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Introduction

The interest for quantales has grown up in the communities of the logi-
cians and of the theoretical computer scientist after the works by Rosenthal
[Rosenthal 90] and Yetter [Yetter 90] which show the relevance of these struc-
tures in giving complete semantics of Girard’s Linear Logic [Girard 87].

Let us recall the definition of quantale [Rosenthal 90] and state the basic
results we are going to use. The structure

Q ≡ 〈Q, •, 1,∨〉

is a (unital) quantale if

〈Q, •, 1〉

is a monoid with unity 1,

〈Q,∨〉

is a complete semilattice and • distributes over ∨, i.e. (∨i∈Ixi)•t = ∨i∈I(xi•t)
and t • (∨i∈Ixi) = ∨i∈I(t • xi).

As usual, ∨ induces an order relation ≤ on Q by putting

x ≤ t ≡ x ∨ t = t.

It is well known that ≤ is reflexive, transitive and antisymmetric; more-
over, because of distributivity, the following lemma holds.

Lemma: (stability). For every quantale Q, ≤ is compatible with •, i.e. for
every x, t, u, v ∈ Q if x ≤ t and u ≤ v then x • u ≤ t • v.

Proof. First observe that if w ≤ z then, for any s ∈ Q, s • w ≤ s • z and
w • s ≤ z • s because z = w ∨ z implies s • z = s • (w ∨ z) = (s • w) ∨ (s • z)
and z • s = (w ∨ z) • s = (w • s)∨ (z • s); now suppose x ≤ t and u ≤ v then
x • u ≤ t • u and t • u ≤ t • v hence x • u ≤ t • v by transitivity.

In addition, ∨∅ and ∨Q are respectively the minimum and the maximum
element of the quantale Q. Hence

∧S ≡ ∨{x ∈ Q : x ≤ y, for each y ∈ S}

defines an operation of infimum on Q.

The representation theorem

Now we want to show that any quantale Q is isomorphic to a sub-quantale
of a quantale of suitable relations on Q. To this purpose we introduce the
following definition.
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Definition: (ordered relation). Let 〈Q, •, 1,∨〉 be a quantale; a binary
relation R on Q is called ordered if

- for any u, x, y, z ∈ Q, if u ≤ x, xRy and y ≤ z then uRz, i.e. R is
compatible with ≤;

- for any t, x1, x2, · · · ∈ Q, if, for every i ∈ I, xiRt then ∨i∈IxiRt, i.e. R is
compatible with ∨;

- for any x, t1, t2, · · · ∈ Q, if, for every i ∈ I, xRti then xR ∧i∈I ti, i.e. R

is compatible with ∧.

Note that if R is an ordered relation on Q then, for each x ∈ Q, ∨∅Rx and
xR∧∅ = ∨Q hold. Moreover observe that the order relation ≤ is a very simple
example of ordered relation which will be called I in the following. In fact
the ordered relations get their name from the fact that they can be thought
as an abstract kind of order relation where reflexivity and antisimmetry are
not concerned, while working in a framework where arbitrary suprema and
infima exist.

The conditions we require on ordered relations are suitably chosen in order
to give them the strutture of a quantale; in particular compatibility with
respect to ∨ and ∧ are needed in order to show distributivity. Anyhow the
first step is to define the quantale operations. The most natural monoid
operation is the relation composition, i.e.

R ◦ S ≡ {(x, z) ∈ Q×Q : (∃y ∈ Q) xRy and ySz}.

In fact the basic intuition in this work was that the standard theorem a
la Cayley for monoids could be extended to quantales.

Lemma: (closure under composition). Let 〈Q, •, 1,∨〉 be a quantale and
R and S be ordered relations on Q; then also R ◦S is an ordered relation on
Q.

Proof. Compatibility of R◦S with respect to ≤ is a direct consequence of the
compatibility of R and S with respect to ≤; whereas to prove compatibility
of R ◦S with respect to ∨ one uses compatibility of R with respect to ∨ and
to prove compatibility of R ◦ S with respect to ∧ one uses compatibility of
S with respect to ∧, beside compatibility of R and S with respect to ≤ and
the fact that wi ≤ ∨i∈Iwi and ∧i∈Iwi ≤ wi hold for each i ∈ I.

Now we can explain why we call the ordered relation ≤ “I”; as one can
easily check I is the identity for composition among ordered relations, i.e.
R ◦ I = R = I ◦ R holds for each ordered relation R. Hence 〈RQ, ◦, I〉 is a
monoid, where RQ is the set of the ordered relations on Q.

The next step is to define the supremum of an arbitrary set of ordered
relations {Ri : i ∈ I}. The natural choice is the union but in general the
union of ordered relations is not an ordered relation. For this reason we put

∨i∈IRi ≡ ∩i∈IRi

which is obviously a semilattice operation provided that ∩i∈IRi is an ordered
relation.
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Lemma: (closure under arbitrary intersection). Let 〈Q, •, 1,∨〉 be a
quantale and {Ri : i ∈ I} a set of ordered relations on Q; then ∨i∈IRi is an
ordered relation on Q.

Proof. The result is almost obvious since x ∨i∈I Riy holds if and only if, for
any i ∈ I, xRiy and each Ri satisfies the compatibility conditions.

By means of the previous definitions we have constructed the structure
〈RQ, ◦, I,∨R〉. In order to prove that it is a quantale we must only show
that ◦ distributes over ∨R. One inclusion is obvious: in fact let S and Ri,
i ∈ I, be ordered relations then we obviously have ∩i∈IRi ⊆ Ri, for each
i ∈ I, and hence (∩i∈IRi) ◦ S ⊆ Ri ◦S and S ◦ (∩i∈IRi) ⊆ S ◦Ri and finally
(∩i∈IRi)◦S ⊆ ∩i∈I(Ri◦S) and S◦(∩i∈IRi) ⊆ ∩i∈I(S◦Ri). In order to prove
the other inclusion we put the compatibility conditions at work: in fact, to
prove that ∩i∈I(Ri◦S) ⊆ (∩i∈IRi)◦S, suppose y∩i∈I (Ri◦S)z, then, for each
i ∈ I, yRi ◦ Sz and hence there is an element ui such that yRiui and uiSz;
thus yRi∨i∈I ui, since Ri is compatible with ≤, so y∩i∈I Ri∨i∈I ui; moreover
∨i∈IuiSz, because S is compatible with ∨, and hence y(∩i∈IRi) ◦Sz; on the
other hand to prove that ∩i∈I(S◦Ri) ⊆ S◦(∩i∈IRi), suppose y∩i∈I (S◦Ri)z,
then, for each i ∈ I, yS ◦Riz and hence there is an element ui such that ySui

and uiRiz; thus yS ∧i∈I ui, because S is compatible with ∧ and ∧i∈IuiRiz,
since Ri is compatible with ≤, hence ∧i∈Iui ∩i∈I Riz and so yS ◦ (∩i∈IRi)z.

Hence we have proved the following theorem.

Theorem. Let 〈Q, •, 1,∨〉 be a quantale and RQ be the set of the ordered
relations on Q; then 〈RQ, ◦, I,∨R〉 is a quantale.

Now we can prove the representation theorem.

Theorem: (representation theorem). Any quantale 〈Q, •, 1,∨〉 is iso-
morphic to a sub-quantale of the quantale 〈RQ, ◦, I,∨R〉.

In fact, supposing x as being an element of Q, let us consider the relation

Rx ≡ {(y, z) : x • y ≤ z}

which will be called the relation generated by x. It is easy to prove that Rx

is an ordered relation since compatibility with respect to ≤ is a consequence
of stability, compatibility with respect to ∨ is a consequence of distributivity
of • over ∨ whereas compatibility with respect to ∧ is straightforward.

Now, an immersion of the quantaleQ into RQ is obtained by the morphism
φ which maps the element x ∈ Q into the relation Rx generated by x. In fact
φ respects the operations of the quantale Q since Rt•x = Rx ◦Rt because if
yRt•xz, i.e. t • x • y ≤ z, then x • yRtz and hence yRx ◦Rtz, since yRxx • y

and if yRx ◦ Rtz then there is an element u such that yRxu and uRtz, i.e.
x • y ≤ u and t • u ≤ z, hence t • x • y ≤ z, i.e. yRt•xz; moreover R1 = I,
because xR1y if and only if x = 1 • x ≤ y; finally R∨xi

= ∨i∈IRxi
, because

yR∨xi
z iff (∨i∈Ixi) • y = ∨i∈I(xi • y) ≤ z iff for each i ∈ I, xi • y ≤ z iff for

each i ∈ I, yRxi
z iff y ∩i∈I Rxi

z.
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Finally φ is injective, and hence it is an isomorphism between Q and the
sub-quantale of the generated relations {Rx : x ∈ Q}. In fact x ≤ t if and
only if Rt ⊆ Rx since if yRtz, i.e. t • y ≤ z, then x • y ≤ z, i.e. yRxz, because
x ≤ t implies x • y ≤ t • y and so we have proved that Rt ⊆ Rx; on the other
hand 1Rtt thus Rt ⊆ Rx implies 1Rxt i.e. x = x • 1 ≤ t. So if Rx = Rt, i.e.
Rt ⊆ Rx and Rx ⊆ Rt, then x ≤ t and t ≤ x and hence x = t.

The isomorphism theorem

In the previous paragraph we have proved that the set of ordered relations
{Rx : x ∈ Q}, as a sub-quantale of the quantale of the ordered relations on
Q, is isomorphic to Q. Here we give the conditions that characterize such a
set of relations. In order to obtain this result let us introduce the definition
of the operation of right implication between elements of a quantale.

Definition: (right implication). Let Q be a quantale and x, y ∈ Q; then
the right implication y ← x, to be read y is implied by x, is defined by putting

y ← x ≡ ∨{w ∈ Q : w • x ≤ y}

The right implication is already considered in [Rosenthal 90] and its defi-
nition is standard in a non-commutative linear logic framework [Abrusci 91].
The following lemma justifies its name.

Lemma. Let Q be a quantale and x, y, w, t ∈ Q; then the following properties
hold

1) (y ← x) • x ≤ y;
2) w • x ≤ y if and only if w ≤ y ← x;
3) if x ≤ y and w ≤ t then (w← y) • x ≤ t;
4) if x ≤ y and w ≤ t then w ← y ≤ t← x.

Proof.
1) (y ← x) • x = ∨{w : w • x ≤ y} • x = ∨{w • x : w • x ≤ y} ≤ y;
2) If w • x ≤ y then obviously w ≤ ∨{w ∈ Q : w • x ≤ y} = y ← x; on the

other hand, if w ≤ y ← x then w • x ≤ (y ← x) • x ≤ y, by point 1;
3) if x ≤ y then (w← y) • x ≤ (w← y) • y ≤ w ≤ t, using point 1;
4) straightforward consequence of point 3. and 2.

Now we can define the relations on Q we are interested in in order to state
the isomorphism theorem.

Definition: (right ordered relation). Let Q be a quantale; then R is a
right ordered relation on Q if

- R is an ordered relation on Q, i.e. R is compatible with ≤,∨ and ∧,
- for any x, y, u ∈ Q, if xRy then x • uRy • u, i.e. R is right compatible

with •,
- for any x, y, u ∈ Q, if xRy then x← uRy ← u, i.e. R is right compatible

with ←.
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Theorem: (isomorphism theorem). Let Q be a quantale; then Q is iso-
morphic to the quantale of the right ordered relations on Q.

In order to prove the isomorphism theorem, because of the results in the
previous section, it is sufficient to show that all the generated relations are
also right ordered relations and that any right ordered relation is a generated
relation.

The left-to-right implication is straightforward. In fact we have already
proved that any generated relation is an ordered relation; moreover if xRwy,
i.e. w • x ≤ y, then w • x • u ≤ y • u, i.e. x • uRwy • u, by stability and
hence Rw is right compatible with •; finally if xRwy, i.e. w • x ≤ y, then
w • x ← u ≤ y ← u and so w • (x← u) ≤ y ← u, i.e. x ← uRwy ← u, since
w • (x← u) ≤ w • x← u, because w • (x← u) • u ≤ w • x.

In order to prove the other implication we need a preliminary lemma.

Lemma. Let R be a right ordered relation; then Rw ⊆ R if and only if 1Rw.

Proof. One implication is straightforward because Rw ⊆ R implies 1Rw since
1Rww; to prove the other suppose xRwy, i.e. w •x ≤ y, then xRy since 1Rw

implies x = 1 • xRw • x.

The next lemma proves that any right ordered relation is a generated
relation. In fact it shows that any right ordered relation R is determined by
its 1-image, i.e. by the set {y : 1Ry}.

Lemma. Let R be a right ordered relation; then R ⊆ ∪Rw⊆RRw ⊆ ∪1RwRw ⊆
R∧{w:1Rw} ⊆ R.

Proof. We will prove the inclusions following the order from left to right.
To prove the first let us suppose xRy then x ← xRy ← x, hence 1Ry ← x

because 1 ≤ x← x, and so Ry←x ⊆ R but xRy←xy because (y ← x) • x ≤ y,
and so R ⊆ ∪Rw⊆RRw. The second inclusion is straightforward since Rw ⊆ R

implies 1Rw. The third inclusion holds since, for each w such that 1Rw, ∧{w :
1Rw} ≤ w hence Rw ⊆ R∧{w:1Rw} and so ∪1RwRw ⊆ R∧{w:1Rw}; finally in
order to prove the last inclusion observe that 1R ∧ {w : 1Rw} and hence
x = 1 • xR ∧ {w : 1Rw} • x and so if xR∧{w:1Rw}y, i.e. ∧{w : 1Rw} • x ≤ y,
then xRy.

Hence we have proved that a right ordered relation R is a relation gen-
erated by ∧{w : 1Rw} and this concludes the proof of the isomorphism
theorem.

Representing quantales by means of functions

In this section we use the results so far obtained to show some new forms
of the representation and the isomorphism theorems using suitable functions
instead of relations.

Let us begin by considering the functions of the quantale Q into itself
which respect arbitrary infima (∧-ordered functions in the following), i.e. the
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functions f : Q → Q such that ∧i∈If(yi) = f(∧i∈Iyi) or equivalently the
monotonic functions, i.e. x ≤ y implies f(x) ≤ f(y), such that ∧i∈If(yi) ≤
f(∧i∈Iyi).

Now we state the link between the ordered relations and the ∧-ordered
functions. Let f : Q → Q be an ∧-ordered function then the relation Rf

defined by putting

xRfy ≡ x ≤ f(y)

will be called the relation associated with f .

Lemma. Let f : Q → Q be an ∧-ordered function and Rf its associated
relation; then Rf is an ordered relation.

Proof. While compatibility with respect to ∨ is straightforward, those with
respect to ≤ and ∧ are immediate consequences respectively of monotonicity
of f and of the fact that it respects ∧.

Note that to prove this lemma it is merely necessary that ∧i∈If(yi) ≤
f(∧i∈Iyi) but the other inequality is an immediate consequence of mono-
tonicity.

Also the other implication can be proved. Let us say that the function
fR : Q→ Q is associated with the relation R if

fR(y) = ∨{z : zRy}.

Lemma. Let R be an ordered relation on the quantale Q; then fR is a mono-
tonic function which respects ∧.

Proof. Monotonicity of fR is immediate since x ≤ y implies that if zRx then
zRy and hence ∨{z : zRx} ≤ ∨{z : zRy}. In order to show that ∧i∈IfR(yi) ≤
fR(∧i∈Iyi) observe that ∨{z : zRyi}Ryi holds, hence ∧i∈I(∨{z : zRyi})Ryi,
since R is compatible with ≤, so ∧i∈I(∨{z : zRyi})R ∧i∈I yi, since R is
compatible with ∧, and thus ∧i∈I(∨{z : zRyi}) ≤ ∨{z : zR ∧i∈I yi}.

Moreover the two constructions are inverse to one another, i.e. the follow-
ing lemma holds.

Lemma. Let R be an ordered relation on the quantale Q and f : Q→ Q be
an ∧-ordered function; then

1) RfR
= R

2) fRf
= f

Proof. Both points are straightforward consequences of the above definitions:

1) xRy iff x ≤ ∨{z : zRy} iff x ≤ fR(y) iff xRfR
y;

2) fRf
(y) = ∨{z : zRfy} = ∨{z : z ≤ f(y)} = f(y)

By the previous lemmas we have proved that there is a bijection between
the set of the ordered relation RQ on the quantale Q and the set FQ of the
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∧-ordered functions of Q into Q. Then we can define a quantale structure on
FQ by transporting the operations from the quantale RQ as follows:

fR ◦F fS ≡ fR◦S

IF ≡ fI

∨F fRi
≡ f∨Ri

.

The following lemma makes these definitions more explicit.

Lemma. Let R, S, R1, R2, . . . be ordered relations on the quantale Q; then
1) fR◦S = fR ◦ fS, i.e. fR◦S(y) = fR(fS(y))
2) fI = identity
3) f∨Ri

= ∧fRi
, i.e. f∨Ri

(y) = ∧i∈I{fRi
(y)}.

Proof. To prove the first point it is sufficient to observe that tR ◦ Sy if and
only if tR ∨ {z : zSy} since this implies that fR◦S(y) = ∨{t : tR ◦ Sy} =
∨{t : tR∨{z : zSy}} = fR ◦ fS(y). The second point is straightforward since
fI(y) = ∨{t : tIy} = ∨{t : t ≤ y} = y. In order to prove the last point we
must show that ∨{z : for each i, zRiy} = ∧i∈I{∨{z : zRiy}}. First we will
show that ∧i∈I{∨{z : zRiy}} ≤ ∨{z : for each i, zRiy}; in fact, for each
i, ∨{z : zRiy}Riy and hence ∧i∈I{∨{z : zRiy}}Riy, since Ri is compatible
with ≤. Now, in order to prove the other inequality, observe that ∧i∈I{∨{z :
zRiy}} = ∨{w : for each i, w ≤ ∨{z : zRiy}} ≤ ∨{z : for each i, zRiy}
since ∨{z : zRiy}Riy.

In order to obtain a sub-quantale of FQ which is isomorphic to Q we have
to characterize the ∧-ordered functions which correspond to the right ordered
relations or, equivalently, to the generated relations. To this purpose let us
consider the ∧-ordered functions f such that also the following conditions
hold:

- f(y) •w ≤ f(y • w)
- f(y)← w ≤ f(y ← w)
which will be called implicative functions.

Lemma. Let f : Q → Q be an implicative function; then Rf is a right
ordered relation.

Proof. We already know that Rf is an ordered relation. Moreover the two
conditions we add on ∧-ordered functions to have an implicative function are
suitably chosen to prove the validity of the two conditions we need to satisfy
in order to show that Rf is also a right ordered relation.

Also the other implication can be proved, i.e. the function associated to
a right ordered relation is an implicative function. Instead of giving a di-
rect proof we will give an indirect one which will also provide an explicit
characterization of the implicative functions and explain their name. To this
purpose we will introduce the following definition.
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Definition: (left implication). Let Q be a quantale and x, y ∈ Q; then
the left implication x→ y, to be read x implies y, is defined by putting

x→ y ≡ ∨{w ∈ Q : x • w ≤ y}.

This definition is very similar to the one of the right implication but one
must consider that in the case of a non-commutative quantale the left and
right implications are different operations. The following lemma on the left
implication, whose proof is completely similar to the one for the case of the
right implication, justifies its name.

Lemma. Let Q be a quantale and x, y, w, t ∈ Q; then the following properties
hold:

1) x • (x→ y) ≤ y;
2) x • w ≤ y if and only if w ≤ x→ y;
3) if x ≤ y and w ≤ t then x • (y → w) ≤ t;
4) if x ≤ y and w ≤ t then y → w ≤ x→ t.

Now, suppose x ∈ Q and let us consider the function

fx(y) = x→ y

which will be called the implicative function generated by x.

Lemma. Let x ∈ Q; then the implicative function generated by x is an
implicative function.

Proof. Monotonicity is an immediate consequence of the point 4 of the pre-
vious lemma and arbitrary infima are respected since one can prove that
x • ∧i∈I{x → yi} ≤ ∧i∈I{x • (x → yi)}. Moreover it is not difficult to prove
that (x→ y)•w ≤ x→ (y •w) and (x→ y)← w ≤ x→ (y ← w), because of
associativity of •, and hence fx(y) •w ≤ fx(y •w) and fx(y)← w ≤ fx(y ←
w).

Much more interesting is to observe that any implicative function is an
implicative generated function. In fact we have already proved in the previous
section that any right ordered relation is determined by its 1-image. We can
state this result also in the following way: let R be a right ordered relation
then xRy iff xR∧{w:1Rw}y iff ∧{w : 1Rw} • x ≤ y iff x ≤ ∧{w : 1Rw} → y.

Applying this fact to the case of a function associated to a right ordered
relation R we obtain that fR(y) = ∨{z : zRy} = ∨{z : z ≤ ∧{w : 1Rw} →
y} = ∧{w : 1Rw} → y and hence we have proved the following lemma.

Lemma. Let R be a right ordered relation on the quantale Q; then the func-
tion fR associated to R is the implicative function generated by ∧{w : 1Rw}.

Now, suppose that f is an implicative function then we have already
proved that the relation Rf associated to it is a right ordered relation. Hence
we have that f(y) = fRf

(y) = ∧{w : 1Rfw} → y = ∧{w : 1 ≤ f(w)} → y

and so the following theorem holds.
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Theorem. Let f : Q→ Q be an implicative function; then f is the generated
implicative function f∧{w:1≤f(w)}.

So we have closed the circle since we have proved that there is a bijective
correspondence between right ordered relations and implicative functions and
hence that any quantale Q is isomorphic to the quantale of its implicative
functions.

In a way completely similar to the case of the ∧-ordered functions, we can
introduce the ∨-ordered functions, i.e. the functions f : Q → Q such that
f(∨i∈Ixi) = ∨i∈If(xi), or equivalently the monotonic functions such that
f(∨i∈Ixi) ≤ ∨i∈If(xi). As in the case of the ∧-ordered functions, it is easy
to associate a relation Rf with a ∨-ordered function f by the position

xRfy ≡ f(x) ≤ y

and to prove that Rf is an ordered relation. Moreover the function

fR(x) = ∧{z : xRz}

associated with the relation R is a ∨-ordered function such that the two con-
structions are inverse to one another, i.e. R = RfR

and f = fRf

. Hence also
the ∨-ordered functions define a quantale FQ by transporting the operations
from the quantale RQ and it is easy to prove that the following holds:

fR ◦F fS(x) = fR(fS(x)) IF (x) = x ∨F fRi(x) = ∨i∈I{f
Ri(x)}

Also in the case of FQ, we can characterize the ∨-ordered functions which
correspond to the right ordered relations and hence have an isomorphism
theorem with the quantale Q. To this purpose let us consider the ∨-ordered
functions f which satisfy also the conditions:

- f(x • w) ≤ f(x) • w

- f(x← w) ≤ f(y)← w

and which will be called traslations. It is immediate to prove that the
relation associated with a traslation is a right ordered relation. As for the
implicative functions, the most interesting way to prove the converse is to
give an explicit definition of the traslations. Supposing x ∈ Q, let us consider
the function

fx(y) = x • y

which will be called the traslation generated by x. It is immediate to verify
that any generated traslation is a traslation. Moreover every traslation is
generated. In fact, supposing R as being a right ordered relation, xRy iff
1Ry ← x iff ∧{z : 1Rz} ≤ y ← x iff fR(1) • x ≤ y and hence fR(x) = ∧{z :
xRz} = ∧{z : fR(1) • x ≤ z} = fR(1) • x, i.e. if R is a right ordered relation
then fR is the traslation generated by fR(1). Finally let f be a traslation

then Rf is a right ordered relation and hence f(x) = fRf

(x) = fRf

(1) • x =
f(1) • x.
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Applications

It is easy to apply the results of the previous sections to particular kinds
of quantales. For instance, let us analyze the case of locales, i.e. quantales
where the operations • and ∧ coincide, which turn out to be the complete
Heyting algebras. Then we have that any complete Heyting algebra H is
(isomorphic to) a Heyting algebra of generated relations over H where the
operations are defined by Rx ∧ Ry ≡ ∩ {S : Rx ∪ Ry ⊆ S}, which is equal
to Rx∧y but also to Rx ◦ Ry in this particular case; Rx ∨ Ry ≡ Rx ∩ Ry,
which is equal to Rx∨y; Rx → Ry ≡ ∩{S : Ry ⊆ S ◦ Rx}, which is equal to
Rx→y; 0 ≡ H ×H, which is equal to {(y, z) : 0 ∧ y ≤ z} = R0 and 1 = ≤,
which is equal to {(y, z) : 1 ∧ y ≤ z} = R1. In a completely similar way,
using the results of section 4 instead of those of section 3, we have that any
complete Heyting algebra H is isomorphic to the Heyting algebra FH of the
implicative functions fx(y) = x→ y of H into itself and also to the Heyting
algebra FH of the traslations fx(y) = x∧ y of H into itself with the obvious
definitions of the operations.

We have a much more interesting application of the representation theo-
rems in the case of Linear Logic [Girard 87]. In fact they are the mathematical
background one needs in order to obtain natural and complete semantics of
the (non-commutative) Linear Logic such that any formula is interpreted
in a generated relation and the (non-commutative) connective ⊗ (times) is
interpreted in the composition of relations. The underlying idea is that a for-
mula specifies an action on a domain while the generated relation where it is
interpreted specifies the result of applying such an action on a given element
of the domain. The interpretation is mainly similar to the previous one for
the complete Heyting algebras but some problems arise since the algebra a la
Lindembaum of linear logic is not a quantale, because of the lack of arbitrary
suprema. For this reason the whole completeness proof, which turns out to
be a representation theorem again, is not as simple as the proofs we have
presented here for the quantales and hence the reader is invited to look it in
[Valentini 92].
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