
11/5/01 - 1 -

A proof of the normal form theorem for the
closed terms of Girard’s System F by means of

computability

Silvio Valentini

Dip. Matematica Pure ed Applicata

Università di Padova

via G.Belzoni 7, I-35131 Padova (ITALY)

email valentini@pdmat1.unipd.it

Summary

In this paper a proof of the normal form theorem for the closed terms of Girard’s system F

is given by using a computability method ‘a la’ Tait. It is worth noting that most of the standard

consequences of the normal form theorem can be obtained using this version of the theorem as

well. From the proof-theoretical point of view the interest of the proof is that the definition of

computable derivation here used does not seem to be well founded.

1. Introduction.

Let us recall the main facts about system F (see [Gir-Laf-Tay]) using an expository style

which will make the definitions later in the text easier.

We deal with two forms of judgement1:

- α type [Γ], i.e. “α is a type in the context Γ” .

- a:α [Γ], i.e. “a is a term of type α in the context Γ” .

In both the forms of judgement the context is an ordered set of assumptions of individual and

type variables which includes all the variables which appear free in the type α or in the term a.

The order among assumptions requires that all the type variables which appear free in the type

of the assumption of an individual variable are already assumed (i.e. they appear at its left in the

context). Note that no individual variable can appear in a type since system F does not allow de-

pendent types. We assume the standard rules of weakening, contraction and exchange among

the assumptions of a context as long as the order among assumptions in the context is fulfilled.

Girard supposes to have a numerable set of variables for types (here the notation X typeVar

is used) and to construct the types by the following rules.

1 We follow here the terminology used in [MLöf] and [Bo-Val]

11/5/01 - 2 -

Type formation

(variable type) X type [X typeVar]

(arrow type)
α type [Γ] β type [Γ]

α→β type [Γ]

(quantification)
β type [Γ, X typeVar]

ΠX.β type [Γ]

where quantification is the only rule which bounds a type variable.

Then the terms are introduced.

Term formation

var)
α type [Γ]
x:α [Γ, x:α]

abst1)
b:β [Γ, x:α]

(λx:α.b):α→β [Γ] app1)
c:α→β [Γ] a:α [Γ]

ap(c,a):β [Γ]

abst2)
b:β [Γ, X typeVar]
(ΛX.b):ΠX.β [Γ] app2)

c:ΠX.β [Γ] α type [Γ]
AP(c,α):β[X:=α] [Γ]

where in abst2, following the convention on the order among assumptions of a context, we mean

that in Γ no element variable is assumed to belong to a type where X appears free.

In order to complete the exposition of system F we have to specify the rules which allow to

simplify a term into an equivalent one in normal form. Here we do not follow the standard ap-

proach but we prefer to give weaker rules than the usual β reductions. Adopting a notation used

by Martin Löf (see [Bo-Val]), they are:

(λx:α. b) ⇒ (λx:α. b)
c (λx:α. b) b[x:=a] g

ap(c,a) g

(ΛX. b) ⇒ (ΛX. b)
c (ΛX. b) b[X:=α] g

AP(c,α) g

It is easy to realize that these rules are the usual β-reduction ones with the restriction that a

rule is always “lazy”, that is the reduction process stops as soon as the external form of a term

is normal. Moreover the rules do not handle variables, i.e. they can only be applied to closed

terms.

Obviously the application of the rules to a term t gives rise to a tree. If this tree is finite, i.e.

the evaluation process terminates, the term t will be said to have a value.

Our version of the normal form theorem can now be stated.

Theorem: (Normal form theorem)

Any closed term which is proved to belong to a type has a value.

11/5/01 - 3 -

Girard’s exposition of system F is very clear and elegant; moreover it is well known that the

system is very powerful since it can represent a wide variety of data structures and recursive

functions. But it requires a very involved proof of the normal form theorem: due to Gödel’s the-

orem this is not unexpected since the normal form theorem for system F implies the consistency

of second order arithmetic.

2. Computability

In order to prove the normal form theorem let us begin by giving the definition of suitable

substitution.

Definition 2.1: (Suitable substitution)

Let Γ be a context; then G is a suitable substitution for Γ if any judgement in G is derivable

and

Γ ≡ X typeVar and G ≡ α type

Γ ≡ x:α and G ≡ a:α
Γ ≡ X typeVar, Γ’ and G ≡ α type, G’ where G’ is a suitable substitution for Γ’[X:=α]

Γ ≡ x:α, Γ’ and G ≡ a:α, G’ where G’ is a suitable substitution for Γ’[x:=a].

Note that in the last clause of this definition Γ’[x:=a] ≡ Γ’ since system F does not allow de-

pendent types.

An example of suitable substitution for the context “X typeVar, x:X, y:X→X” is “α type,

a:α, b:α→α”, provided that these judgements are derivable.

In order to denote the result of applying the suitable substitution G for the context Γ to the

judgement a:α[Γ] (or α type [Γ]) we will write a[Γ:=G]:α[Γ:=G] (respectively α[Γ:=G] type).

Although the definition of suitable substitution is not the most general notion of substitution one

can consider, it is sufficient for us; in fact we are interested in substituting the free variables in a

judgement by using only closed judgements, i.e. judgements with an empty context.

Lemma 2.2: (Head substitution)

Let J[Γ, ∆] be a derivable judgement and G be a suitable substitution for Γ; then the judge-

ment J[Γ:=G] [∆[Γ:=G]] is derivable.

Proof: By induction on the length of the derivation of J[Γ,∆]. Almost all cases are straightfor-

ward and for this reason only the most interesting are shown here.

- (quantification) If β type [Γ, ∆, X typeVar] is derivable then, by inductive hypothesis,

β[Γ:=G] type [∆[Γ:=G], X typeVar] is derivable (note that X can not appear in the context Γ)

hence ΠX.(β[Γ:=G])≡(ΠX.β)[Γ:=G] type [∆[Γ:=G]] is derivable.

- (assumption) If α type [Γ, ∆] is derivable then two cases must be considered:

(1) G is a suitable substitution for Γ, hence,by inductive hypothesis, α[Γ:=G] type [∆[Γ:=G]]

is derivable and thus also x:α[Γ:=G] [∆[Γ:=G], x:α[Γ:=G]] is derivable;

11/5/01 - 4 -

(2) G ≡ G’, a:α[Γ’:=G’] is a suitable substitution for Γ ≡ Γ’, x:α then, because of the order

among assumption condition, α depends by no assumption in ∆, hence a:α[Γ:=G] is derivable

and thus also a:α[Γ:=G] [∆[Γ:=G]] is derivable.

At last we have arrived at the main definition of the paper.

Definition 2.3: (Computable judgement)

Let a: α [Γ] be a derivable judgement; then it is computable if

Case Γ=Ø

α≡γ→β if a ⇒ (λx:γ. b)

b:β [x:γ] is computable

α≡ΠX.β if a ⇒ (ΛX. b)

b:β [X typeVar] is computable

Case Γ≠Ø

the judgement a[Γ:=G]: α[Γ:=G] is computable for any suitable substitution G for Γ such

that the assumptions of the element variables are substituted with computable judgements (we

will say that G is a computable suitable substitution for Γ, in short c.s.s.).

First of all it must be pointed out that this definition does not seem to be predicative, differ-

ently from the usual approach to the definition of computable judgement (see for instance [Bo-

Val]) where the analogous definition is given by double induction on the complexity of the type

and the number of assumptions in the judgement. For instance the judgement a:ΠX.X is com-

putable if and only if a ⇒ (ΛX.b) and b:X [X typeVar] is computable and this holds if and only

if b[X:=β]:β is computable for any type β: it is very hard to affirm that the notion of com-

putability of the judgement in the last statement can be easier understood than the original one

since the type β can be much more complex than the type ΠX.X we started with. Of course, the

real problem is that no order among type complexities can be consistently defined for the types

of system F. On the other hand, in a standard proof meant to verify that any derivable judgement

is computable, an induction on the computational complexity2 is usually required but this is not

the case for system F.

Our purpose is now to demonstrate that every derivable judgement is computable. In order to

obtain this result one has to observe that even if the inductive definition of computable judge-

ment does not seem to consider any basic step, this is not the case. In fact, the second clause in

the definition shows that any non-closed judgement is computable if no c.s.s. can be found for

its context. Moreover we also have the following lemma which shows that any assumption is

computable.

2 Some kind of measure of the complexity involved in deciding whether a judgement is computable.

11/5/01 - 5 -

Lemma 2.4:

If α type [Γ] is derivable then x:α [Γ, x:α] is computable.

Proof: Let “G, a:α[Γ:=G]” be a c.s.s. for “ Γ, x:α”; then, in particular, a:α[Γ:=G] is

computable but this is just the judgement which results from the substitution.

Now we will prove that each rule preserves computability, i.e. if the judgements in its

premises are computable also the one in the conclusion is. To this aim, we need to prove first

that the head substitutions preserve computability.

Lemma 2.5:

Let b:β [Γ, X typeVar] be a computable judgement and G be a c.s.s. for Γ; then the judge-

ment b[Γ:=G]: β[Γ:=G] [X typeVar] is computable.

Proof: Let α type be a c.s.s. for X typeVar; then “G, α type” is a c.s.s. for “Γ, X typeVar”

hence b[Γ,X := G,α type] ≡ b[Γ:=G][X:=α type]:β[Γ,X := G,α type] ≡ β[Γ:=G][X :=α type] is

computable.

Lemma 2.6:

Let b: β [Γ, x:α] be a computable judgement and G be a c.s.s. for Γ; then the judgement

b[Γ:=G]: β [x:α[Γ:=G]] is computable.

Proof: Let a:α[Γ:=G] be a c.s.s. for x:α[Γ:=G]; then “G, a:α[Γ:=G]” is a c.s.s. for “Γ, x:α”

hence b[Γ,x := G,a] ≡ b[Γ:=G][x:=a]: β[Γ,x := G,a]≡β[Γ:=G][x:=a] is computable.

Observe also that the following fact is an immediate consequence of the definition of com-

putable judgement.

Fact 2.7:

If a:α is derivable, a ⇒ g and g:α is computable then a:α is computable.

Now we are ready to prove that every derivable judgement is computable; the following lem-

mas are the inductive steps of a proof by induction on the length of the derivation. Let us begin

with the type “arrow”.

Lemma 2.8:

If b:β [Γ, x:α] is computable then (λx:α.b):α→β [Γ] is computable.

Proof: Two cases have to be considered:

Γ=Ø: by definition (λx:α.b) ⇒ (λx:α.b) and b:β [x:α] is computable by hypothesis.

11/5/01 - 6 -

Γ≠Ø: let G be a c.s.s. for Γ; then b[Γ:=G]:β[Γ:=G] [x:α[Γ:=G]] is computable, by the head-

substitution lemma 2.6, hence the previous case shows that (λx:α.b)[Γ:=G]:α[Γ:=G]→β[Γ:=G]

is computable.

Lemma 2.9:

If c:α→β [Γ] and a:α [Γ] are computable then ap(c,a):β [Γ] is computable.

Proof: Two cases have to be considered:

Γ=Ø: ap(c,a) has value g if c⇒(λx:α.b) and b[x:=a] has value g; the first statement holds since

c:α→β is computable by hypothesis and the last one holds since b:β [x:α] is computable by

hypothesis and a:α is a c.s.s. for x:α; moreover g:β[x:=a]≡β is computable whichever type β is.

Hence the conclusion follows by fact 2.7.

Γ≠Ø: let G be a c.s.s. for Γ; then c[Γ:=G]:α[Γ:=G]→β[Γ:=G] and a[Γ:=G]:α[Γ:=G] are com-

putable judgements hence the previous case shows that ap(c,a)[Γ:=G]:β[Γ:=G] is computable.

Consider now the type “quantification”.

Lemma 2.10:

If b:β [Γ, X typeVar] is computable then (ΛX.b):ΠX.β [Γ] is computable.

Proof: Two cases have to be considered:

Γ=Ø: by definition (ΛX.b) ⇒ (ΛX.b) and b:β [X typeVar] is computable by hypothesis.

Γ≠Ø: let G be a c.s.s. for Γ; then b[Γ:=G]:β[Γ:=G] [X typeVar] is computable, by the head-

substitution lemma 2.5, hence the previous case shows that (ΛX.b)[Γ:=G]:ΠX.β[Γ:=G] is com-

putable.

Lemma 2.11:

If c:ΠX.β [Γ] is computable and α type [Γ] is derivable then AP(c,α):β[X:=α] [Γ] is com-

putable.

Proof: Two cases have to be considered:

Γ=Ø: AP(c,α) has value g if c ⇒ (ΛX.b), which holds since c:ΠX.β is computable by hypothe-

sis, and b[X:=α] has value g; also this last statement holds since b:β [X typeVar] is computable

and the derivable judgement α type is a c.s.s. for X typeVar; moreover g:β[X:=α] is computable

whichever types α and β are. Hence the conclusion follows by fact 2.7.

Γ≠Ø: let G be a c.s.s. for Γ then c[Γ:=G]:ΠX.β[Γ:=G] is computable and α[Γ:=G] type is

derivable hence the previous case shows that AP(c,α)[Γ:=G]:β[Γ:=G][X:=α[Γ:=G]] ≡
β[X:=α][Γ:=G] is computable.

Since the structural rules obviously preserve computability, we have proved that any rule pre-

serves computability and thus we obtain the computability theorem.

11/5/01 - 7 -

Theorem 2.12: (Computability)

Any derivable judgement is computable.

Its main corollary is the normal form theorem.

Corollary 2.13: (Normal form theorem)

If a:α is derivable then a has a value.

References

[Bos-Val] A.Bossi, S.Valentini - An intuitionistic theory of types with assumptions of high-arity

variables - Annals of Pure and Applied Logic 57 (1992), p.93-149.

[Gir-Laf-Tay] J.Y.Girard, Y.Lafont, P.Taylor - Proofs and Types - (Cambridge University

Press, 1989).

[MLöf] P.Martin Löf - Intuitionistic Type Theory - (Bibliopolis, Napoli 1984).

