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Università di Padova

via G. Belzoni n.7, I–35131 Padova, Italy
e-mail: negri@pdmat1.math.unipd.it,

silvio@brouwer.math.unipd.it

June 28, 1996

1 Introduction

In this paper we give a constructive proof of the pointfree version of Tychonoff’s
theorem within formal topology, using ideas from Coquand’s proof in [7]. To deal
with pointfree topology Coquand uses Johnstone’s coverages. Because of the
representation theorem in [3], from a mathematical viewpoint these structures
are equivalent to formal topologies but there is an essential difference also.
Namely, formal topologies have been developed within Martin Löf’s constructive
type theory (cf. [15]), which thus gives a direct way of formalizing them (cf.
[4]).

The most important aspect of our proof is that it is based on an inductive
definition of the topological product of formal topologies. This fact allows us to
transform Coquand’s proof into a proof by structural induction on the last rule
applied in a derivation of a cover. The inductive generation of a cover, together
with a modification of the inductive property proposed by Coquand, makes
it possible to formulate our proof of Tychonoff’s theorem in constructive type
theory. There is thus a clear difference to earlier localic proofs of Tychonoff’s
theorem known in the literature (cf. [9], [10], [12], [14]). Indeed we not only
avoid to use the axiom of choice, but reach constructiveness in a very strong
sense. Namely, our proof of Tychonoff’s theorem supplies an algorithm which,
given a cover of the product space, computes a finite subcover, provided that
there exists a similar algorithm for each component space. Since type theory
has been implemented on a computer (cf. [18]), an eventual strict formalization
of our proof will at the same time be a computer program that executes the
task of finding a finite subcover.

The paper is organized as follows. In the first part we recall the basic
definitions and motivations of formal topologies and introduce in this framework
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the notion of topological product. Tychonoff’s theorem is then proved both for
the binary and arbitrary product of topological spaces. Next we relate our proof
to the proof of Johnstone and Vickers (cf. [12]). In an appendix, it is shown how
to define the type Pω(S) of finite subsets of the type S and the type Πω(I, B) of
finite support functions from I to the indexed family of sets B(i), where i ∈ I.
In a second appendix, the formal definition of the coproduct of formal topologies
is detailed.

2 Preliminaries

Formal topologies were introduced by Martin-Löf and Sambin ([19], [20]) as a
constructive approach to topology, in the tradition of Johnstone’s version of
Grothendieck topologies [9] and Fourman and Grayson’s formal spaces [8], but
using simpler technical devices and a constructive set theory based on Martin
Löf’s type theory ([15], [21]).

Classically, a topological space is a couple 〈X, Ω(X)〉, where Ω(X) is the
family of the open subsets of the collection1 X . The main purpose of formal
topology is the study, in a constructive framework, of the properties of a topo-
logical space which can be expressed without any reference to the points, that
is to the elements of the collection X . In this way we avoid thinking of open
sets as collections of points (cf. [24]).

Since a point-set topology can always be presented using one of its bases,
the abstract structure that we will consider is a commutative monoid 〈S, ·S , 1S〉
where the set S corresponds to the set of the elements of the base of the point-set
topology Ω(X), ·S corresponds to the operation of intersection between basic
elements, and 1S corresponds to the whole collection X .

In a point-set topology any open set is obtained as a union of elements of
the base, but union does not make sense if we reject any reference to points.
Hence we are naturally led to think that an open set may directly correspond
to a subset of the set S. Unfortunately this idea is not completely correct since
there may be many different subsets of basic elements whose union is the same
open set. In order to better define what corresponds to an open set, we need
to introduce also an equivalence relation ∼= between two subsets U and V of S

such that U ∼= V holds if and only if, denoting by c∗ the element of the base
which corresponds to the formal basic open c, the opens U∗ ≡ ∪a∈Ua∗ and
V ∗ ≡ ∪b∈V b∗ are equal. To this purpose we introduce an infinitary relation �,
called cover, between a basic element a of S and a subset U of S whose intended
meaning is that a � U when a∗ ⊆ U∗, and therefore the equivalence U ∼= V will
amount to (∀u ∈ U) u � V & (∀v ∈ V ) v � U .

Besides the relation of cover, we introduce a predicate Pos on S to express
positively (that is without using negation) the fact that a basic open is not
empty. The intended meaning of Pos(a) is that a is inhabited, i.e., there exists
at least one point in a. For instance, the negative definition of Pos(a) by means

1Cf. [15] to see how the notion of set is contrasted with that of collection, there called
category.
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of “a is not empty” would amount to ¬(a�∅) which just says that it is impossible
that there isn’t any point in a. Even worse would be the impredicative choice
of putting Pos(a) ≡ (∀U ⊆ S) a � U → U 6= ∅, i.e., any cover of a is inhabited,
which is also used in the literature. These considerations lead us to the following
definition.

Definition 2.1 (Formal topology) A formal topology over a set S is a struc-
ture

A ≡ 〈S, ·S , 1S , �A, PosA〉

where 〈S, ·S , 1S〉 is a commutative monoid with unit and �A is a relation, called
the cover relation, between an element and a subset of S such that, for any
a, b ∈ S and for any U, V ⊆ S the following conditions hold:

(reflexivity)
a ∈ U

a �A U

(transitivity)
a �A U U �A V

a �A V

(· - left)
a �A U

a · b �A U

(· - right)
a �A U a �A V

a �A U · V

where U �A V ≡ (∀u ∈ U) u �A V and U · V ≡ {u · v | u ∈ U, v ∈ V }.
Pos is a predicate on S, called positivity predicate, satisfying:

(monotonicity)
Pos(a) a �A U

(∃b ∈ U) Pos(b)

(positivity) a �A a+

where a+ ≡ {b ∈ S| (a =S b) & Pos(b)}.

All the conditions are a straightforward rephrasing of the preceding intuitive
considerations except positivity. The first reason to introduce positivity is that
it allows to prove that any non-positive basic open is covered by anything. Tech-
nically, positivity also allows proofs by cases on Pos(a) for deductions involving
covers (for a detailed discussion cf. [22]). Moreover the introduction of Pos

increases the expressiveness of the language for formal topology. For instance,
the use of the predicate Pos is essential if one wants to represent connected
spaces, the definition being (cf. the appendix of [16]): if 1 � U then for any
a, b ∈ U such that Pos(a) and Pos(b) there exist a0 = a,. . . , an = b in U such
that Pos(ak · ak+1) for all k < n.

The following lemma will be useful in the sequel.
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Lemma 2.2 Let A ≡ 〈S, ·S , 1S , �A, PosA〉 be a formal topology and U1,. . . ,Un,
M ⊆ S. Then

(U1 ∪ M) · . . . · (Un ∪ M) �A (•i≤nUi) ∪ M,

where •i≤nUi ≡ U1 · . . . · Un.

Proof: Let x ∈ (U1 ∪M) · . . . · (Un ∪M), i.e., x = y1 · . . . · yn with yi ∈ Ui ∪M

for each i ≤ n.
If yi ∈ M for some i ≤ n, then by reflexivity and · -left, x�AM and a fortiori

x �A (•i≤nUi) ∪ M . Otherwise, for all i ≤ n, yi ∈ Ui, thus yi �A Ui. By · -left
and · -right, x �A •i≤nUi and therefore x �A (•i≤nUi) ∪ M .

Observe that the proof does not make use of decidability of the relation ∈,
since it is done via a ∨-elimination. 2

Since covers are defined by requiring closure under some rules, it is possible to
generate them starting from some given conditions, that we conceive as axioms,
and closing under the cover rules, that is reflexivity, transitivity, · -left and
· -right, which can be conceived as inference rules. 2

Given a base S and an infinitary relation R(a, U), where a ∈ S and U ⊆ S,
we say that a cover � satisfies the relation R if, for all a ∈ S and U ⊆ S,
R(a, U) implies a � U . Then there exists the minimal cover satisfying R, which
is obtained by closing R under the cover rules:

Definition 2.3 (Generated Cover) Let R(a, U) be a relation between ele-
ments and subsets of S. Then �R is the relation inductively defined by

(axioms)
R(a, U)

a �R U
,

the cover rules, and the rule

(substitution)
a = b a �R U

b �R U

Clearly, �R is a cover on S, since it is obviously closed under the rules
defining covers; it is called the cover generated by R.

Observe that substitution is necessary in order to ensure that �R is a relation,
i.e., respects equality in S (whereas extensionality, which says that equality in
the collection of all subsets of S is respected, is derivable by using reflexivity
and transitivity).

Given an infinitary relation R and a predicate Pos on S satisfying suitable
properties, it is possible to generate a formal topology, by the following:

2The cover rules can also be conceived as introduction rules for the type corresponding to
the cover relation. This will allow proofs by induction on derivations, that is, the use of the
corresponding elimination rule (see concluding remarks).
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Proposition 2.4 (Generated Topology) Let R be a relation which satisfies
R(a, U) → R(a·b, U ·{b}) and let Pos be a predicate on S such that the following
properties hold:

Pos(a · b) → Pos(a),
Pos(a) → Pos(a · a),
Pos(a) & R(a, U) → (∃b ∈ U) Pos(b).

Then Pos is monotone relative to the cover �R generated by R.
If in addition R(a, a+) holds then A ≡ 〈S, ·, 1S , �R, Pos〉 is a formal topol-

ogy, called the formal topology generated by R and Pos.

Proof: The proof of the first part of the proposition consists of four steps.
First, the rule of · -right can be equivalently replaced by using the rules

(contraction) a �R {a · a},

(localization)
a �R U

a · b �R U · {b}
,

which are easily seen to be derivable from · -right, whereas for the converse one
has to use transitivity on the following instances of localization:

a � U

a · a � U · {a}
and, for all u ∈ U,

a � V

u · a � {u} · V
.

The second step consists in replacing the rule transitivity with its equivalent
“localized” form

(localized transitivity)
a � U · {c} (∀x ∈ U) (x · c � V )

a � V
.

Then localization can be eliminated from any given deduction of a cover: it
can be permuted upward with all the present rules, because of the form of
transitivity chosen ad hoc, and it is absorbed into the axioms by the condition
required on R.

Finally monotonicity can be proved by induction on the length of the con-
sidered derivation, by using the conditions required on Pos for the basic cases,
and the inductive hypothesis on the remaining rules, i.e., reflexivity, localized
transitivity, · -left and substitution.

In order to show that A is a formal topology, only positivity remains to
be proved. It is simply obtained by an instance of axioms, from the further
assumption that R(a, a+) holds. 2

The notion of generated formal topology is particularly useful in defining
the coproduct topology:

Definition 2.5 (Coproduct Topology) Let A ≡ 〈S, ·, 1S , �A, PosA〉 and B ≡
〈T, ·, 1T , �B, PosB〉 be formal topologies. Then the coproduct formal topology
is defined by

A + B ≡ 〈S × T, ·, (1S, 1T ), �A+B, PosA+B〉,
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where 〈S × T, ·, (1S, 1T )〉 is the monoid on the cartesian product S × T with
componentwise operation, �A+B is the cover generated by the relation R defined
by

R((a, b), U × {b}) ≡ a �A U for any b ∈ T ,

R((a, b), {a} × V ) ≡ b �B V for any a ∈ S,

and the positivity predicate is defined by

PosA+B((a, b)) ≡ PosA(a) & PosB(b).

This definition is sound since it is easy to see that the conditions on R

and Pos for generating a formal topology are satisfied. Moreover it will follow
from the proof in appendix B that A + B is the categorical coproduct of the
formal topologies A and B and therefore it yields the categorical product of the
corresponding topological spaces.

We have preferred the above presentation for the coproduct topology instead
of the equivalent and more symmetric

R((a, b), U × V ) ≡ a �A U and b �B V

since the former allows a uniform extension to the infinite (co)product.

3 Tychonoff’s theorem

Following the standard definition we say that, given a formal topology A ≡
〈S, ·, 1S , �A, PosA〉, a basic neighborhood a ∈ S is compact in A if, whenever
a �A U , there exists a finite subset U0 of U such that a �A U0. To express the
finite subset relation we will write U0 ⊆ω U .

In order to prove Tychonoff’s theorem we first define a predicate that relies
on quantifying over the set Pω(I) of finite subsets a given set I. In appendix
A.1 we show how to define such a set within type theory.

Definition 3.1 Let x ∈ S, y ∈ T , Z ⊆ S × T . Then define

P (x, y, Z) ≡ (∀M ∈ Pω(S))(∀N ∈ Pω(T ))
((a � {x} ∪ M & b � {y} ∪ N) →
(∃U ∈ Pω(S))(∃V ∈ Pω(T ))

(a � U ∪ M & b � V ∪ N & U × V ⊆ (S × T ) · Z)).

This is a modification in two ways of the predicate proposed by Coquand
in [7]. First, following a suggestion owed to Coquand himself, we restrict quan-
tification to finite subsets of S and T , that is elements of the sets Pω(S) and
Pω(T ), instead of quantifying over the collection of all the subsets of S and T ,
which would have no constructive meaning. In this way we avoid being impred-
icative and develop the proof within a constructive framework. Then we require
U × V ⊆ (S × T ) ·Z, instead of U × V ⊆ Z, in order to avoid the restriction to
downward closed coverings, a restriction that is essential in Coquand’s proof.

We are now in the position to prove:
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Proposition 3.2 (Binary Tychonoff’s theorem) Suppose that a and b are
compact in the formal topologies A and B respectively. Then (a, b) is compact
in A + B.

Proof: The claim amounts to proving that, whenever (a, b)�W in A+B, there
exists W0 ⊆ω W such that (a, b) � W0. In order to achieve this result, it is
enough to show that:

1. If P (a, b, W ) holds then there exists W0 ⊆ω W such that (a, b) � W0;

2. If (x, y) � Z then P (x, y, Z) holds.

(1) If P (a, b, W ) holds, then in particular, with M = N = ∅, we obtain
that there exist U ⊆ω S and V ⊆ω T such that a � U , b � V and U × V ⊆
(S × T ) · W . Hence, by the axioms of product and some calculations, one
obtains that (a, b)� U ×V . Suppose now that (u, v) ∈ U ×V . Then there exist
(s, t) ∈ S × T and w ∈ W such that (u, v) = (s, t) · w and therefore, by · -left,
(u, v) � w. Since U × V is finite, w varies in a finite subset W0 of W , and thus
for all (u, v) ∈ U × V , (u, v) � W0. Finally, by transitivity, (a, b) � W0 follows.

(2) We will prove the second condition by induction on the derivation of
(x, y) � Z, by analyzing the last rule applied.

Suppose the last rule applied is an axiom, say

x � U

(x, y) � U × {y}
,

so that Z ≡ U×{y}, and suppose that for arbitrary M ⊆ω S, a�{x}∪M . Then,
since x�U , we get a�U∪M ; therefore, by the assumption of compactness of a,
there exists U0 ⊆ω U such that a�U0∪M . Suppose moreover that for arbitrary
N ⊆ω T , b � {y} ∪N . As U0 × {y} ⊆ω U ×{y} ≡ Z and Z ⊆ (S × T ) ·Z, since
(1S , 1T ) ∈ S × T , we have proved that P (x, y, Z) holds.

Reflexivity:
(x, y) ∈ Z

(x, y) � Z
.

The claim is evident by putting U ≡ {x} and V ≡ {y} since, by the premise,
{x} × {y} ⊆ Z and we already showed that Z ⊆ (S × T ) · Z.

· -Left:

(x1, y1) � Z

(x1 · x2, y1 · y2) � Z
where (x1 · x2, y1 · y2) = (x, y).

Suppose a � {x} ∪ M ; then since x = x1 · x2 � x1 we have a � {x1} ∪ M . In
the same way we obtain b � {y1} ∪ N from the premise b � {y} ∪ N . By the
inductive hypothesis applied to (x1, y1) � Z, there exist finite subsets U of S

and V of T such that a � U ∪ M , b � V ∪ N , with U × V ⊆ (S × T ) · Z.

· -Right:
(x, y) � Z1 (x, y) � Z2

(x, y) � Z1 · Z2
.
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Suppose a � {x} ∪ M and b � {y} ∪ N . By the inductive hypothesis applied to
(x, y) � Z1, there exist U1 ⊆ω S, V1 ⊆ω T such that a � U1 ∪ M , b � V1 ∪ N

and U1 × V1 ⊆ (S × T ) · Z1. Moreover, by inductive hypothesis applied to
(x, y)� Z2, there exist U2 ⊆ω S, V2 ⊆ω T such that a � U2 ∪M , b � V2 ∪N and
U2 × V2 ⊆ (S × T ) ·Z2. Then, by · -right and lemma 2.2, a � (U1 ·U2)∪M and
similarly b � (V1 · V2)∪N , where (U1 ·U2)× (V1 ·V2) = (U1 ×V1) · (U2 ×V2) ⊆ω

((S×T ) ·Z1) ·((S×T ) ·Z2); since ((S×T ) ·Z1) ·((S×T ) ·Z2) = (S×T ) ·(Z1 ·Z2)
the claim follows.

Transitivity:
(x, y) � W W � Z

(x, y) � Z
.

Suppose a � {x} ∪ M and b � {y} ∪ N . By the inductive hypothesis applied to
(x, y) � W , there exist U ⊆ω S, V ⊆ω T such that a � U ∪ M , b � V ∪ N and
U × V ⊆ (S × T ) ·W . Let U ≡ {u1, . . . , uh} and V ≡ {v1, . . . , vk}. Then for all
i ≤ h, j ≤ k, there exist (s, t) ∈ S × T and (w1

i,j , w
2
i,j) ∈ W such that (ui, vj) =

(s, t)·(w1
i,j , w

2
i,j). By the componentwise definition of product and · -left, ui�w1

i,j

and vj � w2
i,j , thus by transitivity we obtain a � w1

i,j ∪ {u1, . . . , ûi, . . . , uh} ∪M

and b � w2
i,j ∪ {v1, . . . , v̂j , . . . , vk} ∪ N , where {u1, . . . , ûi, . . . , uh} is short for

{u1, . . . , ui−1, ui+1, . . . , uh}. Since (w1
i,j , w

2
i,j) ∈ W , then, by the minor premise

of the rule, (w1
i,j , w

2
i,j) � Z. Again by inductive hypothesis there exist W 1

i,j ⊆ω

S and W 2
i,j ⊆ω T such that a � W 1

i,j ∪ {u1, . . . , ûi, . . . , uh} ∪ M , b � W 2
i,j ∪

{v1, . . . , v̂j , . . . , vk} ∪ N and W 1
i,j × W 2

i,j ⊆ (S × T ) · Z. By letting j vary in

{1, . . . , k} and repeatedly applying · -right and lemma 2.2, we have a�•j≤kW 1
i,j∪

{u1, . . . , ûi, . . . , un} ∪ M and hence, by repeating the same argument for all
i ≤ h, a � •j≤kW 1

1,j ∪ . . . ∪ •j≤kW 1
h,j ∪ M . Similarly we obtain b � •i≤hW 2

i,1 ∪

. . . ∪ •i≤hW 2
i,k ∪ N . In order to achieve the conclusion we have to prove that

(•j≤kW 1
1,j ∪ . . . ∪ •j≤kW 1

h,j)× (•i≤hW 2
i,1 ∪ . . . ∪ •i≤hW 2

i,k) ⊆ (S × T ) ·Z. So let

(u, v) ∈ (•j≤kW 1
1,j∪. . .∪•j≤kW 1

h,j)×(•i≤hW 2
i,1∪. . .∪•i≤hW 2

i,k). Then there exist

i∗ and j∗ such that u ∈ •j≤kW 1
i∗,j and v ∈ •i≤hW 2

i,j∗ . Thus u ∈ S · W 1
i∗,j∗ and

v ∈ T ·W 2
i∗,j∗ and therefore (u, v) ∈ (S×T )·(W 1

i∗,j∗×W 2
i∗,j∗). Since by hypothesis

W 1
i∗,j∗×W 2

i∗,j∗ ⊆ (S×T )·Z, we also have (S×T )·(W 1
i∗,j∗×W 2

i∗,j∗) ⊆ (S×T )·Z
and therefore (u, v) ∈ (S × T ) · Z, thus proving the claim. 2

Tychonoff’s theorem for the topological product of two spaces follows as a
corollary, by considering in the above proposition 1S and 1T in place of a and
b.

It is worth noting that the proof works as well if one takes away the predicate
Pos in the definition of formal space.

3.1 Arbitrary product

The case of an arbitrary product of spaces can be dealt with similarly via an
inductive definition of the coproduct topology. Given a set-indexed family of
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formal topologies Ai ≡ 〈Si, ·i, 1i, �i, Posi〉, i ∈ I, let

∐

i∈I

Ai ≡ 〈Πω(I, S), ⋄, λx.1x, �, Pos〉

be the formal topology thus defined: the base monoid consists of the type
Πω(I, S) of finite support functions from the set of indices I to the indexed
family Si where i ∈ I, ⋄ is the componentwise product between finite support
functions and λx.1x is its unit.3

By generalizing the axioms for the binary product, the cover � is inductively
generated by the infinitary relation R defined by

R(f, {λω(i, u, f) | u ∈ U}) ≡ f [i] �i U

where λω(i, u, f) is the finite support function whose value on j is u if j = i and
f [j] otherwise.

Finally, the positivity predicate is defined by

Pos(f) ≡ (∀i ∈ I) Posi(f [i]).

The reader is referred to appendix B for the proof that
∐

i∈I Ai is the cate-
gorical coproduct of the formal topologies Ai.

Proposition 3.3 (Tychonoff’s theorem) Let

∐

i∈I

Ai ≡ 〈Πω(I, S), ⋄, λx.1x, �, Pos〉

be the formal topology defined as above, and let a ∈ Πω(I, S). Suppose that for
all i ∈ I, a[i] is compact in Ai. Then a is compact in

∐

i∈I Ai.

Proof: Consider, for f ∈ Πω(I, S) and Z ⊆ Πω(I, S) the following type-
theoretical proposition:

P (f, Z) ≡ (∀M ∈ (Πi ∈ I)(Pω(Si)))
(a[i] � M(i) ∪ {f [i]} →
(∃T ∈ (Πi ∈ I)(Pω(Si)))

(∃K ∈ Pω(I))(∀i ∈ I − K) T (i) =Pω(Si) {1i}
& (∀i ∈ I) a[i] � T (i) ∪ M(i)
& ⊕i∈I T (i) ⊆ Πω(I, S) ⋄ Z))

where ⊕i∈IT (i) is the subset of Πω(I, S) such that f ∈ ⊕i∈IT (i) if and only if,
for all i ∈ I, f [i]εT (i).

Observe that in the above property intuitionistic type theory allows us to
express a family of subsets as a member of a function type, thus avoiding second
order quantification.

3See appendix A.2 for these and other notions in this section.
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If the index set I consists of two elements this property reduces to the one
given for the binary case; the additional demand here is that the finite subsets
T (i) are different from {1i} only on a finite number of indices, which is plain for
the binary product. This ensures that ⊕i∈IT (i) is a finite set, which is essential
in order to prove that the property yields Tychonoff’s theorem.

As far as the technical part of the proof is concerned, we just observe that it
goes on as in the binary case, by showing first that if P (a, W ) holds then there
exists W0 ⊆ω W such that a � W0 and then that if f � Z then P (f, Z) holds.
The only nontrivial step of the latter is the case where the last rule applied is
transitivity. So, suppose f �Z is obtained by transitivity from f �V and V �Z.
Let M ∈ (Πi ∈ I) Pω(Si) and suppose that for all i ∈ I, a[i] � M(i) ∪ {f [i]}.
By P (f, V ), holding by inductive hypothesis, there exists T ∈ (Πi ∈ I) Pω(Si)
such that for all i ∈ I, a[i] � M(i) ∪ T (i), T (i) = {1i} for every i ∈ I except a
finite subset, and ⊕i∈IT (i) ⊆ Πω(I, S) ⋄V . Then consider, for all t ∈ ⊕i∈IT (i),
the decomposition t = st ⋄ vt, where st ∈ Πω(I, S) and vt ∈ V . Now, supposing

T (i) = {ti1, . . . , t
i
hi
}, for all i ∈ I, a[i]�M(i)∪{vt[i]}∪{ti1, . . . ,

ˆt[i], . . . , tihi
}. By

applying inductive hypothesis to vt �Z, we obtain that there exists Zvt
∈ (Πi ∈

I) Pω(Si) such that for all i ∈ I, a[i] � M(i)∪Zvt
(i)∪ {ti1, . . . ,

ˆt[i], . . . , tihi
} and

⊕i∈IZvt
(i) ⊆ Πω(I, S) ⋄ Z. By proceeding as in the binary case, we have, for

all i ∈ I,

a[i] � M(i) ∪ •
t ∈ ⊕i∈IT (i)

t[i] = ti1

Zvt
(i) ∪ . . . ∪ •

t ∈ ⊕i∈IT (i)
t[i] = tihi

Zvt
(i).

Introducing the shorthand

Z(i) ≡ •
t ∈ ⊕i∈IT (i)

t[i] = ti1

Zvt
(i) ∪ . . . ∪ •

t ∈ ⊕i∈IT (i)
t[i] = tihi

Zvt
(i),

in order to conclude we have to prove that Z(i) = {1i} for every i ∈ I except
a finite subset and that ⊕i∈IZ(i) ⊆ Πω(I, S) ⋄ Z. The former follows from the
fact that ⊕i∈IT (i) is finite and that Zvt

(i) = {1i} holds for every i ∈ I except
a finite subset. To prove the latter, let x ∈ ⊕i∈IZ(i). Then for all i ∈ I, there
exists ji such that

x[i] ∈ •
t ∈ ⊕i∈IT (i)

t[i] = tiji

Zvt
(i)

Let t∗ be defined by t∗[i] ≡ tiji
. Then x[i] ∈ Zvt∗

(i) · Si and therefore x ∈
(⊕i∈IZvt∗

(i)) ⋄ Πω(I, S). Thus

⊕i∈IZ(i) ⊆ (∪t∈⊕i∈IT (i) ⊕i∈I Zvt
(i)) ⋄ Πω(I, S)

Since for all t ∈ ⊕i∈IT (i), ⊕i∈IZvt
(i) ⊆ Πω(I, S) ⋄ Z holds, the conclusion

follows. 2
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4 Concluding remarks

The algorithmic character of our proof becomes clearer if it is compared with
other proofs of the localic Tychonoff’s theorem.

We shall concentrate here on the comparison with the proof by Johnstone
and Vickers [12], which is one of the most recent in the literature. Whereas our
proof is based on sup-lattices, which are constructively representable by means
of formal topologies (cf. [3]), the proof by Johnstone and Vickers is based on
the use of the structure of preframe. Preframes are posets with all finite meets
and directed joins, where binary meets distribute over directed joins, and ho-
momorphisms preserve finite meets and directed joins. The fundamental result
used in the proof is that the coproduct of frames is the tensor product of the
underlying preframes. Compactness of a frame A is defined as the character-
istic function of 1 from A to 22 being a preframe homomorphism, so that it is
immediate to pass from compactness of two frames A and B to compactness
of A

∐

B, since A
∐

B ∼= A ⊗ B and 22 ⊗ 22 ∼= 22. Technically, the proof uses
transfinite induction for the construction of nuclei out of prenuclei, whereas our
proof never uses transfinite methods.

Our proof is so conceived that it can be formalized within constructive type
theory. The possibility of such a formalization means that the proof has a
direct computational meaning. Indeed, in a constructive approach to topology,
a topological space is compact if there is an algorithm that from any given
cover computes a finite subcover. By means of a proof analysis, our result
provides such an algorithm for the product space, assuming the algorithms for
the component spaces are given. Therefore our approach has a clear proof-
theoretic character, as opposed to the topos-theoretic one in [12].

Formal topology has been developed so that it could be expressed in terms
of type theory (cf. the introduction of [19]). As for the formalization proper,
it has been given in [4]. For instance, one can proceeds as follows. First the
proposition a�U , where a ∈ S and U ⊆ S is formed (here a formal way to treat
with subsets within type theory is needed [21]). Thinking of this proposition
as a type, the cover rules are its introduction rules. For example, the rule of
reflexivity is effected by a function refl on proofs c (intended as proof-objects)
of the proposition expressing that a is an element of U , with a proof refl(a, U, c)
of a � U as value. All the other rules can be treated in a similar way.

The elimination rule for the type a�U then allows to prove properties C(c)
of proofs c of a�U starting from the proofs of the aforementioned introduction
rules. The inductive proof we gave for the property P can thus be seen as the
proof of the premises of such an elimination rule.

Furthermore, the proof for the infinite topological product uses the same
machinery as the proof for the finite product, once we have provided the type-
theoretic definitions for finite support functions.

We conclude with observing that similar inductive techniques have been
employed to get constructive proofs of other classical non-constructive basic
results in mathematics, like the Heine-Borel and the Hahn-Banach theorems
(cf. [5], [6], [17]).
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A On some types beyond basic Type Theory

In this first appendix, which is due to the second author, we will provide just the
general ideas allowing to define the types used in the paper. Moreover we assume
the reader is already familiar with Martin-Löf’s type theory and therefore we
will not explain the machinery to define a new type, which is worked out as in
[15].

A.1 The type Pω(I) of finite subsets of I.

The type Pω(I) we are going to introduce in this section corresponds to the
set of finite subsets of I. The idea we want to develop is that the elements
of this new type are just the elements of the type of the lists on I (cf. [2]).
Of course we have to impose a suitable equality on such elements which makes
equal those lists which represent extensionally equal subsets. We are thus lead
to use the same formation and introduction rules of the lists on I, and add two
rules expressing the fact that sets are defined extensionally, and thus repeating
an element (contr) or exchanging two elements (exchg) does not change the set.

Formation
I set

Pω(I) set

I = J

Pω(I) = Pω(J)

Introduction

∅ : Pω(I)
i : I U : Pω(I)

{i} ∗ U : Pω(I)

∅ = ∅ : Pω(I)
i = j : I U = V : Pω(I)

{i} ∗ U = {j} ∗ V : Pω(I)

i : I U : Pω(I)

{i} ∗ {i} ∗ U = {i} ∗ U : Pω(I)
contr

i : I j : I U : Pω(I)

{i} ∗ {j} ∗ U = {j} ∗ {i} ∗ U : Pω(I)
exchg

As far as the elimination rule is concerned, we cannot just innocently borrow
the elimination rule from the type of lists. Indeed, the fact that the rules of
contr and exchg identify sets which would not be equal as lists, leads easily to
contradictions. This is the reason why the elimination rules for lists have to be
modified in order to take these additional equalities into account.

12



Thus, in order to obtain S(U, d, e) : C(U), besides U : Pω(I), d : C(∅)
and e(x, Y, z) : C({x} ∗ Y ) [x : I, Y : Pω(I), z : C(Y )], inherited from the
lists-elimination rule, we have to add also the following four assumptions:

e(x, {x} ∗ Y, e(x, Y, z)) = e(x, Y, z) : C({x} ∗ Y ) [x : I, Y : Pω(I), z : C(Y )]
and

e(x1, {x2} ∗ Y, e(x2, Y, z)) = e(x2, {x1} ∗ Y, e(x1, Y, z)) :
C({x1} ∗ {x2} ∗ Y ) [x1 : I, x2 : I, Y : Pω(I), z : C(Y )],

which express the fact that the function e(−,−,−) is a congruence w.r.t.
the additional equalities;

C({x} ∗ {x} ∗ Y ) = C({x} ∗ Y ) [x : I, Y : Pω(I)]
and

C({x1} ∗ {x2} ∗ Y ) = C({x2} ∗ {x1} ∗ Y ) [x1 : I, x2 : I, Y : Pω(I)]
which say that the propositional function C(−) respects the additional equali-
ties.

Of course the equality rules have to be modified in the same way in order to
obtain S(∅, d, e) = d : C(∅) and S({x}∗Y, d, e) = e(x, Y, S(Y, d, e)) : C({x}∗Y ).

With this definition it is not possible any longer to build up the solution
for all the inductive definitions one can give on the lists, but only for those in
which the involved functions are “well behaved” w.r.t. the equalities we have
introduced. For instance, we can give the definition of the proposition aεU

which, given I set, U : Pω(I) and a : I, says that a is an element of U . In
order to do that it is useful to use the universe Ω0 of small types. An inductive
definition is thus

{

aε∅ = ⊥ : Ω0

aε{i} ∗ U = (a =I i) ∨ aεU : Ω0

which admits the solution

aεU ≡ S(U,⊥, (x, Y, z) (a =I x) ∨ z).

By using this proposition, provided that I set and K ∈ Pω(I), we can define
the type I −K, whose elements are those elements of I which do not belong to
K, by the following introduction rules and the obvious elimination and equality
rules.

i : I ¬(iεK) true

compl(K, i) : I − K

i = j : I ¬(iεK) true

compl(K, i) = compl(K, j) : I − K

One can obtain an element of I out of an element of I −K by using an instance
of the elimination rule. For this reason, in order to simplify the notation, given
i : I we will sometime write i : I − K instead of compl(K, i) : I − K and will
use elements of I − K as they were element of I.

In the paper we also use the function ∪ which given two finite subsets con-
structs their union. Supposing I set and U, V ∈ Pω(I), an inductive definition
is

{

U ∪ ∅ = U : Pω(I)
U ∪ ({i} ∗ V ) = {i} ∗ (U ∪ V ) : Pω(I)

which admits the solution

U ∪ V ≡ S(V, U, (x, Y, z) {i} ∗ z).

13



A.2 The type Πω(I, B) of finite support functions.

In this section we define the type Πω(I, B) of functions with finite support. We
assume the hypothesis, which holds when dealing with formal topologies, that
B(i) is a family of sets each containing a special element, denoted with 1i. So
we have to modify the type of functions by considering only those functions
which differ from the functions λx.1x only on a finite number of inputs.

Formation

I set

[i : I]1....
B(i) set

Πω(I, B) set
1

I = J

[i : I]1....
B(i) = D(i)

Πω(I, B) = Πω(J, D)
1

Introduction

λx.1x : Πω(I, B)
f : Πω(I, B) i : I b : B(i)

λω(i, b, f) : Πω(I, B)

Thus λx.1x is the function whose output is 1i : B(i) for each i : I, whereas
λω(i, b, f) has output b : B(i) when applied to i : I and the output of f applied
to j when applied to j different from i. With this intuitive explanation of the
introduction rules at hand, the following rules of equality between canonical
elements are clear.

λx.1x = λx.1x : Πω(I, B)
f = g : Πω(I, B) i = j : I b = d : B(i)

λω(i, b, f) = λω(j, d, g) : Πω(I, B)

λx.1x = λω(i, 1i, λx.1x) : Πω(I, B) [i : I] contr0

f : Πω(I, B) i : I b : B(i) d : B(i)

λω(i, b, λω(i, d, f)) = λω(i, b, f) : Πω(I, B)
contr

f : Πω(I, B) i : I b : B(i) j : I d : B(j) ¬(i =I j) true

λω(i, b, λω(j, d, f)) = λω(j, d, λω(i, b, f)) : Πω(I, B)
exchg

The elimination rule and the equality rules follow the same pattern we have
already explained for the type of finite subsets. The former introduces the
constant Fω such that Fω(c, d, e) : C(c) provided that c : Πω(I, B), d : C(λx.1x)
and e(x, y, z, t) : C(λω(x, y, z)) [z : Πω(I, B), x : I, y : B(x), t : C(z)]. The
latter shows that Fω(λx.1x, d, e) = d : C(λx.1x) and Fω(λω(x, y, z), d, e) =
e(x, y, z, Fω(z, d, e)) : C(λω(x, y, z)).

We can now define the function which applies the function with finite support
f : Πω(I, B) to an element of I in order to obtain the element f [i] : B(i). The
simplest idea to perform this consists in transforming f in the “corresponding”
function of the type Π(I, B) and then to have recourse to the usual application
operator Ap. We point out that the solution we propose here requires the
existence of a decision function ≃ from I × I to Boole such that i =I j iff i ≃
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j =Boole true. In [23] this requirement is shown to be equivalent to decidability
of equality in I by using the so called intuitionistic axiom of choice which is
provable in ITT (cf. [15]) thanks to the constructive meaning of the quantifiers.
The latter assumption seems to be common in the proofs of localic Tychonoff’s
theorem in the literature4. Assuming this hypothesis, the inductive definition
of the function we are looking for is the following:

{

F (λx.1x) = λx.1x : Π(I, B)
F (λω(i, b, f)) = λx. if x ≃ i then b else Ap(F (f), x) : Π(I, B)

which admits the solution

F (f) ≡ Fω(f, λx.1x, (z, i, b, t) λx. if x ≃ i then b else Ap(t, x))

so that f [i] ≡ Ap(F (f), i).
Due to the following result the equality rules we give for finite support func-

tions are the right ones.

Proposition A.1 Let f, g ∈ Πω(I, B) and assume that for all i ∈ I, f [i] =
g[i] : B(i). Then f = g : Πω(I, B).

Let us illustrate the functions on the elements of this type that we use in this
paper. We begin with the formal definition of the operation ⋄ which, given two
elements f, g ∈ Πω(I, B), yields the finite support function corresponding to
their componentwise product. So, let us suppose that, for all i ∈ I, 〈B(i), ·i, 1i〉
is a commutative monoid; then an inductive definition of the function ⋄ is:

{

f ⋄ λx.1x = f : Πω(I, B)
f ⋄ λω(i, b, g) = λω(i, b · f [i], f ⋄ g) : Πω(I, B)

which is solved by

f ⋄ g ≡ Fω(g, f, (z, x, y, t) λω(x, y · f [x], t)).

Another function we use in the paper is the function supp which, when applied
to f : Πω(I, B), yields a finite subset of I containing the subset on which f

differs from the function λx.1x. An inductive definition of the function supp is
the following:

{

supp(λx.1x) = ∅ : Pω(I)
supp(λω(i, b, f)) = {i} ∗ supp(f) : Pω(I)

which is satisfied by putting

supp(f) ≡ Fω(f, ∅, (z, x, y, t) {x} ∗ t).

It is easy to check that, supposing f, g ∈ Πω(I, B), supp(f ⋄ g) = supp(f) ∪
supp(g).

4Indeed J. Vermeulen has a proof of Tychonoff’s theorem which does not assume decid-
ability of equality between elements of I, cf. [26]
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B From the categorical coproduct of formal topolo-

gies to topological product

In this appendix we will prove that the coproduct of formal topologies, as defined
in sections 2 and 3, is indeed a categorical coproduct and yields the product of
the corresponding topological spaces.

In order to make a category FTop out of formal topologies, we only have to
recall the definition of the morphisms [19].

Let A = 〈S, ·A, 1A, �A, PosA〉, and B = 〈T, ·B, 1B, �B, PosB〉 be two formal
topologies and let Pt(A) and Pt(B) be the respective collections of points. Then
a map f : A −→ B has to correspond to the inverse of a continuous function
f∗ : Pt(B) −→ Pt(A) between topological spaces, and hence it has to map a
basic open in S into an open of B. Since we reject any reference to points, hence
to unions, an open of B can be specified only by means of subsets of T , with the
proviso that different subsets could specify the same open. To cope with this
problem, in the preliminaries we have introduced the equivalence relation

U ∼=B V ≡ U �B V & V �B U.

We are thus able to express in our framework the conditions we require on
f from S to P(T ):

1. f(1A) ∼=B {1B};

2. f(a ·A b) ∼=B f(a) ·B f(b);

3.
a �A U

(∀x ∈ f(a)) x �B f(U)
, where f(U) ≡ ∪b∈Uf(b);

4.
(∃x ∈ f(a)) PosB(x)

PosA(a)
.

Yet, we cannot identify the morphisms from A to B with the maps as above
since two maps f and g yielding the same open for all a ∈ S have to coin-
cide. Hence we define a morphism as an equivalence class of maps, modulo the
equivalence relation

f ∼B g ≡ (∀a ∈ S) f(a) =B g(a).

In this way, supposing f and g to be maps as above, by defining composition of
the equivalence classes [f ] and [g] as

[f ] ◦ [g] ≡ [f ◦ g]

it is easy to check that a category is obtained. Of course, in the following we
will adopt the usual mathematical practice to forget about equivalence classes
and to work directly with their representatives. As announced we have:
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Proposition B.1
∐

i∈I Ai ≡ 〈Πω(I, S), ⋄, λx.1x, �, Pos〉 is the coproduct in
FTop of the formal topologies Ai.

Proof: The canonical injections are given by the maps:

ei : Ai −→
∐

i∈I

Ai

such that
ei(a) ≡ {λω(i, a, λx.1x)}

The maps ei satisfy the defining conditions for morphisms in FTop; in fact, let
a, b ∈ Si and U ⊆ Si, then:

1. ei(1i) ≡ {λω(i, 1i, λx.1x)} = {λx.1x}.

2. ei(a · b) ≡ {λω(i, a · b, λx.1x)} = {λω(i, a, λx.1x)} ⋄ {λω(i, b, λx.1x)} ≡
ei(a) ⋄ ei(b).

3. If a �i U , then, by the axiom, we have λω(i, a, λx.1x) � {λω(i, u, λx.1x) :
u ∈ U}, and thus ei(a) � ei(U) by definition.

4. If Pos(ei(a)) holds, then in particular the i-th component of ei(a) is in-
habited, that is Pos(a) holds.

We now come to the universal property. Suppose that C denotes a formal
topology and for all i ∈ I a morphism φi : Ai −→ C is given. We prove that there
exists a unique morphism ⊕i∈Iφi :

∐

i∈I Ai −→ C such that (⊕i∈Iφi) ◦ ei = φi

for all i ∈ I.
We first prove uniqueness. If f ∈ Πω(I, S), then f can be written as f =

⋄i∈supp(f)ei(f [i]) (if supp(f) is empty we soundly define the above product to
be equal to λx.1x). Then, if ⊕i∈Iφi has to respect product and to make the
diagram commute, the following definition is forced:

(⊕i∈Iφi)(f) ≡ •i∈supp(f)φi(f [i])

Thus, to prove existence, it is enough to prove that the above defined map is a
morphism in FTop. We have:

1. (⊕i∈Iφi)(λx.1x) ≡ •i∈supp(λx.1x)φi(λx.1x[i]) ≡ •i∈∅φi(1i) =C {1C}.

2. (⊕i∈Iφi)(f ⋄ g) ≡ •i∈supp(f⋄g)φi(f [i] · g[i]); then using the fact that the φi

are morphisms, hence respect product, and that product is associative and
commutative, we obtain •i∈supp(f⋄g)φi(f [i]·g[i]) ≡ •i∈supp(f)∪supp(g)φi(f [i])·
φi(g[i]) = •i∈supp(f)φi(f [i]) · •i∈supp(g)φi(g[i]) ≡ (⊕i∈Iφi)(f) · (⊕i∈Iφi)(g).

3. Suppose f �W . We prove that (⊕i∈Iφi)(f)�C (⊕i∈Iφi)(W ) by induction
on the derivation of f � W . If it derives from an axiom,

f [i] �i U

f � {λω(i, u, f) : u ∈ U}
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i.e., W ≡ {λω(i, u, f) : u ∈ U}, then from the premise we get, since all
the φi are morphisms, φi(f [i]) �C φi(U). By (repeated applications of)
· -left we have •i∈supp(f)φi(f [i]) �C φi(U). Since for all i ∈ I, φi(1i) =C

{1C} we obtain φi(U) =C {(⊕i∈Iφi)(λω(i, u, f)) : u ∈ U}, and therefore
(⊕i∈Iφi)(f) �C (⊕i∈Iφi)(W ).

If f � W is obtained by reflexivity, then from the premise f ∈ W we get
{f} ⊆ W and therefore (⊕i∈Iφi)({f}) ⊆ (⊕i∈Iφi)(W ), which gives the
claim by applying reflexivity again.

If the last rule applied is · -left (· -right or transitivity resp.), then by induc-
tive hypothesis applied to the premises and · -left (· -right or transitivity
resp.) again, we conclude.

4. Suppose Pos((⊕i∈Iφi)(f)), that is Pos(•i∈supp(f)φi(f [i])), then, by mono-
tonicity and · -left, (∀i ∈ supp(f)) Pos(φi(f [i])) holds, and therefore, since
all the φi are morphisms, we have that (∀i ∈ supp(f)) Pos(f [i]), i.e.,
Pos(f) holds. 2

We will now prove that coproduct of formal topologies yields product of
formal spaces. Categorically, formal points can be defined as “generalized ele-
ments” in FTop. First observe that 11 ≡ 〈{1}, ·, 1,∈, {1}〉 is the initial object
of the category FTop. Thus a formal point x of A is a morphism from A to 11.
With the identification of points on A with morphisms, i.e.,

Pt(A) ≡ FTop(A, 11)

we obtain a simple characterization of the points of the coproducts. In fact, by
the universal property of coproduct we have

Pt(
∐

i∈I

Ai) ≡ FTop(
∐

i∈I

Ai, 11) ∼=
∏

i∈I

FTop(Ai, 11)

that is, formal points of the coproduct of the formal topologies Ai, i ∈ I are the
cartesian product of formal points of each formal topology.
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