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Abstract Formal topology is today an established topic in the develop-
ment of constructive mathematics and constructive proofs for many classi-
cal results of general topology have been obtained by using this approach.
Here we analyze one of the main concepts in formal topology, namely, the
notion of formal point. We will contrast two classically equivalent defini-
tions of formal points and we will see that from a constructive point of
view they are completely different. Indeed, according to the first definition
the formal points of the formal topology of the real numbers can be indexed
by a set whereas this is not possible according to the second one.

1 Basic definitions

In this section the basic definitions of formal topology willbe quickly
recalled. Anyhow, the reader interested in having more details on formal
topology is invited to look at [CSSV].

1.1 Concrete topological spaces

The classical definition of topological space reads as follows: (X,Ω(X))
is a topological space ifX is a set andΩ(X) is a subset ofP(X) which
satisfies:

(Ω1) ∅,X ∈ Ω(X);
(Ω2) Ω(X) is closed under finite intersection;
(Ω3) Ω(X) is closed under arbitrary union.
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Usually, elements ofX are calledpointsand elements ofΩ(X) are called
opens.

The quantification implicitly used in(Ω3) is of the third order, since it
says

(∀F ∈ P(P(X))) (F ⊆ Ω(X) →
⋃

F ∈ Ω(X))

We can “go down” one step by thinking ofΩ(X) as a family of subsets
indexed by a setS through a mapext : S → P(X), that is, a binary
relation betweenS andX. In fact, we can now quantify onS rather than
onΩ(X). But we still have to say

(∀U ∈ P(S))(∃c ∈ S) (∪aεUext(a) = ext(c))

which is still impredicative1.
We can “go down” another step by defining opens to be of the form

Ext(U) ≡ ∪aεUext(a) for an arbitrary subsetU of S. In this way∅ is
open, becauseExt(∅) = ∅, and closure under union is automatic, because
obviously∪i∈IExt(Ui) = Ext(∪i∈IUi). So, all we have to do is to require
thatExt(S) be the wholeX, that is,

(B1) X = Ext(S)

and that closure under finite intersections holds, that is,

(B2) (∀a, b ∈ S)(∀x ∈ X) ((x ε ext(a) ∩ ext(b)) →
(∃c ∈ S) (x ε ext(c) & ext(c) ⊆ ext(a) & ext(c) ⊆ ext(b)))

It is not difficult to realize that this amounts to the standard definition saying
that {ext(a) ⊆ X| a ∈ S} is a base (see for instance [Eng77]). We can
make (B2) a bit shorter by introducing an abbreviation, that is

a ↓ b ≡ {c : S| ext(c) ⊆ ext(a) & ext(c) ⊆ ext(b)}

so that it becomes(∀a, b ∈ S) ext(a) ∩ ext(b) ⊆ Ext(a ↓ b).
Note thatc ε a ↓ b implies thatext(c) ⊆ ext(a) ∩ ext(b), and hence

Ext(a ↓ b) ≡ ∪c ε a↓bext(c) ⊆ ext(a) ∩ ext(b). Then the definition of
concrete topological space can be rewritten as follows:

Definition 1 Aconcrete topological spaceis a tripleX ≡ (X,S, ext) where
X andS are sets andext is a binary relation fromS to X satisfying:

(B1) X = Ext(S)

(B2) (∀a, b ∈ S) ext(a) ∩ ext(b) = Ext(a ↓ b)

1 All the set-theoretical notions that we use are conform to the subset theory for Martin-
Löf’s type theory as presented in [SV98]. In particular, wewill use the symbol∈ for the
membership relation between an element and a set or a collection andε for the membership
relation between an element and a subset, which is never a setbut a propositional function.
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1.2 Formal topologies

The notion of formal topology arises by describing as well aspossible the
structure induced by a concrete topological space on theformal side, that
is the side of the setS of the names, and then by taking the result as an
axiomatic definition. The reason for such a move is that the definition of
concrete topological space is too restrictive, given that the most interesting
cases of topological space do not have, from a predicative point of view2,
a setof points to start with, and in the definition of concrete topological
space we have to require thatX andS are sets in order to be able to give a
constructive meaning to the quantifications in(B1) and(B2).

The problem how to identify the open sets on the formal side iseasily
solved. Since the elements inS are names for basic opens of the topology
on X, then we can obtain theirextension, that is the concrete basic open,
by using the operatorext. Now, any open set is the union of basic opens
and hence it can be specified on the formal side by using the subset of all
the (names of the) basic opens which are used to form it. It is easy to check
that, provided the conditions(B1) and(B2) are satisfied, in this way, we
really obtain a topology on the setX.

From a topological point of view an open subset ofX is characterized
by the property of being the union of all the basic opens that it contains or,
equivalently, to coincide with its interiorInt(A), where, for anyA ⊆ X,

Int(A) ≡ {x ∈ X| (∃a ∈ S) x ε ext(a) & ext(a) ⊆ A}

Of course, for anyA ⊆ X, Int(A) ⊆ A and thus a subsetA is open if and
only if A ⊆ Int(A).

Theorem 1LetA ⊆ X. ThenA is an open subset if and only if there exists
a subsetU of S such thatA = Ext(U).

Proof. Let A be an open subset ofX and consider the subsetU ≡ {a ∈
S| ext(a) ⊆ A}. ThenA = Ext(U). On the other hand, letU be any
subset ofS and suppose thatx ε Ext(U); then there existsa ∈ S such that
a ε U andx ε ext(a); but the former yieldsext(a) ⊆ Ext(U) and hence
x ε Int(Ext(U)), that is,Ext(U) is open. 2

The proof of the previous theorem shows how to find, for any given
open subsetA of X, a suitable subsetU of S such thatA andExt(U) are
extensionally equal; we chose thebiggestamong the possible subsets, that
is, the one which containsall of the suitable basic opens. It is clear that in
general this is not the only choice and that it is well possible that two differ-
ent subsets ofS have the same extension. Thus we don’t have a one-to-one

2 Here we commit ourselves to Martin-Löf’s constructive settheory [ML84]; hence we
distinguish between sets, which can be inductively generated, and collections.
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correspondence between concrete opens and subsets ofS and we need to
introduce an equivalence relation on the formal side which identifies the
subsetsU andV whenExt(U) = Ext(V ). Of course, within a construc-
tive set theory, we cannot introduce such a relation among subsets since the
collection of the subsets of a set is not a set, but we can simplify a bit the
problem if we realize that the following theorem holds.

Theorem 2Let U and V be subsets ofS. ThenExt(U) = Ext(V ) if and
only if (∀a ∈ S) ext(a) ⊆ Ext(U) ↔ ext(a) ⊆ Ext(V ).

Thus, we need just to introduce, on the formal side, a new relation ⊳

between elements and subsets ofS such that

a ⊳ U ≡ ext(a) ⊆ Ext(U)

In fact, after the previous theorem, we can define an equivalence relation
between the subsets ofS by setting

U =⊳ V ≡ (∀a ∈ S) a ⊳ U ↔ a ⊳ V

and it is immediately possible to prove the following theorem.

Theorem 3LetU andV be two subsets ofS. ThenU =⊳ V if and only if
Ext(U) = Ext(V ).

Now, in order to obtain a one-to-one correspondence betweenformal
and concrete open subsets, we could simply state that a formal open is an
equivalence class of the relation=⊳. But, to avoid dealing with collections
of collections of subsets, we simply choose the “fullest” among the repre-
sentative of an equivalence class by setting

⊳(U) ≡ {a ∈ S| a ⊳ U}

and say that aformal openis any subset⊳ (U) for some subsetU . Now,
Ext(U) = Ext(V ) if and only if ⊳ (U) =⊳ (V ). Moreover it is possible
to prove that⊳(U) is a good representative of the equivalence class of the
subsetU because⊳(U) =⊳ U , i.e.⊳(⊳(U)) =⊳(U). In fact, it is easy to
check that the following two conditions on⊳ are valid and hence we can
assume them like axiomatic conditions on the formal side. They are, first,

(reflexivity)
a ε U

a ⊳ U

which holds since ifa ε U , thenext(a) ⊆ Ext(U), and, secondly,

(transitivity)
a ⊳ U U ⊳ V

a ⊳ V
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whereU ⊳ V is a shorthand for a derivation ofu ⊳ V under the assump-
tion thatu ε U . The validity of transitivity is straightforward because the
first assumption means thatext(a) ⊆ Ext(U) and the second yields that
Ext(U) ⊆ Ext(V ).

We can re-writereflexivityandtransitivity by using a set-theoretical no-
tation

(reflexivity) U ⊆⊳(U) (transitivity)
U ⊆⊳(V )

⊳(U) ⊆⊳(V )

and hence we obtain both⊳(U) ⊆⊳(⊳(U)) by usingreflexivityand also
⊳(⊳(U)) ⊆⊳(U) as a consequence oftransitivity.

Thus we found a relation, that is,⊳, and some conditions on it, that is,
reflexivityandtransitivity, which allow to deal on the formal sides with con-
crete open subsets. But these conditions are not sufficient to describe com-
pletely the concrete situation; for instance there are no conditions which
formally describe the conditions(B1) and(B2).

To formulate (B2) completely on the formal side let us first writeU ↓ V

to mean the subset{c ∈ S| (∃u ε U) c ⊳ u &(∃v ε V ) c ⊳ v}. Then,
supposingext(a) ⊆ Ext(U) andext(a) ⊆ Ext(V ), we immediately obtain
ext(a) ⊆ Ext(U)∩Ext(V ) and henceext(a) ⊆ Ext(U ↓ V ) since it is easy
to prove thatExt(U) ∩ Ext(V ) ⊆ Ext(U ↓ V ). Its formal counterpart is

(↓-right)
a ⊳ U a ⊳ V

a ⊳ U ↓ V

We thus arrived at the main definition3.

Definition 2 A formal topologyis a coupleA ≡ (S,⊳) whereS is a set,⊳
is an infinitary relation, calledcoverrelation, between elements and subsets
of S satisfying the following conditions:

(reflexivity)
a ε U

a ⊳ U

(transitivity)
a ⊳ U U ⊳ V

a ⊳ V

(↓-right)
a ⊳ U a ⊳ V

a ⊳ U ↓ V

3 The reader which knows formal topology will notice that we avoided to deal with the
positivity predicate; we chose this approach for the sake ofsimplicity.
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1.3 Inductive generation of formal topologies

One of the main tools in formal topology is inductive generation of the
cover relation since this allows to develop proofs by induction. The problem
of inductively generated formal topologies has been completely solved and
the reader can look in [CSSV] and [Val99] for a detailed discussion of the
problems that an inductive generation of formal topologiesrequires to solve
and for their solutions. We will recall here, without any proofs, only the
results that we will use in the next sections.

The conditions appearing in the definition of formal topology, though
written in the shape of rules, must be understood as requirements of valid-
ity: if the premises hold, also the conclusion must hold. As they stand, they
are by no means acceptable rules to generate inductively a cover relation.

An inductive definition of a cover will start from some axioms, which
at the moment we assume to be given by means of any relationR(a,U)
for a ∈ S andU ⊆ S. We thus want to generate the least cover⊳R which
satisfies the following condition:

(axioms)
R(a,U)

a ⊳R U

From an impredicative point of view,⊳R is easily obtained “from above”
simply as the intersection of the collectionCR of all the reflexive, transitive
infinitary relations containingR. In fact, it is clear that the total relation is
in CR and that the intersection preserves all such conditions.

Predicatively the method of defining⊳R as the intersection ofCR is not
acceptable, since there is no way of producingCR above as a set-indexed
family and hence to define its intersection.

Therefore, we must obtain⊳R “from below” by means of some intro-
ductory rules. The first naive idea is that of using axioms,reflexivity and
transitivity for this purpose. But then a problem emerges: in the premises
of transitivity there is a subset which does not appear in the conclusion.
This means that the tree of possible premises to conclude that a ⊳R U has
an unbounded branching: each subsetV satisfyinga ⊳R V andV ⊳R U

would be enough to obtaina ⊳R U , and there is no way to survey them all.
Also, a dangerous vicious circle seems to be present: the subsetV , whose
existence would be enough to obtaina ⊳R U , could be defined by means
of the relation⊳R itself which we are trying to construct.

This is the reason why we have to put some constraints on the infinitary
relationR(a,U). Thus, we are going to generate a cover relation only when
we have anaxiom set, that is a set-indexed familyI(a) set [a : S] and an
indexed familyC(a, i) ⊆ S [a : S, i : I(a)] of subsets ofS, whose intended
meaning is to state that, for alli ∈ I(a), a ⊳ C(a, i). Then, an infinitary
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relationR(a,U) is safe if

R(a,U) ≡ (∃i ∈ I(a)) C(a, i) ⊆ U

In fact, in this case we can generate the cover relation whichsatisfiesre-
flexivityandtransitivity by using the following rules

(reflexivity)
a ε U

a ⊳ U
and (⊳-infinity)

i ∈ I(a) C(a, i) ⊳ U

a ⊳ U

In this way any reference to the subsetV disappeared and the implicit use
of an existential quantification on the collectionP(S) is transformed into
an existential quantification on the elements of the setI(a).

We can now extend the previous rules into new ones which allowto
generate a cover relation which satisfies also↓-right. To this aim, we must
add, to those of a formal topology, an extra primitive expressing what in
the concrete case isext(a) ⊆ ext(b). We can obtain this by adding directly
a pre-order relationa ≤ b among names. Thus we obtain the following
definition.

Definition 3 A ≤-formal topologyis a triple (S,≤,⊳) whereS is a set,≤
is a pre-order relation overS, that is≤ is reflexive and transitive, and⊳
is a relation between elements and subsets ofS which satisfiesreflexivity,
transitivity and the two following conditions

(≤-left)
a ≤ b b ⊳ U

a ⊳ U
(≤-right)

a ⊳ U a ⊳ V

a ⊳↓U∩ ↓V

where↓U ≡ {c : S| (∃u ε U) c ≤ u}.

It is straightforward to verify that the new conditions are valid in any
concrete topological space under the intended interpretation. And only a
little more work is required to prove that any≤-formal topology is a formal
topology. The converse is trivial: given any formal topology (S,⊳), we
can definea ≤ b asa ⊳ {b} and we obtain a≤-formal topology with the
original one as a cover relation. Thus all we need is to be ableto inductively
generate a≤-formal topology.

We will say that an axiom setI andC satisfies theaxiom conditionif,
wheneverc ≤ a and a ⊳ C(a, i) for somei ∈ I(a), then there exists
j ∈ I(c) such that(∀x ε C(c, j))(∃y ε C(a, i)) x ≤ c & x ≤ y. The
axiom condition states that, wheneverext(c) ⊆ ext(a) and, for some axiom
index i ∈ I, ext(a) ⊆ Ext(C(a, i)), then, by distributivity, a set, covering
ext(c), can be built by collecting all the open subsets ofext(c)∩ ext(y) for
y ∈ C(a, i).

In [CSSV] it is proved that, given any axiom set, we can alwaysbuild
a new axiom set which satisfies the axiom condition, and that,if the axiom
condition is satisfied, a cover relation can be inductively generated by using
reflexivity, ≤-left and⊳-infinity.
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1.4 Formal points

When working in formal topology one is in general interestedin the prop-
erties of a topological space(X,Ω(X)) which make no reference to the
points. Thus one dispenses with the collectionX and it is possible to work
by using only the set of the names for the basic opens. But thisdoes not
mean that points are out of reach. In fact, we can identify a point with the
filter of all the basic opens which, in the concrete case, contain it.

Definition 4 Let (S,≤,⊳) be a≤-formal topology. Then aformal pointis
any non-empty subsetα of S which, for anya, c ∈ S and anyU ⊆ S,
satisfies the following conditions:

(up-closure)
a ε α a ≤ c

c ε α

(completeness)
a ε α a ⊳ U

(∃u ε U) u ε α

(directness)
a ε α c ε α

(∃b ∈ S) b ≤ a & b ≤ c & b ε α

It is easy to show that in the case of a generated formal topology one
can simplify thecompletenesscondition by requiring that it holds only for
the axioms, that is:

(axiom completeness)
a ε α i ∈ I(a)

(∃x ε C(a, i)) x ε α

2 The formal topology of the binary tree

In this section we are going to deal with the formal topology of the binary
tree. This is a very simple generated formal topology; indeed, it can be
generated by using, for any basic open, one single axiom. Thus we will
write a ⊳ F (a) to mean the only axiom which states that the elementa is
covered by the subsetF (a).

To define the formal topology of the binary tree we will use theset
22∗ of the finite lists of elements of the set22 ≡ {0, 1}. We obtain a⊑-
formal topology from the set22∗ by using the order relation⊑ such that,
for any σ, τ ∈ 22∗, σ ⊑ τ holds if and only ifτ is an initial segment of
σ. The intended meaning of this order relation can be understood if one
thinks of a list as apartial information on an infinite sequence (see also
[Vic89]); hence a longer list is a more precise information on the sequence
and there are less infinite sequences containing it. Thusσ ⊑ τ means that
there are less infinite sequences which containσ than infinite sequences
which containτ .
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With the same intuitive reading, the cover relationσ ⊳ U means that the
infinite sequences which containσ are all among the sequences that contain
at least one of the lists inU . But, in order to define this relation without
any reference to thecollection of the infinite sequences, we have to find
suitable axioms for it. Here, we require that the listσ is covered by all of
its one-step successors, i.e. the only form of axiom isσ ⊳ {σ1, σ0}. Then,
the cover relation can be inductively generated according to the previous
section since the axiom condition can easily be proved.

It is convenient to summarize the generation rules that we use. Suppos-
ing σ, τ ∈ 22∗ andU ⊆ 22∗, they are

σ ε U

σ ⊳ U

σ ⊑ τ τ ⊳ U

σ ⊳ U

σ1 ⊳ U σ0 ⊳ U

σ ⊳ U

Let us now specialize the definition of formal point to the case of the
formal topology on the binary tree. Since this is a generatedtopology we
can use the following definition: a formal point is a non-empty subsetα of
22∗ such that, for anyσ, τ ∈ 22∗, the following conditions hold:

σ ε α σ ⊑ τ

τ ε α

σ ε α

(∃k ∈ 22) σk ε α

σ ε α τ ε α

(∃η ∈ 22∗) η ⊑ σ & η ⊑ τ & η ε α

In fact, the second condition used here is an immediate consequence of
axiom completenesswhich requires that, supposingσ is an element of a
point α, an element in{σ1, σ0} is in α.

Note that the empty listnil is an element of any formal point. Moreover,
formal points are subsets whose elements are lists which form an infinite
path in the tree. To see this fact, let us begin by stating a technical lemma.

Lemma 1 Suppose thatη, σ, τ are elements of22∗ such thatη ⊑ σ, η ⊑ τ

and len(σ) = len(τ), wherelen is the function which computes the length
of a list. Thenσ = τ .

Corollary 1 Let α be a formal point of the formal topology of the binary
tree. Then, for any natural numbern, α contains at most one list of length
n.

Proof. Supposeσ and τ are two lists inα of length n; then directness
yields that there exists a listη such thatη ⊑ σ andη ⊑ τ and hence, by the
previous lemma 1,σ = τ . 2

We can also prove that in any point there is a list of any given length.

Lemma 2 Letα be a formal point of the formal topology of the binary tree,
then

(∀n ∈ N)(∃σ ∈ 22∗) (len(σ) =N n) & (σ ε α)
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Proof. The proof is by induction onn ∈ N. If n = 0, thennil has the
required properties whereas ifn > 0, then, by inductive hypothesis, there
is a listσ such thatlen(σ) = n − 1 andσ ε α; thenaxiom completeness
yields that there existsk ∈ 22 such thatσk ε α, andlen(σk) = n. 2

An immediate consequence of the preceding lemma and the so-called
axiom of choice, which holds in Martin-Löf’s type theory, is that, for any
formal pointα, there exists a functionfα ∈ N → 22∗ that, for any natural
numbern, picks the only listfα(n) in α of lengthn.

3 Main results

This section is devoted to the proof that the collection of the formal points
of the formal topology on the binary tree can be indexed by a set. This result
is not new in locale theory (see for instance [Vic89]), but locale theory is
usually developed within topos theory, where the power-setconstructor is
allowed, while we are here working within Martin-Löf’s type theory, where
the choice principle is justified, and it is well known that the two approaches
are not compatible from a constructive point of view since the well known
Diaconescu’s argument would yield classical logic (see [MV99]). We will
prove here, within type theory, the correspondence betweenthe following
collections:

1. The collection of the formal points of the formal topologyof the binary
tree;

2. The collection of the functionsf : N → 22∗ such that,len(f(n)) = n

and, for anyn ∈ N, f(n + 1) ⊑ f(n);
3. The set of the functions from natural numbers into22.

Indeed, the first collection is not a set since it cannot be inductively
defined because formal points are subsets defined only by specifying their
properties and the second collection is only the projectionof a set.

After Lemma 2, we already know that, given any formal pointα of the
formal topology of the binary tree, there exists a functionfα ∈ N → 22∗

which, for any natural numbern, yields the only listfα(n) in α of length
n, so thatfα(n + 1) ⊑ fα(n).

Moreover, it is obvious that given any functionf : N → 22∗ we can
obtain a functionFf : N → 22 by setting

Ff (n) ≡ f(n + 1)[n]

whereσ[n] is then-th element of the listσ.
Consider now any functionG ∈ N → 22. Then we obtain a formal point

of the topology of the binary tree by setting

αG = {σ ∈ 22∗| (∀x ∈ N) (x < len(σ)) → σ[x] =22 G(x)}
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In fact, the following lemma holds.

Lemma 3 LetG ∈ N → 22. ThenαG is a formal point of the formal topol-
ogy of the binary tree.

Proof. We have to check that the four required conditions hold forαG.
The proof of most of them is straightforward. We show here only axiom
completeness. Supposeσ ε αG, i.e.(∀x < len(σ)) σ[x] =22 G(x); then we
obtain that(∀x < len(σ · G(len(σ))) σ · G(len(σ))[x] =22 G(x) and hence
σ · G(len(σ)) ε αG; thus(∃k ∈ 22) σk ε αG. 2

We can now prove that the relevant constructions are inverseto each
other.

Lemma 4 Letβ be a formal point of the formal topology of the binary tree.
ThenαFfβ

= β.

Proof. We know thatσ ε αFfβ
if and only if (∀x ∈ N) (x < len(σ)) →

σ[x] =22 Ffβ
(x), that is,(∀x ∈ N) (x < len(σ)) → σ[x] =22 fβ(x + 1)[x],

which means thatσ = fβ(len(σ)), since two lists are equal if and only if
they coincide on all their components; thenσ ε β, sincefβ(len(σ)) ε β.
On the other hand, ifσ ε β, thenσ = fβ(len(σ)) and henceσ ε αFfβ

. 2

Lemma 5 LetG ∈ N → 22. Then, for anyn ∈ N, FfαG
(n) = G(n).

Proof. The proof consists just in unfolding the definitions:FfαG
(n) =

fαG
(n + 1)[n] = G(n) 2

Note that this lemma is sufficient to state thatFfαG
= G only if we

are working within the extensional version of Martin-Löf type theory (see
[NPS90]).

4 A formal topology for the real numbers

The results of the previous section can easily be generalized to the formal
topology of any tree such that the immediate successors of any branch are
determined only by the branch itself, that is, the formal topology of the
generic computable tree. In fact, letA be any set and consider the setA∗ of
the finite list of elements inA. Then, it is immediate to generalize the order
relation⊑ that we introduced in section 2 to elements ofA∗. Now, consider
the formal topology inductively generated by using, for anylist σ ∈ A∗,
the axiom

σ ⊳ F (σ)
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whereF (σ) ≡ {σa1, . . . , σan, . . .} for some subset{a1, . . . , an, . . .} of A

which in general can depend onσ4. Then, given any formal pointα of such
a formal topology we can obtain as in section 3 a functionfα : N → A

such that
nil · fα(0) ε F (nil)
fα(0)fα(1) ε F (nil · fα(0))
fα(0)fα(1)fα(2) ε F (fα(0)fα(1))
. . .

that is, a functionfα which stays inside the axioms. Moreover, the results
analogous to Lemma 1 and Lemma 2 can be proved and hence a listσ is an
element in the formal pointα if and only if there exists a natural numbern

such thatσ = fα(0) . . . fα(n − 1)fα(n).
Also the converse direction can be proved, that is, given anysuitable

function fromN into A it is possible to determine a formal point of the
formal topology of the generic computable tree. The new problem is that
we cannot use all of the functions inN → A but only those functionsf
which stay inside the axioms of the formal topology. Note that in the case
of the formal topology of the binary tree this condition was automatically
satisfied since the subset considered for an axiom was alwaysthe full set22.

Thus we define

αf ≡ {f(0) . . . f(n) ∈ A∗| n ∈ N}

and we obtain a formal point. It is clear that the collection of the formal
points of the formal topology of the generic computable treecan be indexed
by the elements of the set of the functions fromN to A which stay inside
the axioms5.

We can apply this result to a formal topology whose formal points are
the real numbers. WriteQ for the set of the rational numbers. Then we
can generate a formal topology onQ × Q by using the following axioms
[Neg96]:

(1) (p, q) ⊳ {(p, r), (s, q)} provideds < r

(2) (p, q) ⊳ {(r, s)| p < r ands < q}

Of course, this is not a formal topology on a set of lists and hence we cannot
directly apply our results on the possibility of indexing bymeans of a set to
the collection of its formal points. Nonetheless, we can obtain an equivalent

4 This definition can be easily formalized within type theory.Let U(σ) be the subset of
A that we are considering, that is,U is a propositional function with arguments inA∗ and
A, then the subsetF (σ) of A∗ is the propositional function(η : A∗)(∃u ε U(σ)) η = σu.

5 Note however that the correspondence is only onto and not one-to-one since two ele-
ments of such a set can be different even if they are obtained from the same function from
N to A but with different proofs that it satisfies the condition of being inside the axioms.
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topology on a set of lists. Indeed, consider the setList(Q×Q); its elements
are lists such that the list(p1, q1) . . . (pn, qn) can be used to denote the
interval of rational numbers(max{pi| 1 ≤ i ≤ n},min{qj | 1 ≤ j ≤ n})
that is, the intersection of all the intervals(p1, q1), . . . ,(pn, qn).

The next problem is that given any list, that is, any “interval”, the axioms
that we need according to the previous definition of the topology of the
real numbers are still too many. In fact, our result applies only when the
generated topology has exactly one axiom for each element inList(Q×Q).
But we can indeed reduce(1) and(2) to a single axiom by only requiring:

(3) (p, q) ⊳ {(r, s)| p < r ands < q and|s − r| <
|q−p|

2
}

for any (p, q) ∈ Q × Q. The idea standing behind(3) is that in order to
cover the interval(p, q), we do not need all subinterval of(p, q) but only the
considerably shorter ones. In this way, we force a formal point to choose
where to stay within the interval(p, q), which was the purpose of axiom(1)
above. This intuitive explanation is reflected from a technical point of view
in the fact that it is now possible to show that(3) is valid in the previous
formal topology of the real numbers and that in the formal topology over
Q×Q generated by using only(3) the axioms(1) and(2) are provable.

It is easy to adapt axioms(3) to the case of the formal topology on the
setList(Q×Q). Indeed they become

(p1, q1) . . . (pn, qn) ⊳ {(p1, q1) . . . (pn, qn)(pn+1, qn+1) ∈ List(Q×Q)|

|min1≤i≤n+1qi − max1≤i≤n+1pi| <
|min1≤i≤nqi−max1≤i≤npi|

2
}

In this way we can generate a formal topology on a set of lists such that its
formal points, that is, the real numbers, can be indexed by a set.

5 A formal topology for the recursively enumerable subsets of N.

To illustrate by another example how to apply the method thatwe developed
in the previous sections, let us introduce the formal topology of the recur-
sively enumerable subsets of the natural numbers and the formal topology
of the recursive subsets of the natural numbers.

First we extend the setN of the natural numbers to a new setN+ by
adding the new element∗. Then, we say that a subsetU of N is recursively
enumerableif there is a functionf : N → N+ such thatU = Im[f ] \ {∗},
whereIm[f ] is the image of the functionf . The need for the extension from
N to N+ should be clear: it is necessary in order to have the empty subset
among the recursively enumerable subsets. In a similar way,we will say
that a subsetU of N is recursiveif it is the image of anincreasingfunction
f : N → N+, that is, a function such that, for anyx, y ∈ N, if x < y, then
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f(x) <+ f(y), where<+ is the extension of the usual order relation<

between natural numbers to the elements ofN+ such that, for anyx ∈ N+,
x <+ ∗.

We can index the colletion of finite subsets ofN+ by the elements of
the setN∗

+ of the lists of elements inN+, neglecting the problem of identi-
fying lists which differ by the order or the repetitions of their elements (see
[Mai99] and [Val00] for an analysis of the problem of extending Martin-
Löf type theory with extensional set constructors like quotient sets). Also
the collection of finite subsets ofN can be indexed by such lists since the
occurrences of∗ within a list are effectively recognizable. In this vein, we
may set, for anyn ∈ N andσ ∈ N

∗
+,

n ε σ ≡ (∃x ∈ N) x < len(σ) & n =N+
σ[x]

Now, let us introduce the family of axioms that we will use to gener-
ate a formal topology overN∗

+ whose points correspond to the recursively
enumerable subsets ofN. Our only axiom, for anyσ ∈ N

∗
+, is

σ ⊳ {τ ∈ N
∗
+| (∃k ∈ N+) τ =N∗

+
σk}

We can associate with any formal pointα of this formal topology a
function fα : N → N+ in a way completely analogous to what we did in
section 3, that is, the functionfα is such that, ifσ ε α, thenσ ·fα(len(σ)) is
the only list of lengthlen(σ) + 1 which is contained inα. Moreover, given
any functionf : N → N+, we obtain a formal point by setting

αf ≡ {σ ∈ N
∗
+| (∀k ∈ N) (k < len(σ)) → σ[k] =N+

f(k)}

Finally, it is obvious that the correspondence between functions and formal
points is one-to-one.

Now, given a formal pointα of this formal topology, we can obtain a
subset ofN by setting:

Uα ≡ {n ∈ N| (∃σ ε α) n ε σ}

andUα is recursively enumerable since we have thatUα = Im[fα] \ {∗}.
On the other hand, for any recursively enumerable subsetU of S, we

can define a formal point by setting

αU ≡ αfU

wherefU is a function fromN into N+ which shows thatU is a recursively
enumerable subset ofN.

In a similar way one can obtain a formal topology whose formalpoints
correspond to the recursive subsets of the natural numbers if one uses the
set of the increasing sequences of elements ofN+ instead ofN∗

+.
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6 Formal points do not always form a set

After the previous examples it is possible to begin to wonderwhether the
collection of the formal points of a (generated) formal topology can always
be indexed by a set. The answer is negative as this example by Thierry
Coquand shows (see [CSSV]).

Let us consider the≤-formal topology defined on the set22 by using the
usual order relation and by setting, for anya ∈ 22 and anyU ⊆ 22,

a ⊳ U ≡ (∃u ε U) a ≤ u

It is not difficult to check that a subsetα of 22 is a formal point of this
formal topology if and only if1 ε α and, whenevera ε α anda ≤ b, then
alsob ε α. Thus, for any closed propositionA, αA ≡ {x ∈ 22|A∨(x =22 1)}
is a point.

Now, note thatαA = αB if and only if A ↔ B. Thus, there is a one-to-
one correspondence between the collection of formal pointsof this formal
topology and the collection of the closed propositions, because we can as-
sociate to any formal pointα the closed propositionAα ≡ 0 ε α and in this
way we obtain thatα = αAα . But then if we could index by a set the col-
lection of the formal points of this formal topology we couldas well index
by a set the collection of all the closed propositions and it is not expected
that such a collection can be indexed by any set.

7 Conclusion

The results of the previous sections show that the collection of the formal
points of the formal topology on the binary tree can be indexed by a set.
This seems not agree with the intuition which would refuse the idea that
such a collection is a set since it roughly corresponds to thecollection of
the real numbers between0 and1. It is clear that this situation arises from
theaxiom completenesscondition on formal points, i.e.

a ε α

(∃c ε F (a)) c ε α

because the constructive meaning of the existential quantifier in the conclu-
sion allows (and forces) to obtain a function fromN into 22.

A possible way out is then to change this condition into the weaker

(weak axiom completeness)
a ε α

¬¬(∃c ε F (a)) c ε α

which suggests to change thecompletenesscondition in the very definition
of formal point by setting

(weak completeness)
a ε α a ⊳ U

¬¬(∃u ε U) u ε α
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In this way one only knows that it is not the case that all the elements in
U are not in the neighborhood filter of the formal pointα, but one has no
possibility to know which element is really inα and hence it becomes not
possible to construct the function fromN into 22 associated withα.

In the following we will callweak pointany subset which satisfiesnon-
emptiness, up-closure, directnessand this weaker form ofcompleteness.

We show now that the collection of weak points cannot be indexed by a
set. In order to prove this result, let us first recall that a subsetU of the set
of the natural numbers is calledstableif ¬¬U ⊆ U , that is, for allx ∈ N,
¬¬(x ε U) → (x ε U). Then, it is possible to prove that the collection
of the stable subsets of the set of the natural numbers is not aset. In fact,
it is possible to adapt to such a collection the standard proof that if the
collection of all the subsets ofN is a set and the axiom of choice holds,
then any propositionA is decidable, that is,A ∨ ¬A holds (see [MV99]).
Indeed, the same proof can be adapted to any collectionS of subsets such
that the union of a subset inS with a decidable subset is an element ofS,
where a subsetU is decidable if for anyx ∈ N, (x ε U) ∨ ¬(x ε U) holds.
Now, the union of a stable subset with a decidable one is stable and thus,
supposing the collection of stable subsets to form a set, it would be possible
to prove that every stable subset is decidable, which is not to be expected6.

Now we can show that there are at least as many weak points as elements
in the collection of the stable subsets of natural numbers. Hence if a set
could be used to index the collection of weak points then one of its subsets
could be used to index the collection of stable subsets.

Indeed, given any subsetU of N, we can define a weak point by setting

αU ≡ {σ ∈ 22∗| (∀x < len(σ)) (σ[x] =22 1) ↔ (x ε U)}

In fact, the following lemma holds.

Lemma 6 For any subsetU ⊆ N , αU is a weak point.

Proof. Non-emptinessandup-closureare immediate anddirectnessholds
because, supposingσ andτ are two lists inαU , then one is an initial seg-
ment of the other.

To proveweak axiom completeness, assume thatσ ε αU and let us
suppose that(∀k ∈ 22) ¬(σk ε αU ). Then, by setting firstk = 1 and then
k = 0, we obtain both¬(∀x < len(σ) + 1) (σ1[x] = 1) ↔ (x ε U) and
¬(∀x < len(σ) + 1) (σ0[x] = 1) ↔ (x ε U) which, together withσ ε αU ,
yield¬(1 = 1 ↔ len(σ)+ 1 ε U) and¬(0 = 1 ↔ len(σ)+ 1 ε U). Hence
¬(len(σ) + 1 ε U) and¬¬(len(σ) + 1 ε U) follow by intuitionistic logic,

6 Suppose thatA is any proposition such that its negation is not decidable, i.e. suppose
¬A∨¬¬A does not hold, and defineUA ≡ {x ∈ N| ¬A}. Thenx ε UA if and only if¬A

holds and henceUA is a stable subset which is not decidable.



On the formal points of the formal topology of the binary tree 17

that is, we found a contradiction. Thus we get¬(∀k ∈ 22) ¬(σk ε αU ), i.e.
¬¬(∃k ∈ 22) σk ε αU . 2

Note that, if the subsetU is decidable, then the definition ofαU above
coincides with the one we gave in section 3. In fact, a subsetU of N is
decidable if and only if there exists a functionφU ∈ N → 22 such that
(∀x ∈ N) (x ε U) ↔ (φ(x) =22 1) (see [Val96]).

On the other hand, given any weak formal pointα we can obtain a subset
of N by setting

Uα ≡ {n ∈ N| (∀σ ε α) (n < len(σ)) → σ[n] =22 1}

Then, we can prove the following theorem.

Theorem 4For any subsetV ⊆ N, V ⊆ UαV
⊆ ¬¬V . Hence, for any

stable subsetV ⊆ N, V = UαV
.

Proof. The second statement is an immediate consequence of the firstand
of the definition of stable subset. Thus, let us prove the first. Let n ∈ N,
thenn ε UαV

if and only if (∀σ ε αV ) (n < len(σ)) → σ[n] =22 1 that is,
if and only if

(∀σ ∈ 22∗)
((∀x < len(σ)) (σ[x] =22 1) ↔ (xεV )) & (n < len(σ))) → σ[n] =22 1

Let us suppose now thatn ε V and consider any listσ ∈ 22∗ such that
(∀x < len(σ)) (σ[x] =22 1) ↔ (x ε V ) andn < len(σ); thenσ[n] =22 1
and hencen ε UαV

. To prove the second inclusion, suppose thatn ε UαV

and consider all the listsσ whose length isn+1 and whose last component
is 0. Then, by means of some intuitionistic logic, for each of them we can
prove that

¬(∀x < len(σ)) (σ[x] =22 1) ↔ (x ε V )

since¬(0 = 1). Hence, by using again a little of intuitionistic logic, forany
such listσ we can obtain a proof of the sentenceCσ ≡ ¬(A0 & . . . & An)
whereAi is i ε V or ¬(i ε V ) according to the fact that in thei-th position
in the listσ there is1 or 0. Thus, by using all together the sentencesCσ, we
can finally prove that¬¬(n ε V ). 2

Corollary 2 LetV1 andV2 be stable subsets ofN. Then, ifαV1
= αV2

, then
V1 = V2.

Proof. If αV1
= αV2

, thenUαV1
= UαV2

and hence the previous theorem
yieldsV1 = V2 sinceV1 andV2 are supposed to be stable subsets. 2

Hence we proved that there are at least as many weak points as stable
subsets.
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At present it is not clear if the solution to use weak points instead of
points is acceptable from the point of view of a formal development of
topology or if it is too weak. For instance, we know that according to the
standard definition of formal point it is not possible to obtain the traditional
order completeness property for the real numbers, since we have too few
points, while this result is a consequence of the use of the weak complete-
ness condition (see [Neg96]). This fact seems to suggest to change the def-
inition of formal point. On the other hand, as the referee of the first version
of this paper pointed out, one can consider the lack of the classical order
completeness more like a peculiarity of constructive analysis than like a
defect. Hence, no definite choice should be made before a better compre-
hension of the situation will be achieved.
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