ON THE DECIDABILITY OF THE EQUALITY
THEORY OF SIMPLY TYPED MCALCULI

SILVIO VALENTINI

Dipartimento di Matematica Pura ed Applicata
Universita di Padova

SunTO. Il lavoro presenta una nuova prova del ben noto risultato di decidibilita della
teoria dell’ugualianza per un A-calcolo tipato semplice basata sull’estensione alla teoria
dell’ugualianza dell’approccio utilizzato in [Valentini 92] per dimostrare il teorema di forma
normale. La novita principale consiste nel fatto che per ottenere tale risultato non si fa
ricorso al teorema di Church-Rosser come avviene nella prova usuale. Il metodo di prova
usato & molto semplice, ma al tempo stesso si presenta come molto generale e facilmente
applicabile ad una varieta di A-calcoli tipati semplici la cui teoria dell’ugualianza soddisfi
la B e la 1 ugualianza.
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Summary. In this paper we are going to illustrate a new method to prove the theorem
of decidability of the equality for simply typed A-calculi (see [Barendregt 81]) which is
both straightforward and general. The main novelty is that we are not going to use the
Church-Rosser theorem but we will give a direct proof based on a new definition of the
equality rules which is directly inspired by the rules we have introduced in [Valentini
92] in order to prove the normal form theorem for a simply typed A-calculus. The result
is then obtained by showing that the new equality theory is equivalent to the standard
one.

1. INTRODUCTION

The method we want to illustrate to prove the decidability of the equality theory of a
typed A-calculus seems to be of general applicability, at least if the considered equality
theory is closed under the g and 7n equality. Anyhow, in order to make the exposition
easier to understand, we will illustrate here the most elementary example in which only
function types can be constructed over some basic types®.

Definition: (Types).

C basic type
C type
a type 0 type
a — (3 type

(Basic types)

(Arrow types)

In this case one can assume that, for any type «, a numerable quantity of variables
of type « exist (notation x : ) and that it is possible to form the following lambda ex-
pressions, in a context which comprises all the variables used in the lambda expression?,

and, at the same time, collect the variables which appear free within them?.

Definition: (A-expression).

(var-rule) x:a lexp [, z:q] FV(z) = {x}
(app-rule)
b:a— [ Xexp [Il a:a lexp [I]
b(a) : B Mexp [[]

FV(b(a)) = FV(b) U FV(a)

(abst-rule)
b: B Xexp I,z : a]
(Ax.b) : a — [ Mexp [T]

FV((Azx.b)) = FV(b)\{z}

The substitution of a variable with a term within a lambda expression is introduced
in the usual way.

LA more general approach can be found in [Bossi-Valentini.

2We assume that the reader is aware of the standard operations of thinning, contraction and ex-
change among assumptions in a context.

3We use here the same syntax we already used in [Valentini 92], i.e. we write a : a A-exp [['] to
mean that a is a A-expression of type a in the context I' instead of the more usual ' - a : «



Definition: (Substitution). Let x : o, e : @ A-exp and b : § A-exp, then the substi-
tution of the variable x with the expression e in the expression b (notation b[z := €]) is
defined by induction on the structural complexity of b:

(variable step) zlx :=¢] = { 2 :)ftlzlefwxise
(application step) b(a)[z := €] = b[x := e](a]x := €])
(abstraction step)
(Az.b) ifz=u
(Az.b[z = ¢€]) if z#£ x and z ¢ FV(e)

(Aeb)a =] = (At.b]z :=t][x :=€]) otherwise

where t is a new variable of the same type of 2

Finally we recall that the standard equality between two A-expressions induced by
Bn-conversion* is the minimal equivalence relation for which the following conditions
hold.

Definition: (A-equality).

(var-equality) x=z:a(l x:q]
by=by:a— [ a=ay:all]
bi(a1) = ba(az) : B [T
b=d:p [l x:a
(Az.b) = (\xd) : a0 — [ [T]
b:B Mexp [[x:a] a:a lexp [
(Az.b)(a) = blx :=a] : [T
b:a— [ Mexp [T
(Ax.b(x))=b:a— G [T]

(app-equality)

(&é-equality)

(-equality)

(n-equality) provided z ¢ FV (b)

2. DECIDABILITY OF THE EQUALITY THEORY.

It is well known that the equality theory for typed lambda terms we have just recalled
is decidable. The usual proof goes on by using the normal form theorem and the Church-
Rosser one in order to show that two typed lambda terms are equal if and only if
their normal forms, which always exist and are uniquely determined, differ only for the
name of the abstracted variables. However while the normal form theorem is central
in obtaining the result, the Church-Rosser one, which holds also for the type-free -
calculus for which the decidability of the equality theory does not hold, does not seem
to be so important. In our proof it will be very clear that the result rests mainly on the
normal form theorem.

The notion of normal form is central in the development of a simply typed A-calculus:
it establishes a canonical form for the expressions, i.e. their simplest form. In the case
we are considering only one form of simplification is introduced.

4As usual, we assume that the a-equality holds, i.e. that two expressions which differ only for the
name of the abstracted variables are identical; formally the expressions (Az.b) and (Ay.b[z := y]), where
y ¢ FV(b), coincide.



Definition: (f-reduction). (A\z.b)(a) = blz := a]

The simplest form of an expression is obviously the one in which no reduction can
be applied.

Definition: (Normal form). An expression is in normal form if no -reduction can
be applied to any of its sub-expressions.

The following algorithm shows a method to obtain, for any given expression, an
equivalent expression in normal form.

Algorithm: (Conversion into normal form). Let e be an expression of type a and
consider the following recursive definition.

(Az.nf(e(z))) if « =  — 7 where z is a new variable of type (3
nf(e) = < z(nf(by)) ... (nf(b,)) ifa=Cande=x(b1)...(by)
nf(c[z :=a)(by)...(by)) if a =C and e = (Az.c)(a)(by)...(by)

The proof of its total correctness can be found in [Valentini 92] and is based on
the fact that the following rules to construct A-expressions are equivalent to the more
standard ones we have shown in the previous section.

Definition: (Expression).

ap : oy exp [I]...an : ay exp [T
z(ar)...(an):Cexp [[Lx:ag — (... (ay — C)...)]
clr:=a](by)...(bp):C ] a:aexpll]

(Az.c)(a)(by) ... (bn) : C exp [T
b(x): [ exp I,z : a
b:a— [exp [

n>0

n>0

where in 3. the only occurrence of x in b(z) is the manifested one.

The only non-trivial step in the proof of the equivalence is to prove the closure of the
new expression system under substitution. This result is obtained by a double induction
on the complexity of the type of the substituted expression and on the length of the
derivation of the expression on which the substitution is performed.

So the key to prove the decidability of the equality theory lies in the possibility to
obtain a new set of rules, directly suggested by the one we have used to define the new
expressions, such that the decidability is almost obvious but which are also equivalent
to the standard ones.



Definition: (Equal expressions).

ay ~by oy [I...an = by ay [T

(1) x(ar) ... (an) =2 x(by)...(bp): C Tyz:01 — (...(ty, = C)...)]

e o@) b)) ~d: o "=
(2b)

decle=a). (b :C

i~ 0w@b) .. (b O] "=

b(x) ~d(z): 5 [, x:

where in 3. the only occurrence of z in b(z) and d(x) is the manifested one.
It is now almost immediate to show the following theorem.

Theorem. Letb: 3 exp [I'] and d: [ exp [I'] be two expressions of the same type; then
b~d: 3 [ is decidable.

Proof. By induction on the sum of the lengths of the derivations of b : 3 exp ['] and
d: pexp [I.

To conclude the proof of the decidability of the equality between A-expressions we
must show that, for any two expressions b: fexp [[' and d: Bexp [[|, b=d: § [I] is
derivable if and only if b ~ d : § [I'] is derivable. The proof of the right to left implication
is almost immediate while the proof in the other direction is not so obvious.

Let us begin by showing that ~ is an equivalence relation.

Lemma: Reflexivity. Let b: (3 exp [I']; then b~b: 3 [I].
Proof. By induction on the length of the derivation of b : 3 exp [T].
Lemma: Symmetry. Leta~b: (3 [[']; thenb~a: ( [T].
Proof. By induction on the length of the derivation of a ~b: 3 [I'].

The proof of the closure under transitivity is more complex and it recalls that of a
standard cut-elimination theorem. First let us observe that in the use ‘upwards’ of the
rule 3. the name of the new variable is indifferent, i.e. if b(z) ~ d(z) : § [I', z : ], where
x is a variable which appears free neither in b nor in d, is derivable then, for any variable
y of type o which appears neither in b nor in d, also b(y) ~ d(y) : 8 [T,y : ] is derivable
by a derivation of the same depth.

Lemma: Transitivity. Leta~b: 8 [[| andb~c: 3 [[]; thena~c: (3 [[].

Proof. The proofis by induction on the sum of the depth of the derivations of a ~ b : G[T']
and b ~ ¢ : B [I']. Three main cases have to be considered.

(1) Suppose = a — < then we can suppose, without losing generality, that
a~b:a— v [l be derived from a(x) ~ b(z) : v [[,z:a] and b ~ c: a — v [[] be

5



derived from b(z) ~ ¢(z) : v [I', z : a] for some variable x which occurs neither in a nor
in b nor in ¢; then, by inductive hypothesis a(z) ~ ¢(x) : v [I',z : ] is derivable and
hence also a ~ c¢: a — v [T].

Let us now consider the cases in which the type 3 is a basic type.

(2) Suppose a ~ b : C [I'] (or b~ ¢ : C [I]) is derived from o’ ~ b : C [I'] (respectively
b~ :C [I']) then, by inductive hypothesis, a’ ~ ¢ : C [I'] (respectively a ~ ¢’ : C [I])
is derivable and hence also a ~ ¢ : C [I'].

(3a) Suppose x(ay)...(an) ~x(by)...(by) : C [T,z : a1 — (... (a0, — C)...)] and
x(by)...(bp) = x(c1)...(¢p) : C [T,z : ay — (...(ap, — C)...)] are derived from
a; ~ b; : «; [T'] and b; ~ ¢; : «; [T] for each 1 < i < n, then, by inductive hypothesis,
a; ~ ¢; :o; [I] and so x(ay) ... (an) =2 xz(c1)...(cy) : C Tz a1 — (... (a, = C)...)]
is derivable.

(3b) Suppose a ~ (Az.b)(d)(dy)...(d,) : C [[] and (Az.b)(d)(dy) ... (dy)
are derived from a ~ b[z := d|(d;)...(d,) : C [I'] and bz := d|(dy) ... (d
then, by inductive hypothesis, a ~ ¢ : C' [I'] is derivable.

The next fundamental step in the proof of the equivalence between the two equality
theories is to show that ~ is closed under substitution.

Theorem. Letb~d: (3 [I',z:a] anda~c: «a [[]; then blx :=a] =~ d[z :=c]: B [[].

Proof. By double induction: the principal induction is on the complexity of the type « of
the substitution and the secondary is on the length of the derivationof b~ d : g I, x : a].
The proof is completely similar to that of closure under substitution of the expression
system we have already recalled. As usual three main cases have to be considered.

(1) b~d:~v— d [z : alis derived from b(y) ~ d(y) : 6 I,z : o,y : 7] for
some variable y which appears neither in b nor in d; then, by inductive hypothesis,
by)lx :=a] ~ d(y)[z :==¢] : 0 [[y : ], i.e blx = al](y) ~ dlxz :=a](y) : 6 [T,y : 7],
is derivable and hence also b[x := a] ~ d[z := a] : v — 0 [[] is derivable since we can
suppose that y does not appear in a without losing generality.

(2a) (A\y.b)(e)(f1)...(fn) = d: C [T,z : af is derived from bly := €](f1)...(fn) =~
d:C I,z : af; then, by inductive hypothesis,

bly :=e€](f1)...(fn)lxr:=a] =djx:=¢]:C [I,

i.e blx := a|ly := e[z := a]](fi[x :=a])...(fn[zr := a]) = d[z := ] : C [I'] since we can
suppose that y does not appear in a, is derivable and hence also

(Ay.blx :=al)(e]r :=a])(filz :=al) ... (fu]lr :=a]) = d[x =] : C [I7,
ie. (Ay.b)(e)(f1)...(fn)|z:=a] ~d[z:=¢]: C [I, is derivable.

(2b) b~ (Ay.d)(e)(f1)...(fn) : C [,z : ] is derived from

b~dly:=ce|(f1)...(fn): C [z :q]
is completely analogous to the previous case.

(3a) 2(b1) ... (by) ~ 2(dy) ... (dp) : CTyx:,z2: a1 — (... (a0, = C)...)] is derived
from b; ~ d; : «; [['x : «f, for each 1 < i < n, for some variable z # z; then, by
inductive hypothesis, b;[x := a] ~ d;[x := ¢] : «; [['] and hence

z(bi[z :==a])...(bp[z :=a]) ~

z(di[z:=¢])...(dp[zi=¢]): CT,z:a1 — (... (e, = C)...)],
Le. z(by)...(bp)[x :==a] 2 2(dr)...(dp)[xr =] : C [I'z:00 — (.. (e, = C)...)], is
derivable.



(3b) Suppose z ~ z : C [[',z : C] then z[z :=a] ~ z[x :=¢]: C [I'],1.e.a~c: C [I]
is derivable by hypothesis.

(3¢) Suppose z(by)...(b,) ~ x(d1)...(dn) : C Tz : oy — (-..(ay — C)...)]
is derived from b; ~ d; : o; [T,z : g — (... (a0, — C)...)] for each 1 < i < n;
then, by inductive hypothesis, b;[z := a| ~ d;[z := ¢] : «; [[]; let us now consider
a~c:a; — (...(a, — C)) [I']: it must be derived from

alyr) ~ e(y1) a2 — (- (an — O)) [T,y v,
where y; is a new variable whose type «; is simpler then the type a1 — (... (o, — C))
of x, and hence, by principal inductive hypothesis,

a(y)lys = bile = a]] = c(yy)[yr = dar == ] s ag — (.. - (0 — O)) [T,
ie. a(bi[r :=a]) ~ c(di[z :=¢]) : ag — (...(a, — C)) [['], is derivable. Now we can
repeat this procedure n times in order to show that

a(bix :=a])...(bplr :=a]) ~ c(dix :=¢]) ... (dp]x :=¢]) : C [I'],
ie. z(by)...(by)[x:=a] ~x(dy)...(dn)[x :=¢c]: C, is derivable.

Now the proof of the equivalence of the two equality theories is straightforward. First
of all we have the following lemma.
Lemma. Letx:«; thenx ~z:a [[x: o] is derivable.
Proof. By induction on the type complexity a of the variable x.

Closure of ~ under app-equality is an immediate consequence of the theorem of
closure under substitution.

Lemma. Let by ~by:a — (3 [[] and a1 ~ as : « [T']; then by(ay) =~ ba(asz) : 8 [T].

Proof. by ~ by : a« — [ [I'] must be derived from by (x) ~ by(z) : 8 [I', z : a] where x ap-
pears neither in by nor in be; hence from a; ~ as : « [I'] we obtain by(a1) =~ ba(az) : B [T7].

Also &-equality is immediate.
Lemma. Letb~d: (3 [[',x: a|; then (Ax.b) ~ (Az.d) : a« — 3 [['].

Proof. b~d: 3 [I',z : a] must be derived from

b(yr) - (Um) 2 d(y1) .- (Um) : C [Ty a,y1 t0q o Y & Qs
then, since obviously b[z := x] = b and d[z := x] = d, we obtain

Ax.b)(z)(y1) -+ (Ym) =~ Azx.d)(@)(y1) - (Ym) : C [Ty Y1 2 @1« Yoy & Q]
and hence (Ax.b) ~ (Az.d) : @« — 3 [I'] because = appears neither in (Az.b) nor in (Az.d).

As to f-equality, it is built-in in our equality rules.
Lemma. Letb: [ exp I,z :a] and a: a exp [[']; then (A\x.b)(a) ~ blx :=a] : B [T].
| :

Proof. If b : fexp [[',z : ] and a : o exp ['] then blx := a] : B exp [['], because of
closure under substitution, and hence b[x := a] ~ b[x := a] : § [I'], because of reflexivity,
but the last equality must be derived from

blx:=al(y1) ... (Ym) =blx:=al(y1) ... (Ym) : C [Tyy1 : a1 ... Ym : Q)
from which we obtain

(Az.b)(a)(y1) - - (ym) = bz :=a](y1) .- (ym) : C [Ty 1 s e ym o]
and hence (Az.b)(a) ~ blx := a] g [I].

Now let us consider n-equality.



Lemma. Letb:a — ( exp [I'] and z : a be a variable which does not appear in b; then
(Ax.b(z)) ~b:a— [ [T].

Proof. If b: a — [ exp [['] and z : « then b(x) : B exp [I',x : ] is derivable and hence,
by reflexivity, also b(z) ~ b(z) : 0 [I,z : o, i.e. b(z)[z := x] ~ b(z) : B I,z : af is
derivable; now, this equality must be derived from

b(x)[z = a](y1) - - (ym) = b(@)(¥1) - - (ym) - C [T 2 : a1 a1y Q]
hence (Az.b(z))(x)(y1) ... (ym) = b(x) (Y1) .- - (ym) : C [T, : a,y1 : Q1 ... Ym © Q) 18
derivable and then also (Az.b(x))(x) ~ b(x) : 8 [T,z : a]; now, if  does not appear in
b, we can conclude that (A\z.b(z)) ~b:a — g [I].

Finally we must not forget that as far as standard equality is concerned also a-equality
is tacitly assumed and hence here it must be proved.

Lemma. Let b : f exp [I',z : o] and y : « be a variable which does not appear in b;
then (Az.b) ~ (Ay.blx :=y]) : a — G [I].

Proof. Suppose y does not occur in b then b = bz := y|[y := x|; hence b : 8 exp [[', z : a
implies by reflexivity that b[z := x] ~ b[z := y|[y := z] : B [[',xz : a] is derivable and it
must be derived from

blx :=x](y1) .- (ym) = bz :=y]ly:==2](v1) .- - (ym) : C I,z : 41 : Q1+« . Y © iy
and hence

A2D)(@) (1) - () =

(Ay.blz =y (@) (Y1) - (ym) : C [Tzt g1 t a1 Yt O]

is derivable from which (Az.b) ~ (Ay.b[z :=y]) : @ — [ [I'] follows.

So we have completed the proof of equivalence of the two equality systems and hence
also the proof of the theorem of decidability of the equality.

It is necessary to observe that the method here presented fits very well with the
(-n-equality and, as also the referee noted, it would be very interesting to know how to
modify it in order to treat with a A-calculus such that only the (-equality is present.
But this is an another problem.
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