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Abstract Formal topology is today an established topic in the develop
ment of constructive mathematics and constructive pramfsniany classi-
cal results of general topology have been obtained by ukisgapproach.
Here we analyze one of the main concepts in formal topologmety, the
notion of formal point. We will contrast two classically egaient defini-
tions of formal points and we will see that from a construetpoint of
view they are completely different. Indeed, according ®fitst definition
the formal points of the formal topology of the real numbexs be indexed
by a set whereas this is not possible according to the seqond o

1 Basic definitions

In this section the basic definitions of formal topology wbik quickly
recalled. Anyhow, the reader interested in having moreildeta formal
topology is invited to look at [CSSV].

1.1 Concrete topological spaces

The classical definition of topological space reads asv@ldX, (X))
is a topological space X is a set and?(X) is a subset of?(X) which
satisfies:

(1) 0, X € 2(X);
(22) 2(X) is closed under finite intersection;
(£23) £2(X) is closed under arbitrary union.
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Usually, elements oX are calledpointsand elements of2(X') are called
opens
The quantification implicitly used iQf2s) is of the third order, since it
says
(VF € P(P(X))) (F C 2(X) — UF € 2(X))

We can “go down” one step by thinking ¢2(X) as a family of subsets
indexed by a sefS through a magext : S — P(X), that is, a binary
relation betweert and X . In fact, we can now quantify of rather than
on 2(X). But we still have to say

(VU € P(5))(3c € S) (Ugevext(a) = ext(c))

which is still impredicativé.

We can “go down” another step by defining opens to be of the form
Ext(U) = Ugevext(a) for an arbitrary subset/ of S. In this way () is
open, becausExt(()) = (, and closure under union is automatic, because
obviouslyU;c 1Ext(U;) = Ext(U;erU;). So, all we have to do is to require
thatExt(.S) be the wholeX, that is,

(B1) X =Ext(S)
and that closure under finite intersections holds, that is,

(B2) (Ya,be S)(Vx € X) ((x € ext(a) Next(b)) —
(e € S) (z € ext(c) & ext(c) C ext(a) & ext(c) C ext(h)))

Itis not difficult to realize that this amounts to the stambdefinition saying
that {ext(a) C X| a € S} is a base (see for instance [Eng77]). We can
make (B-) a bit shorter by introducing an abbreviation, that is

a|lb={c:S|ext(c) Cext(a) & ext(c) C ext(b)}

so that it becomegva, b € S) ext(a) Next(b) C Ext(a | b).

Note thatc ¢ a | b implies thatext(c) C ext(a) N ext(b), and hence
Ext(a | b) = Uqcqppext(c) C ext(a) Next(b). Then the definition of
concrete topological space can be rewritten as follows:

Definition 1 A concrete topological spaéea triple ¥ = (X, S, ext) where
X and S are sets an@xt is a binary relation fromS to X satisfying:

(B1) X = Ext(S)
(B2) (Va,b € S) ext(a) Next(b) = Ext(a | b)

L All the set-theoretical notions that we use are conform éostiibset theory for Martin-
Lof’s type theory as presented in [SV98]. In particular, wd use the symbok for the
membership relation between an element and a set or a doflectde for the membership
relation between an element and a subset, which is neverbatsgipropositional function.
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1.2 Formal topologies

The notion of formal topology arises by describing as welpassible the
structure induced by a concrete topological space oridimeal side that

is the side of the sef of the names, and then by taking the result as an
axiomatic definition. The reason for such a move is that tHaitien of
concrete topological space is too restrictive, given thathost interesting
cases of topological space do not have, from a predicatiirg pbview?,

a setof points to start with, and in the definition of concrete timgygcal
space we have to require th&tand S are sets in order to be able to give a
constructive meaning to the quantificationg By ) and(Bz).

The problem how to identify the open sets on the formal sideasly
solved. Since the elements fhare names for basic opens of the topology
on X, then we can obtain theaxtensionthat is the concrete basic open,
by using the operatogxt. Now, any open set is the union of basic opens
and hence it can be specified on the formal side by using theetolb all
the (names of the) basic opens which are used to form it. #3y & check
that, provided the condition&B;) and (B) are satisfied, in this way, we
really obtain a topology on the sat.

From a topological point of view an open subsetdfis characterized
by the property of being the union of all the basic opens thatntains or,
equivalently, to coincide with its interidnt(A), where, for anyAd C X,

Int(A) = {zx € X| (Ja € S) x € ext(a) & ext(a) C A}

Of course, for anyd C X, Int(4) C A and thus a subset is open if and
only if A C Int(A).

Theorem 1Let A C X. ThenA is an open subset if and only if there exists
a subselU of S such thatd = Ext(U).

Proof. Let A be an open subset &f and consider the subsét = {a €
S| ext(a) € A}. ThenA = Ext(U). On the other hand, ldt/ be any
subset ofS and suppose that ¢ Ext(U); then there exists € S such that
a ¢ U andz ¢ ext(a); but the former yieldext(a) C Ext(U) and hence
x € Int(Ext(U)), that is,Ext(U) is open. ]

The proof of the previous theorem shows how to find, for anemiv
open subse# of X, a suitable subséf of S such thatd andExt(U) are
extensionally equal; we chose thigggestamong the possible subsets, that
is, the one which contairall of the suitable basic opens. It is clear that in
general this is not the only choice and that it is well possthht two differ-
ent subsets of have the same extension. Thus we don't have a one-to-one

2 Here we commit ourselves to Martin-Lof’s constructive etory [ML84]; hence we
distinguish between sets, which can be inductively geedrand collections.
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correspondence between concrete opens and subsgtaraf we need to
introduce an equivalence relation on the formal side whigniifies the
subsetd/ andV whenExt(U) = Ext(V). Of course, within a construc-
tive set theory, we cannot introduce such a relation amohgeds since the
collection of the subsets of a set is not a set, but we can singbit the
problem if we realize that the following theorem holds.

Theorem 2Let U and V' be subsets af. ThenExt(U) = Ext(V) if and
only if (Va € S) ext(a) C Ext(U) < ext(a) C Ext(V).

Thus, we need just to introduce, on the formal side, a newioela
between elements and subsetsafuch that

a <1 U = ext(a) C Ext(U)

In fact, after the previous theorem, we can define an equivaleelation
between the subsets §fby setting

U=qV=WNaeS)adU—=a<xV
and it is immediately possible to prove the following theore

Theorem 3LetU andV be two subsets &f. ThenU =, V if and only if
Ext(U) = Ext(V).

Now, in order to obtain a one-to-one correspondence betiaremal
and concrete open subsets, we could simply state that alfopea is an
equivalence class of the relatien,. But, to avoid dealing with collections
of collections of subsets, we simply choose the “fullest’ozign the repre-
sentative of an equivalence class by setting

AQU)={a€Sla< U}

and say that #&rmal openis any subsek (U) for some subset/. Now,
Ext(U) = Ext(V) if and only if <(U) =<1 (V). Moreover it is possible

to prove that(U) is a good representative of the equivalence class of the
subset becauseq(U) =4 U, i.e.<(<(U)) =<(U). In fact, it is easy to
check that the following two conditions on are valid and hence we can
assume them like axiomatic conditions on the formal sideyTdre, first,

aeU

flexivit
(reflexivity) P

which holds since ifi ¢ U, thenext(a) C Ext(U), and, secondly,

a<1U UV
a1V

(transitivity)
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whereU < V is a shorthand for a derivation af < V' under the assump-
tion thatu ¢ U. The validity oftransitivity is straightforward because the
first assumption means thett(a) C Ext(U) and the second yields that
Ext(U) C Ext(V).

We can re-writageflexivityandtransitivity by using a set-theoretical no-
tation

(reflexivity) U C<(U) (transitivity)

and hence we obtain both(U) C<1(<1(U)) by usingreflexivityand also
<(<(U)) C«(U) as a consequence wansitivity.

Thus we found a relation, that isj, and some conditions on it, that is,
reflexivityandtransitivity, which allow to deal on the formal sides with con-
crete open subsets. But these conditions are not sufficietdgdcribe com-
pletely the concrete situation; for instance there are malitions which
formally describe the conditiond3,) and(Bs).

To formulate () completely on the formal side let us first write | V'
to mean the subsdic € S| (Fu e U) ¢ < u &(Fv e V) ¢ < v}. Then,
supposingxt(a) C Ext(U) andext(a) C Ext(V'), we immediately obtain
ext(a) C Ext(U)NExt(V) and hencext(a) C Ext(U | V) since itis easy
to prove thatExt(U) N Ext(V) C Ext(U | V). Its formal counterpart is

a<1U a4V

(J-right) U1V

We thus arrived at the main definititin

Definition 2 A formal topologyis a coupled = (.S, <) whereS' is a set,<
is an infinitary relation, callectoverrelation, between elements and subsets
of S satisfying the following conditions:

aclU
reflexivi
( Xivity) U
o a<tU U<V
t tivit
(transitivity) P
. a<U a1V
-right
(1-right) a<U LV

3 The reader which knows formal topology will notice that weided to deal with the
positivity predicate; we chose this approach for the salsrplicity.
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1.3 Inductive generation of formal topologies

One of the main tools in formal topology is inductive genieratof the

cover relation since this allows to develop proofs by inguctThe problem
of inductively generated formal topologies has been cotalylesolved and
the reader can look in [CSSV] and [Val99] for a detailed désion of the
problems that an inductive generation of formal topologégiires to solve
and for their solutions. We will recall here, without any pfg, only the
results that we will use in the next sections.

The conditions appearing in the definition of formal topglothough
written in the shape of rules, must be understood as reqairesof valid-
ity: if the premises hold, also the conclusion must hold. Reytstand, they
are by no means acceptable rules to generate inductivelyea oelation.

An inductive definition of a cover will start from some axionvghich
at the moment we assume to be given by means of any rel&tienl)
fora € S andU C S. We thus want to generate the least cower which
satisfies the following condition:

R(a,U)
a<lrU

(axioms)

From an impredicative point of view is easily obtained “from above”
simply as the intersection of the collecti6p of all the reflexive, transitive

infinitary relations containingz. In fact, it is clear that the total relation is
in Cr and that the intersection preserves all such conditions.

Predicatively the method of definingy as the intersection @fy is not
acceptable, since there is no way of produdiigabove as a set-indexed
family and hence to define its intersection.

Therefore, we must obtairiz “from below” by means of some intro-
ductory rules. The first naive idea is that of using axiomeflexivity and
transitivity for this purpose. But then a problem emerges: in the premises
of transitivity there is a subset which does not appear in the conclusion.
This means that the tree of possible premises to conclude thg U has
an unbounded branching: each subidetatisfyinga <z V andV <z U
would be enough to obtaim <1z U, and there is no way to survey them all.
Also, a dangerous vicious circle seems to be present: theesudbwhose
existence would be enough to obtainkr U, could be defined by means
of the relation<  itself which we are trying to construct.

This is the reason why we have to put some constraints on filmédmny
relationR(a, U). Thus, we are going to generate a cover relation only when
we have araxiom setthat is a set-indexed familj(a) set [a : S] and an
indexed familyC'(a,i) C S'[a : S,i : I(a)] of subsets of, whose intended
meaning is to state that, for alle I(a), a < C(a,7). Then, an infinitary
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relation R(a, U) is safe if
R(a,U) = (Ji€ I(a)) C(a,i) CU

In fact, in this case we can generate the cover relation wédisfiesre-

flexivity andtransitivity by using the following rules

I(a) C(a,i) U
a<1U

In this way any reference to the sub$étdisappeared and the implicit use

of an existential quantification on the collecti@{5) is transformed into

an existential quantification on the elements of thelée}.

We can now extend the previous rules into new ones which albow
generate a cover relation which satisfies glgaght. To this aim, we must
add, to those of a formal topology, an extra primitive exgireg what in
the concrete case é&t(a) C ext(b). We can obtain this by adding directly
a pre-order relatiom < b among names. Thus we obtain the following
definition.

(reflexivity) =0 and  (a-infinity) =
a<1U

Definition 3 A <-formal topologyis a triple (S, <, <) whereS is a set,<
is a pre-order relation ovelS, that is< is reflexive and transitive, ang
is a relation between elements and subsetS which satisfieseflexivity,
transitivity and the two following conditions

a<b baU ) a<1U a1V
— <-right
U (snght)  — A v

where|U = {c: S| (Bue U) ¢ < u}.

It is straightforward to verify that the new conditions asmia in any
concrete topological space under the intended interppatafnd only a
little more work is required to prove that aryformal topology is a formal
topology. The converse is trivial: given any formal topaologs, <1), we
can definex < b asa < {b} and we obtain &-formal topology with the
original one as a cover relation. Thus all we need is to betabieluctively
generate a-formal topology.

We will say that an axiom sdt andC' satisfies theaxiom conditionif,
wheneverc < a anda < C(a,i) for somei € I(a), then there exists
j € I(c) such that(Vz ¢ C(c,j))(Jy € C(a,i)) x < c& = < y. The
axiom condition states that, wheneeet(c) C ext(a) and, for some axiom
indexi € I, ext(a) C Ext(C(a,%)), then, by distributivity, a set, covering
ext(c), can be built by collecting all the open subsetsxaf c) N ext(y) for
y € Cl(a,i).

In [CSSV] it is proved that, given any axiom set, we can alwyid
a new axiom set which satisfies the axiom condition, and thie axiom
condition is satisfied, a cover relation can be inductivelgaeyated by using
reflexivity, <-left and <-infinity.

(<-left)
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1.4 Formal points

When working in formal topology one is in general interestethe prop-
erties of a topological spadeX, 2(X)) which make no reference to the
points. Thus one dispenses with the collectirand it is possible to work
by using only the set of the names for the basic opens. Butthés not
mean that points are out of reach. In fact, we can identifyiatpoith the
filter of all the basic opens which, in the concrete case,ainrit.

Definition 4 Let (S, <, <1) be a<-formal topology. Then &rmal pointis
any non-empty subset of S which, for anya,c € S and anyU C S,
satisfies the following conditions:
(up-closure) asc
cCeEQ
pEQ a<aU

"GueU)uea

ac cew

(FbeS)b<a&b<c&bea

(completenes

(directness)

It is easy to show that in the case of a generated formal tggobme
can simplify thecompletenessondition by requiring that it holds only for
the axioms, that is:

acw i€ I(a)

i I
(axiom completeness) GreC@i)zca

2 The formal topology of the binary tree

In this section we are going to deal with the formal topolo§yhe binary
tree. This is a very simple generated formal topology; idgdéecan be
generated by using, for any basic open, one single axioms Wauwill
write a < F'(a) to mean the only axiom which states that the elenaeist
covered by the subsét(a).

To define the formal topology of the binary tree we will use et
2* of the finite lists of elements of the s2t= {0,1}. We obtain aC-
formal topology from the se2* by using the order relation- such that,
foranyo,7 € 2%, ¢ C 7 holds if and only ifr is an initial segment of
o. The intended meaning of this order relation can be undaustibone
thinks of a list as gartial information on an infinite sequence (see also
[Vic89]); hence a longer list is a more precise informatiantioe sequence
and there are less infinite sequences containing it. Thusr means that
there are less infinite sequences which contaithan infinite sequences
which containr.
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With the same intuitive reading, the cover relatior: U means that the
infinite sequences which contairare all among the sequences that contain
at least one of the lists ity. But, in order to define this relation without
any reference to theollection of the infinite sequences, we have to find
suitable axioms for it. Here, we require that the lisis covered by all of
its one-step successors, i.e. the only form of axiom is {c1,00}. Then,
the cover relation can be inductively generated accordintie previous
section since the axiom condition can easily be proved.

It is convenient to summarize the generation rules that vee $i8ppos-
ing o, 7 € 2* andU C 2*, they are

ceU cCTt 7<xU cl<U o0<xU
oaU oaU oaqU

Let us now specialize the definition of formal point to theeca$ the
formal topology on the binary tree. Since this is a gener&ipdlogy we

can use the following definition: a formal point is a non-eynmibset of
2* such that, for any, = € 2*, the following conditions hold:

cea olLT gEQ gEQ TEQ
Tew (Fke2)okea (AMe2)nCo&nCr&nea

In fact, the second condition used here is an immediate qoesee of
axiom completenesshich requires that, supposingis an element of a
point«, an element ifo1, 00} is in a.

Note that the empty listil is an element of any formal point. Moreover,
formal points are subsets whose elements are lists which & infinite
path in the tree. To see this fact, let us begin by statingtaieal lemma.

Lemma 1 Suppose thay, o, 7 are elements &* such thaty C o, n C 7
andlen(o) = len(7), wherelen is the function which computes the length
of a list. Thero = 7.

Corollary 1 Let « be a formal point of the formal topology of the binary
tree. Then, for any natural number, o contains at most one list of length
n.

Proof. Supposes and r are two lists ina of length n; then directness
yields that there exists a ligtsuch that) C o andn C 7 and hence, by the
previous lemma 1g = 7. O

We can also prove that in any point there is a list of any giesgth.
Lemma 2 Leta be a formal point of the formal topology of the binary tree,

then
(Vn € N)(Jo € 2%) (len(o) =N n) & (0 € )
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Proof. The proof is by induction om € N. If n = 0, thennil has the
required properties whereasrif> 0, then, by inductive hypothesis, there
is a listo such thaten(c) = n — 1 ando ¢ «; thenaxiom completeness
yields that there exist8 € 2 such that'k ¢ «, andlen(ck) = n. 0

An immediate consequence of the preceding lemma and thellsal-c
axiom of choice, which holds in Martin-Lof’s type theorg, that, for any
formal pointa, there exists a functiori, € N — 2* that, for any natural
numbern, picks the only listf,(n) in « of lengthn.

3 Main results

This section is devoted to the proof that the collection effibrmal points
of the formal topology on the binary tree can be indexed by.al$ds result
is not new in locale theory (see for instance [Vic89]), butdie theory is
usually developed within topos theory, where the powersastructor is
allowed, while we are here working within Martin-Lof’s tggheory, where
the choice principle is justified, and it is well known that thvo approaches
are not compatible from a constructive point of view sinagwrell known
Diaconescu’s argument would yield classical logic (see pdy. We will
prove here, within type theory, the correspondence betweeifollowing
collections:

1. The collection of the formal points of the formal topolagfithe binary
tree;

2. The collection of the functiong : N — 2* such thatlen(f(n)) = n
and, foranyn € N, f(n+1) C f(n);

3. The set of the functions from natural numbers i&to

Indeed, the first collection is not a set since it cannot beigtidely
defined because formal points are subsets defined only bif\dpgdheir
properties and the second collection is only the projeatioa set.

After Lemma 2, we already know that, given any formal pairf the
formal topology of the binary tree, there exists a functipne N — 2*
which, for any natural number, yields the only listf,(n) in « of length
n, so thatf,(n + 1) C f4(n).

Moreover, it is obvious that given any functigh: N — 2* we can
obtain a functionF’y : N — 2 by setting

Fy(n) = f(n+1)[n]

whereo|n] is then-th element of the list.
Consider now any functiot¥ € N — 2. Then we obtain a formal point
of the topology of the binary tree by setting

ag={oc €2 (Vz eN) (x <len(o)) — o[x] =2 G(z)}
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In fact, the following lemma holds.

Lemma 3LetG € N — 2. Thenag is a formal point of the formal topol-
ogy of the binary tree.

Proof. We have to check that the four required conditions holddet
The proof of most of them is straightforward. We show herey @diom
completeness. Supposes ag, i.e. (Vz < len(0)) o[z] =2 G(z); then we
obtain that(Vz < len(o - G(len(0))) o - G(len(0))[z] =2 G(x) and hence
o-G(len(0)) € ag; thus(3k € 2) ok ¢ ag. O

We can now prove that the relevant constructions are invergach
other.

Lemma 4 Let 5 be a formal point of the formal topology of the binary tree.
Thenapfﬁ = 0.

Proof. We know thato ¢ aFy, if and only if (Vz € N) (z < len(0)) —
olz] =2 Fy,(z), thatis,(Vz € N) (x < len(0)) — olz] =2 fa(x + 1)[x],
which means that = f3(len(0)), since two lists are equal if and only if
they coincide on all their components; there 3, since fg(len(o)) € 5.
On the other hand, i € 3, theno = f3(len(o)) and hencer ¢ ap,. O

Lemma5LetG € N — 2. Then, foranyr € N, F,  (n) = G(n).

Proof. The proof consists just in unfolding the definitions;, . (n) =
fag(n+1)[n] = G(n) =

Note that this lemma is sufficient to state tHgt, . = G only if we
are working within the extensional version of Martin-L§pe theory (see
[NPS90)).

4 A formal topology for the real numbers

The results of the previous section can easily be genedalizéhe formal
topology of any tree such that the immediate successorsydbi@mch are
determined only by the branch itself, that is, the formalotogy of the
generic computable treén fact, letA be any set and consider the gitof
the finite list of elements ial. Then, it is immediate to generalize the order
relationC that we introduced in section 2 to elementsddt Now, consider
the formal topology inductively generated by using, for $syo € A*,
the axiom

o < F(o)
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whereF(o) = {oay,...,0ay,...} for some subsefa,,...,a,,...} of A
which in general can depend efl. Then, given any formal point of such
a formal topology we can obtain as in section 3 a functign: N — A

such that
niI fa(0) € F(nil)

fa(0)fa(1) & F(nil - £(0))
( )fa(1)fa(2) € F(fa(0) fa(1))

that is, a functionfa which stays inside the axiomMoreover, the results
analogous to Lemma 1 and Lemma 2 can be proved and hence asliah
element in the formal point if and only if there exists a natural number
such that = f,(0)... fa(n — 1) fa(n).

Also the converse direction can be proved, that is, givensaitable
function fromN into A it is possible to determine a formal point of the
formal topology of the generic computable tree. The new lerobis that
we cannot use all of the functions M — A but only those functiong’
which stay inside the axioms of the formal topology. Note thahe case
of the formal topology of the binary tree this condition wagamatically
satisfied since the subset considered for an axiom was alivaysll set2.

Thus we define

ar={f(0)... f(n) € A" n €N}

and we obtain a formal point. It is clear that the collectidrtte formal
points of the formal topology of the generic computable tae be indexed
by the elements of the set of the functions fréhto A which stay inside
the axioms.

We can apply this result to a formal topology whose formahfoare
the real numbers. Writ€@ for the set of the rational numbers. Then we
can generate a formal topology @h x Q by using the following axioms
[Neg96]:

(1) (p,q) < {(p,7),(s,q)} provideds < r
(2) (p,@) < {(r,s)| p <rands < g}

Of course, this is not a formal topology on a set of lists anttkeve cannot
directly apply our results on the possibility of indexingimgans of a set to
the collection of its formal points. Nonetheless, we camiban equivalent

4 This definition can be easily formalized within type thedrgt U (o) be the subset of
A that we are considering, that i5, is a propositional function with arguments 41 and
A, then the subsdf' (o) of A* is the propositional functio(n : A*)(3u e U(o)) n = ou.

5 Note however that the correspondence is only onto and netmpee since two ele-
ments of such a set can be different even if they are obtanoed the same function from
N to A but with different proofs that it satisfies the condition efiiig inside the axioms.
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topology on a set of lists. Indeed, consider thelsst{ Q x Q); its elements
are lists such that the ligi1,q1) ... (pn,gn) can be used to denote the
interval of rational numberémax{p;| 1 < i < n},min{g;| 1 < j < n})
that is, the intersection of all the intervels, ¢1), - .., (Pn, gn)-

The next problem is that given any list, that is, any “intétvhie axioms
that we need according to the previous definition of the wgpplof the
real numbers are still too many. In fact, our result appliely evhen the
generated topology has exactly one axiom for each elemé&mtifQ x Q).
But we can indeed redude) and(2) to a single axiom by only requiring:

(3) (p,q) < {(r,s)| p < rands < gand|s — r| < 2}

for any (p,q) € Q x Q. The idea standing behin@) is that in order to
cover the intervalp, ¢), we do not need all subinterval gf, ¢) but only the
considerably shorter ones. In this way, we force a formahtp choose
where to stay within the intervap, ¢), which was the purpose of axioft)
above. This intuitive explanation is reflected from a techhpoint of view

in the fact that it is now possible to show th&!) is valid in the previous
formal topology of the real numbers and that in the formabtogy over
Q x Q generated by using onl{3) the axioms(1) and(2) are provable.

It is easy to adapt axiom$) to the case of the formal topology on the

setList(Q x Q). Indeed they become

(1, 1) - - (Pns an) < {(p1, 1) - - (Pns @n) (Prt1, Gnt1) € List(Q x Q)

H |m|n1<'< q;—MmMaxXy<;< pl|
Imini<i<nt1¢i — Maxi<i<nt1Pi| < S Rl

In this way we can generate a formal topology on a set of listh $hat its
formal points, that is, the real numbers, can be indexed ley.a s

5 A formal topology for the recursively enumerable subsetsfolN.

Toillustrate by another example how to apply the methoduwleadeveloped
in the previous sections, let us introduce the formal togyplof the recur-
sively enumerable subsets of the natural numbers and thefdopology
of the recursive subsets of the natural numbers.

First we extend the séi of the natural numbers to a new Sét by
adding the new element Then, we say that a subdétof N is recursively
enumerabléf there is a functionf : N — N, such thaty = Im[f] \ {x},
wherelm[f] is the image of the functiofi. The need for the extension from
N to N, should be clear: it is necessary in order to have the emptyesub
among the recursively enumerable subsets. In a similar waywill say
that a subsel/ of N is recursiveif it is the image of arincreasingfunction
f N — N4, that is, a function such that, for anyy € N, if z < y, then
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f(z) <t f(y), where<™ is the extension of the usual order relatian
between natural numbers to the elementhl ofsuch that, for any: € N,
x <t x

We can index the colletion of finite subsetshf by the elements of
the setN’, of the lists of elements if, neglecting the problem of identi-
fying lists which differ by the order or the repetitions oéthelements (see
[Mai99] and [Val00] for an analysis of the problem of extemgliMartin-
Lof type theory with extensional set constructors like tiprt sets). Also
the collection of finite subsets &f can be indexed by such lists since the
occurrences of within a list are effectively recognizable. In this vein, we
may set, for any: € N ando € N* ,

neo=(3dreN)z<len(o) &n =N, o]

Now, let us introduce the family of axioms that we will use &ngr-
ate a formal topology ovel’; whose points correspond to the recursively
enumerable subsets Nf Our only axiom, for anyr € N* | is

o <{r €N} | (3k € Ny) 7 =n; ok}

We can associate with any formal pointof this formal topology a
function f, : N — N, in a way completely analogous to what we did in
section 3, that is, the functiofy, is such that, it € «, theno - f,(len(0)) is
the only list of lengthen(c) + 1 which is contained irv. Moreover, given
any functionf : N — N, we obtain a formal point by setting

ar={o e N[ (VEEN) (k <len(0)) — olk] =n. f(k)}

Finally, it is obvious that the correspondence betweentfons and formal
points is one-to-one.

Now, given a formal pointy of this formal topology, we can obtain a
subset ol by setting:

Uyo={neN|(Foeca)neo}

andU,, is recursively enumerable since we have thiat= Im[f,] \ {x}.
On the other hand, for any recursively enumerable suliset S, we
can define a formal point by setting

ay = Qg

wheref; is a function fromN into N which shows that/ is a recursively
enumerable subset dF.

In a similar way one can obtain a formal topology whose forpahts
correspond to the recursive subsets of the natural numbengiuses the
set of the increasing sequences of elements ofnstead ofN*, .
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6 Formal points do not always form a set

After the previous examples it is possible to begin to wondeether the
collection of the formal points of a (generated) formal togy can always
be indexed by a set. The answer is negative as this exampleieyryr
Coquand shows (see [CSSV]).

Let us consider thel-formal topology defined on the sty using the
usual order relation and by setting, for anyg 2 and anyU C 2,

a<U=(Fuel)a<u

It is not difficult to check that a subsetof 2 is a formal point of this
formal topology if and only ifl ¢ « and, whenevet ¢ « anda < b, then
alsob ¢ «a. Thus, for any closed propositiofy, vy = {z € 2| AV(x =2 1)}
is a point.

Now, note thatv4 = ap if and only if A <» B. Thus, there is a one-to-
one correspondence between the collection of formal pointisis formal
topology and the collection of the closed propositions aose we can as-
sociate to any formal point the closed propositiod,, = 0 ¢ « and in this
way we obtain thatr = a4,,. But then if we could index by a set the col-
lection of the formal points of this formal topology we cowld well index
by a set the collection of all the closed propositions and itat expected
that such a collection can be indexed by any set.

7 Conclusion

The results of the previous sections show that the collecifathe formal
points of the formal topology on the binary tree can be indelxg a set.
This seems not agree with the intuition which would refuseittea that
such a collection is a set since it roughly corresponds tattlection of
the real numbers betwe@nand1. It is clear that this situation arises from
theaxiom completenesondition on formal points, i.e.
ae o
(Jce Fla))ce
because the constructive meaning of the existential dieriti the conclu-
sion allows (and forces) to obtain a function frddrinto 2.
A possible way out is then to change this condition into thakee

ace o

—=(Jce F(a)) ce a

which suggests to change tbempletenessondition in the very definition
of formal point by setting

(weak axiom completeness)

€ QU
(weak completeness) aco a

——(FuelU)uea
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In this way one only knows that it is not the case that all tl@madnts in
U are not in the neighborhood filter of the formal pointbut one has no
possibility to know which element is really im and hence it becomes not
possible to construct the function frakhinto 2 associated wita.

In the following we will callweak pointany subset which satisfie®n-
emptinessup-closure directnessand this weaker form afompleteness

We show now that the collection of weak points cannot be inddyy a
set. In order to prove this result, let us first recall thatlasstilU of the set
of the natural numbers is callesableif ——U C U, that is, for allz € N,
——(z e U) — (x € U). Then, it is possible to prove that the collection
of the stable subsets of the set of the natural numbers is s@it én fact,
it is possible to adapt to such a collection the standardfptiwat if the
collection of all the subsets df is a set and the axiom of choice holds,
then any propositioM is decidable, that isd vV = A holds (see [MV99]).
Indeed, the same proof can be adapted to any colle&iohsubsets such
that the union of a subset ifi with a decidable subset is an elementSof
where a subsét is decidable if forany: € N, (x ¢ U) V =(x € U) holds.
Now, the union of a stable subset with a decidable one isestidi thus,
supposing the collection of stable subsets to form a setuldvwe possible
to prove that every stable subset is decidable, which isooe texpecteti

Now we can show that there are at least as many weak pointsrasmeis
in the collection of the stable subsets of natural numbeencH if a set
could be used to index the collection of weak points then driks gubsets
could be used to index the collection of stable subsets.

Indeed, given any subsgt of N, we can define a weak point by setting

ay ={o € 2*| (Vz < len(0)) (clx] =2 1) < (z e U)}
In fact, the following lemma holds.
Lemma 6 For any subset/ C N, oy is a weak point.

Proof. Non-emptinesand up-closureare immediate andirectnessholds
because, supposingandr are two lists inag;, then one is an initial seg-
ment of the other.

To proveweak axiom completenesassume that ¢ oy and let us
suppose thatvk € 2) —~(ok € ay). Then, by setting firsk = 1 and then
k = 0, we obtain both~(Vz < len(c) 4+ 1) (ol[z] = 1) < (x ¢ U) and
—(Vx <len(c) +1) (00[z] = 1) <> (x € U) which, together withr ¢ oy,
yield—=(1 =1« len(o)+1c U)and—(0 =1« len(c)+1 e U). Hence
=(len(c) +1 ¢ U) and——(len(c) + 1 £ U) follow by intuitionistic logic,

5 Suppose that! is any proposition such that its negation is not decidabie suppose
—AV —-—-A does not hold, and defiiés = {x € N| =A}. Thenz ¢ U4 if and only if = A
holds and henc¥ 4 is a stable subset which is not decidable.
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that is, we found a contradiction. Thus we g€tk € 2) =(ck € ay), i.e.
—-—(Jk € 2) ok ¢ ay. O

Note that, if the subsdt is decidable, then the definition af; above
coincides with the one we gave in section 3. In fact, a subsef N is
decidable if and only if there exists a functiegn; € N — 2 such that
(Vx € N) (e U) < (¢p(x) =2 1) (see [Val9g]).

On the other hand, given any weak formal peirwe can obtain a subset
of N by setting

Uy={neN|(Voea)(n<len(o)) — oln] =21}
Then, we can prove the following theorem.

Theorem 4For any subsel’ C N, V C U,,, € ——=V. Hence, for any
stable subseV’ C N,V = U,,,.

Proof. The second statement is an immediate consequence of thanfist
of the definition of stable subset. Thus, let us prove the. firstn € N,
thenn ¢ U,,, ifand only if (Vo € ay) (n < len(o)) — o[n] =2 1 that s,

if and only if

(Vo € 2%)
(Vz < len(0)) (o[z] =2 1) « (zeV)) & (n < len(0))) — o[n] =2 1

Let us suppose now thate V' and consider any list € 2* such that
(Vx < len(0)) (o[z] =2 1) <> (x ¢ V) andn < len(o); theno[n] =2 1
and hencex ¢ U,,, . To prove the second inclusion, suppose thatU,,,,
and consider all the lists whose length i + 1 and whose last component
is 0. Then, by means of some intuitionistic logic, for each ofth&e can
prove that

—(Vz < len(0)) (c[x] =21) < (zeV)

since—(0 = 1). Hence, by using again a little of intuitionistic logic, fany
such listo we can obtain a proof of the senter€g = - (4 & ... & Ay)
whereA; isi e V or —=(i ¢ V) according to the fact that in theth position
in the listo there isl or 0. Thus, by using all together the sentencgs we
can finally prove that—(n e V). O

Corollary 2 LetV; andV; be stable subsets & Then, ifay, = ay,, then
Vi="Vs.

Proof. If ay; = ayy,, thenUOéV1 = Uay, and hence the previous theorem
yieldsV; = V4 sincelV; andV; are supposed to be stable subsets. O

Hence we proved that there are at least as many weak pointalds s
subsets.
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At present it is not clear if the solution to use weak pointsteéad of
points is acceptable from the point of view of a formal depetent of
topology or if it is too weak. For instance, we know that acing to the
standard definition of formal point it is not possible to obtdoe traditional
order completeness property for the real numbers, sinceawe too few
points, while this result is a consequence of the use of ttekwemplete-
ness condition (see [Neg96]). This fact seems to suggesiaioge the def-
inition of formal point. On the other hand, as the refereéheffirst version
of this paper pointed out, one can consider the lack of thesial order
completeness more like a peculiarity of constructive aialyhan like a
defect. Hence, no definite choice should be made before er lettnpre-
hension of the situation will be achieved.
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