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Abstract. In this paper, the notions of information base and of translation

between information bases are introduced; they have a very simple intuitive
interpretation and can be taken as an alternative approach to domain theory.

Technically, they form a category which is equivalent to the category of Scott
domains and approximable mappings.

All the definitions and most of the results are inspired by the intuitionistic

approach to pointfree topology as developed mainly by Martin-Löf and the
first author.

As in intuitionistic pointfree topology, constructivity is guaranteed by
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with a few abbreviations which allow to use a standard set theoretic notation.
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Foreword.

Domains were introduced, in algebraic terms, by D. Scott and J. Ershov
in early 70’s to obtain models of pure λ-calculus; Scott himself in early
80’s proposed in [Scott 81a], [Scott 82] and [Scott 81b] more intuitive
presentations of domains. The first conception of the similar but refined
presentation developed here is due to P. Martin-Löf and goes back to 1983
[Martin-Löf 83]. Shortly later, in Spring 1984, he suggested to the first author
a joint work on what later became an intuitionistic approach to pointfree
topology; such work itself was influenced by some ideas contained in Scott’s
presentations. By the end of 1986, stable definitions of the basic notions
were reached, in such a way that domain theory could be seen as a special
case (cf. [Sambin 87] and [Sambin 88] or the Appendix 1). Then the subject
remained latent until the third author, under suggestion and supervision of
the second author, wrote his thesis [Virgili 90].

Here we finally give a complete and detailed exposition, which is due
to fresh joint work of the three authors; novelties include a constructive
proof of the main theorem, a simpler definition of morphisms and a
deeper understanding of the use of the predicate Pos of positivity. The
presentation is also new, and it is centered on a very simple notion which
is called information base, because of its clear intuitive meaning in terms of
information.

In analogy with consistent filters on neighbourhood systems or points on
pointfree topologies, we introduce the notion of concept over an information
base. We show in section 2 that the collection of concepts over an information
base is a Scott domain, and that every Scott domain can be presented
in this way. Similarly, in analogy with approximable relations between
neighbourhood systems, we introduce the notion of translation from an
information base into another. We show in section 3 that translations can
be used to obtain all morphisms between Scott domains. More formally, we
prove that the category of Scott domains is equivalent to the category of
information bases and translations. Thus, in purely mathematical terms,
the two approaches are interchangeable; however, we believe that our
presentation is based on simpler and more natural intuitions. Such intuitions
are close to those which led D. Scott to introduce his presentations through
the notions of information system and neighbourhood system; but our notion
of information base is definitely simpler than the former, and more abstract
than the latter (even if they form equivalent categories, see Appendix 2).
In conclusion, our proposal is to adopt information bases, concepts and
translations as basic notions on which domain theory can be built up.

In the whole paper, constructivity is guaranteed by adopting Martin-Löf’s
intuitionistic type theory (see e.g. [Martin-Löf 84]), henceforth abbreviated
ITT, as ground theory for sets. We have been careful to check that all
definitions (except in section 1) can be expressed and all proofs can be carried
out within the framework of ITT (up to a degree of accuracy not too far from
formalization); on the other hand, to increase readability we have provided
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ITT with some pieces of standard set theoretic notation, introduced by
means of abbreviatory definitions given below in the preliminaries. However,
to deal with the standard “axiomatic” definition of Scott domains, one is
compelled to expand ITT with a couple of notions, which again can be found
in the preliminaries. The overall result is a paper which can be read equally
well also ignoring ITT and which, like stereoscopic pictures, automatically
changes according to the foundational glasses the reader wears; of course, the
classically minded reader in some occasions will be puzzled by what seems
to him a uselessly complicated proof or definition.

Beside the foundational interest of putting ITT at work on a piece of
existing mathematics, the advantage of adopting ITT is that it allows a third
reading of all the results in terms of recursive presentations: all results remain
true if one systematically reads computable (or effective, or recursively
presented) domain instead of domain, computable function instead of family
of elements, etc. (but this has still to be worked out precisely, probably
through a realizability interpretation of ITT, as suggested by Martin-Löf).

First of all we thank Per Martin-Löf for his constant interest in our work.
We also thank Isa Bossi, Mariangiola Dezani and the λ-calculus group of
Torino for their helpful comments.

Preliminaries

To remain within the framework of ITT and to avoid at the same
time hardly readable sequences of lengthy expressions, some pieces of
standard notation are here introduced as abbreviations and briefly explained.
Moreover, in order to deal with subsets (which is necessary in domain theory),
a specific notion for subsets is adopted, together with notation to deal with
them. Here we illustrate only the main definitions we are going to use, while
for a deeper treatment the reader is referred to [Sambin-Valentini 95].

The distinction between sets and collections1 is basic in ITT; a collection
is a set only if one can effectively produce its elements. For instance N,
i.e. natural numbers, is a set since its element are (equivalent to) 0 or the
successor of any element already known to be in N, while, in general, the
collection of all the subsets of a set S cannot be a set since one cannot produce
all of its elements. On the other hand, the collection of the finite subsets of
S is obviously a set, which in the following will be denoted by PFin(S) (for a
formal definition of PFin(S), see [Sambin-Valentini 95]; here we only remark
that, given two finite subsets of S, their union can be defined within ITT).

In general not only is the collection of all the subsets of a set not a set, but
even one subset of a set can be only a collection but no set; as an example,
consider the subset of N of the code numbers of the recursive functions which
do not halt on 0: because of the unsolvability of the “halting problem”, there
is no way to effectively produce all the elements of this subset. On the other

1In this paper we systematically use the word “collection” for what is called “category”

in ITT, in order to keep “category” with its common mathematical meaning.
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hand, being able to deal with subsets is necessary to develop almost any piece
of mathematics.

For this reason, we introduce the following notion of subset, which is
suggested by the axiom of separation of ZF set theory. Let S be a set; then
we put

U ⊆ S ≡ U(x) prop [x : S]

that is, we say that U is a subset of S whenever U is a propositional
function on elements of S. In what follows also the alternative notation
{x ∈ S : U(x) true} will be used for the subset U of S, in order to make the
exposition clearer.

Even if the notation U is not formally correct within ITT, it is really
convenient and we can easily introduce some definitions which allow to
recover the fragment of set theory we need. The result is a sort of local
set theory, since all the relations and operations we introduce are always
relativized to a set; to make this fact explicit, we will indicate the set as an
index (even if in the following we will sometime omit it when it is clear from
the context).

The first definition is membership; this definition is an immediate
consequence of the fact that U is a propositional function:

a ǫS U ≡ a ∈ S and U(a) true, i.e. there is a proof of the proposition U(a).

The next step is the definition of inclusion between subsets of S, which is an
obvious consequence of the previous definition of membership:

U ⊆S V ≡ (∀x ∈ S)(U(x) → V (x))

which in turn gives

U =S V ≡ (∀x ∈ S)(U(x) ↔ V (x)).

As usual, given A(x) prop [x : S], quantification over a subset U ⊆ S, i.e.
(∀x ǫS U)A(x), is nothing but an abbreviation for (∀x ∈ S)(U(x) → A(x));
similarly (∃x ǫS U)A(x) ≡ (∃x ∈ S)(U(x) &A(x)).

Then subset operations can be introduced: in this paper we only need
binary intersection and arbitrary union. Given two subsets U , V of
S and a family (Vi)i∈I of subsets of S, i.e. a propositional function
V (i, x) prop [i : I, x : S], we put:

U ∩S V ≡ U(x) &V (x) prop [x : S]

∪i∈IVi ≡ (∃i ∈ I)V (i, x) prop [x : S]

It is interesting to recall that ITT allows to “convert” any propositional
function U on elements of S into a “proper” set by means of the type of
the disjoint union of the sets U(x) for x ∈ S, which is denoted in ITT
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by (Σx ∈ S)U(x) or Σ(S, U). In fact Σ(S, U) is a set formed with pairs
whose first element is an element a of S and the second one is a proof of
the proposition U(a); now it is easy to see that a subset U of a set S can
be identified with the set Σ(S, U), provided that one “forgets” all the proof-
elements, i.e. he identifies all the pairs that have the same first element2.

In this way we deal with subsets, but we also need to consider some sub-
collections in order to express the usual approach to domain theory. To this
aim we have to introduce the notion of set-indexed family: if I is a set and
C is a collection, then we write (xi)i∈I to mean a sub-collection of elements
in C indexed by the set I, i.e. a “function” from I into C.

Of course any set is a set-indexed family, since it is indexed by itself by
means of the identity function, while in general a set-indexed family is not a
set since nothing similar to the replacement axiom can be assumed over ITT
without lowering its level of constructivity.

Quantification is allowed within ITT only over elements of a set; so, given
a set-indexed family D = (xi)i∈I of elements in C and a “proposition” U(x)
with argument x in C, even if we write (∀x ∈ D)U(x) and (∃x ∈ D)U(x) in
order to simplify the notation, what we mean is actually (∀i ∈ I)U(xi) and
(∃i ∈ I)U(xi).

We can also give specific meaning to families indexed by a subset: given
a set S and U ⊆ S, a family (x(a,b))(a,b)∈Σ(S,U) such that x(a,b) = x(a,b′) for
any a, b, b′, is called a family indexed over the subset U , and then we will
write (xa)aǫU .

1. Scott Domains and their morphisms

In this section we will recall the basic facts about the “axiomatic” approach
to domain theory (see e.g. [Barendregt 84]) which we are going to use in the
following and at the same time we will express them according to the above
preliminaries. The reader acquainted with the subject should probably skip
this section or, rather, read it just to see what must be changed to develop
the topic within the framework described in the previous section.

To help the intuition of the reader to whom the subject is new we recall
that the aim of domain theory is to model, in an algebraic structure, the
order relation “to be more defined than” between states of knowledge about
an (abstract) object: for this reason we are mainly concerned with partially
ordered collections.

Let D = 〈D,≤〉 be a partially ordered collection. A family (xi)i∈I of
elements in D is called (upper) bounded whenever there exists an element
x ∈ D such that (∀i ∈ I)(xi ≤ x) (briefly (xi)i∈I ≤ x) and directed if I is
inhabited and (∀i, j ∈ I)(∃k ∈ I)(xi ≤ xk &xj ≤ xk).

2More formally, one should first define the image of a function f : I → S by putting

Im(f) ≡ (∃i ∈ I)(x = f(i)) prop [x : S]. Then one can easily prove that any subset U of S

is equal, in the sense of =S above, to the image under the first projection of the “proper”

set Σ(S, U).
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Definition 1.1. A partially ordered collection D is called coherent, or
sometimes bounded complete, if every bounded family of elements in D has
a supremum and complete (briefly cpo) if D has a minimum element ⊥ and
every directed family has a supremum.

An element a of a cpo D is called compact, or finite, if, for any directed
family (xi)i∈I of elements of D, a ≤ ∨i∈Ixi implies that (∃k ∈ I)(a ≤ xk).
Note that ⊥ is trivially compact and that, whenever it exists, the supremum
of any finite family of compact elements is compact. We will write K(D)
for the collection of compact elements of D and we will reserve a, b, c,... to
denote its elements, while we keep x, y, z,... for generic elements of D.

Definition 1.2. A cpo D is called algebraic if, for every x ∈ D, the collection
{a ∈ K(D) : a ≤ x} of compact lower bounds of x is a family of elements
(ai)i∈I , for a suitable index set I, such that (ai)i∈I is directed and x = ∨i∈Iai

The usual intuition behind the definition of algebraic cpo is that every
element can be recovered by means of the compact elements below it, which
then may be thought of as its approximations: in our approach we consider
only the supremum over (set-indexed) families of elements, and this is why we
require {a ∈ K(D) : a ≤ x} to be set-indexed. Only when D is algebraic, we
then write ↓K(x) for the family {a ∈ K(D) : a ≤ x}, and thus the equation
x = ∨↓K(x) makes sense.

Definition 1.3. A Scott domain, or simply domain, is a coherent algebraic
cpo. In particular, we call set-based any Scott domain such that the collection
of the compact elements is a family.

The following lemma simplifies the task of proving an algebraic cpo to be
a Scott domain.

Lemma 1.4. Any algebraic cpo such that any bounded pair of compact
elements has a supremum, is a Scott domain.

Proof. Let (xi)i∈I be a family of elements of D bounded by z. Since D is
algebraic, for each i ∈ I, the collection of compact lower bounds of xi is
a family (aj)j∈J(i). Now we can consider the family of compact elements
{aj : j ∈ J(i), i ∈ I} which is indexed by the disjoint union Σ(I, J) of all the
index-sets of such families; obviously any of its finite sub-families is bounded
by z and hence, by the assumption, it has a supremum. Then we construct
the family of all such suprema which is indexed by PFin(Σ(I, J)). Finally,
it is easy to see that this family is directed and its supremum is also the
supremum of (xi)i∈I .

The following lemma shows that in a Scott domain D not only the elements
but also their ordering can be recovered from the structure of K(D).

Lemma 1.5. Let D be a set-based Scott domain; then for any x, y ∈ D,
x ≤ y iff ↓K(x) ⊆ ↓K(y), i.e. (∀a ∈ K(D))(a ≤ x → a ≤ y).
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Proof. The implication from left to right is obvious; the other one holds
since ↓K(x) ⊆ ↓K(y) gives ∨↓K(x) ≤ ∨↓K(y), and hence x ≤ y since D is
algebraic.

A homomorphism between Scott domains is defined as a map which
respects the structure, that is the order relation and suprema of directed
families. So in order that f be a homomorphism it is sufficient that f is
monotonic and that, for any directed family (xi)i∈I , f(∨i∈Ixi) ≤ ∨i∈If(xi);
in fact by monotonicity (f(xi))i∈I is directed, hence ∨i∈If(xi) exists and
∨i∈If(xi) ≤ f(∨i∈Ixi).

The behaviour of a homomorphism too is completely determined by its
values on the compact elements:

Lemma 1.6. Let D1 and D2 be Scott domains and f : D1 → D2; then f

is a homomorphism if, for every x ∈ D1, f(↓K(x)) is a directed family and
f(x) = ∨f(↓K(x)).

Proof. If x ≤ y then ↓K(x) ⊆ ↓K(y) hence f(↓K(x)) ⊆ f(↓K(y)) and
therefore f(x) = ∨f(↓K(x)) ≤ ∨f(↓K(y)) = f(y), i.e. f is monotonic.
So in order to show that f is a homomorphism, it is sufficient to prove
that f(∨i∈Ixi) ≤ ∨i∈If(xi) for each directed family (xi)i∈I of elements of
D1. Let us put y ≡ ∨i∈Ixi. For any c ∈ ↓K(y), c ≤ ∨i∈Ixi and hence
c ≤ xk for some k ∈ I, since c is compact. Then, by monotonicity of f ,
f(c) ≤ f(xk) and hence ∨f(↓K(y)) ≤ ∨i∈If(xi) from which the claim follows
since f(y) = ∨f(↓K(y)) by assumption.

The property expressed by this lemma suggests the name approximable
function [Scott 81a] for a homomorphism between domains, since the value on
any element is completely determined by the value on its “approximations”.

Finally note that Scott domains and approximable functions form a
category, here called ScDom; in fact, it is simple to show that the
composition of two approximable functions is approximable and trivially the
identity function is approximable.

2. Information bases and concepts

In the previous section, we stressed the fact that a domain is completely
described by the structure of its compact elements. The aim of this section is
to introduce the notion of information base and to show that it plays exactly
the role of the structure of compact elements in a domain and hence it is
sufficient to reconstruct the whole domain. The definition of information base
has moreover an independent intuitive motivation, which has been inspired
by the pointfree approach to topology (see Appendix 1).

An information base is a set S of pieces of information, provided with a
little bit of structure. Intuitively, pieces of information may be thought of as
neighbourhoods of a point, or as constituents of a concept. Thus the set S

is given together with a relation ⊳, a ⊳ b meaning that a is more informative,
or a better approximation of a concept, than b. Then it is natural to assume
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that ⊳ is reflexive and transitive. Moreover, we assume that S contains an
element ∆ which gives no information, and thus a ⊳ ∆ holds for any a.

Also it is assumed that two pieces of information a, b can always be put
together in order to obtain a piece of information a · b, which combines
the information given by a and b; the only requirement is that a weak
form of compatibility with the relation ⊳ holds. But note that so, even if
a and b are individually consistent, it may well happen that they are not
compatible with each other, in the sense that their combination a · b gives
an overload of information. To deal with this, it is convenient to introduce
a predicate Pos, defined on elements of S, which expresses their consistency
or positivity; two elements a and b will be considered compatible if their
combination is positive, i.e. Pos(a · b) holds. Then ∆ is trivially consistent,
and if a is more informative than b, the consistency of a implies that of b.
Moreover the fact that a is not consistent means exactly that a expresses
“too much” information, hence that a is more informative than any other
piece of information.

The following definition is the formal outcome of the above intuitive
explanations:

Definition 2.1. An information base S is a structure

〈S, ·, ∆, Pos, ⊳〉,

where S is a set, · a binary associative operation called combination, ∆ a
distinguished element called unit, Pos a property on S called positivity or
consistency, and ⊳ a binary relation between elements of S called cover, which
satisfy the following conditions3 for all a, b, c ∈ S:

(properness) Pos(∆)

(monotonicity)
Pos(a) a ⊳ b

Pos(b)
(positivity)

Pos(a) → a ⊳ b

a ⊳ b

(unity) a ⊳ ∆

(reflexivity) a ⊳ a (transitivity)
a ⊳ b b ⊳ c

a ⊳ c

(·-left)
a ⊳ b

a · c ⊳ b
and

a ⊳ b

c · a ⊳ b
(·-right)

a ⊳ b a ⊳ c

a ⊳ b · c

All the conditions are a straightforward rephrasing of the preceding
intuitive considerations, except Positivity. In order to explain it, let us recall
that the intuitive meaning of the non-positivity of a is that a is “too much”
informative, which is formally expressed by

(ex falso quodlibet)
¬Pos(a)

a ⊳ b

3We have not explicitly stated the conditions
a = b a ⊳ c

b ⊳ c
and

c ⊳ b a = b

c ⊳ a
since

they are valid in ITT for any relation.

8



Hence the first reason to introduce positivity is that ex falso quodlibet is
one of its consequences, as it is easy to find out by intuitionistic logic. On
the other hand we cannot simply require ex falso quodlibet since we need
to infer B, at least for some specific proposition B, from ¬Pos(a) → B and
Pos(a) → B, i.e. by applying the principle of proof by cases on Pos(a). Since
in general it is not decidable whether a piece of information is consistent or
not, in a constructive approach we may not know Pos(a)∨¬Pos(a), namely
the decidability of Pos, and hence we may not use the ∨-elimination rule in
order to obtain proofs by cases. On the other hand we must be careful not to
assume the principle of proof by cases on Pos in unrestricted form (i.e. for
arbitrary B), since it would imply, when B is Pos(a)∨¬Pos(a), that Pos is
decidable (and even, together with ex falso quodlibet, that Pos(a) holds for
any a). Positivity expresses exactly both ex falso quodlibet and the principle
of proof by cases on Pos when B is restricted to be of the form a ⊳ b; in fact,
since for any propositions A and B (∗) (A → B) → B and (∗∗) ¬A → B

and (¬A → B) → ((A → B) → B) are equivalent over intuitionistic logic,
we have:

Proposition 2.2. The following are equivalent:
i. Positivity, i.e. (Pos(a) → a ⊳ b) → a ⊳ b

ii. Proofs by cases on Pos, i.e.

(¬Pos(a) → a ⊳ b) → ((Pos(a) → a ⊳ b) → a ⊳ b)

and ex falso quodlibet, i.e. ¬Pos(a) → a ⊳ b

Note that compatibility of the relation ⊳ with the operation · can
equivalently be expressed by some other conditions. For instance, it is easily
checked that in a structure satisfying reflexivity and transitivity, ·-left and
·-right together are equivalent to:

(stability)
a ⊳ b c ⊳ d

a · c ⊳ b · d
(idempotency) a ⊳ a · a (weakening) a · b ⊳ a, a · b ⊳ b

Also note that the equivalence relation ∼=S induced on S by putting

a ∼=S b ≡ a ⊳ b & b ⊳ a [a, b : S]

is a congruence, i.e. respects the whole structure. Then the quotient of
the information base under such equality is a meet semilattice with unity
equipped with a non-empty subset Pos satisfying monotonicity and positivity
with respect to the partial order induced by the meet operation.

In the development of domain theory, information bases play the role
which, in the customary approach, is played by two notions introduced
by Dana Scott, namely information systems [Scott 82] and neighbourhood
systems [Scott 81a]. The connection between such notions and information
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bases takes technically the form of an equivalence of categories, which will
be given in Appendix 2. Here we show how neighbourhood systems and
information systems yield a special case of information bases.

From a constructive point of view, a neighbourhood system N is a
structure 〈∆, (Xi)i∈I〉 where ∆ is a set and (Xi)i∈I is a family of subsets
of ∆ which contains ∆ and the intersection of two elements Xi, Xj if they
have a lower bound Xk for some k ∈ I. Intuitively, an information base is
then obtained from N by closing (Xi)i∈I under all the finite intersections,
and contextually by stating that only the elements of the original family
(Xi)i∈I are positive. The intersection Xi1 ∩ Xi2 ∩ · · · ∩ Xin

corresponds to
the finite subset {i1, i2, . . . , in} of the set of indexes I. Thus we consider the
structure

〈PFin(I),∪, ∅, Pos, ⊳〉

where

Pos({i1, i2, . . . , in}) ≡ (∃k ∈ I)(Xi1 ∩ Xi2 ∩ · · · ∩ Xin
= Xk)

and

{i1, . . . , in} ⊳ {j1, . . . , jm}

≡ Pos({i1, . . . , in}) → Xi1 ∩ · · · ∩ Xin
⊆ Xj1 ∩ · · · ∩ Xjm

It is readily checked that this gives in fact an information base. In other
words, the notion of information base may be seen as the formal counterpart
of the notion of neighbourhood system (in much the same way as pointfree
topologies are more generally the formal counterpart of topological spaces).

Given an information system 〈D, ∆, Con,⊢〉, where D is the set of tokens,
∆ is a distinguished token, Con is a set of finite subsets of D, ⊢ is the
entailment relation between two elements of Con (cf. [Scott 82]), we
construct an information base as follows. First of all, any finite set of tokens,
that is any element of PFin(D), is a piece of information. Obviously we
declare that Pos(u) holds exactly when u ∈ Con. Then the operation of
combination will be simply the union, and hence ∅ will be the unit. In order
to obtain a covering relation ⊢+, the entailment relation ⊢, which is defined
only on consistent finite sets of tokens, is extended to all finite subsets by
putting4

u ⊢+ v ≡ Pos(u) → Pos(v) &u ⊢ v

which simultaneously means that ⊢+ and ⊢ coincide on positive elements and
guarantees that ⊢+ satisfies positivity. The conditions defining information
systems ensure that 〈PFin(D),∪, ∅, Con,⊢+〉 is an information base; we leave
the details to the reader.

4Here, like often in the sequel, we are using the fact (see [Martin-Löf 84], p. 26 and p.
43) that any implication A → B and any conjunction A & B is a proposition when B is a

proposition under the assumption that the proposition A is true.
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Anyhow, apart from the previous examples which just illustrate the way
to obtain an information base starting with a “concrete” structure, the
definition of information base is much more general. In fact any (small)
Cartesian category for which a notion of positivity can be provided is an
example of information base where the objects of the category are the
elements, and the cover relation between A and B means that there is an
arrow between them; as an example, let us consider the category of finite
sets where Pos(A) might mean that A 6= ∅.

As well as information systems and neighbourhood systems, also
information bases are used to construct domains. The basic idea is that
any subset α of consistent and mutually compatible pieces of information
determines a concept, that is is an element of the domain. The intended
meaning of a ǫ α is that α includes the information given by a. Since we wish
to identify two concepts when they convey the same amount of information,
we assume that α is closed under deducible information; namely, we require
that if α includes both a and b, then it includes their combination a · b, and
that if α includes a, then it includes also any b which is less informative than
a. We adopt here also the alternative name point for such notion, because of
its close connection with the general notion of point in a pointfree topology
(see Appendix 1). Then we have:

Definition 2.3. Let S be an information base. Then a concept, or a point,
α of S is a subset of S which for all a, b ∈ S satisfies the following conditions:

i. 1. ∆ ǫ α 2.
a ǫ α b ǫ α

a · b ǫ α
3.

a ǫ α a ⊳ b

b ǫ α

ii.
a ǫ α

Pos(a)

Note that in mathematical terms i. expresses closure under ∆, ·, and ⊳;
so a subset satisfying i. is just a filter of S. A concept is then a filter of
positive pieces of information (and hence it is the formal counterpart of the
notion of filter in a neighbourhood system).

The following lemma, whose proof is an exercise in intuitionistic logic,
sums up the basic properties of concepts of an information base.

Lemma 2.4. For any information base S, any a, b ǫ Pos and any concept
α of S, the following hold:

i. ↑a ≡ {c ∈ S : a ⊳ c} is a concept;
ii. a ⊳ b iff ↑b ⊆ ↑a;
iii. a ǫ α iff ↑a ⊆ α;
iv. α = ∪aǫα↑a.

For any a ǫ Pos, ↑a is called the concept generated by a; hence the
collection of generated concepts is a family of elements indexed by the subset
Pos.

Now we are going to show that, for any information base S, the collection
of concepts of S equipped with the inclusion ordering is a set-based Scott
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domain. The underlying idea is that the concept α is less specified than β

if any information met by α is also met by β; this is why inclusion between
concepts is often called the specialisation ordering. Note that α ⊆ β means
that β is more informative than α, which is to be contrasted with a⊳b, which
means that a is more informative than b and is equivalent to ↑b ⊆ ↑a. From
now on we will write Pt(S) to mean the collection of concepts of S equipped
with the specialisation ordering.

Lemma 2.5. For any information base S, Pt(S) is a cpo.

Proof. The specialisation ordering is obviously a partial order and ↑∆ is its
bottom since ∆ ǫ α for any concept α. In order to show that a directed
family of concepts (αi)i∈I has a supremum, it is sufficient to note that the
union ∪i∈Iαi is a concept: the only non-trivial condition is closure under
combination, which requires that (αi)i∈I be directed.

Lemma 2.6. If S is an information base and α ǫ Pt(S), then

i. the family (↑a)aǫα is directed;
ii. α is compact iff α = ↑a for some a ǫ Pos;
iii. any bounded couple of generated concepts has a supremum.

Proof. i. The family (↑a)aǫα is directed since α is closed under · and
↑a, ↑b ⊆ ↑(a · b) for any a, b ǫ α. ii. If α is a generated concept, i.e. of
the form ↑a for some a ǫ Pos, and (αi)i∈I is a directed family of concepts,
then ↑a ⊆ ∪i∈Iαi iff a ǫ ∪i∈Iαi iff (∃k ∈ I)(a ǫ αk) iff (∃k ∈ I)(↑a ⊆ αk).
Conversely, let α be compact; since (↑a)aǫα is directed by i. and α ⊆ ∪a∈α↑a
by 2.4.iv, then (∃c ǫ a)(α = ↑c). iii. Let ↑a and ↑b be generated concepts;
then it is easy to see that a · b is positive whenever they are bounded and
↑(a · b) is obviously their supremum.

Proposition 2.7. For any information base S, Pt(S) is a set-based Scott
domain.

Proof. For any concept α, by lemma 2.6.ii, a lower bound β ⊆ α is compact
iff β = ↑a for some a ǫ α; hence compact lower bounds of α form the family
(↑a)aǫα, which is directed by 2.6.i and has α as supremum by 2.4.iv; hence
Pt(S) is algebraic. Hence lemmas 1.4 and 2.6.iii tell that Pt(S) is a Scott
domain. Moreover, Pt(S) is set-based since the family of compact concepts
is indexed by Pos.

To prove the converse, we show now how any set-based Scott domain
〈D,≤〉 is (isomorphic to) the collection of concepts over an information base
which is built up directly from K(D). The hint to find the correct definition
comes once again from the topological intuition. To this aim let us recall the
definition of Scott topology on a cpo.

Definition 2.8. In any cpo D, a sub-collection O is called (Scott) open if it
is hereditary, or upward closed, that is if x ∈ O and x ≤ y then y ∈ O, and
smooth, that is, for each directed subset U , if ∨U ∈ O then (∃u ∈ U)u ∈ O.
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It is easy to check (see for instance [Barendregt 84]) that Scott opens of
D form a topology on D , which is called the Scott topology.

We show now that, if D is not only a cpo but a Scott domain, then it
is completely determined by its Scott topology. To this aim let us observe
that, given a base B for the Scott topology of D, its order relation can be
completely recovered since x ≤ y if and only if (∀O ∈ B)(x ∈ O → y ∈ O).
In fact from left to right the result is an obvious consequence of hereditarity.
To prove the other implication, one must note that, for any a ∈ K(D), ↑a
is Scott open and hence ↑a can be expressed as a suitable union of elements
of the base B. Hence if x ∈ ↑a then there is O ∈ B such that O ⊆ ↑a and
x ∈ O and so, by hypothesis, y ∈ O which implies y ∈ ↑a; this proves that
(∀a ∈ K(D))(a ≤ x → a ≤ y) which, by lemma 1.5, is equivalent to x ≤ y.

The above remark suggests that we need a base, in the usual topological
sense, in order to find the information base we are looking for.

A base for the Scott topology on D is usually obtained by considering all
the sub-collections ↑a for a ∈ K(D) and possibly adding ∅ (cf. [Barendregt
84]). Here this must be refined a little to avoid any definition or proof based
on the distinction between the cases ↑a ∩ ↑b = ↑(a ∨ b) and ↑a ∩ ↑b = ∅, i.e.
between {a, b} bounded or not. Then the idea is to consider directly, for any
U ∈ PFin(K(D)), the sub-collection of upper bounds OU ≡ {x ∈ D : U ≤ x},
where U ≤ x is an abbreviation for a ≤ x for any a ∈ U . It is easy to check
that {OU : U ∈ PFin(K(D))} is a base for the Scott topology on D. In fact,
OU is Scott-open because it is obviously closed upwards, and it is smooth
since, for any directed subset W of D, if U ≤ ∨W then, being U bounded,
∨U exists and hence ∨U ≤ ∨W , but since ∨U is compact, because U is finite,
there exists w ∈ W such that ∨U ≤ w, that is U ≤ w. Moreover, for any
Scott open O, the equation O = ∪{OU : OU ⊆ O} holds since, supposing
x ∈ O, that is x = ∨↓K(x) ∈ O, then by smoothness of O there exists
a ∈ ↓K(x) such that a ∈ O, so that O{a} is a subset which contains x and
O{a} ⊆ O because of hereditarity of O. Finally, in this approach a proof
of OU ∩ OV = OU∪V becomes straightforward and no argument by cases is
needed.

So, apart from foundational matters, the information base is now disclosed;
the foundational problem is that {OU : U ∈ PFin(K(D))} is no set, but a
family.

The standard way out is to build up an information base SD by pulling
the structure of the base {OU : U ∈ PFin(K(D))} back to the index set
PFin(K(D)) (pedantically, PFin(I) where I is the index set for K(D)). In
detail, we provide PFin(K(D)) with an operation of combination ·SD

in such
a way that OU·SD

V = OU ∩ OV , that is we put

U ·SD
V ≡ U ∪ V.

Then the unit element of SD is ∅ ∈ PFin(K(D)), which can also be seen
observing that O∅ = D and hence O∅ ∩OU = OU for any U . We say that U
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is positive when OU is inhabited, that is when U is bounded; so we put

PosSD
(U) ≡ (∃a ∈ K(D))(U ≤ a)

and PosSD
is a subset of PFin(K(D)). Note that U is positive if and only if

∨U exists. Finally, we want U to be covered by W when OU ⊆ OW , which
is clearly equivalent to: if ∨U exists, then W ≤ ∨U . Thus we put

U ⊳SD
W ≡ PosSD

(U) → W ≤ ∨U

It is obvious now that

SD ≡ 〈PFin(K(D)), ·SD
, ∅, PosSD

, ⊳SD
〉

is an information base.
Now we can show that SD is the information base we are looking for,

since the domains D and Pt(SD) are isomorphic. The easiest way to find
out an isomorphism, is to specialise to the base {OU : U ∈ PFin(K(D))}
the fact that a domain is completely determined by a base for its Scott
topology. In fact in this way we obtain that x ≤ y if and only if
(∀OU )(x ∈ OU → y ∈ OU ), which can equivalently be expressed
in our framework as (∀U ∈ PFin(K(D)))(U ≤ x → U ≤ y), i.e.
{U : U ≤ x} ⊆ {U : U ≤ y}. It is easy to check that, for any x ∈ D,
the subset5 {U ∈ PFin(K(D)) : U ≤ x} is a concept of SD (which is the
formal counterpart of the filter of opens OU containing x). Hence putting

f : x 7→ {U ∈ PFin(K(D)) : U ≤ x}

defines a map from D into Pt(SD), which, by the above remark, is monotonic
and one-one; to conclude we must only show that f is onto and hence an
isomorphism (since any bijective monotonic function respects all suprema).
To this aim, observe that if α is a concept of SD then W ǫ α iff
(∀a ∈ W )({a} ǫ α), i.e. α is determined by the singletons it contains; hence
the element of D whose image under f is α must be ∨{a ∈ K(D) : {a} ǫ α},
which exists since {a ∈ K(D) : {a} ǫ α} is directed. So we have proved:

Theorem 2.9. Any set-based Scott domain D is isomorphic to the concepts
of a suitable information base SD.

It is worthwhile to recall that, in the classical conception, any Scott domain
is set-based, and thus the above theorem gives a representation theorem
for Scott domains with no restriction. On the other hand, from a strictly
constructive point of view, it could be argued that what we have called
information base is nothing but a truly constructive introduction of Scott

5The fact that {U : U ≤ x} is a subset, i.e. a propositional function over PFin(K(D)),
is not so immediate. Given x ∈ D, suppose Ix is the index set for ↓K(x); then U ≤ x

means that (∃i ∈ Ix)(U ≤ xi) which is a propositional function with U free.

14



domains; in this perspective, one could even say that the above theorem
allows to forget the “axiomatic” definition of Scott domains, and hence that
the theorem itself is to be forgotten, as soon as it has been proved.

This would have also the noteworthy advantage of forgetting all the
troublesome basic notions introduced in the preliminaries which were needed
to treat domains in the “axiomatic” approach.6

3. Translations

In the previous section we proved that the collection of Scott domains can
be completely reconstructed using information bases and concepts. Now, we
want to do the same for morphisms, that is reconstruct in our framework
also the notion of approximable function between Scott domains. The hint
for the correct definition comes again from topology. In fact it can be proved
that domain homomorphisms are exactly those maps between domains which
are continuous in the Scott topology of the domains (see e.g. [Barendregt
84]). In formal topology a general definition of continuous map between two
formal topologies can be given [Sambin 87], but here we prefer to introduce
a simpler definition which is equivalent to the general one in the particular
case of information bases (see Appendix 1) and which moreover can be given
a direct and intuitive motivation.

Let S and T be two information bases; at first, we consider the
transformation of the information in S into information in T by means of a
translation t which sends every piece of information a ∈ S into a single piece
of information t(a) ∈ T . Then it is natural to require that t should respect
consistency, i.e. PosS(a) implies PosT (t(a)), and the amount of information,
i.e. if a ⊳ b then t(a) ⊳ t(b). In general, however, this notion of translation
is too strong, since it may well happen that the correct translation of a is
only approximated by the pieces of information which are available in T ; if
we call the subset of all such pieces of information in T translation of a, it
is natural to require that the translation of a be a concept, at least when a

is positive. However, to deal uniformly also with non positive information,
instead of a function from PosS into Pt(T ), we are lead to consider a binary
relation aFb [a : S, b : T ], whose meaning is that b is in the translation of a.
We will get back the concept of T which is the translation of an element a by
putting Fa ≡ {b ∈ T : aFb}, i.e. writing b ǫ Fa for aFb. Basing on the idea
that a non positive piece of information a is “too much” informative, in its
translation Fa we put all the pieces of information available in T . This fact
is expressed uniformly, in analogy with what was done for ⊳, by the condition
that Pos(a) → aFb implies aFb.

All of this is formally expressed by the following definition:

Definition 3.1. Let S, T be information bases. Then a relation F between
S and T is called a translation, or an approximable relation, if for all a, c ∈ S

6One should not be too radical, however, in forgetting things, otherwise one could argue

that the present paper itself should be forgotten as soon as it has been read.
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and b, d ∈ T :

i. 1. aF∆T 2.
aFb aFd

aFb · d
3.

aFb b ⊳ d

aFd
4.

Pos(a) aFb

Pos(b)

ii.
a ⊳ c cFb

aFb

iii.
Pos(a) → aFb

aFb

Such a definition agrees perfectly with the intuitive description given
above. In fact the conditions in i. are exactly those which the translation
Fa must satisfy in order to be a concept, when a is positive, while ii, which

is equivalent to
a ⊳ c

Fc ⊆ Fa
, tells that a translation respects the amount of

information.
The two conditions ii. and iii. could equivalently be expressed by the

single condition
a ⊳ c Pos(c) → cFb

aFb
;

however we preferred to keep them apart, since in this way the analogy of
translations with covers is more perspicuous.

Note that in particular, if 1l is the trivial information base with just one
positive element 11l (and the trivial combination and cover), then translations
from 1l into S can be identified with concepts of S: the concept α of S is
associated with the translation Fα ≡ {(11l, a) : a ǫ α}, so that α = Fα11l,
and conversely any translation F from 1l into S is of this form, since
F = {(11l, a) : a ǫ F11l} and F11l is a concept.7

Also note that condition iii. is logically equivalent to

aFb iff Pos(a) → aFb

which is therefore true for every translation. So, to determine a translation
F : S → T , it is sufficient to define a relation F0 in such a way that i. and ii.
are satisfied, and then to force iii. to hold by putting aFb ≡ Pos(a) → aF0b;
it is easy to see that i. and ii. continue to hold for F . Moreover this is the
only translation which coincides with F0 on all positive elements. In fact, if
F , G are two translations S → T such that Fa = Ga for all positive a, then
for arbitrary a it is Pos(a) → aFb iff Pos(a) → aGb, and hence F = G by
iii.

In a completely similar way one obtains that

Fc ⊆ Fa iff Pos(a) → Fc ⊆ Fa

since Pos(a) → Fc ⊆ Fa implies, assuming Pos(a), that if b ǫ Fc then
b ǫ Fa and hence Pos(a) → b ǫ Fa which, by the previous observation, is

7Since 1l, as we will see, is the terminal object of the category of information bases,
this remark tells that the given definition of point of S agrees with the general definition

of global point in a category, i.e. Pt(S) can be identified with Hom(1l,S).
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equivalent to b ǫ Fa. So condition ii. of the definition of translation can be

rephrased by requiring
a ⊳ c

Fc ⊆ Fa
to hold only for any positive a, rather than

for arbitrary a.
These remarks will often be used in the whole section, beginning now

with the very definition of composition of translations. In fact, the first
idea which comes into mind is to compose two translations F : S → T and
G : T → U by applying them one after another, that is to consider the subset
G(Fa) ≡ ∪{Gb : b ǫ Fa} as a composite translation of a; this would mean
that the composite of F and G is the usual composition of relations G ◦ F ,
i.e. the relation {(a, c) ∈ S×U : (∃b ∈ T )(aFb & bGc)}. This works perfectly
well for positive elements of S; it may happen, however, that all the pieces
of information in T are positive and thus they are not sufficient to produce
a faithful composite translation of some non-positive information of S into
U . Formally, G ◦ F does satisfy i. and ii., but it may happen that it does
not satisfy condition iii. of the definition of translation. Hence we define the
composition of F and G by putting

a G ⋆ F c ≡ Pos(a) → a G ◦ F c

that is

G ⋆ F ≡ {(a, c) ∈ S × U : Pos(a) → (∃b ∈ T )(aFb & bGc)}.

The identical translation of S into S associates the concept which exactly
contains the information given by a, that is the generated concept ↑a, with
any positive piece of information a. Since for any b ∈ S, b ǫ ↑a iff a ⊳ b,
it turns out that the identity morphism IS is simply the covering relation
⊳ itself. It is immediate to see that the conditions on translations, when
written for the relation ⊳, are exactly the requirements for ⊳ to be a cover;
it is also immediate, by i.3 and ii. of the very definition of translation, that
any translation F is not affected by the usual composition with IS and so IS
is the identity morphism of S also with respect to ⋆ because of iii. Thus we
have:

Theorem 3.2. Information bases and translations, with composition ⋆ and
identities as above, form a category called InfBas.

Proof. After the above remarks, only associativity of ⋆ is left out; its proof,
where i.4 and iii. are put in use, is a rather tedious exercise in intuitionistic
logic.

Our next aim is to prove that the category of information bases InfBas is
equivalent to the category of Scott domains ScDom by extending Pt of the
previous section to a dense, full and faithful functor Pt : InfBas → ScDom.

A morphism F : S → T , that is a translation of positive pieces of
information of S into concepts of T , is easily lifted to a translation of concepts
of S into concepts of T : a concept α is translated into the union of all
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the concepts which are the translation of some element a of α. Formally,
Pt(F )(α) ≡ ∪{Fa : a ǫ α}. Recalling that α is associated with the
translation Fα : 1l → S, we have ∪{Fa : a ǫ α} = ∪{Fa : a ǫ Fα11l} ≡
(F ◦ Fα)(11l) and hence Pt(F )(α) is a concept of T , because it is the image
of 11l under the composite translation F ⋆ Fα (which is obviously equal to

F ◦ Fα, since the only element of 1l is positive).8

It is immediate to see that Pt(F ) is monotonic and respects (arbitrary)
unions, since it is defined in terms of union. So Pt(F ) : Pt(S) → Pt(T ) is a
morphism of domains. It is now easy to prove that:

Lemma 3.3. Pt is a functor from InfBas to ScDom.

Proof. What has been left out is only that Pt respects identities
and composition. Pt(IS) = 1Pt(S) because IS(a) = ↑a and hence
Pt(IS)(α) ≡ ∪{↑a : a ǫ α} = α and Pt(G ⋆ F ) = Pt(G) ◦ Pt(F ) because, for
any α, Pt(G⋆F )(α) = (G⋆F )⋆Fα(11l) = G⋆(F⋆Fα)(11l) = Pt(G)(Pt(F )(α)).

Associating a function on concepts with any translation provides the
notion of translation itself with a new intuitive meaning. In fact we can
show now that, for any translation F : S → T ,

(∗) aFb iff for any concept α of S, a ǫ α → b ǫ P t(F )(α);

in other words, aFb means that the associated function maps each concept
including a into a concept including b.

The direction from left to right in the proof of (∗) is clear by definition of
Pt(F ), since aFb means that b ǫ Fa and Fa ⊆ Pt(F )(α) whenever a ǫ α.

The crucial step of the proof of the converse is actually a formulation of
its antecedent within the framework of ITT; indeed, the quantification over
subsets, although of a specific kind like concepts, has no general meaning in
ITT. However, in this case, the meaning of

(1) for every concept α of S, a ǫ α → b ǫ P t(F )(α)

is expressed, inside ITT, by

(2) (∀c ∈ S)(Pos(c) & a ǫ ↑c → b ǫ P t(F )(↑c)).

In fact, though (2) is only a special case, it is sufficient to recover (1) since
every concept α is the union of generated concepts ∪{↑c : c ǫ α} and hence
a ǫ α means that a ǫ ↑c for some positive c ǫ α, from which b ǫ P t(F )(↑c) by
(2) and so b ǫ P t(F )(α) because Pt(F ) is monotone and ↑c ⊆ α.

The right to left direction of (∗) can now be proved, since aFb follows
from (2). In fact, instantiating (2) on a, we obtain Pos(a) → b ǫ P t(F )(↑a),
which is equivalent to Pos(a) → b ǫ Fa since, when a is positive,
Pt(F )(↑a) ≡ ∪{Fc : a ⊳ c} = Fa; but we know that Pos(a) → b ǫ Fa

iff aFb.

8Together with the identification of Pt(S) with Hom(1l,S), this tells that Pt(−) is just

the functor Hom(1l,−) : InfBas → Set.
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The detour to show (∗) is so complete; even if it may appear a bit too
long, two facts which are basic in proving that Pt is an equivalence have
appeared along the way and can be extracted from it:

Proposition 3.4. For any translation F , and any a,b:
i. if a is positive, Fa = Pt(F )(↑a);
ii. aFb iff Pos(a) → b ǫ P t(F )(↑a).

Now we can prove that Pt is a faithful and full functor, i.e. for any
information bases S and T , Pt : Hom(S, T ) → Hom(Pt(S), P t(T )) is one-
one and onto. Injectivity is immediate because Pt(F ) = Pt(G) means that
for all positive elements a of S, Pt(F )(↑a) = Pt(G)(↑a), hence by i. above
Fa = Ga and hence F = G. To show surjectivity, for any f : Pt(S) → Pt(T )
we have to find a translation F such that Pt(F ) = f ; ii. above tells that
there is no other choice than putting

aFb ≡ Pos(a) → b ǫ f(↑a).

It is straightforward to check that F so defined is indeed a translation. In
fact, for any positive a, condition i. (that is Fa is a concept) holds because
Fa ≡ f(↑a), and ii. holds because a ⊳ c implies f(↑c) ⊆ f(↑a), which
means Fc ⊆ Fa, because f is monotone. Finally condition iii., i.e. aFb

iff Pos(a) → aFb, holds by intuitionistic logic.
Hence we have proved that

Theorem 3.5. The functor Pt is an equivalence between the category of the
information bases InfBas and the category of Scott domains ScDom.

It is interesting to note that any monotonic function f from the domain
Pt(S) into the domain Pt(T ) gives rise to a translation between S and T by
putting

aFfb ≡ Pos(a) → b ǫ f(↑a)

which defines Ff by means of the value of f on the compact elements of
Pt(S); that is, to define a translation it is not required that f should respect
the suprema of the directed families of Pt(S). Moreover Pt(Ff ) coincides
with f on all the compact elements of the domain Pt(S). This fact should
not be surprising since, by lemma 1.6, any domain morphism is completely
determined by its behaviour on the compact elements, i.e. among all the
monotonic functions between two domains which coincide on all the compact
elements there is only one domain morphism. So preservation of suprema is
needed to prove that the correspondence is biunivocal.

Appendix 1: Connections with intuitionistic pointfree topology.

The idea of pointfree topology is to study those properties of a topological
space 〈X, ΩX〉, where ΩX is the collection of open subsets of the set X ,
which can be expressed without any mention to points, that is elements
of X . The basic idea is to consider opens instead of points as primitive
entities; the notion of point can be recovered as a “suitable” set of opens,
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as we see below. Since any topology ΩX can be described by specifying a
base, abstracting from the fact that basic opens are subsets, the structure
underlying a pointfree topology is, from an algebraic point of view, just a
semilattice A ≡ 〈A, ·, 1A〉, where A corresponds to the base, · to intersection
and 1A to the whole X . Every open subset is obtained as union of elements
of the base, but union does not make sense in absence of points; thus all
we are left is a subset of A, that is a formal open. As we want to recover
the properties of union, we introduce the relation of cover a ⊳A U between
an element a and a subset U of A; intuitively, if a corresponds to a basic
neighbourhood O and U to a subset of basic neighbourhoods {Oi : i ∈ I},
then a ⊳A U corresponds to O ⊆ ∪{Oi : i ∈ I}. Then the properties we
require on ⊳A are:

reflexivity:
a ǫ U

a ⊳A U
transitivity:

a ⊳A U (∀b ǫ U)b ⊳A V

a ⊳A V

·-left:
a ⊳A U

a · b ⊳A U

a ⊳A U

b · a ⊳A U
·-right:

a ⊳A U a ⊳A V

a ⊳A {b · c : b ǫ U, c ǫ V }

Obviously two subsets {Oi : i ∈ I} and {Oj : j ∈ J} of basic neighbourhoods
of a base give the same open subset if ∪{Oi : i ∈ I} = ∪{Oj : j ∈ J} or
equivalently if Oi ⊆ ∪{Oj : j ∈ J} for all i ∈ I and Oj ⊆ ∪{Oi : i ∈ I} for
all j ∈ J . Thus for all subsets U and V of A we put

U =A V ≡ (∀b ǫ U)(b ⊳A V ) & (∀c ǫ V )(c ⊳A U)

that is we consider U and V to be equal formal opens if they cover each
other; =A is obviously an equivalence relation9.

In order to recover points in a constructive approach, it is convenient to
introduce a predicate PosA(a) on the elements of A whose intended meaning
is that (the basic neighbourhood corresponding to) a is inhabited. The
predicate PosA is required to satisfy:

Monotonicity:
PosA(a) a ⊳A U

(∃b ǫ U)PosA(b)
Positivity:

Pos(a) → a ⊳A U

a ⊳A U

A structure A ≡ 〈A, ·, 1, ⊳, Pos〉 satisfying the above requirements is called a
formal, or pointfree, topology.

We have seen in section 2. that for any Scott domain D the subsets
OU = {x ∈ D : U ≤ x}, for U ∈ PFin(K(D)), form a base; now it is
easy to prove that, whenever OU is inhabited, OU ⊆ ∪i∈IOUi

if and only if
(∃i ∈ I)OU ⊆ OUi

. This is the property of Scott topologies which is taken as
a definition in the pointfree approach: a pointfree topology A is called Scott
if its cover ⊳A satisfies

a ⊳A U iff PosA(a) → (∃b ǫ U)(a ⊳A {b}).

9It is easy to show that formal opens of A can be given the structure of a locale (cf.

[Sambin 87]).
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Thus as for Scott pointfree topologies, the content of a cover ⊳A is completely
determined by its trace, namely the binary relation ⊳t between elements of
A defined by putting

a ⊳t b ≡ a ⊳A {b}

(for a full proof see [Sambin 88]).
The definition of information base is obtained by characterising Scott

topologies, or rather their traces, in the simplest way, that is by giving up
to the semilattice structure in favour of one more axiom on ⊳, namely a ⊳ ∆,
and by adding the assumption of properness, i.e. Pos(∆).

Now it remains to explain when a subset of A is “suitable” to be called
a formal point. Both formal opens and formal points are subsets of A,
but their characterization is different, since their intended meanings are
opposite: while an open U corresponds to a union, a point α corresponds,
quite loosely speaking, to the point which is (in) the intersection of all the
(basic neighbourhoods corresponding to) elements in α. Moreover the formal
definition below forces two formal points, intuitively corresponding to the
same “concrete” point, to be equal. Thus we say that a subset α of A is a
formal point if:

i. 1. 1A ǫ α 2.
a ǫ α b ǫ α

a · b ǫ α
3.

a ⊳A U a ǫ α

(∃b ǫ U)b ǫ α

ii.
a ǫ α

PosA(a)

While i.1, i.2 and ii. are obvious, the intuitive meaning of i.3, which is
formally just a condition binding points with ⊳A, is that if a point is in a basic
neighbourhood a contained in an open subset U , then it is also contained in
one of the basic neighbourhoods of U , i.e. a point can not be “split” by
basic neighbourhoods. We call Pt(A) the collection of points of A. We can
provide Pt(A) with a topology ΩPt(A) by taking

φ(a) ≡ {α ∈ Pt(A) : a ǫ α}

for any a ∈ A, as basic neighbourhoods.
Even if in the Scott case the intuition is a little different, it is easily

seen that points become exactly what we have called concepts in section 2.
It can be proved that, when A is Scott, then ΩPt(A) coincides with the
Scott topology (see section 2.) on 〈Pt(A),⊆〉; hence, by appealing also to
theorem 2.9, the Scott topology on a domain is intrinsically characterised
by the property of having a base {Oi : i ∈ I}, of super-compact opens, i.e.
such that, for any J ⊆ I, Oi ⊆ ∪{Oj : j ∈ J} iff (∃j ∈ J)Oi ⊆ Oj , which
is precisely the property we chose in order to characterize pointfree Scott
topology (a detailed proof is in preparation).

It is natural to define a morphism between pointfree topologies A and
B, intuitively corresponding to the topological spaces 〈X, ΩX〉 and 〈Y, ΩY 〉
respectively, as the formal counterpart of a continuous function, namely a
map of the points of X into points of Y such that the inverse image of a
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basic neighbourhood of ΩY is an open in ΩX . Thus, due to the absence of
points, a morphism from the pointfree topology B into A is a map f from B
into subsets of A respecting the given structure10

f(1B) =A {1A} f(b ·B d) =A {a ·A c : a ǫ f(b), c ǫ f(d)}

b ⊳B U

(∀x ǫ f(b))(x ⊳A ∪{f(u) : u ǫ U})

(∃x ǫ f(b))PosA(x)

PosB(b)

With any morphism between pointfree topologies, f : B → A, a continuous
function f∗ : 〈Pt(A), ΩPt(A)〉 → 〈Pt(B), ΩPt(B)〉 between topological
spaces is associated by putting

f∗(α) ≡ {b ∈ B : (∃a ǫ α)a ǫ f(b)}

for any α ∈ Pt(A).
We can modify the definition of morphism between pointfree topologies so

that it has the same direction of the associated continuous function11. The
idea is to think of f from B into subsets of A as a binary relation from B

into A, and then to take its inverse, that is consider aFb in place of a ǫ f(b).
Such relation F has a clear and independent topological meaning: in fact it
can be shown that, if A “has enough points”, aFb holds iff, for any point
α ∈ Pt(A), the point f∗(α) is in b (i.e. b ǫ f∗(α)) whenever α is in a (i.e.
a ǫ α). Working out such remarks, we are led to define a continuous relation
from A into B as a binary relation F satisfying the following conditions for
any a ∈ A and b, d ∈ B:

1. aF1B 2.
aFb aFd

aFb · d

3.
a ⊳A W (∀w ǫ W )wFb

aFb
4.

aFb b ⊳B V

a ⊳A {w ∈ A : (∃v ǫ V )wFv}

5.
PosA(a) aFb

PosB(b)

It is not difficult to check that putting aFfb ≡ a ǫ f(b) and
fF (b) ≡ {a ∈ A : aFb} defines a bijective correspondence between morphisms
and continuous relations (for a proof see [Virgili 90]). Now the definition of
translation is obtainable as a characterization of continuous relations between
Scott pointfree topologies. In fact, 1., 2. and 5. above are respectively
identical with i.1, i.2 and i.4 of the definition of translation, while ii. is a
special case of 3. above when W = {c}. Also iii. comes from 3.; in fact, since
trivially (∀w ǫ ∅)wFb, for W = ∅, 3. gives

a ⊳A ∅

aFb

10It is not difficult to see that, by associating a morphism f : B → A with

f̄(U) ≡ ∪{f(a) : a ǫ U}, one obtains a biunivocal correspondence between morphisms
of pointfree topologies and locale morphisms from opens of B into opens of A.

11That is, so that Pt becomes a co-variant rather than a contravariant functor.
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or equivalently, since a ⊳A ∅ iff ¬Pos(a), ¬Pos(a) → aFb; we already know
that iii. is a uniform way to express this fact. Finally, i.3 follows from 3. and
4. above: in fact, if aFb and b ⊳B d then, by 4., a ⊳A {w ∈ A : wFd} which,
in the Scott case, implies that there is w′ such that a ⊳A w′ and w′Fd and so
aFd by 3.

Appendix 2: Categorical equivalence between InfBas and other

presentations of domains.

In section 2 we have shown how neighbourhood systems and information
systems can be seen as special cases of information bases. Now we show that
actually the category of neighbourhood systems with approximable mappings
(cf. [Scott 81a]), here called NeighSys, is equivalent to InfBas. To this
aim we call I(N ) the information base associated, as in section 2, with the
neighbourhood system N = 〈∆, (Xi)i∈I〉 and now we see how to extend I to
a functor I : NeighSys → InfBas.

So let R : N → M be an approximable mapping between
two neighbourhood systems; then for any {i1, i2, . . . , in} ∈ I(N ) and
{j1, j2, . . . , jm} ∈ I(M), put

{i1, . . . , in}I(R){j1, . . . , jm} ≡

Pos({i1, . . . , in}) → Pos({j1, . . . , jm}) & (Xi1∩· · ·∩Xin
RXj1∩· · ·∩Xjm

)

Then it is immediate to see that I(R) satisfies the conditions i.1-3 and ii. of
the definition of translation since R is an approximable mapping. A quick
and instructive way to prove that I(R) is a translation, i.e. it satisfies also
1.4 and iii., is based on the following remark. For any translation F ,

aFb iff Pos(a) → Pos(b) & aFb

and so, by improving the similar argument used in section 3, any relation F0

between positive elements satisfying i.1-3 and ii. can be uniquely extended
to a translation F , which coincides with F0 on positive elements, by putting

aFb ≡ Pos(a) → Pos(b) & aF0b.

So the relation F defined by

{i1, . . . , in}F{j1, . . . , jm} ≡

Pos({i1, . . . , in}) → Pos({j1, . . . , jm}) & {i1, . . . , in}I(R){j1, . . . , jm}

is a translation between I(N ) and I(M), but F = I(R) by intuitionistic
logic.

It is easy now to check that indeed I : NeighSys → InfBas is a functor.
Moreover, according to its definition on morphisms, it is immediate to see
that I is faithful, that is I(R) = I(S) implies R = S for any approximable
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mapping R, S, since R and S essentially coincide with I(R) and I(S)
respectively on all positive elements.

Similarly, I is full since any translation F : I(N ) → I(M) can be seen as
the image under I of the approximable mapping which binds Xi ∈ N with
Xj ∈ M iff {i}F{j}.

Finally, given an information base S, we put ↓a ≡ {c ∈ S : c ⊳ a},
and consider N(S) = 〈S, (↓a)aǫPos〉; it is routine to check that N(S) is a
neighbourhood system such that its image under I is isomorphic to S, and
hence I is dense.

Thus I is a categorical equivalence betwwen NeighSys and InfBas.
In a similar way one can prove the equivalence between the category

InfSys of information systems and approximable relations and InfBas. In
fact, in section 2 we gave the definition of the suitable functor on the objects
and it is an easy exercise to carry on a complete proof of the equivalence.
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