
A Cartesian Closed Category in Martin-Löf’s

intuitionistic type theory

Silvio Valentini

Dipartimento di Matematica Pura ed Applicata

Università di Padova

via G. Belzoni n.7, I–35131 Padova, Italy

silvio@math.unipd.it

July 9, 2001

Abstract

First, we briefly recall the main definitions of the theory of Information

Bases and Translations. These mathematical structures are the basis to

construct the cartesian closed category InfBas, which is equivalent to the

category ScDom of Scott Domains.

Then, we will show that all the definitions and the proof of all the

properties that one needs in order to show that InfBas is indeed a cartesian

closed category can be formalized within Martin-Löf’s Intuitionistic Type

Theory.

Mathematics Subject Classification: 03B15, 03B20.
Keywords: Intuitionistic type theory, Cartesian closed categories, Scott

Domains.

Contents

1 Introduction 2

2 Preliminaries 3

3 Information base and Translation 7

4 InfBas is a cartesian closed category 10
4.1 Terminal information bases . 10
4.2 Cartesian Product of information bases 11
4.3 Exponential of two information bases 13

5 The generic information base 20

1

6 Some properties of the category InfBas 22
6.1 The initial object . 22
6.2 The separated sum . 22
6.3 The coalesced sum . 26
6.4 Fixed-point property . 27

1 Introduction

This paper is intended to be a continuation of [8] where the category InfBas

of the Information Bases has been introduced and proved to be equivalent to
the category ScDom of Scott Domains. For this reason, here we only recall the
main definitions and properties of information bases while for their philosophical
motivations the reader is invited to look directly at that paper.

The work in [8] stopped after the proof that the category InfBas is equiv-
alent to the category ScDom of the (set based) Scott domains, besides being
equivalent to the category NeighSys of the Neighbourhood Systems and InfSys

of the Information Systems [9, 10]. Thus InfBas enjoys any categorical property
which holds for the category ScDom and in particular it is a cartesian closed
category. From a mathematical point of view this is a complete description of
InfBas and one can be content with it, but the real reason of interest in work-
ing with InfBas instead that with ScDom stands on the fact that information
bases can be completely formalized within a constructive framework. Indeed,
Scott domains are a foundation of denotational semantics and adopting a fully
constructive approach is more adequate since in this way all the results can be
provided in terms of effective presentations. Of course, other approaches can be
exploited for a constructive presentation of ScDom, and some of them are also
closer to the original presentation by Dana Scott in [9, 10], but InfBas has an in-
dependent interest since it is a subcategory of the category of formal topologies
(see [6]).

In this paper we will show how it is possible to build the category InfBas in
a constructive framework by adopting Martin-Löf’s intuitionistic type theory as
ground theory for sets. This means, for instance, that we will carefully distin-
guish between sets, that is, inductive types, and collections since quantification
is meaningful only over elements of a set (see [4]).

We will see that, in general, the main problem in the construction of InfBas

is in finding the correct definitions and that most of the proofs are simple checks
to be performed by using intuitionistic logic; this is the reason why we will only
give a quick sketch of the proof for most of the theorems.

The notation that we use for type theory is mainly inspired by the one
proposed in [5]. In the next section we will recall some basic facts and construc-
tions in type theory; the reader who already knows Martin-Löf’s type theory
can probably jump directly to section 3 and came back here when he meets
some notation that he cannot recognize.

2

2 Preliminaries

In this section we recall some known facts on type theory, and introduce few
new ones together with some new definitions that we will need in the following.

Given a set A, the set List(A) of the lists whose elements are in A can be
formed (see [5], page 75). Its (canonical) elements are the empty list nilA and,
provided a ∈ A and l ∈ List(A), the list a • l. The set List(A) can be used to
implement within type theory the collection of the finite subsets of the type A;
hence in the following sections we will write also Pω(A) to mean List(A) when we
will want to stress on considering a list on A as a finite subset of A. To identify
the collection of the finite subsets of A with the set of the lists whose elements
are in A is not really correct because the equality relation on the collection
of the finite subsets of A is extensional whereas that one on the set List(A) is
not; moreover, only some of the set-theoretic operations on finite subsets can be
defined by using lists. Indeed, it is well known that to deal in a constructive way
with finite sets is not straighforward and that all of the proposed approaches
have some drawback (see [3] and [12]). Anyhow the approach we suggested
above is sufficient for the purposes of this paper.

Supposing U is a universe which contains the (code for the) set A, a ∈ A

and l ∈ List(A), the membership proposition1 aǫl, whose recursive definition is

{

xǫnil ≡ ⊥
xǫa • l ≡ (x =A a) ∨ xǫl

can be solved in type theory by putting:

aǫl ≡ Lrec(l,⊥, (x : A)(y : List(A))(z : U) (x =A a) ∨ z)

where (x : A) t denotes the term obtained by abstracting the variable x of type
A from the term t.

By means of this proposition, we can easily define the order-relation l ⊑ m

of inclusion between the lists l and m by putting:

l ⊑ m ≡ (∀x ∈ A) xǫl → xǫm

Thus, l ⊑ m holds if and only if any element of l is also an element of m and
hence

l ∼= m ≡ (l ⊑ m & m ⊑ l)

is an equivalence relation whose intended meaning is that the “finite subsets” l

and m are extensionally equal.
By ∀-elimination, if xǫl and l ⊑ m then xǫm holds. Moreover, the following

lemma is immediate by ∨-elimination.
1We are going to distinguish among many membership relations. We will use the standard

symbol ∈ to mean the membership relation between an element and a set or a collection, the
symbol ε to mean the membership relation between an element and a subset, which is not a
set but a propositional function (see [7]) so that aεU means U(a), and also the symbol ǫ, that
we are introducing now, to mean the membership relation between an element and a list of
elements which stands for a finite subset.

3

Lemma 2.1 Let a ∈ A and l ∈ List(A). Then, if aǫl then a • nilA ⊑ l.

From now on, when we will refer to lists like subsets, we will write ∅ for the
empty list nilA and {a1, . . . , an} for the list a1 • . . .•an •nilA; hence {a} ⊑ l will
be used for a • nilA ⊑ l.

Given two lists l, m ∈ List(A) we can define the operation @ which appends
them one after the other. Its recursive definition is

{

nil @ m ≡ m

(a • l) @ m ≡ a • (l @ m)

and it is solved in type theory by putting

l @ m ≡ Lrec(l, m, (x : A)(y : List(A))(z : List(A)) x • z)

Supposing l, m ∈ List(A), it is straightforward to prove by induction on the
construction of l that both l ⊑ (l @ m) and m ⊑ (l @ m) hold. Moreover, a proof
by induction on the construction of l shows that, for any x ∈ A, xǫ(l @ m) if
and only if (xǫl) or (xǫm) and hence, supposing n ∈ List(A), if l ⊑ n and m ⊑ n,
then (l @ m) ⊑ n. Finally, also l @ m ∼= m @ l holds and thus l @ m can be
thought of as the union of the two “subsets” l and m. Thus, from now on, when
the lists l and m will be used to denote two finite subsets we will write l ⊔ m

to mean l@m. It is worth noting that intersection between “subsets” cannot be
defined in type theory unless the equality proposition =A is decidable, which is
a necessary condition to be able to define a map φ from A × List(A) into the
two-elements type Boole which codes the proposition xǫl prop [x : A, l : List(A)],
that is, such that xǫl holds if and only if φ(x, l) =Boole true holds (cfr. [11]).

Supposing f ∈ A → List(B) and l ∈ List(A), it is possible to define the
operation of list-indexed append by the recursive equation

{

@xǫnilAf(x) ≡ nilB
@xǫa•lf(x) ≡ f(a) @ @xǫlf(x)

which is solved in type theory by putting

@xǫlf(x) ≡ Lrec(l, nilB, (x : A)(y : List(A))(z : List(B)) f(x) @ z).

If we suppose that (∀x ∈ A) xǫl → f(x) ⊑ m holds then it is possible to prove
by induction on the construction of l that also @xǫlf(x) ⊑ m holds. This is the
reason way we generalize the previous notation also to the list-indexed append
and write

⊔

xǫl f(x) to mean @xǫlf(x).
Supposing ·A is a binary operation on the set A and ∆A is a distinguished

element of A, the operation ⊙ on List(A) recursively defined by
{

⊙(nil) ≡ ∆A

⊙(a • l) ≡ a ·A ⊙(l)

can be defined in type theory, by putting, for any l ∈ List(A):

⊙(l) ≡ Lrec(l, ∆A, (x : A)(y : List(A))(z : A) x ·A z)

4

Suppose now that f : B → A is a function from the set B into A and l ∈ List(B),
then we will write ⊙f(l) to mean the result of the application of the operation
⊙ to the list apply(f, l) ∈ List(A) obtained by applying the function f to any
element in l. The recursive definition of apply(f, l) is

{

apply(f, nilB) ≡ nilA
apply(f, b • l) ≡ f(b) • apply(f, l)

which, supposing l ∈ List(B), is solved in type theory by putting

apply(f, l) ≡ Lrec(l, nilA, (x : B)(y : List(B))(z : List(A)) f(x) • z)

Supposing l ∈ List(A), P (x) prop [x : A] and R(x) prop [x : List(A)], we will
use the following short-hands:

(∀xǫl) P (x) ≡ (∀x ∈ A) xǫl → P (x)
(∃xǫl) P (x) ≡ (∃x ∈ A) xǫl & P (x)

(∀y ⊑ l) R(y) ≡ (∀y ∈ List(A)) y ⊑ l → R(y)
(∃y ⊑ l) R(y) ≡ (∃y ∈ List(A)) y ⊑ l & R(y)

It is immediate to verify that the quantifiers so defined satisfy the usual
intuitionistic rules of introduction and elimination for quantifiers (cfr. [7]).

Moreover, supposing A set, B(x) set [x : A] and c ∈ Σ(A, B), and recalling
that split(〈a, b〉, d) = d(a, b) prescribes the computational behaviour of the elim-
ination constant split for the type Σ(A, B) of the disjoint union of the family of
sets (B(x))x∈A (see [5], page 80), we can set

fst(c) ≡ split(c, (x : A)(y : B(x)) x)
snd(c) ≡ split(c, (x : A)(y : B(x)) y)

in order to define respectively the first and the second projection for the elements
of the set Σ(A, B) .

Finally, given a propositional function F (x, y) prop [x, y : S], we will need to
consider the propositional function

C(n, F, x, y) ≡ (∃z1, . . . , zn ∈ S) F (x, z1) & . . . & F (zn, y)

obtained by composition of the proposition F a certain number n of times. We
can define it by induction on n if we work in a universe U which contains the
propositional function F , provided we can solve the following equation

{

C(0, F, x, y) = (x =S y)
C(n + 1, F, x, y) = (∃z ∈ S) C(n, F, x, z) & F (z, y)

To this aim we can solve first the equation

{

C′(0, F, x) = λy. (x =S y)
C′(n + 1, F, x) = λy. (∃z ∈ S) Ap(C′(n, F, x), z) & F (z, y)

5

by putting

C′(n, F, x) ≡ RNat(n,

λy. (x =S y),
(u : Nat)(v : S → U) λy. (∃z ∈ S) Ap(v, z) & F (z, y))

and then set
C(n, F, x, y) ≡ Ap(C′(n, F, x), y)

We recall here also some properties of the type Succ(A), where A is any
type, and of the type S + T of the disjoint sum of the two types S and T that
we will need in sections 6.2 and 6.3 (see [5], pages 103 and 87).

Let us suppose that A is any type; then the type Succ(A) is the type obtained
by adding a new element to a copy of the type A. Its introduction rules are

1Succ(A) ∈ Succ(A)
a ∈ A

succ(a) ∈ Succ(A)

and the elimination rule is

c ∈ Succ(A) d ∈ C(1Succ(A)) e(x) ∈ C(succ(x)) [x : A]

RSucc(A)(c, d, e) ∈ C(c)

These rules allow to prove that any element of Succ(A) is equal to 1Succ(A) or
to succ(a) for some a ∈ A, that is,

(∀c ∈ Succ(A)) (c =Succ(A) 1Succ(A)) ∨ (∃a ∈ A) c =Succ(A) succ(a)

and that
(∀a ∈ A) ¬(1Succ(A) =Succ(A) succ(a))

The introduction rules for S + T are

s ∈ S

i(s) ∈ S + T

t ∈ T

j(t) ∈ S + T

and the elimination rule is

c ∈ S + T d(x) ∈ C(i(x)) [x : S] e(y) ∈ C(j(y)) [y : T]

D(c, d, e) ∈ C(c)

In a way completely analogous to the previous case, these rules allow to prove
that any element of S + T is equal to i(s) for some element s ∈ S or to j(t) for
some t ∈ T , that is,

(∀c ∈ S + T) (∃s ∈ S) c =S+T i(s) ∨ (∃t ∈ T) c =S+T j(t)

and that
(∀s ∈ S)(∀t ∈ T) ¬(i(s) =S+T j(t))

6

3 Information base and Translation

Information bases play the same role to present Scott domains than neighbour-
hood systems and information systems [9, 10] and it is even possible to show
how to reconstruct the latter as suitable information bases [8]. Moreover, the
definition of information base has an independent intuitive motivation, that has
been inspired by the point-free approach to topology in [6] and that is discussed
in detail in the appendix of [8].

An information base is a set S of tokens of information provided with an
order relation a ⊳S b among tokens of information, whose intended meaning
is that the information a is more precise than the information b, and a binary
operation ·S of composition between tokens of information which respects such
an order relation, that is, a ⊳S b and c ⊳S d yield a ·S c ⊳S b ·S d. Moreover, a
positivity predicate PosS(a) is defined on elements of S, meaning that the token
of information a is consistent; the positivity predicate will play in section 4.3
a main role in obtaining constructive proofs of the properties of the category
of the information bases and it will be essential in section 5 where we will give
a constructive presentation of a generic (set-based) Scott domain. Here is the
formal definition.

Definition 3.1 (Information Base) An information base S is a structure

〈S, ·S , ∆S , PosS , ⊳S〉

where S is a set, ·S is a binary operation between elements of S called combi-
nation, ∆S is a distinguished element of S called unit, PosS is a property on
elements of S called positivity predicate, and ⊳S is a binary relation between
elements of S called cover relation, which satisfy the following conditions for all
a, b, c ∈ S:

(properness) PosS(∆S)

(monotonicity)
PosS(a) a ⊳S b

PosS(b)
(positivity)

PosS(a) → a ⊳S b

a ⊳S b

(unit) a ⊳S ∆S

(reflexivity) a ⊳S a (transitivity)
a ⊳S b b ⊳S c

a ⊳S c

(·-left)
a ⊳S b

a ·S c ⊳S b

a ⊳S b

c ·S a ⊳S b
(·-right)

a ⊳S b a ⊳S c

a ⊳S b ·S c

In the following we are going to use some immediate consequences of the
previous conditions. We will list them here.

1. a =S b ≡ (a ⊳S b & b ⊳S a) is an equivalence relation.

2. (stability) If a ⊳S c and b ⊳S d then a ·S b ⊳S c ·S d.

7

3. The equivalence relation =S respects the structure of the information base,
that is,

• if a =S b then PosS(a) if and only if PosS(b);

• if a =S b and c =S d then a ⊳S c if and only if b ⊳S d;

• if a =S b and c =S d then a ·S c =S b ·S d.

4. ∆S ·S a =S a =S a ·S ∆S

5. a ⊳S b if and only if a ·S ∆S ⊳S b if and only if ∆S ·S a ⊳S b.

6. If ∆S ⊳S a then b ⊳S a ·S b.

7. The structure (S/=S
, ∆S , ·S) is a commutative idempotent monoid; note

however that in general the quotient S/=S
is not a set (see [3]).

Information bases can be used to construct domains in a similar way to
what can be done by using information or neighbourhood systems. In fact, an
element of a domain, which is a partial information on an abstract topic, can be
identified with the subset of all the tokens of information that inherit to it. In
the case of information bases, due to the topological interpretation of the cover
relation and the positivity predicate, we call formal point any such a subset of
tokens of information. From now on we will write Pt(S) to mean the collection
of all formal points of S equipped with the inclusion ordering (for details see
[8]). Note that Pt(S) is a collection of subsets of S and hence it is never a set.
Of course, two formal points coincide when they are extensionally equal, that
is, when they contain the same tokens of information (see [7] for a complete
description of the treatment of subsets and their equality within Martin-Löf’s
intuitionistic type theory).

Definition 3.2 (Formal point) Let S be an information base. Then, a formal
point α of S is a subset of S which satisfies the following conditions for all
a, b ∈ S:

(i.1) ∆Sεα (i.2)
aεα bεα

a · bεα
(i.3)

aεα a ⊳S b

bεα
(ii)

aεα

PosS(a)

In section 5 we will show a formalization inside type theory of the main result
in [8], that is, the fact that any Scott domain with a constructive presentation is
(isomorphic to) the collection of the points of a suitable information base. The
reader who is curious to see the role of ⊳ and Pos in this construction can jump
immediately there and came back here later to continue with the presentation
of the category InfBas.

Not only Scott domains can be completely re-constructed by using informa-
tion bases, but also their morphisms, that is, approximable functions [10]. Here
we use translations. A translation F between the information bases S and T is

8

a propositional function xFy prop [x : S, y : T] which links a token of informa-
tion a of S with all the tokens b in T inherited to a partial information which
is the translation of a partial information in a. The formal conditions are the
following.

Definition 3.3 (Translation) Let S and T be information bases. Then a
propositional function F between S and T is called a translation if, for all
a, c ∈ S and b, d ∈ T :

(i.1) aF∆T (i.2)
aFb aFd

aFb · d

(i.3)
aFb b ⊳T d

aFd
(i.4)

PosS(a) aFb

PosT (b)

(ii)
a ⊳S c cFb

aFb
(iii)

PosS(a) → aFb

aFb

As usual, we will write F ∈ Hom(S, T) to mean that F is a translation
between S and T .

In the following we will often use the fact that, for any translation F , if aFb

and cFd then a · cFb · d because aFb yields a · cFb and cFd yields a · cFd by
(ii) together with ·-left and hence a · cFb · d by (i.2).

Two translations F, G ∈ Hom(S, T) have to be considered equal if the propo-
sitional functions F and G hold for the same elements of S and T , that is, if F

and G are extensionally equal. Thus we put

F = G ≡ (∀x : S)(∀y : T) xFy ↔ xGy

Of course, when a morphism will be defined, it will be necessary to check
that its definition respects equality among morphisms, that is, that it does not
depend on the particular representatives.

Given two translations F ∈ Hom(S, T) and G ∈ Hom(T ,U) their composi-
tion is defined by putting, for any s ∈ S and u ∈ U :

s(G ∗ F)u ≡ PosS(s) → (∃t ∈ T) sF t & tGu

It is immediate to verify that composition of translations is well-defined and
associative.

The identical translation IdS of the information base S is simply the covering
relation ⊳S; in fact, it is immediate to see that the conditions on the cover
relation comprise all of the requirements for ⊳S to be a translation. Moreover
conditions (i.3) and (ii) in the definition 3.3 of translation allow to show that
IdS is indeed the unit of the operation of composition between translations.

Thus we have shown that Information Bases and Translations2 form a cate-
gory, which we call InfBas. As we already observed, this category is equivalent
to the category ScDom of Scott domains (for a detailed proof see [8]). The key
point in the proof is to show that the map Pt is a functor between InfBas and

2More pedantely, we should use equivalence classes of translations.

9

ScDom. In fact, a translation F : S → T can be easily lifted to an approximable
function from Pt(S) into Pt(T) by mapping any point α into the union of all
the tokens of information which are the translation of some element a of α.
Formally,

Pt(F)(α) ≡
⋃

{Fa : aεα}

where Fa ≡ {b : aFb}.
We will also use the fact that, given any approximable function f from Pt(S)

into Pt(T), the propositional function

sFf t ≡ PosS(s) → tεf(↑s) [s : S, t : T]

where ↑s ≡ {u ∈ S| s ⊳S u} is a point of S whenever s is positive, is a translation
between S and T such that f = Pt(Ff).

4 InfBas is a cartesian closed category

Since ScDom and InfBas are equivalent categories and ScDom is a cartesian
closed category than also InfBas is cartesian closed. Anyhow the proof of such
a categorical equivalence can not be completely formalized within type theory,
mainly because Scott domains cannot be formalized therein. Thus, we have no
constructive proof that InfBas is indeed a cartesian closed category.

In this section we will show how a terminal object, a cartesian product and an
exponential object of two information bases can be defined within type theory.

4.1 Terminal information bases

We first define a terminal object and a cartesian products in InfBas and than
we will construct an exponential object.

Theorem 4.1 (Terminal objects in InfBas) Any information base T such
that for any t ∈ T

(∗) PosT (t) iff ∆T ⊳T t

is a terminal object in InfBas, that is, for any information base S, the relation

sRt ≡ PosS(s) → PosT (t)

is the unique translation between S and T .

Proof. The proof that R is a translation is straightforward. To verify its
uniqueness, suppose F ∈ Hom(S, T) and sRt, i.e. PosS(s) → PosT (t) or equiv-
alently PosS(s) → ∆T ⊳T t; then, by assuming PosS(s) we obtain ∆T ⊳T t,
but sF∆T holds and hence sF t follows by the conditions (i.3) and (iii) in the
definition of translation; on the other hand supposing sF t and assuming PosS(s)
we immediately obtain PosT (t).

10

The easiest way to construct a terminal object 1l for the category InfBas

within type theory is to use the one element set ⊤, whose only element is ∗, and
to declare ∗ positive. We thus arrive at the following definitions:

·1l ≡ (x : ⊤)(y : ⊤) ∗
∆1l ≡ ∗

Pos1l ≡ (x : ⊤) x =⊤ x

⊳1l ≡ (x : ⊤)(y : ⊤) x =⊤ y

Now the conditions properness, monotonicity, positivity, reflexivity and tran-
sitivity in the definition 3.1, which state that 1l is an information base, are easily
verified by means of simple proofs within type theory. Moreover the condition
(∗) in theorem 4.1 holds and hence 1l is a terminal object.

Note that the collection of the points of any terminal object has exactly one
element. In fact, let us suppose that T is a terminal information base, that α

and β are two elements of Pt(T) and that aεα; then Pos(a) holds and hence
∆T ⊳T a, since T is a terminal information base; thus, aεβ since ∆T εβ because
β is a point.

Finally, it is worth noting that there is a bijective correspondence between
the translations from a terminal object to any information base and the points
of such an information base. In fact, supposing T is a terminal information
base, S is any information base and F is any translation between T and S, we
can associate to F the point

αF ≡ {b ∈ S| ∆T Fb}

of S. On the other hand, supposing α is any point of S, we can associate it the
translation

aFαb ≡ PosT (a) → bεα

and the correspondence is obviously bijective since

bεαFα
iff ∆T Fαb iff PosT (∆T) → bεα iff bεα

and

aFαF
b iff PosT (a) → bεαF iff PosT (a) → ∆T Fb iff PosT (a) → aFb iff aFb

where the third step is a consequence of the fact that if PosT (a) holds then
∆T =T a.

4.2 Cartesian Product of information bases

To define the cartesian product of information bases we will follow a hint from
standard topology: a base for the product topology of two topological spaces is
the cartesian product of the bases of the two topologies.

11

Proposition 4.2 (Cartesian product of information bases) Let S and T
be two information bases. Then

S × T ≡ 〈S × T, ·S×T , ∆S×T , PosS×T , ⊳S×T 〉,

where for any c, d ∈ S × T :

c ·S×T d ≡ (fst(c) ·S fst(d), snd(c) ·T snd(d))
∆S×T ≡ (∆S , ∆T)

PosS×T (c) ≡ PosS(fst(c)) & PosT (snd(c))
c ⊳ d ≡ PosS×T (c) → (fst(c) ⊳S fst(d) & snd(c) ⊳T snd(d))

is an information base.

Proof. All the verifications are straightforward proofs in type theory which
use the rules for the type theoretic cartesian product ([5], page 81). It can
be useful to observe that to prove the validity of ·-left and ·-right one has to
use the fact that, for any a, b ∈ S × T , fst(a ·S×T b) =S fst(a) ·S fst(b) and
snd(a ·S×T b) =T snd(a) ·T snd(b).

Now, supposing S and T are two information bases, it is possible to show
that S × T is their cartesian product.

Theorem 4.3 Let S and T be two information bases. Then the propositional
functions ΠS between S × T and S and ΠT between S × T and T defined by
putting, for any c ∈ S × T , s ∈ S and t ∈ T :

c ΠS s ≡ PosS×T (c) → (fst(c) ⊳S s)
c ΠT t ≡ PosS×T (c) → (snd(c) ⊳T t)

are translations. Moreover, if W is an information base, F ∈ Hom(W ,S) and
G ∈ Hom(W , T), then the propositional function 〈F, G〉 between W and S × T
defined by putting, for any c ∈ S × T and w ∈ W :

w 〈F, G〉 c ≡ PosW (w) → (w F fst(c) & w G snd(c))

is a translation and, for any translation H ∈ Hom(W ,S × T), the following
equations hold

ΠS ∗ 〈F, G〉 = F

ΠT ∗ 〈F, G〉 = G

〈ΠS ∗ H, ΠT ∗ H〉 = H.

Proof. It is easy to see that ΠS , ΠT and 〈F, G〉 are translations. To prove the
validity of the first equation note that if w F s then w 〈F, G〉 (s, ∆T), since
w G ∆T holds, and hence w ΠS ∗ 〈F, G〉 s, since (s, ∆T) ΠS s.

A formal proof in type theory of the other inclusion is the following: suppose
that w ΠS ∗ 〈F, G〉 s, that is, PosW (w) → (∃c ∈ S × T) w 〈F, G〉 c & c ΠS s,
and assume PosW (w); then (∃c ∈ S × T) w 〈F, G〉 c & c ΠS s. Now from

12

w 〈F, G〉 c, that is, PosW (w) → w F fst(c) & w G snd(c), by using again
the assumption PosW (w), we deduce both w F fst(c) and w G snd(c), which,
by using for the third time the assumption PosW (w), show that PosS(fst(c))
and PosT (snd(c)), that is, PosS×T (c), which allows to conclude fst(c) ⊳S s from
PosS×T (c) → fst(c) ⊳S s, that is, c ΠS s. Thus w F s follows from w F fst(c) and
fst(c) ⊳S s and hence the result is obtained by ∃-elimination and the condition
(iii) in the definition 3.3 of translation. The proof of validity of the second
equation is completely similar.

To prove the validity of the third equation suppose w 〈ΠS ∗ H, ΠT ∗ H〉 c

and assume PosW (w). Then it is straightforward to prove that there exists
d ∈ S × T such that w H d & d ΠS fst(c); but, by assuming PosS×T (d),
d ΠS fst(c) implies fst(d) ⊳S fst(c) which shows d ⊳S×T (fst(c), ∆T), by dis-
charging the assumption PosS×T (d), since snd(d) ⊳T ∆T holds; thus w H d

allows to deduce w H (fst(c), ∆T) and ∃-elimination can be applied. In a sim-
ilar way one can prove that also w H (∆S , snd(c)) holds and hence w H c

follows by conditions (i.2) and (iii) of the definition 3.3 of translation, since
(fst(c), ∆T) ·S×T (∆S , snd(c)) ⊳S×T c holds; the other inclusion is trivial.

In the following, supposing F ∈ Hom(S,W) and G ∈ Hom(T ,Z), we will
write F × G to mean the translation 〈F ∗ ΠS , G ∗ ΠT 〉 from S × T to W ×Z.

Even if the collection of points of an information base is never a set, since its
elements are subsets, and hence we cannot define over it standard set operations
like cartesian product, we can still show that there is a bijective correspondence
between Pt(S × T) and couple made by elements in Pt(S) and Pt(T). In fact,
let γ be a point of S × T ; then we obtain a point of S and a point of T by
setting

αγ ≡ {a ∈ S| (a, ∆T)εγ}
βγ ≡ {b ∈ T | (∆S , b)εγ}

Moreover, supposing α is a point of S and β is a point of T we obtain a point
of S × T by setting

γα,β ≡ {(a, b) ∈ S × T | aεα and bεβ}

Finally, the correspondence is clearly bijective; in fact, it is easy to see that
(a, b)εγαγ ,βγ

if and only if (a, b)εγ; moreover, aεαγα,β
and bεβγα,β

if and only if
aεα and bεβ because (a, ∆T) ·S×T (∆S , b) =S×T (a, b).

4.3 Exponential of two information bases

The basic idea in constructing the exponential object of two information bases
is to explain, by using only finite tokens of information, how a translation is
defined. From a constructive point of view, this is not straightforward since a
translation is just a propositional function, and we know it only intensionally.
But, from a classical point of view, we can see it also extensionally, that is,
like the collection of all the couples which satisfy such a propositional function.
Hence a finite information on a translation is just a finite set of couples. The

13

natural operation between two such finite sets of tokens of information is union,
which collects the information on the translation contained in the two finite sets.
Clearly the unit for this operation is the empty-set which adds no information.
If we want to remain within type theory, two problems arise in following this
approach. First, the collection of finite subsets of a set is not a set because
we cannot generate it by means of an inductive definition but some additional
equations are needed (see for instance [1]). Moreover, a translation has to satisfy
the positivity condition (iii) of definition 3.3 of translation and hence any notion
of function space has to take into account this fact. We solve these two problems
by constructing the function space of two information bases S and T by using,
instead of finite subsets, lists of couples whose first element is a positive element
of S and second element is an element of T . Thus we arrive at the following
proposition where we use the set theoretic abbreviations that we introduced in
section 2.

Proposition 4.4 (Exponential of information bases) Let S and T be in-
formation bases. Then the structure

S ⇒ T ≡ 〈Pω(Σ(S, PosS) × T),⊔, ∅, PosS⇒T , ⊳S⇒T 〉,

where for any l, m ∈ Pω(Σ(S, PosS) × T):

PosS⇒T (l) ≡ (∀y ⊑ l) PosS(⊙λx.fst(fst(x))y) → PosT (⊙λx.snd(x)y)

and
l ⊳S⇒T m ≡ PosS⇒T (l) →

(∀x ⊑ m)(∃y ⊑ l) ⊙λx.fst(fst(x)) x ⊳S ⊙λx.fst(fst(x))y &
⊙λx.snd(x)y ⊳T ⊙λx.snd(x)x)

is an information base.

The formal proof of this proposition is long and it is convenient to begin
with some abbreviations and some lemmas. In the following we will abbreviate
the set Σ(S, PosS) × T by PosS × T and, whenever it will be possible, we will
indicate one of its elements by (s, t) instead that by ((s, π), t), where π is the
proof that s is a positive element of S. Moreover, the set Pω(Σ(S, PosS) × T)
will be abbreviated by S ⇒ T and, for any x ∈ PosS ×T , the element fst(fst(x))
of S will be abbreviated by xS and the element snd(x) of T by xT and hence
the functions ⊙λx.fst(fst(x)) and ⊙λx.snd(x) will be abbreviated by ⊙S and ⊙T

respectively. Thus, we will write PosS⇒T (l) as

(∀y ⊑ l) PosS(⊙Sy) → PosT (⊙T y)

and l ⊳S⇒T m as

PosS⇒T (l) → (∀x ⊑ m)(∃y ⊑ l) ⊙S x ⊳S ⊙Sy & ⊙T y ⊳T ⊙T x

which look a bit more readable.
Let us now show that S ⇒ T is indeed an information base.

14

Lemma 4.5 Let l, m ∈ S ⇒ T . Then, if l ⊑ m then

⊙Sm ⊳S ⊙Sl and ⊙T m ⊳T ⊙T l

Proof. The proof is by induction on the length of the list l and it is obtained
by using ·-left on the information bases S and T .

Corollary 4.6 Let l ∈ S ⇒ T . Then, if l ⊑ ∅ then PosS⇒T (l).

Proof. Suppose y ⊑ l and assume l ⊑ ∅. Then y ⊑ ∅. Hence, by the previous
lemma, ⊙T ∅ ⊳T ⊙T y, but PosT (⊙T ∅) holds since ⊙T ∅ = ∆T , and hence by
monotonicity in T we obtain PosT (⊙T y) and thus the result follows immediately
by logic.

Lemma 4.7 Let l, m ∈ S ⇒ T . Then, if m ⊑ l then l ⊳S⇒T m.

Proof. Let us suppose that x ⊑ m; then the assumption m ⊑ l implies that
x ⊑ l and hence we have found the “subset” of l we where looking for since
obviously ⊙Sx ⊳S ⊙Sx and ⊙T x ⊳T ⊙T x.

We introduce now the new relation

l ⊳
1 m ≡ PosS⇒T (l) → (∀xǫm)(∃y ⊑ l) xS ⊳S ⊙Sy & ⊙T y ⊳T xT

We will prove that ⊳
1 is equivalent to the relation ⊳S⇒T . We need to introduce

⊳
1 in order to show the validity of the ·-right condition for ⊳S⇒T .

It is obvious that if l ⊳S⇒T m then l ⊳
1 m. In fact, supposing xǫm, by

lemma 2.1, we obtain {x} ⊑ m and hence the result is an immediate consequence
of l ⊳S⇒T m.

To prove the other implication we need to use one of the strongest property
of constructive type theory, namely, the (extended) axiom of choice.

Lemma 4.8 Let l, m ∈ S ⇒ T . Then, l ⊳
1 m if and only if there exists a

function f from Σ(PosS × T, (x : PosS × T) xǫm) into (S ⇒ T) such that, for
all x ∈ Σ(PosS × T, (x : PosS × T) xǫm),

(f(x) ⊑ l) & (xS ⊳S ⊙Sf(x)) & (⊙T f(x) ⊳T xT)

Proof. After all the definitions are eliminated, the result is an immediate
consequence of the application of the (extended) axiom of choice which asserts
that

(∀x : A) B(x) → ((∃y : C) D(x, y))

holds if and only if

(∃f : Σ(A, B) → C)(∀z : Σ(A, B)) D(fst(z), f(z))

15

holds. Its proof in constructive type theory is a slight modification of the stan-
dard proof of the axiom of choice in [4]. In fact, supposing

h : (∀x : A) B(x) → ((∃y : C) D(x, y))

the choice function that we are looking for is

f ≡ λz : Σ(A, B). h(fst(z))(snd(z))

We can now finish the proof of the equivalence between the two relations ⊳
1

and ⊳S⇒T .

Lemma 4.9 Let l, m ∈ S ⇒ T . Then, if l ⊳
1 m then l ⊳S⇒T m.

Proof. After lemma 4.8, given any z ⊑ m we can use the choice function f to
construct the “subset”

⊔

xǫz f(x) of l which satisfies the required conditions.

We can now verify that S ⇒ T is an information base. Most of the necessary
check are straightforward. Here we only show the non-obvious cases.

• (Monotonicity) We have to show that if PosS⇒T (l) and l ⊳S⇒T m then
PosS⇒T (m). Thus, let us suppose that z ∈ S ⇒ T , z ⊑ m and PosS(⊙Sz),
then there exists y ⊑ l such that ⊙Sz ⊳S ⊙Sy and ⊙T y ⊳T ⊙T z since
l ⊳S⇒T m; hence PosS(⊙Sy) holds by monotonicity in S; but PosS⇒T (l)
implies PosS(⊙Sy) → PosT (⊙T y), since y ⊑ l, and so, by monotonicity in
T , PosT (⊙T z).

• (·-right) We have to show that if l ⊳S⇒T m and l ⊳S⇒T n hold then
l ⊳S⇒T m ⊔ n. The assumptions yield that l ⊳

1 m and l ⊳
1 n. Suppose

now that xǫm ⊔ n, then xǫm or xǫn and in both cases we can obtain the
“subset” of l required to state l ⊳

1 m⊔n by using the suitable assumption.
But then l ⊳S⇒T m ⊔ n follows by lemma 4.9.

It is worth noting that, in order to prove the validity of the ·-right condition
for the exponential information base, we needed to consider the relation ⊳

1

instead of ⊳S⇒T . In fact, if xǫm ⊔ n we can prove that xǫm or xǫn but if we
know that y ⊑ m⊔n we are not able to construct two “subsets” y1 and y2 such
that y1 ⊑ m, y2 ⊑ n and y ∼= y1 ⊔ y2, unless the equality relation on PosS × T

is decidable.
After the previous results we can propose simple and intuitive explanations

of the definitions we used for the positivity predicate and the cover relation for
the exponential information base. Let us give first a definition.

Definition 4.10 Let R be a translation between the information bases S and
T and l be a token of information in S ⇒ T . Then we say that the translation
R contains l if and only if (∀xǫl) xSRxT .

16

We can prove the following theorems.

Lemma 4.11 Let R be a translation between S and T and l ∈ S ⇒ T . Then,
R contains l if and only if (∀y ⊑ l) ⊙S yR ⊙T y.

Proof. Let us assume that R contains l and that y ⊑ l. Then, for any xǫy,
xSRxT and hence ⊙SyR ⊙T y. On the other hand, for any xǫl, {x} ⊑ l and
hence (∀y ⊑ l) ⊙S yR ⊙T y yields xS =S ⊙S{x}R ⊙T {x} =T xT .

Theorem 4.12 For any l ∈ S ⇒ T , PosS⇒T (l) holds if and only if there exists
a translation R between S and T which contains l.

Proof. Let us suppose that PosS⇒T (l) and define

sRlt ≡ PosS(s) → (∃y ⊑ l) s ⊳S ⊙Sy & ⊙T y ⊳S t

Then, it is immediate to see that Rl is a translation. In fact, most of the cases
that one has to check are straightforward; we will show here the only one which
requires l to be a positive element of S ⇒ T , namely (i.4).

• If PosS(s) and sRlt then PosT (t). In fact, let us suppose PosS⇒T (l).
Then (∀y ⊑ l) PosS(⊙Sy) → PosT (⊙T y), and hence, supposing, y ⊑ l,
s ⊳S ⊙Sy and ⊙T y ⊳T t, and PosS(s) we obtain first PosS(⊙Sy), by
monotonicity in S, and hence PosT (⊙T y), by positivity of l, and finally
PosT (t), by monotonicity in T .

Moreover lemma 4.11 immediately yields that Rl contains l because, for any
y ⊑ l, ⊙SyRl ⊙T y.

The other implication, that is, if there exists a translation R which contains
l then l is positive, is immediate since supposing y ⊑ l we obtain ⊙SyR⊙T y by
lemma 4.11 and hence PosS(⊙Sy) yields PosT (⊙T y) by condition (i.4) for the
translation R.

It is interesting to note that the translation Rl that we defined in the proof
of the previous theorem is the minimal translation which contains l, that is, for
any translation R which contains l, if sRlt then sRt. In fact, we can prove the
following lemma.

Lemma 4.13 Let l be a positive element in S ⇒ T and define Rl like in the
proof of the previous theorem. Then Rl is contained in any translation which
contains l.

Proof. Let R be any translation which contains l and suppose sRlt. Then,
there exists y ⊑ l such that s ⊳S ⊙Sy and ⊙T y ⊳T t; then ⊙SyR ⊙T y by
lemma 4.11 and hence sRt by conditions (i.3) and (ii) for the translation R.

We can exibhit an alternative characterization for the cover relation too.

Theorem 4.14 For any l, m ∈ S ⇒ T , l ⊳S⇒T m if and only if any translation
which contains l contains m too.

17

Proof. Let us assume that l ⊳S⇒T m and that R is a translation between S
and T which contains l. Then l is positive by the previous theorem 4.12. Then,
for any x ⊑ m, there exists y ⊑ l such that ⊙SyR ⊙T y, by lemma 4.11, and
⊙Sx ⊳S ⊙Sy and ⊙T y ⊳T ⊙T x, by definition of the cover relation in S ⇒ T .
Then ⊙SxR⊙T x by conditions (i.3) and (ii) for the translation R and hence R

contains m by lemma 4.11.
On the other hand, if all translations contain m whenever they contain l

than we can prove that l ⊳
1 m holds, and hence l ⊳S⇒T m follows by lemma

4.9. In fact, let us suppose that xǫm and assume that PosS⇒T (l). Then a
translation Rl can be defined as in the proof of theorem 4.12 and it contains
l; hence, by the assumption, it also contains m, so that xSRlxT which yields
PosS(xS) → (∃y ⊑ l) xS ⊳S ⊙Sy & ⊙T y ⊳T xT . But PosS(xS) holds because
x is an element in PosS × T .

Thus, our definitions of the positivity predicate and the cover relation are
just a fully constructive way to express the more perspicous conditions that
in the previous theorems 4.12 and 4.14 we proved to be equivalent to them.
The reason we could not use these conditions directly in the definitions of the
positivity predicate and the cover relation is that they cannot be expressed in a
constructive way since they would require an existential quantification (in the
case of the positivity predicate) or an universal quantification (in the case of the
cover relation) over the collection of all the translations and such quantifications
are meaningless since only quantification over the elements of a set can be given
a constructive meaning.

The following theorem completely characterizes S ⇒ T as the categorical
exponential object of the information bases S and T .

Theorem 4.15 Let G ∈ Hom(W × S, T) and H ∈ Hom(W, S ⇒ T); then
there exist a unique translation Λ(G) ∈ Hom(W, S ⇒ T) and a translation
Ap ∈ Hom((S ⇒ T) × S, T) such that the following equations hold:

Ap ∗ (Λ(G) × IdS) = G

Λ(Ap ∗ (H × IdS)) = H

Proof. For any w ∈ W and l ∈ S ⇒ T , put

w Λ(G) l ≡ PosW (w) → (∀cǫl) (w, cS) G cT

and, for any l ∈ S ⇒ T , s ∈ S and t ∈ T , put

(l, s) Ap t ≡ (∀y ∈ Pos(S⇒T)×S((l, s))) l ⊳S⇒T {((s, snd(y)), t)}

It is easy to check that Λ(G) and Ap are indeed translations.
A bit more complex is to show that the two equations hold. We will first

prove that, for any G ∈ Hom(W × S, T), Ap ∗ (Λ(G) × IdS) = G. Let us
suppose that (w, s) ∈ W × S and t ∈ T and assume that PosW×S((w, s)); then,
if (w, s) Ap ∗ (Λ(G) × IdS) t then there exists (l, u) ∈ (S ⇒ T) × S such that
(w, s) Λ(G) × IdS (l, u), that is, w Λ(G) l and s ⊳S u, and (l, u) Ap t. Then

18

PosS⇒T (l) and PosS(u) and hence (l, u) Ap t yields l ⊳S⇒T {((u, π), t)}, where
π is the proof that u is a positive element of S. Thus there exists y ⊑ l such
that u ⊳S ⊙Sy, and hence both s ⊳S ⊙Sy, because s ⊳S u, and ⊙T y ⊳T t

hold. Now, observe that w Λ(G) l means that (∀cǫl) (w, cS) G cT and hence
(w,⊙Sy) G ⊙T y which yields (w, s) G t since (w, s) ⊳W×S (w,⊙Sy) and
⊙T y ⊳T t.

To prove the other inclusion let us suppose that (w, s) G t holds; then we
immediately obtain that w Λ(G) {((s, π), t}, where π is the proof that s is
positive. But we also have that s ⊳S s, i.e. s IdS s, and ({((s, π), t)}, s) Ap t

since (∀y ∈ Pos(S⇒T)×S(({((s, π), t)}, s)). {((s, π), t)} ⊳S⇒T {((s, snd(y)), t)}.
Let us suppose now that H ∈ Hom(W, S ⇒ T). Then Λ(Ap∗(H×IdS)) = H .

In fact, supposing w ∈ W , l ∈ S ⇒ T and PosW (w), w Λ(Ap ∗ (H × IdS)) l

yields (∀cǫl) (w, cS) Ap ∗ (H × IdS) cT and hence there exist m ∈ S ⇒ T and
u ∈ S such that w H m, cS ⊳S u and (m, u) Ap cT . But, (m, u) Ap cT yields
m ⊳S⇒T {((u, π), cT }, where π is the proof that u is a positive element of S

obtained by monotonicity from cS ⊳S u since cS is a positive element of S

because cǫl and l ∈ PosS × T . Moreover cS ⊳S u yields {((u, π), cT } ⊳S⇒ {c},
and hence m ⊳S⇒T {c}. Thus, for all cǫl, w H {c} and hence w H l.

On the other hand, if w H l, then for any cǫl, w H {c} since l ⊳S⇒T {c}
holds. Then (w, cS) H × IdS ({c}, cS). Moreover, ({c}, cS) Ap cT and hence
(w, cS) Ap ∗ (H × IdS) cT , that is we proved that w Λ(Ap ∗ (H × IdS)) l.

After the categorical characterization of the exponential object it can be
useful to see more directly the relation between the information base S ⇒ T
and the translations between S and T . In fact, a full information in S ⇒ T
is not a token but a point. And indeed we can prove that there is a bijective
correspondence between points of S ⇒ T and translations between S and T .
We need first a technical lemma.

Lemma 4.16 Let S and T be two information bases, l be an element in S ⇒ T

and Φ be a point of S ⇒ T . Then lεΦ if and only if (∀xǫl) {x}εΦ.

Proof. Let us suppose that xǫl; then {x} ⊑ l and hence l ⊳S⇒T {x}, by lemma
4.7, and thus lεΦ yields {x}εΦ.

On the other hand, if (∀xǫl) {x}εΦ then lεΦ can be proved by induction on
the length of l by using condition (i.2) in the definition of point.

Theorem 4.17 Let S and T be two information bases. Then there is a bijective
correspondence between the collection of the points of S ⇒ T and the collection
of the translations between S and T .

Proof. Let Φ be a point of S ⇒ T and put

sRΦt ≡ PosS(s) → {(s, t)}εΦ

Then it is straightforward to prove that RΦ is a translation between S and T .
Suppose now that R is a translation between S and T and put

ΦR ≡ {l ∈ S ⇒ T | R contains l}

19

Then, ΦR is a point of S ⇒ T .
Moreover, the correspondence is bijective. In fact, RΦR

= R, because

sRΦR
t iff PosS(s) → {(s, t)}εΦR by definition of RΦR

iff PosS(s) → sRt by definition of ΦR

iff sRt by condition (iii) on R

and ΦRΦ
= Φ, because

lεΦRΦ
iff RΦ contains l by definition of ΦRΦ

iff (∀xǫl) xSRΦxT by definition of “contains”
iff (∀xǫl) PosS(xS) → {(xS , xT)}εΦ by definition of RΦ

iff (∀xǫl) {(xS , xT)}εΦ since PosS(xS) holds
because l ∈ S ⇒ T

iff lεΦ by lemma 4.16

5 The generic information base

In this section we want to show how to construct, within intuitionistic type
theory, the information base which corresponds to a generic set-based Scott
domain. We will not propose here a new construction but we simply show how
to formalize the one in [8].

A Scott domain D ≡ (D,≤), where D is a collection and ≤ a order relation
over D, is called set-based if the sub-collection of its compact elements can
be indexed by means of a set, that we will call KD. From now on, in order
to keep the notation clearer, we will confuse the set of indexes KD with the
sub-collection of the compact elements of D. We can use KD to define the
information base that we are looking for. The hint to find the correct definition
comes from the topological intuition. To this aim, let us recall the definition of
Scott topology on a CPO.

Definition 5.1 In any CPO D, a sub-collection O is called (Scott) open if it
is upward closed, that is, if x ∈ O and x ≤ y then y ∈ O, and smooth, that is,
for each directed subset U , if

∨

U ∈ O then (∃u ∈ U) u ∈ O.

It is well known (see for instance [2]) that Scott opens form a topology on
D, which is usually called the Scott topology.

If D is not only a CPO but a Scott domain, then it is completely determined
by its Scott topology. In fact, given a base B for the Scott topology on D, x ≤ y

if and only if (∀O ∈ B) (x ∈ O) → (y ∈ O). This remark suggests that we
need a base, in the usual topological sense, in order to find the information base
that we are looking for. A base for the Scott topology on D is usually obtained
by considering all the sub-collections ↑a ≡ {x ∈ D| a ≤ x} for a ∈ KD and
possibly by adding the empty set. Here, this must be refined a little to avoid any
definition or proof based on the distinction between the cases ↑a ∩ ↑b =↑(a ∨ b)
and ↑a ∩ ↑b = ∅, that is, between {a, b} bounded or not. Then, the idea is to
move from elements to finite subsets of KD and consider, for any U ∈ Pω(KD),

20

the sub-collection of its upper bounds OU ≡ {x ∈ D| U ≤ x}, where U ≤ x is an
abbreviation for a ≤ x for any aǫU . It is easy to check that {OU | U ∈ Pω(KD)}
is a base for the Scott topology on D.

So, apart from foundational matters, the information base is now disclosed;
the foundational problem is that {OU | U ∈ Pω(KD)} is not a set, but a set-
indexed family of sub-collections of D and hence it cannot be used to define an
information base. The standard way out in formal topology is to build up an
information base SD by pulling the structure of the base {OU | U ∈ Pω(KD)}
back to the index set Pω(KD). In detail, we provide Pω(KD) with an operation
of combination ·SD

such that OU·SD
V = OU ∩ OV , that is, we put

U ·SD
V ≡ U ⊔ V.

Then, the unit element of SD is ∅ ∈ Pω(KD), which can also be seen by
observing that O∅ = D and hence O∅ ∩ OU = OU for any U .

We say that U is positive when OU is inhabited; so we put

PosSD
(U) ≡ (∃a ∈ KD) (U ≤ a)

and in this way PosSD
is a subset of Pω(KD). Note that U is positive if and

only if
∨

U ≡
∨

{a ∈ KD| aǫU} exists.
Finally, we want U to be covered by W when OU ⊆ OW , which is clearly

equivalent to: if
∨

U exists, then W ≤
∨

U . Thus we put

U ⊳SD
W ≡ PosSD

(U) → W ≤
∨

U

It is obvious now that

SD ≡ 〈Pω(KD), ·SD
, ∅, PosSD

, ⊳SD
〉

is an information base.
Moreover, SD is the information base that we were looking for. In fact,

the domains D and Pt(SD) are isomorphic. The easiest way to find out an
isomorphism, is to specialize to the base {OU | U ∈ Pω(KD)} the fact that a
domain is completely determined by a base for its Scott topology. In fact in
this way we obtain that x ≤ y if and only if (∀OU)(x ∈ OU → y ∈ OU), which
can equivalently be expressed in our framework as (∀U ∈ Pω(KD)) (U ≤ x →
U ≤ y), that is, {U ∈ Pω(KD)| U ≤ x} ⊆ {U ∈ Pω(KD)| U ≤ y}. It is easy to
check that, for any x ∈ D, the subset3 {U ∈ Pω(KD)| U ≤ x} is a point of SD.
Hence putting

f : x 7→ {U ∈ Pω(KD)| U ≤ x}

defines a map from D into Pt(SD), which is monotonic and one-one; to conclude
we must only show that f is onto and hence an isomorphism since any bijective

3The fact that {U ∈ Pω(KD)| U ≤ x} is a subset, that is, a propositional function over
Pω(KD), is not so immediate. Given x ∈ D, consider the subset ↓K (x) ≡ {a ∈ KD| a ≤ x}
of KD; then U ≤ x means that (∃aε ↓K (x)) (U ≤ a) which is a propositional function with
U free.

21

monotonic function respects all suprema. To this aim, observe that if α is a
point of SD then, for any W ∈ Pω(KD), Wεα if and only if (∀aǫW) {a}εα,
that is, α is determined by the singletons it contains; hence the element of
D whose image under f is α must be

∨

{a ∈ KD| {a}εα}, which exists since
{a ∈ KD| {a}εα} is directed. So we have proved:

Theorem 5.2 Any set-based Scott domain D is isomorphic to the points of a
suitable information base SD.

6 Some properties of the category InfBas

In this section we will present some useful categorical constructions which are
possible in InfBas.

6.1 The initial object

Since InfBas is a category equivalent to ScDom there is no initial object, but
we can modify InfBas in a very simple way in order to have them. Indeed, it
is sufficient to drop the condition that, for any information base S, PosS(∆S)
holds and we will be able to prove the following theorem.

Theorem 6.1 Let E ≡ (E, ·E , ∆E , PosE , ⊳E) be any information base with no
positive element. Then, for any information base S, the total relation, which
holds for any e ∈ E and s ∈ S, is the unique translation between E and S.

Proof. It is obvious that the total relation is a translation. Moreover, if F is
any translation between E and S, then, since ¬PosE(e) holds for any e ∈ E,
PosE(e) → eFs holds by logic and thus eFs follows by the last condition on a
translation.

We can easily build a structure ⊥ which is like an information base except
for the fact that ¬Pos⊥(e) holds for any e ∈ ⊥. For instance we can use the one
element set ⊤, whose only element is ∗, and declare it not positive. We thus
arrive at the following definitions:

·⊥ ≡ (x : ⊤)(y : ⊤) ∗
∆⊥ ≡ ∗

Pos⊥ ≡ (x : ⊤) ¬(x =⊤ x)
⊳⊥ ≡ (x : ⊤)(y : ⊤) x =⊤ y

It is obvious that the collection of points of any initial information base is
empty because of the (ii) condition on points.

6.2 The separated sum

No co-product can be defined in InfBas, but still we can constructively define
two kinds of sum of information bases, that is, the separated and the coalesced
sum. We will show the former in this section and the latter in the next one.

22

Let S and T be two information bases. Then, from a topological point of
view the information base S ⊕ T of the separated sum of S and T is just the
disjoint union of S and T . Hence we obtain a base for such a topological space
by putting together the elements in the base S and those in the base T and by
adding a new element to mean the whole topological space. But we have to add
also another element in order the operation ·S⊕T , which means the intersection
between two elements of the disjoint union, be always defined, namely, also
when an element in S is considered together with an element in T . Thus, the
new base can be defined by using the disjoint sum S + T of S and T and by
adding two new elements by using the type constructor Succ (see section 2);
thus the set that we are looking for is Succ(Succ(S + T)).

Let us use the following short-hands, for any s ∈ S and t ∈ T :

∆S⊕T ≡ succ(1Succ(S+T))
⊥S⊕T ≡ 1Succ(Succ(S+T))

(s)S ≡ succ(succ(i(s)))
(t)T ≡ succ(succ(j(t)))

Note that if (s1)S =S⊕T (s2)S then s1 =S s2 and if (t1)T =S⊕T (t2)T then
t1 =T t2.

The composition operation ·S⊕T works according to the following table

·S⊕T | ⊥S⊕T (s2)S (t2)T ∆S⊕T

−−− −−− −−− −−− −−− −−−
⊥S⊕T | ⊥S⊕T ⊥S⊕T ⊥S⊕T ⊥S⊕T

(s1)S | ⊥S⊕T (s1 · s2)S ⊥S⊕T (s1)S

(t1)T | ⊥S⊕T ⊥S⊕T (t1 · t2)T (t1)T

∆S⊕T | ⊥S⊕T (s2)S (t2)T ∆S⊕T

and it is not difficult to formalize it within intuitionistic type theory. Note that

• If c ·S⊕T d =S⊕T ∆S⊕T then c =S⊕T ∆S⊕T and d =S⊕T ∆S⊕T .

• If c ·S⊕T d =S⊕T (s)S then

(c =S⊕T ∆S⊕T & d =S⊕T (s)S) ∨ (c =S⊕T (s)S & d =S⊕T ∆S⊕T) ∨
((∃s1, s2 ∈ S) c =S⊕T (s1)S & d =S⊕T (s2)S & s =S s1 ·S s2)

• If c ·S⊕T d =S⊕T (t)T then

(c =S⊕T ∆S⊕T & d =S⊕T (t)T) ∨ (c =S⊕T (t)T & d =S⊕T ∆S⊕T) ∨
((∃t1, t2 ∈ T) c =S⊕T (t1)T & d =S⊕T (t2)T & t =T t1 ·T t2)

A token of information in S ⊕ T is positive when it is positive in S or in T ,
and hence, given any element c ∈ S ⊕ T we put

PosS⊕T (c) ≡ (c =S⊕T ∆S⊕T) ∨
((∃s ∈ S) PosS(s) & c =S⊕T (s)S) ∨
((∃t ∈ T) PosT (t) & c =S⊕T (t)T)

23

Note that to assume PosS⊕T (⊥S⊕T) means that

(⊥S⊕T =S⊕T ∆S⊕T) ∨
((∃s ∈ S) PosS(s) & ⊥S⊕T =S⊕T (s)S) ∨
((∃t ∈ T) PosT (t) & ⊥S⊕T =S⊕T (t)T)

holds. Hence we get ¬PosS⊕T (⊥S⊕T) because, as we observed in the end of
section 2, all the disjoints lead to a contradiction.

It is worth noting also that PosS⊕T ((s)S) yields PosS(s) and PosS⊕T ((t)T)
yields PosT (t).

Finally, supposing c and d are two elements in S ⊕ T , c is covered by d in
S⊕T if, whenever c and d are obtained from two elements c′ and d′ of the same
information base, c′ is covered in such an information base by d′. Thus we put

c ⊳S⊕T d ≡ PosS⊕T (c) →
(c =S⊕T ∆S⊕T → d =S⊕T ∆S⊕T) ∧
((∃s1 ∈ S) c =S⊕T (s1)S → (d =S⊕T ∆S⊕T∨

((∃s2 ∈ S) d =S⊕T (s2)S & s1 ⊳S s2))) ∧
((∃t1 ∈ T) c =S⊕T (t1)T → (d =S⊕T ∆S⊕T∨

((∃t2 ∈ T) d =S⊕T (t2)T & t1 ⊳T t2)))

Observe that if (s1)S ⊳S⊕T (s2)S then s1 ⊳S s2 and if (t1)T ⊳S⊕T (t2)T then
t1 ⊳T t2.

Then we arrive to the following result.

Theorem 6.2 Let S and T be two information bases and put

S ⊕ T ≡ 〈S ⊕ T, ·S⊕T , ∆S⊕T , PosS⊕T , ⊳S⊕T 〉

Then S ⊕ T is an information base.

Proof. Many checks are required, but most of them are immediate; here we
will show only the cases which are not straightforward.

• (Monotonicity) If PosS⊕T (c) and c ⊳S⊕T d then PosS⊕T (d). In fact,
supposing PosS⊕T (c), c ⊳S⊕T d yields

(1) c =S⊕T ∆S⊕T → d =S⊕T ∆S⊕T

(2) (∃s1 ∈ S) c =S⊕T (s1)S →
(d =S⊕T ∆S⊕T ∨ ((∃s2 ∈ S) d =S⊕T (s2)S & s1 ⊳S s2))

(3) (∃t1 ∈ T) c =S⊕T (t1)T →
(d =S⊕T ∆S⊕T ∨ ((∃t2 ∈ T) d =S⊕T (t2)T & t1 ⊳T t2))

Now, observe that there are three possibility for c to be positive:

– c =S⊕T ∆S⊕T . In this case (1) yields d =S⊕T ∆S⊕T and hence d is
positive.

24

– ((∃s1 ∈ S) PosS(s1) & c =S⊕T (s1)S). In this case (2) yields that
(d =S⊕T ∆S⊕T ∨ ((∃s2 ∈ S) d =S⊕T (s2)S & s1 ⊳S s2)); if d =S⊕T

∆S⊕T then it is trivially positive otherwise, by monotonicity in S we
obtain PosS(s2) and thus also in this case d is positive.

– ((∃t1 ∈ T) PosT (t1) & c =S⊕T (t1)T). Completely analogous to the
previous one.

• (·-left) If a ⊳S⊕T c then a·S⊕T b ⊳S⊕T c. First note that, by monotonicity,
if PosS⊕T (a ·S⊕T b) then PosS⊕T (a). Hence a ⊳S⊕T c yields

− a =S⊕T ∆S⊕T → c =S⊕T ∆S⊕T

− (∃s1 ∈ S) a =S⊕T (s1)S →
(c =S⊕T ∆S⊕T ∨ (∃s2 ∈ S) c =S⊕T (s2)S & s1 ⊳S s2)

− (∃t1 ∈ T) a =S⊕T (t1)T →
(c =S⊕T ∆S⊕T ∨ (∃t2 ∈ T) c =S⊕T (t2)T & t1 ⊳T t2)

Now the result follows by a case analysis on the shape of a ·S⊕T b.

• (·-right) If a ⊳S⊕T b and a ⊳S⊕T c then a ⊳S⊕T b ·S⊕T c. Let us assume
PosS⊕T (a). Then we obtain the result by a case analysis on the possible
shape for a.

– a =S⊕T ∆S⊕T . Then, from a ⊳S⊕T b, we obtain that b =S⊕T ∆S⊕T

and, from a ⊳S⊕T c, we obtain that c =S⊕T ∆S⊕T . Hence the result
is immediate by definition of ·S⊕T .

– a =S⊕T (s)S for some s ∈ S. Then, from a ⊳S⊕T b, we obtain
that b =S⊕T ∆S⊕T or b =S⊕T (s1) and s ⊳S s1; in a similar way, by
a ⊳S⊕T c, we obtain that c =S⊕T ∆S⊕T or c =S⊕T (s2) and s ⊳S s2.
Now the result is straightforward by logic and ·-right in S.

– a =S⊕T (t)T for some t ∈ T . Completely analogous to the previous
one.

The separated sum of information bases is not a categorical co-product since
it is not possible to define the needed translations. Anyhow, it is possible to
prove the following theorem.

Theorem 6.3 Let S and T be two information bases. Then the propositional
functions defined by putting, for any s ∈ S, t ∈ T and w ∈ S ⊕ T

sLsepw ≡ PosS(s) → (s)S ⊳S⊕T w

tRsepw ≡ PosT (t) → (t)T ⊳S⊕T w

are translations between S and S ⊕T and T and S ⊕ T respectively. Moreover,
supposing Z is any information base, F ∈ Hom(S,Z) and G ∈ Hom(T ,Z), the
propositional function defined by putting, for any w ∈ S ⊕ T and z ∈ Z,

w{F, G}z ≡ PosS⊕T (w) →
∆Z ⊳Z z ∨
((∃s ∈ S) w =S⊕T (s)S & sFz) ∨
((∃t ∈ T) w =S⊕T (t)T & tGz)

25

is a translation and the following equations hold

{F, G} ∗ Lsep = F

{F, G} ∗ Rsep = G

{H ∗ Lsep, H ∗ Rsep} = H for any translation H ∈ Hom(S ⊕ T ,Z) such
that ∆S⊕T Hz if and only if ∆Z ⊳Z z

6.3 The coalesced sum

The second kind of sum that we can define in InfBas is the coalesced sum. Also
in this case we will not obtain a categorical co-product. The main difference
with respect to the previous kind of sum is that, supposing S and T are two
information bases, the base for the coalesced sum S⋒T is obtained by identifying
the two unit elements ∆S of S and ∆T of T . Thus, most of the definitions are
like in the previous section, that is, the basic opens are the elements of the
set Succ(Succ(S + T)), and ∆S⋒T , ⊥S⋒T , the operation ·S⋒T and the positivity
predicate PosS⋒T are defined exactly as the corresponding objects of S ⊕ T .

The real novelty is the definition of the cover relation. In fact, let us suppose
that c and d are two elements in S⋒T ; then, c is covered by d in S⋒T if, whenever
c and d are obtained from two elements c′ and d′ of the same information base,
c′ is covered in such an information base by d′, but we have also that ∆S⋒T is
covered by (s)S for any element s ∈ S which covers ∆S and by (t)T for any
element t ∈ T which covers ∆T . Thus we put

c ⊳S⋒T d ≡ PosS⋒T (c) →
(c =S⋒T ∆S⋒T →

(d =S⋒T ∆S⋒T∨
((∃s ∈ S) d =S⋒T (s)S & ∆S ⊳S s)∨
((∃t ∈ T) d =S⋒T (t)T & ∆T ⊳T t)) ∧

((∃s1 ∈ S) PosS(s1) & c =S⋒T (s1)S →
(d =S⋒T ∆S⋒T∨
((∃s ∈ S) d =S⋒T (s)S & ∆S ⊳S s)∨
((∃t ∈ T) d =S⋒T (t)T & ∆T ⊳T t)∨
((∃s2 ∈ S) d =S⊕T (s2)S & s1 ⊳S s2))) ∧

((∃t1 ∈ T) PosT (t1) & c =S⊕T (t1)T →
(d =S⋒T ∆S⋒T∨
((∃s ∈ S) d =S⋒T (s)S & ∆S ⊳S s)∨
((∃t ∈ T) d =S⋒T (t)T & ∆T ⊳T t)∨
((∃t2 ∈ T) d =S⊕T (t2)T & t1 ⊳T t2)))

Then, we arrive at the following result.

Theorem 6.4 Let S and T be two information bases and put

S ⋒ T ≡ 〈S ⋒ T, ·S⋒T , ∆S⋒T , PosS⋒T , ⊳S⋒T 〉

Then S ⋒ T is an information base.

26

Moreover the following theorem holds.

Theorem 6.5 Let S and T be two information bases. Then the propositional
functions defined by putting, for any s ∈ S, t ∈ T and w ∈ S ⋒ T

sLcoalw ≡ PosS(s) → (s)S ⊳S⋒T w

tRcoalw ≡ PosT (t) → (t)T ⊳S⋒T w

are translations between S and S ⋒ T and T and S ⋒ T respectively. Moreover,
supposing Z is any information base, F ∈ Hom(S,Z) and G ∈ Hom(T ,Z), the
propositional function defined by putting, for any w ∈ S ⋒ T and z ∈ Z,

w〈F, G〉z ≡ PosS⋒T (w) →
∆Z ⊳Z z ∨
((∃s ∈ S) w =S⋒T (s)S & sFz) ∨
((∃t ∈ T) w =S⋒T (t)T & tGz)

is a translation and the following equations hold

〈F, G〉 ∗ Lcoal = F iff ∆S F z ⇒ ∆T G z

〈F, G〉 ∗ Rcoal = G iff ∆T G z ⇒ ∆S F z

〈H ∗ Lcoal, H ∗ Rcoal〉 = H for any translation H ∈ Hom(S ⋒ T ,Z)

6.4 Fixed-point property

One of the most interesting property of the category ScDom is the possibility to
deal with fixed-points therein. In fact, supposing f is an approximable function
from the Scott domain D into itself, there exists an element d ∈ D such that
f(d) = d. Moreover, such a fixed-point can be found in a uniform way, that is,
there exists a function fix from D ⇒ D into D such that, when applied to any
function f , gives the smallest, with respect to the order in D, of its fixed points,
that is, f(fix(f)) = fix(f) and, for any z ∈ D, f(z) = z yields fix(f) ≤ z. The
technique to define the map fix is well known: provided the bottom element in
D is denoted by ⊥D, put

fix(f) ≡
∨

n∈Nat

fn(⊥D)

In fact, the set-indexed collection {fn(⊥D)| n ∈ Nat} is directed and hence its
supremum exists in D and it obviously satisfies the required conditions.

The main problem in looking for a constructive counterpart of this definition
is the presence of the limit process, but this limit process is so much uniform
that a solution can be found. Let us analyze it. Suppose S and T are two
information bases and suppose that f is any approximable function from Pt(S)
into Pt(T); as we noticed in the end of section 3, we can define a translation Ff

from S in T such that f = Pt(Ff) by putting

s Ff t ≡ PosS(s) → (tεf(↑s))

27

where ↑s ≡ {u ∈ S| s ⊳S u} is the point of S which contains all the elements
of S which cover s. If we would apply directly this technique to the case of
the previous function fix we would obtain the following propositional function
between S ⇒ S and S:

l Fix s ≡ PosS⇒S(l) → sεfix(↑l)

The problem is that the point ↑l of S ⇒ S is not an approximable function
from Pt(S) into itself and hence we cannot apply the function fix to it. But we
already showed in section 4.3 how a translation, and hence also an approximable
function, is associated with any point of S ⇒ S: the approximable function
f↑l : Pt(S) → Pt(S) associated with the point ↑l of S ⇒ S is

f↑l(α) ≡
⋃

sεα

{u ∈ S| sR↑lu}

where, according to the notation that we used in the proof of theorem 4.17,
R↑l, defined by setting s1R↑ls2 if and only if PosS(s1) → {(s1, s2)}ε ↑l, is the
translation associated with the point ↑l.

If we consider now the case f↑l is applied to the bottom element of Pt(S),
that is, the case α ≡ {∆S}, we obtain

f↑l({∆S}) ≡ {u ∈ S| ∆SR↑lu}

and hence
fn
↑l({∆S}) ≡ {u ∈ S| ∆SRn

↑lu}

Thus
⋃

n∈Nat

fn
↑l({∆S}) ≡ {u ∈ S| (∃n ∈ Nat) ∆SRn

↑lu}

since ∆SR↑l∆S holds. We can simplify a bit the last equivalence if we note that
the translation R↑l coincides with the translation Rl that we introduced in the
proof of theorem 4.12. In this way we obtain that

l Fix s ≡ PosS⇒S(l) → (∃n ∈ Nat) ∆SRn
l s

which has a clear independent meaning. In fact, it states that, given any partial
information l concerning a translation, in order to find a fixed point of such a
translation we have to collect all the tokens of information into which the whole
space, that is, ∆S , is mapped at some moment.

It is now obvious the following theorem.

Theorem 6.6 Let S be an information base and put, for any l ∈ S ⇒ S and
s ∈ S,

l Fix s ≡ PosS⇒S(l) → (∃n ∈ Nat) ∆SRn
l s

Then Fix is a translation between S ⇒ S and S.

28

Proof. The proof is just a check. We will show the only not-obvious case.
Suppose l1, l2 ∈ S ⇒ S and s ∈ S, then if l1 ⊳S⇒S l2 and l2 Fix s then
l1 Fix s. In fact, if l1 ⊳S⇒S l2 then Rl2 is contained in Rl1 since, by theorem
4.14, l1 ⊳S⇒S l2 yields that any translation containing l1 also contains l2 and
hence Rl1 contains l2 since it contains l1; but, by lemma 4.13, Rl2 is the minimal
translation which contains l2.

Fix is the translation that we are looking for. In fact, for any translation
F ∈ Hom(S,S), we can define the following translation between a terminal
information base ⊤ and the information base S ⇒ S, by putting, for any t ∈ ⊤
and l ∈ S ⇒ S,

t 1F l ≡ Pos⊤(t) → (∀cǫl) c1 F c2

where c1 ≡ fst(fst(c)) and c2 ≡ snd(c).
It is interesting to note that the translation 1F can be used to “determine”

the translation F “inside” the information base S ⇒ S. In fact, we can first
define a point of S ⇒ S by setting

ΦF ≡ {l ∈ S ⇒ S| ∆⊤ 1F l}

and then, as we did in the proof of theorem 4.17, such a point can be associated
to the translation RΦF

, defined by putting

s1 RΦF
s2 iff PosS(s1) → {(s1, s2)}εΦF

Now we can see that RΦF
and F coincides. In fact, supposing s1, s2 ∈ S, we

have
s1 RΦF

s2 iff PosS(s1) → {(s1, s2)}εΦF

iff PosS(s1) → ∆⊤ 1F {(s1, s2)}
iff PosS(s1) → s1 F s2

iff s1 F s2

Now, we can prove the following theorem.

Theorem 6.7 (fixed-point) Let S be an information base. Then, for any
translation F between S and S,

F ∗ Fix ∗ 1F = Fix ∗ 1F

Proof. Let us first observe that, if t ∈ ⊤, s ∈ S and Pos⊤(t), then t Fix ∗ 1F s

means that there exists l ∈ S ⇒ S such that t 1F l, that is, l is contained in
F , and (∃n ∈ Nat) ∆S Rn

l s; but the former yields that Rl is contained in F

and hence the second yields (∃n ∈ Nat) ∆S Fn s, that is, ∆S F s1 . . . sn F s.
Therefore, we can consider the list l∗ ≡ {(∆S , s1), . . . , (sn, s)}: it satisfies both
t 1F l∗ and (∃n ∈ Nat) ∆S Rn

l∗ s. Hence, supposing Pos⊤(t), t Fix ∗ 1F s holds
if and only if (∃n ∈ Nat) ∆SFns.

Now the result is almost immediate. In fact, let us suppose Pos⊤(t); then

t F ∗ Fix ∗ 1F s if and only if there exists u ∈ S such that
t Fix ∗ 1F u and u F s

if and only if there exists u ∈ S such that
(∃n ∈ Nat) ∆SFnu and u F s

if and only if (∃k ∈ Nat) ∆SF ks

29

where in the last step it can be necessary to use the fact ∆S F ∆S .

References

[1] Backhouse, R., Chisholm, P., Malcom, G., Saaman, E., Do-it-yourself
Type Theory, Formal Aspects of Computing, vol. 1, 1989, pp.19-84.

[2] Barendregt, H., The lambda calculus, its syntax and semantics, Studies in
Logic and Foundations of Mathematics, North Holland, 1984.

[3] Maietti, M.E., About effective quotients in constructive type theory in
“Types for Proofs and Programs”, International Workshop “Types’98”,
Altenkirch T., Naraschewski W. and Reus B. eds., Lecture Notes in Com-
puter Science 1657, Springer Verlag, 1999, pp. 164-178.

[4] Martin-Löf, P., Intuitionistic Type Theory, notes by G. Sambin of a series
of lectures given in Padua, Bibliopolis, Naples, 1984.

[5] Nordström, B., Peterson, K., Smith, J., Programming in Martin-Löf ’s
Type Theory, An introduction, Clarendon Press, Oxford, 1990.

[6] Sambin, G., Intuitionistic formal spaces – a first communication, in Math-
ematical logic and its applications, D. Skordev ed., Plenum, 1987, pp.
187-204.

[7] Sambin, G., Valentini, S., Building up a tool-box for Martin-Löf intuition-
istic type theory, in “Twenty-five years of Constructive Type Theory”, G.
Sambin e J. Smith (eds.), Oxford logic guides 36, 1998, pp. 221-244.

[8] Sambin, G., Valentini, S., Virgili, P., Constructive Domain Theory as a
branch of Intuitionistic Pointfree Topology, Theoret. Comput. Sci., 159
(1996), pp. 319-341.

[9] Scott, D.S., Lectures on a mathematical theory of computation, Oxford
University Computing Laboratory Technical Monograph PRG-19, 1981.

[10] Scott, D.S., Domains for denotational semantics, Automata, Languages
and Programming, M. Nielsen and E.M. Schmidt eds., Springer, 1982, pp.
577-613

[11] Valentini, S., Decidability in Intuitionistic Theory of Types is functionally
decidable, Mathematical Logic Quarterly, 42, 1996, pp. 300-304.

[12] Valentini, S., Extensionality versus Constructivity, to appear in Mathe-
matical Logic Quarterly.

[13] Valentini, S., Virgili, P., The Category of Weak Pretopologies, Internal
report of the Department of Computer Science (84/91), University of Mi-
lano, (1991).

30

[14] Virgili, P., Una categoria cartesiana chiusa delle topologie formali come
modello per lambda-calcoli, tesi di laurea, Dipartimento di Scienze
dell’Informazione, Università di Milano, 1990.

31

