forall y. (R(x,y) \rightarrow \exists z. (R(z,x) \& \neg R(z,y)))$
- 2. $\forall x. \exists y. R(x,y)$
- 3. $\forall x. \forall y. \forall z. ((R(x,y) \& R(y,z)) \rightarrow R(x,z))$

Si dimostri dapprima semanticamente che l'insieme costituito da due qualunque di tali formule è soddisfacibile esibendone un modello (= struttura+valutazione) e si dimostri poi sintatticamente che l'insieme costituito da tutte e tre le formule non è soddisfacibile utilizzando la deduzione naturale.

Soluzione.

Per quanto riguarda le prime due formule un modello è costituito da un qualsiasi insieme che abbia almeno due elementi interpretando il segno predicativo R nella relazione \neq . D'altra parte la seconda e la terza formula vengono rese vere su un qualsiasi insieme non

Dattra parte la seconda e la terza formula vengono rese vere su un qualsiasi insieme non vuoto interpretando il segno predicativo R nella relazione sempre vera mentra la prima e la terza formula sono soddisfatte ancora su un qualsiasi insieme non vuoto interpretando il segno predicativo R nella relazione sempre falsa.

Una prova della non soddisfacibilità contemporanea delle tre formule è la seguente

	$[R(z,x) \wedge \neg R(z,y)]_2$			
		R	$R(z,x)$ $[R(x,y)]_1$	$\forall x. \forall y. \forall z. ((R(x,y) \& R(y,z)) \rightarrow R(x,z))$
	$\forall x. \forall y. R(x,y) \rightarrow \exists z. (R(z,x) \land \neg R(z,y))$	$[R(z,x) \wedge \neg R(z,y)]_2$	$R(z,x) \wedge R(x,y)$	$(R(z,x) \land R(x,y)) \rightarrow R(z,y)$
$[R(x,y)]_1$	$R(x,y) \to \exists z. (R(z,x) \land \neg R(z,y))$	$\neg R(z,y)$		R(z,y)
$\forall x. \exists y. R(x, y)$	$\exists z. R(z, x) \land \neg R(z, y)$		Τ 2	
$\exists y.R(x,y)$	Т.	1		
	<u> </u>	I		

Esercizio 3

Dimostrare la seguente proposizione

$$(A \rightarrow (A \land B \land C)) \lor (B \rightarrow (A \land B \land C)) \lor (C \rightarrow (A \land B \land C))$$

utilizzando la deduzione naturale classica e mostrare quindi che essa non può valere intuizionisticamente.

Soluzione.

Facendo ampio uso del "taccuino" e indicando con X la formula che vogliamo dimostrare otteniamo la seguente prova classica

$$\begin{array}{c} [\neg X]_c \\ \vdots \\ \neg (A \rightarrow (A \land B \land C)) \land \neg (B \rightarrow (A \land B \land C)) \land \neg (C \rightarrow (A \land B \land C)) \\ \hline \neg (A \rightarrow (A \land B \land C)) \\ \hline \neg (A \rightarrow (A \land B \land C)) \\ \vdots \\ A \land \neg (A \land B \land C) \\ \hline A \land B \land C \\ \hline \hline A \land B \land C \\ \hline \hline A \land A \land A \land B \land C) \\ \hline A \land B \land C \\ \hline \hline (A \rightarrow (A \land B \land C)) \lor (B \rightarrow (A \land B \land C)) \lor (C \rightarrow (A \land B \land C)) \\ \hline A \land B \land C \\ \hline \hline (A \rightarrow (A \land B \land C)) \lor (B \rightarrow (A \land B \land C)) \lor (C \rightarrow (A \land B \land C)) \\ \hline \hline (A \rightarrow (A \land B \land C)) \lor (B \rightarrow (A \land B \land C)) \lor (C \rightarrow (A \land B \land C)) \\ \hline \end{array}$$

Un modo veloce per vedere che non può essere dimostrabile intuizionisticamente è quello di considerarne la particolare istanza ottenuta sostituendo A al posto di B e $\neg A$ al posto di C. Infatti in questo caso otteniamo

$$(A \to (A \land A \land \neg A)) \lor (A \to (A \land A \land \neg A)) \lor (\neg A \to (A \land A \land \neg A))$$

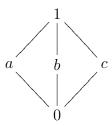
che è intuizionisticamente logicamente equivalente a

$$(A \to (A \land \neg A)) \lor (\neg A \to (A \land \neg A))$$

che a sua volta si riduce a $\neg A \lor \neg \neg A$ che sappiamo non essere intuizionisticamente valida.

Esercizio 4

Determinare la minima algebra di Heyting in cui il seguente reticolo si può immergere:



(sugg.: costruire un opportuno spazio topologico utilizzando la tecnica dei filtri primi)

Soluzione.

Il reticolo considerato non è sicuramente un'algebra di Heyting visto che non è distributivo. Per trovare un'algebra di Heyting in cui immergerlo dobbiamo aggiungere i sup necessari a renderlo distributivo. Visto che gli aperti di uno spazio topologico sono sicuramente un'algebra di Heyting cerchiamo di trovare lo spazio topologico adatto modificando opportunamente la tecnica dei filtri primi. I filtri su questo reticolo sono

$$F_a = \{a, 1\}, F_b = \{b, 1\}, F_c = \{c, 1\}$$

e possiamo costruire su di essi uno spazio topologico i cui aperti costituscono l'algebra di Heyting richiesta. La base per tale spazio topologico si ottiene considerando le estensioni degli elementi del reticolo:

$$ext(0) = \emptyset, ext(a) = \{F_a\}, ext(b) = \{F_b\}, ext(c) = \{F_c\}, ext(1) = \{F_a, F_b, F_c\}$$

ma tale base, pur essendo chiusa per intersezione, non contiene tutte le unioni necessarie. Per ottenere il nostro spazio topologico dobbiamo quindi aggiungere le unioni mancanti, vale a dire

$$\mathsf{ext}(a) \cup \mathsf{ext}(b) = \{F_a, F_b\}, \mathsf{ext}(a) \cup \mathsf{ext}(c) = \{F_a, F_c\}, \mathsf{ext}(b) \cup \mathsf{ext}(c) = \{F_b, F_c\}$$

ottenendo

