
Under consideration for publication in Math. Struct. in Comp. Science

A general method to prove the

normalization theorem for first and second

order typed λ-calculi

Venanz i o Cap r e t t a and S i l v i o Va l en t i n i

Dipartimento di Matematica Pura ed Applicata

Università di Padova

via G. Belzoni n.7, I–35131 Padova, Italy

cprvnn12@leonardo.math.unipd.it, silvio@math.unipd.it

Received

In this paper we describe a method to prove the normalization property for a large

variety of typed lambda calculi of first and second order, based on a proof of equivalence

of two deduction systems. We first illustrate the method on the elementary example of

simply typed lambda calculus and then we show how to extend it to a more expressive

dependent type system. Finally we use it to prove the normalization theorem for

Girard’s system F.

1. Introduction

We will show a uniform method to prove the normalization property for a wide class

of typed lambda calculi. It applies to many of the calculi which can be found in the

literature (see e.g. (Barendregt 1992)), for instance simply typed lambda calculus, whose

normalization proof goes back to Turing (see (Gandy 1980)), and Girard’s system F

(Girard 1971).

Given a typed lambda calculus Λ, the method consists of three steps. The first step is

to define a partially correct normalization algorithm nfΛ for terms of Λ, then the second

step is to find out a new calculus Λ2 on whose terms nfΛ terminates, and finally the last

step is to prove that Λ and Λ2 are equivalent. Thus, even if the normalization theorem

is not new for the typed lambda calculi that we will analyze, for each of them we will

give a new presentation which allows to better understand its constructive content. This

result is of particular interest for system F whose standard presentation is completely

impredicative and it was the basic motivation for our work.

The paper is organized as follows. We first illustrate the method on simply typed

lambda calculus: most of this section is already contained in (Valentini 1994) and it was

mainly inspired by some ideas of Tait and Martin-Löf. Then we show how to extend it to

more expressive lambda calculi, e.g. introducing dependent and product types. Finally,

we use the method to prove the normalization property for Girard’s system F.

Venanzio Capretta and Silvio Valentini 2

2. Normalization of simply typed lambda calculus

We begin by illustrating the method on simply typed lambda calculus. In order to fix

notation, we recall its rules in Appendix A.

The notion of normal form is central in the development of a typed lambda calculus:

it establishes a canonical form for its terms, i.e. the simplest form. In the case we are

considering only one form of simplification is introduced, that is the relation obtained by

closing for the term formation operations the following contraction relation.

Definition 2.1. (β-contraction)

(λx:α.b)(a) b[x := a]

A term of the form (λx:α.b)(a) is called a redex. A term is of the simplest form if it

contains no redex.†

Definition 2.2. (Normal form) A term is in normal form if it contains no redex.

2.1. A normalization algorithm

The normalization algorithm below in this section, provided it is totally correct, shows a

method to obtain, for any given term, an equal term in normal form. It works on typed

terms and its execution steps depend on the type of the term. This is the reason why we

need a preliminary definition.

Definition 2.3. Let Γ be a context, t1, . . . , tn be a sequence of typed terms, α be a type

and k be a natural number such that 1 ≤ k ≤ n. Then, we define the k-th argument type

of α with respect to t1, . . . , tn (denoted by αt1,...,tn;k) by induction on the type complexity

of α, as follows:

— if α ≡ C then αt1,...,tn;k is undefined.

— if α ≡ β → γ and t1 is a term of type β in the context Γ, then

αt1,...,tn;1 = β

αt1,...,tn;k+1 = γt2,...,tn;k

otherwise αt1,...,tn;k is undefined.

We do not write explicitly the context Γ in the notation αt1,...,tn;k to make it more

readable. Anyhow the context will be always clear when we will need to use the definition

of argument type.

The normalization algorithm will take three arguments: a context Γ, a term e and a

type α. In the description of the algorithm, supposing Γ is a context and x a variable in

such a contex, we will denote its type by Γx. Note that if Γ is a correct context a variable

can be assumed at most once and so Γx is well defined.

† Here we consider only β-reduction and β-normal form, even if η-equality appears among the equality

rules. This should not be considered a drawback of our method since the βη-normal form theorem is

a straightforward consequence of the β-normal form theorem.

A general method to prove the normalization theorem 3

Algorithm (Conversion into normal form)

Let Γ be a context, α be a type and e be a term. Then consider the following recursive

definition.

nf(eΓ;α) =











































(λx:β.nf(e(x)Γ,x:β;γ)) if α ≡ β → γ and

x:β is a fresh variable

x(nf(t
Γ;ΓΦ;1

x

1)) . . . (nf(t
Γ;ΓΦ;n

x
n)) if α ≡ C,

e ≡ x(t1) . . . (tn) and

Φ ≡ t1, . . . , tn
nf(c[x := a](t1) . . . (tn)Γ;α) if α ≡ C and

e ≡ (λx:β.c)(a)(t1) . . . (tn)

The proof of partial correctness of this algorithm is easy.

Theorem 2.4. (Partial correctness) Let Γ ⊢λ→ e : α and suppose the execution of

nf(eΓ;α) terminates. Then nf(eΓ;α) is a term of type α in normal form equal to e.

Proof. Provided the algorithm of conversion into normal form terminates, the result

is almost obvious. In fact, by induction on the number of steps in the execution of the

algorithm it can be proved both that nf(eΓ;α) is a term of type α containing no redex

and that e and nf(eΓ;α) are equal terms.

2.2. A new system to construct terms

The problem rests with proving the termination of the previous algorithm of conversion

into normal form. To this aim we define a new system to derive terms such that a term

is introduced only after the construction of those terms that are needed in order to prove

its normalizability by mean of our algorithm. In order to distinguish the terms of the

new system from those of the old one we will write Γ ⊢λ→

2
a : α, instead of Γ ⊢λ→ a : α,

to mean that a is a term of type α in the context Γ.

Variable introduction

Γ ⊢λ→

2
a1 : α1 . . . Γ ⊢λ→

2
an : αn

Γ, x:α1 → . . . αn → C ⊢λ→

2
x(a1) . . . (an) : C

n ≥ 0

λ-introduction

Γ, x:α ⊢λ→

2
c : γ Γ ⊢λ→

2
a : α Γ ⊢λ→

2
c[x := a](a1) . . . (an) : C

Γ ⊢λ→

2
(λx:α.c)(a)(a1) . . . (an) : C

Abstraction

Γ, x:α ⊢λ→

2
b(x) : β

Γ ⊢λ→

2
b : α→ β

where the only free occurrence of x in b(x) is the manifested one.

It is an immediate consequence of the way the new system is defined that the algorithm

of normalization of the previous section terminates if applied to any one of the new terms.

Venanzio Capretta and Silvio Valentini 4

2.3. Equivalence between the two systems

Hence, to conclude the proof of normalization for any term of the original system, one

must only show that it can be typed in the new system, i.e. that it can be derived by

means of the new rules.

First, note that it is easy to prove, by induction on the structural complexity of the

type of the considered variable, the following lemma which states the closure of the new

system under the variable introduction rule.

Lemma 2.5. (Closure under the variable introduction rule) Let α be a type.

Then x:α ⊢λ→

2
x : α.

The next step is to prove closure of the new system under substitution.

Lemma 2.6. (Closure under substitution) If Γ, x:α ⊢λ→

2
b : β and Γ ⊢λ→

2
a : α are

derivable judgments, then Γ ⊢λ→

2
b[x := a] : β is a derivable judgment.

Proof. The proof is obtained by principal induction on the structural complexity of the

type α of the substituted variable and secondary induction on the length of the deriva-

tion of the judgment Γ, x:α ⊢λ→

2
b : β. The only case in which the principal induction

hypothesis is needed is the case of the variable introduction rule. In all other cases the

proof is straightforward and only the secondary induction hypothesis is needed. For this

reason we illustrate here only the former case.

Let us first consider the simpler case in which the variable z introduced by the rule is

different from the variable x, i.e. suppose that the instance of the rule is

Γ, x:α ⊢λ→

2
a1 : α1 . . . Γ, x:α ⊢λ→

2
an : αn

Γ, x:α, z:α1 → . . . αn → C ⊢λ→

2
z(a1) . . . (an) : C

In this case, by inductive hypothesis on the depth of the derivation, we know that, for

i = 1, . . . , n, Γ ⊢λ→

2
ai[x := a] : αi is a derivable judgment. Hence Γ, z:α1 → . . . αn →

C ⊢λ→

2
z(a1[x := a]) . . . (an[x := a]) : C, which is identical to Γ, z:α1 → . . . αn → C ⊢λ→

2

z(a1) . . . (an)[x := a] : C, is derivable by using the variable introduction rule.

Suppose now that the variable introduced by the rule is exactly the substituted variable

x. Two cases are possible: α is a basic type, and in this case the result is straightforward,

or α ≡ α1 → . . . αn → C, i.e. the instance of the rule is

Γ, x:α ⊢λ→

2
a1 : α1 . . . Γ, x:α ⊢λ→

2
an : αn

Γ, x:α1 → . . . αn → C ⊢λ→

2
x(a1) . . . (an) : C

As above, by inductive hypothesis on the depth of the derivation, we know that, for

i = 1, . . . , n, Γ ⊢λ→

2
ai[x := a] : αi is a derivable judgment. Observe now that the last

rule used in the derivation of the judgment Γ ⊢λ→

2
a : α1 → . . . αn → C must have been

an instance of the abstraction rule

Γ, y1:α1 ⊢λ→

2
a(y1) : α2 → . . . αn → C

Γ ⊢λ→

2
a : α1 → . . . αn → C

for some fresh variable y1. Since the type α1 of the variable y1 is simpler than α, then,

by principal induction hypothesis on the structural complexity of α, the judgment

Γ ⊢λ→

2
a(a1[x := a]) ≡ a(y1)[y1 := a1[x := a]] : α2 → . . . αn → C

A general method to prove the normalization theorem 5

is derivable. The last rule in its derivation must in turn have been an instance of the

abstraction rule

Γ, y2:α2 ⊢λ→

2
a(a1[x := a])(y2) : α3 → . . . αn → C

Γ ⊢λ→

2
a(a1[x := a]) : α2 → . . . αn → C

for some fresh variable y2. Hence, again by the principal induction hypothesis, the judg-

ment

Γ ⊢λ→

2
a(a1[x := a])(a2[x := a]) : α3 → . . . αn → C

is derivable.

After n similar steps, we obtain that Γ ⊢λ→

2
a(a1[x := a]) . . . (an[x := a]) : C is a

derivable judgment, and it is identical to Γ ⊢λ→

2
x(a1) . . . (an)[x := a] : C.

Now the missing link can easily be established.

Theorem 2.7. (Equivalence of the two systems) Γ ⊢λ→ b : β if and only if Γ ⊢λ→

2

b : β.

Proof. The proof that if Γ ⊢λ→

2
b : β then Γ ⊢λ→ b : β is by a straightforward induction

on the length of the derivation of Γ ⊢λ→

2
b : β.

The proof of the other implication is more delicate and we will show it in detail. The

proof is by induction on the length of the derivation of Γ ⊢λ→ b : β, i.e. we prove that

the new system is closed under the rules of the old one. We already proved that λ→2 is

closed under the variable introduction rule (see lemma 2.5).

By using the previous lemma on closure under substitution, it is easy to prove its

closure under the application rule since, if Γ ⊢λ→

2
a : α and Γ ⊢λ→

2
b : α → β then the

latter must have been formed from Γ, x:α ⊢λ→

2
b(x) : β for some fresh variable x. Hence

the judgment Γ ⊢λ→

2
b(a) : β is derivable since it is obtained by substituting the term a

in Γ ⊢λ→

2
a : α for the variable x.

Finally, suppose Γ, x:α ⊢λ→

2
b : β is a derivable judgment. Then it must be formed from

Γ, x:α, y1:α1, . . . , yn:αn ⊢λ→

2
b(y1) . . . (yn) : C by means of n abstractions, for some fresh

variables y1, . . . , yn. Thus, by using an instance of the λ-introduction rule, we obtain

that the judgment Γ, x:α, y1:α1, . . . , yn:αn ⊢λ→

2
(λx:α.b)(x)(y1) . . . (yn) : C is derivable,

since b ≡ b[x := x]. Then by n + 1 abstractions we obtain a proof of the judgment

Γ ⊢λ→

2
(λx:α.b) : α→ β and so the new system is closed also under the abstraction rule.

3. Extension to dependent types

The method we described is quite elementary and just the required steps in a normal-

ization proof are involved. Moreover, it is easy to enhance it in order to consider more

complex kinds of typed lambda calculi. For instance, let us consider the typed lambda

calculus λP× obtained by using dependent types instead of simple basic types, i.e. gener-

alizing arrow types to quantified types (see for example (Coquand 1996)), and by adding

product types.

Since the rules for dependent types are not usually well known, we discuss them here

with some detail, and we give the equality theory in Appendix B.

Venanzio Capretta and Silvio Valentini 6

Dependent types will depend on terms, hence we have to introduce contexts also for

the type judgments. First, we introduce the predicate constants that we are going to use.

Suppose

Γ ⊢
λ

P
×

α1 type

Γ, x1:α1 ⊢λ
P
×

α2 type

. . .

Γ, x1:α1, . . . , xn−1:αn−1 ⊢λ
P
×

αn type

then we write C:(x1:α1, . . . , xn:αn) type [Γ] to mean that C is a predicate constant

of arity n, on the variables x1, . . . , xn, of type α1, . . . , αn respectively, in the context

Γ. In the following we will use also the notation C:(x:α) type [Γ] for short. Note that

we understand that the predicate constant C does not change even if the types of the

variables x1, . . . , xn are modified by a substitution of the variables in the context Γ with

suitable terms. Moreover, we assume that if C:(x:α) type [Γ] is a predicate constant,

and Γ, x1:α1, . . . , xi−1:αi−1 ⊢λ
P
×

αi = βi for 1 ≤ i ≤ n, then also C:(x:β) type [Γ] is a

predicate constant.

We have the following type formation rules.

Atomic types

C:(x:α) type [Γ]

Γ ⊢
λP

×
a1 : α1

. . .

Γ ⊢
λP

×
an : αn[xn := an]

Γ ⊢
λ

P
×

C(a1, . . . , an) type

where αi[xi := ai] is shorthand for

αi[x1 := a1, . . . , xi−1 := ai−1]

Quantified types
Γ ⊢

λ
P
×

α type Γ, x:α ⊢
λ

P
×

β type

Γ ⊢
λ

P
×

(∀x:α) β type

Product types
Γ ⊢

λ
P
×

α1 type . . . Γ ⊢
λ

P
×

αn type

Γ ⊢
λ

P
×

α1 × . . .× αn type

It may be useful to recall that we can define α → β by putting α → β ≡ (∀x:α) β,

provided that x does not appear free in β.

We will use the following rules to derive term judgments for the elements of these

types.

Variable
Γ ⊢λP

×
α type

Γ, x:α ⊢λP
×

x : α

Abstraction
Γ, x:α ⊢λP

×
b : β

Γ ⊢
λ

P
×

(λx:α.b) : (∀x:α) β

Application
Γ ⊢

λP
×

c : (∀x:α) β Γ ⊢
λP

×
a : α

Γ ⊢
λP

×
c(a) : β[x := a]

n-tuple formation
Γ ⊢

λP
×

a1 : α1 . . . Γ ⊢
λP

×
an : αn

Γ ⊢
λP

×
< a1, . . . , an >: α1 × . . .× αn

Selection
Γ ⊢

λP
×

a : α1 × . . .× αn

Γ ⊢λP
×

a(i) : αi

1 ≤ i ≤ n

A general method to prove the normalization theorem 7

In the selection rule we used the unusual notation a(i) to indicate the i-th projection,

in order to have a uniform notation for all the elimination rules.

Since terms can appear inside dependent types, it is possible for a type to contain a

redex. So, unlike the case of simply typed lambda calculus, two types can be convertible

without being syntactically identical. It is then necessary to require that equal types have

the same elements. Therefore we must add the following new rule:

Conversion rule
Γ ⊢

λP
×

a : α Γ ⊢
λP

×
α = β

Γ ⊢λP
×

a : β

Of course, we have new contractions.

Definition 3.1. (β-contraction and selection contraction)

β-contraction (λx:α.b)(a) b[x := a]

selection contraction < a1, . . . , an > (i) ai

It is important to note that, since types can depend on terms, which in general are

not in normal form, there will be a normal form also for types, i.e. the one that depends

only on terms in normal form. Then, we have to modify our normalization algorithm in

such a way that it works both on the types and on the terms we have just defined. To

this aim we need a preliminary definition which adapts the definition 2.3 to λP× .

Definition 3.2. Let Γ be a context, T1, . . . , Tn be a sequence of typed terms or natural

numbers, α be a type and k be a natural number such that 1 ≤ k ≤ n. Then, we define the

k-th argument type of α with respect to T1, . . . , Tn (denoted by αT1,...,Tn;k) by induction

on the type complexity of α, as follows:

— if α ≡ C(a1, . . . , am) then αT1,...,Tn;k is undefined.

— if α ≡ (∀x:β) γ and T1 is a term of type β in the context Γ, then

αT1,...,Tn;1 = β

αT1,...,Tn;k+1 = γ[x := T1]
T2,...,Tn;k

otherwise αT1,...,Tn;k is undefined.

— if α ≡ α1 × . . .× αm and T1 is a natural number such that 1 ≤ T1 ≤ m, then

αT1,...,Tn;1 = index

αT1,...,Tn;k+1 = αT2,...,Tn;k
T1

otherwise αT1,...,Tn;k is undefined.

The algorithm of reduction into normal form for types will take two arguments, i.e. a

context Γ and a type α, while the algorithm of reduction in normal form for terms will

take three arguments, i.e. a context Γ, a type α and a term e.

Venanzio Capretta and Silvio Valentini 8

Conversion into normal form for types

nf(αΓ) =



































C(nf(aΓ;α1

1), . . . , nf(aΓ;αn
n)) if α ≡ C(a1, . . . , an),

C:(x1:β1, . . . , xn:βn) type [Γ]

and αi ≡ βi[xi := ai]

(∀x:nf(βΓ)) nf(γΓ,x:β) if α ≡ (∀x:β) γ

nf(αΓ
1)× . . .× nf(αΓ

n) if α ≡ α1 × . . .× αn

Conversion into normal form for terms

nf(eΓ;α) =











































































(λx:nf(βΓ).nf(e(x)Γ,x:β;γ) if α ≡ (∀x:β) γ

< nf(e(1)Γ;α1), . . . , nf(e(n)Γ;αn) > if α ≡ α1 × . . .× αn

x(nf(T
Γ;ΓΦ,1

x

1)) . . . (nf(T
Γ;ΓΦ,m

x
m)) if α ≡ C(a1, . . . , an),

e ≡ x(T1) . . . (Tm),

and Φ ≡ T1, . . . , Tm

nf(c[x := a](T1) . . . (Tm)Γ;α) if α ≡ C(a1, . . . , an) and

e ≡ (λx:β.c)(a)(T1) . . . (Tm)

nf(ci(T1) . . . (Tm)Γ;α) if α ≡ C(a1, . . . , an) and

e ≡< c1, . . . , cn > (i)(T1) . . . (Tm)

where the arguments T1, . . . , Tm can be either typed terms or natural numbers indicating

a projection, and we assume nf to be the identity function on natural numbers.

It is worth noting how the notion of k-th argument type, that we introduced in the def-

inition 3.2, is used in the previous algorithm: in the case e ≡ x(T1) . . . (Tm) the recursive

calls of the algorithm on the arguments T1,...,Tm use the corresponding argument type

of the type of the variable x, and not the types with which T1,...,Tm have been derived.

It can be easily proved that the proposed normalization algorithm is partially correct,

i.e., if Γ ⊢
λ

P
×

2

e : α is derivable and nf(eΓ;α) exists, then e and nf(eΓ;α) are equal terms

and nf(eΓ;α) contains no redex (respectively, if Γ ⊢
λ

P
×

2

α type is derivable and nf(αΓ)

exists, then α and nf(αΓ) are equal types and nf(αΓ) contains no redex).

We should now prove the termination of the normalization algorithm on all the terms of

λP× , but the presence of the conversion rule makes it more difficult to prove normalization

by using our method directly. Thus, let us recall first some straightforward facts about

the system λP× which will be useful in the following.

Lemma 3.3. The following properties are valid for the calculus λP× :

(i) if Γ ⊢
λ

P
×

a : α then Γ ⊢
λ

P
×

α type;

(ii) if Γ ⊢
λ

P
×

α = β then Γ ⊢
λ

P
×

α type and Γ ⊢
λ

P
×

β type;

(iii) if Γ ⊢
λ

P
×

a = b : α then Γ ⊢
λ

P
×

a : α and Γ ⊢
λ

P
×

b : α.

Lemma 3.4. If Γ ⊢
λ

P
×

α = β then

(i) if α ≡ C(a1, . . . , an) for some predicate constant C:(x:α) type [Γ] then β ≡ C(b1, . . . , bn)

for some terms b1, . . . , bn and, for any 1 ≤ i ≤ n, Γ ⊢λP
×

ai = bi : αi[xi := ai];

(ii) if α ≡ (∀x:α1) α2 then β ≡ (∀x:β1) β2 and Γ ⊢λP
×

α1 = β1 and Γ, x:α1 ⊢λP
×

α2 = β2;

A general method to prove the normalization theorem 9

(iii) if α ≡ α1 × . . .× αn then β ≡ β1 × . . .× βn and, for any 1 ≤ i ≤ n, Γ ⊢λP
×

αi = βi.

Now we will go on with our general approach: we will define a new system λ
P×

2 for

which the normalization algorithm always terminates. To this aim, we need to introduce

a notion of compatibility, which we define together with the system λ
P×

2 by mutual

recursion.

Definition 3.5. (First order compatibility) Given a context Γ, a type α and a finite

sequence Φ whose elements are either typed terms or natural numbers, we define the

notion of compatibility between α and Φ in the context Γ, and, in the case α and Φ are

compatible in the context Γ, we also associate with α and Φ the type β = Res(α; Φ), as

follows

— α and () are compatible and Res(α; ()) = α,

— if α and (T1, . . . , Tn−1) are compatible and Res(α; T1, . . . , Tn−1) = γ, then

– if γ ≡ C(a1, . . . , am) then α and (T1, . . . , Tn) are never compatible,

– if γ ≡ (∀x:η) δ then α and (T1, . . . , Tn) are compatible if and only if Tn is a term

such that Γ ⊢
λ

P
×

2

Tn : η; in this case Res(α; T1, . . . , Tn) = δ[x := Tn],

– if γ ≡ α1 × . . .× αm then α and (T1, . . . , Tn) are compatible if and only if Tn is a

natural number such that 1 ≤ Tn ≤ m; in this case, Res(α; T1, . . . , Tn) = αTn

We will write (T1, . . . , Tn) ∈ Arg(α) [Γ] to mean that α and (T1, . . . , Tn) are compatible

in the context Γ.

The rules for type derivation for λ
P×

2 will be the same as the ones of the original

system; this doesn’t imply a priori that the types are the same, because the terms on

which we build the dependent types may be different. The rules for term derivation are

the following.

Variable introduction

Γ ⊢
λ

P
×

2

α type (T1, . . . , Tn) ∈ Arg(α) [Γ] Res(α; T1, . . . , Tn) = C(b1, . . . , bm)

Γ, x:α ⊢
λ

P
×

2

x(T1) . . . (Tn) : C(b1, . . . , bm)

λ-introduction

Γ, x:α ⊢
λ

P
×

2

c : γ Γ ⊢
λ

P
×

2

a : α Γ ⊢
λ

P
×

2

c[x := a](T1) . . . (Tn) : C(b1, . . . , bm)

Γ ⊢
λ

P
×

2

(λx:α.c)(a)(T1) . . . (Tn) : C(b1, . . . , bm)

Abstraction
Γ, x:α ⊢

λ
P
×

2

b(x) : β

Γ ⊢
λ

P
×

2

b : (∀x:α) β

where the only free occurrence of x in b(x) is the manifested one.

n-tuple introduction

Γ ⊢
λ

P
×

2

ai(T1) . . . (Tn) : C(b1, . . . , bm) Γ ⊢
λ

P
×

2

a1 : α1 . . . Γ ⊢
λ

P
×

2

an : αn

Γ ⊢
λ

P
×

2

< a1, . . . , an > (i)(T1) . . . (Tn) : C(b1, . . . , bm)
1 ≤ i ≤ n

Venanzio Capretta and Silvio Valentini 10

Product
Γ ⊢

λ
P
×

2

a(1) : α1 . . . Γ ⊢
λ

P
×

2

a(n) : αn

Γ ⊢
λ

P
×

2

a : α1 × . . .× αn

Finally, we add the conversion rule as in the sistem λP× .

It is now possible to adapt the equivalence theorem 2.7 to this new setting, since we can

prove the closure of the new system under substitution in a way similar to the previous

one.

Lemma 3.6. (Closure under substitution) If Γ, x:α ⊢
λ

P
×

2

b : β and Γ ⊢
λ

P
×

2

a : α are

derivable judgments, then Γ ⊢
λ

P
×

2

b[x := a] : β[x := a] is a derivable judgment.

Proof. The proof is similar to the proof of lemma 2.6. It is only necessary to carry on

the substitution also along the type formation rules and the conversion rule.

As in the case of simply typed λ-calculus, the equivalence between the two systems

follows easily from the closure under substitution of the second.

Theorem 3.7. (Equivalence of λP× and λ
P×

2) Γ ⊢
λ

P
×

b : β if and only if Γ ⊢
λ

P
×

2

b : β.

We need now to show that the presence of the conversion rule in the system λ
P×

2 does

not affect the termination of the normalization algorithm; in fact this rule is the only

one which is not directly suggested by the normalization algorithm. To show this result,

we will prove that in λ
P×

2 it is sufficient to use the conversion rule only on basic types.

To this aim, we need a preliminary lemma.

Lemma 3.8. If Γ, x:α ⊢
λ

P
×

2

c : γ and Γ ⊢
λ

P
×

2

α = β then Γ, x:β ⊢
λ

P
×

2

c : γ with

a derivation that uses only instances of the conversion rule on types whose structural

complexity is less or equal to that of α.

Proof. By induction on the length of the derivation of Γ, x:α ⊢
λ

P
×

2

c : γ. Most of

the cases follow immediately applying the same rule to the judgement(s) obtained by

inductive hypothesis. Thus, we show here only the case when the last rule applied is an

instance of the variable introduction rule for the variable x.

Γ ⊢
λ

P
×

2

α type (T1, . . . , Tn) ∈ Arg(α) [Γ] Res(α; T1, . . . , Tn) = C(b1, . . . , bm)

Γ, x:α ⊢
λ

P
×

2

x(T1) . . . (Tn) : C(b1, . . . , bm)

Thus, c ≡ x(T1) . . . (Tn) and γ ≡ C(b1, . . . , bm). By induction on n we can prove that

(T1, . . . , Tn) ∈ Arg(β) [Γ] and Res(β; T1, . . . , Tn) = C(b1, . . . , bm). Then

Γ ⊢
λ

P
×

2

β type (T1, . . . , Tn) ∈ Arg(β) [Γ] Res(β; T1, . . . , Tn) = C(b1, . . . , bm)

Γ, x:β ⊢
λ

P
×

2

x(T1) . . . (Tn) : C(b1, . . . , bm)

Note that in all the derivations we built within the proof of (T1, . . . , Tn) ∈ Arg(β) [Γ]

only instances of the conversion rule on types whose complexity is lower or equal than

the complexity of the type α were used.

The condition in the statement of the previous lemma about the use of the conversion

rules only on types which are not more complex than the one in the considered equality

will be essential in the proof of the next theorem.

A general method to prove the normalization theorem 11

Theorem 3.9. The following rule of conversion on basic types

Γ ⊢
λ

P
×

2

c : C(a1, . . . , an) Γ ⊢
λ

P
×

2

C(a1, . . . , an) = C(b1, . . . , bn)

Γ ⊢
λ

P
×

2

c : C(b1, . . . , bn)

is sufficient to have the full conversion rule.

Proof. Suppose

Γ ⊢
λ

P
×

2

c : α Γ ⊢
λ

P
×

2

α = β

Γ ⊢
λ

P
×

2

c : β

is the instance of the conversion rule whose admissibility we want to prove. The proof

is by induction on the type complexity of the type α. If α is a basic type then we are

done. Thus, let us suppose that α ≡ (∀x:α1) α2. Then, because of theorem 3.4 which

we can use because we already proved the equivalence of the systems λ
P×

2 and λP× ,

β ≡ (∀x:β1) β2 and Γ ⊢
λ

P
×

2

α1 = β1 and Γ, x:α1 ⊢
λ

P
×

2

α2 = β2. But, in the system λ
P×

2 ,

the last step in any possible proof of Γ ⊢
λ

P
×

2

c : (∀x:α1) α2 must have been an instance

of the abstraction rule whose premise is Γ, x:α1 ⊢
λ

P
×

2

c(x) : α2. Then, since the type

complexity of α2 is lower than the type complexity of α we get Γ, x:α1 ⊢
λ

P
×

2

c(x) : β2

by inductive hypothesis. But now, again by inductive hypothesis, we can assume that

the conversion rule is valid for types less complex than α; hence it holds for α1 and then

the previous lemma yields Γ, x:β1 ⊢
λ

P
×

2

c(x) : β2. Now an application of the abstraction

rule shows that Γ ⊢
λ

P
×

2

c : (∀x:β1) β2. Finally, if α ≡ α1 × . . . × αn then by theorem

3.4, β ≡ β1 × . . . × βn and, for any 1 ≤ i ≤ n, Γ ⊢
λ

P
×

2

αi = βi. Moreover the last step

in any possible proof of Γ ⊢
λ

P
×

2

c : α1 × . . . × αn has to have been an instance of the

product rule whose premises are Γ ⊢
λ

P
×

2

c(i) : αi for any 1 ≤ i ≤ n. But in this case we

get that Γ ⊢
λ

P
×

2

c(i) : βi, by inductive hypothesis, and hence the result follows by using

an instance of the product rule.

We can now prove that the normalization algorithm terminates when applied to any

terms of λ
P×

2 .

Theorem 3.10. Let Γ ⊢
λ

P
×

2

c : α. Then the computation of nf(cΓ;α) terminates.

Proof. The proof is by induction on the length of the derivation of Γ ⊢
λ

P
×

2

c : α. Most

of the cases are immediate since all of the rules of λ
P×

2 , except the conversion rule, are

obtained just by reversing the order in the algorithm steps.

Only one rule, among those obtained reversinig the algorithm steps, deserves more

attention, i.e. the abstraction rule,

Γ, x:α ⊢
λ

P
×

2

b(x) : β

Γ ⊢
λ

P
×

2

b : (∀x:α) β

In this case we have that nf(bΓ;(∀x:α)β) computes to λx:nf(αΓ).nf(b(x)Γ,x:α;β); hence in

order to show that it terminates we have to show that both nf(αΓ) and nf(b(x)Γ,x:α;β)

terminate. The termination of the latter immediately follows by inductive hypothesis

Venanzio Capretta and Silvio Valentini 12

while to see that also the termination of the former follows by inductive hypothesis

one has to realize that, in order x:α to appear in a context, it is necessary that it was

introduced by a variable introduction rule (or by a weakening rule) and hence that the

proof of Γ ⊢
λ

P
×

2

α type appears somewhere within the proof of Γ, x:α ⊢
λ

P
×

2

b(x) : β.

The only other rule which could have been used is the conversion rule and, after the

previous theorem, we can assume that we used it in the restricted form:

Γ ⊢
λ

P
×

2

c : C(a1, . . . , an) Γ ⊢
λ

P
×

2

C(a1, . . . , an) = C(b1, . . . , bn)

Γ ⊢
λ

P
×

2

c : C(b1, . . . , bn)

Now, by inductive hypothesis, the computation of nf(cΓ;C(a1,...,an)) terminates, but then

also the computation of nf(cΓ;C(b1,...,bn)) terminates since, when used on an element of

a basic type, the normalization algorithm depends only on the shape of the term and

the context to which it is applied and not on the type, as a direct inspection of the

definition of nf shows. It is worth noting that this argument only works because we used

the restricted form of the conversion rule and in the general case it is not possible to infer

the termination of nf(cΓ;β) from the termination of nf(cΓ;α), even if α and β are equal

types, since for the non-basic type the normalization algorithm depends also on the type

of the term to be normalized and not only on the term itself.

4. Extension to system F

We want to extend our method to a second order typed lambda calculus, namely Girard’s

system F (Girard 1971; Girard 1986; Girard et al 1989). We think that this extension is

of particular interest because Girard’s original proof of normalization relies on strong

non-constructive logical principles. Our method allows us to give a proof in which the

use of such principles is as limited as possible. To fix notation we recall the definition of

system F in Appendix C.

In system F there are application and abstraction both for simple variables and for

type variables; so we have two kinds of β-contractions.

Definition 4.1. (First and second order β-contractions)

(λx:α.b)(a) b[x := a]

(ΛX.b)(α) b[X := α]

As in the previous cases a term of the form (λx:α.b)(a) or (ΛX.b)(α) is called a redex

and a term is in normal form if it does not contain any redex.

4.1. Normalization algorithm

Also in this case we define a normalization algorithm nf that, given a contest Γ, a type α

and a term e of system F, provided it terminates, gives a term nf(eΓ;α) in normal form.

As in the previous cases, since the steps of the normalization algorithm depend on types,

we need a preliminary definition which adapts the definitions 2.3 and 3.2 to system F.

A general method to prove the normalization theorem 13

Definition 4.2. Let Γ be a context, T1, . . . , Tn be a sequence of typed terms or types

of system F, α be a type and k be a natural number such that 1 ≤ k ≤ n. Then, we

define the k-th argument type of α with respect to T1, . . . , Tn (denoted by αT1,...,Tn;k) by

induction on the type complexity of α, as follows:

— if α ≡ X , for some TypeVar X , then αT1,...,Tn;k is undefined.

— if α ≡ β → γ and T1 is a term of type β in the context Γ, then

αT1,...,Tn;1 = β

αT1,...,Tn;k+1 = γT2,...,Tn;k

otherwise αT1,...,Tn;k is undefined.

— if α ≡ ΠX.β and T1 is a type in the context Γ, then

αT1,...,Tn;1 = type

αT1,...,Tn;k+1 = β[X := T1]
T2,...,Tn;k

otherwise αT1,...,Tn;k is undefined.

For system F no normalization on types is required, hence we will give the definition

of the algorithm only on typed terms.

Algorithm of conversion into normal form

nf(eΓ;α) =











































































(λx:β.nf(e(x)Γ,x:β;γ)) if α ≡ β → γ and

x:β is a fresh variable

(ΛX.nf(e(X)Γ,X TypeVar;β)) if α ≡ ΠX.β

x(nf(T
Γ;ΓΦ;1

x

1)) . . . (nf(T
Γ;ΓΦ;n

x
n)) if α is a type variable,

e ≡ x(T1) . . . (Tn)

and Φ ≡ T1, . . . , Tn

nf(c[x := a](T1) . . . (Tn)Γ;α) if α is a type variable and

e ≡ (λx:β.c)(a)(T1) . . . (Tn)

nf(c[X := γ](T1) . . . (Tn)Γ;α) if α is a type variable and

e ≡ (ΛX.c)(γ)(T1) . . . (Tn)

where T1, . . . , Tn are typed terms or types and we assume nf to be the identity on types.

If the computation of nf(eΓ;α) terminates, it is trivial to see that the result is a term in

normal form equal to e. As before the difficulty is to prove that the algorithm nf always

terminates when it is applied on terms of system F.

4.2. A new system to construct second order terms

Following our general approach, to prove that the normalization algorithm terminates on

any term of system F we have to define a new system F2 on whose terms the algorithm

terminates and to show that system F and F2 are equivalent. As in the previous section

we will begin with the variable introduction rule. Also in this case the general idea

is to introduce a new variable only when the resulting term is of a basic type, i.e. a

type variable. Hence, given a variable we obtain a term by applying it to a sequence

Venanzio Capretta and Silvio Valentini 14

of arguments until we obtain an expression of basic type. In the case of system F we

have two kinds of application, i.e. to terms and to types. Since the type application can

increase the complexity of the type of the resulting term, we cannot tell in advance how

many applications we need to obtain a basic type. We already had a similar problem in

the previous section, hence we use a similar solution. Once again we define a notion of

compatibility by mutual recursion with the definition of the system F2.

Definition 4.3. (Second order compatibility) Given a context Γ, a type α and a

finite sequence Φ whose elements are either typed terms or types, we define the notion of

compatibility between α and Φ in the context Γ, and, in the case α and Φ are compatible

in the context Γ we also associate with α and Φ the type β = Res(α; Φ), as follows

— α and () are always compatible and Res(α; ()) = α,

— if α and (T1, . . . , Tn−1) are compatible and Res(α; T1, . . . , Tn−1) = γ then

– if γ is a type variable then α and (T1, . . . , Tn) are never compatible,

– if γ ≡ δ → η then α and (T1, . . . , Tn) are compatible if and only if Tn is a term

such that Γ ⊢F2
Tn : δ; in this case Res(α; T1, . . . , Tn) = η,

– if γ ≡ ΠX.δ then α and (T1, . . . , Tn) are compatible if and only if Tn is a type

such that Γ ⊢F2
Tn type; in this case Res(α; T1, . . . , Tn) = δ[X := Tn].

We will write (T1, . . . , Tn) ∈ Arg(α) [Γ] to mean that α and (T1, . . . , Tn) are compatible

in the context Γ.

Now, we can give the rules of term derivation for the system F2:

Variable introduction

Γ ⊢F2
α type (T1, . . . , Tn) ∈ Arg(α) [Γ] Res(α; T1, . . . , Tn) ≡ X

Γ, x:α ⊢F2
x(T1) . . . (Tn) : X

λ-introduction

Γ, x:α ⊢F2
c : γ Γ ⊢F2

a : α Γ ⊢F2
c[x := a](T1) . . . (Tn) : X

Γ ⊢F2
(λx:α.c)(a)(T1) . . . (Tn) : X

First order abstraction

Γ, x:α ⊢F2
b(x) : β

Γ ⊢F2
b : α→ β

where the only free occurrence of x in b(x) is the manifested one.

Λ-introduction

Γ, Y TypeVar ⊢F2
c : γ Γ ⊢F2

α type Γ ⊢F2
c[Y := α](T1) . . . (Tn) : X

Γ ⊢F2
(ΛY.c)(α)(T1) . . . (Tn) : X

Second order abstraction

Γ, X TypeVar ⊢F2
b(X) : β

Γ ⊢F2
b : ΠX.β

where the only free occurrence of X in b(X) is the manifested one.

A general method to prove the normalization theorem 15

4.3. Equivalence between F and F2

As in the previous sections, the last step in the proof of the normalization theorem is to

prove that the new system is equivalent to the old one.

It is straightforward, but quite long, to prove the following lemma of closure under

second order substitution by induction on the length of the derivation of the judgement

on which the substitution is performed.

Lemma 4.4. (Closure under second order substitution) F2 is closed under second

order substitution, i.e. if Γ ⊢F2
α type and Γ, X TypeVar ⊢F2

c : β are derivable, then also

Γ ⊢F2
c[X := α] : β[X := α] is derivable.

In the proof of the equivalence of F and F2 it will be essential to be able to prove a

property of a term t of F2 using induction on the length of its derivation in F. This means

not only that we must know that t is derivable in F, but also that the induction does not

“exit” F2. More formally we must prove the following lemma.

Lemma 4.5. (Embedding lemma) If Γ ⊢F2
c : α, then c is also a term of F and all

the terms that appear in the derivation of c in F are typable in F2. We will say that the

derivation of c in F can be embedded in F2.

Proof. The proof is by induction on the length of the derivation of Γ ⊢F2
c : α.

According to the last rule used in the derivation we have:

— Variable introduction:

Γ ⊢F2
α type (T1, . . . , Tn) ∈ Arg(α) [Γ] Res(α; T1, . . . , Tn) ≡ X

Γ, x:α ⊢F2
x(T1) . . . (Tn) : X

By induction hypothesis those of the Ti’s that are terms, are also terms of F and their

deduction in F can be embedded in F2. Then, we can derive x(T1) . . . (Tn) in F by n

first and second order applications. Moreover the terms that appear in the derivation

of x(T1) . . . (Tn) in F are those that appear in the derivations of T1, . . . , Tn, which

are derivable in F2 by induction hypothesis, and x, x(T1), . . . , x(T1) . . . (Tn). We have

to prove that also the latter are derivable in F2. By using the variable introduction

rule we have that, for 0 ≤ i ≤ n, x(T1) . . . (Ti)(ξi+1) . . . (ξm) : Y is a term of F2,

where ξi+1, . . . , ξm are first and second order variables (note that m ≤ n). Now we

just need to apply first and second order abstraction rules m− i times to obtain that

x(T1) . . . (Ti) is a term of F2.

— λ-introduction:

Γ, x:α ⊢F2
c : γ Γ ⊢F2

a : α Γ ⊢F2
c[x := a](T1) . . . (Tn) : X

Γ ⊢F2
(λx:α.c)(a)(T1) . . . (Tn) : X

By induction hypothesis c[x := a](T1) . . . (Tn) and a are terms of F and their derivation

in F can be embedded in F2. Note that the derivation of c[x := a](T1) . . . (Tn) must

end with n applications, so that T1, . . . , Tn must be derivable in F, and, by induction

hypothesis, their derivations can be embedded in F2. By induction hypothesis we

have also that Γ, x:α ⊢F c : γ and the derivation of c in F can be embedded in

F2. Thus, to obtain Γ ⊢F (λx:α.c)(a)(T1) . . . (Tn) : X , we can apply the first order

abstraction rule one time and the first and second order application rules n+1 times.

Venanzio Capretta and Silvio Valentini 16

We have to prove that λx:α.c is a term of F2. This is done by considering the term

c[x := x](ξ1) . . . (ξm) : Y which is deducible in F2, by applying first the λ-introduction

rule and then m+1 abstractions. Similarly to the previous case we can also prove that

the terms (λx:α.c)(a), (λx:α.c)(a)(T1),. . . , (λx:α.c)(a)(T1) . . . (Tn) are all deducible

in F2.

— Λ-introduction: the proof is similar to the previous one.

— First order abstraction:
Γ, x:α ⊢F2

b(x) : β

Γ ⊢F2
b : α→ β

By induction hypothesis b(x) is deducible in F and its derivation in F can be embedded

in F2. But the derivation of b(x) in F must contain a derivation of b which is thus

already embedded into F2.

— Second order abstraction: the proof is similar to the previous one.

The proof that F2 is closed under first order substitution is the step that requires

the use of non-constructive principles. To obtain this result we use part of the proof of

strong normalization for system F in (Krivine 1993); in particular our adequacy lemma is

a version for F2 of the lemma with the same name in that book. For this reason here we

only recall the main definitions and lemmas. Let us introduce some notation.

Λ =
⋃

α type Λα where Λα = {terms of system F of type α}

Λ2 =
⋃

α type Λ2
α where Λ2

α = {terms of F2 of type α}

Λ0 =
⋃

α type Λ0
α where Λ0

α = {terms of F2 of type α in the

form x(T1) . . . (Tn)}

Definition 4.6. (Arrow set of lambda terms of F2) Let A ⊆ Λ2
α and B ⊆ Λ2

β then

A → B = {t ∈ Λ2
α→β |(∀u ∈ A) t(u) ∈ B}.

Definition 4.7. (Saturated set) A set of terms A ⊆ Λ2
α is saturated if:

— Λ0
α ⊆ A;

— if u ∈ Λ2
γ , t ∈ Λ2

β and u[x := t](T1) . . . (Tn) ∈ A,

then (λx:β.u)(t)(T1) . . . (Tn) ∈ A;

— if u ∈ Λ2
γ and u[X := γ](T1) . . . (Tn) ∈ A

then (ΛX.u)(γ)(T1) . . . (Tn) ∈ A.

It is easy to verify that, for every type α, Λ2
α is a saturated set and that if A ⊆ Λ2

α,

B ⊆ Λ2
β and B is saturated then A → B is saturated.

Definition 4.8. (Variable assignment) A variable assignment is a map from the set

of type variables into saturated sets.

Let I be a variable assignment, X a type variable, β a type and A ⊆ Λ2
β a saturated

set. Then we can define a new assignment I[X ← A] by putting I[X ← A](Y) = I(Y)

if Y ≡/ X and I[X ← A](X) = A.

Definition 4.9. (Interpretation) Let I be a variable assignment. Then the interpre-

tation | |I is a map from types into sets of terms defined by putting, for any type α,

— If α ≡ X is a type variable, then |α|I = I(X)

A general method to prove the normalization theorem 17

— If α ≡ β → γ, then |α|I = |β|I → |γ|I
— If α ≡ ΠX.β, then |α|I is the set of all terms t of F2 such that

t(γ) ∈ |β|I[X←B] for every type γ and every saturated set B ⊆ Λ2
γ .

Note that |α|I depends only on the values that I takes on the free variables of α, so

if α is a closed type then |α|I does not depend on I.

Notice also that this definition is the only point in the whole method where we need

to use a non constructive logic principle, since in the third case we are defining the

interpretation by an impredicative second order quantification over all saturated sets.

The following proposition states that every type is interpreted into a saturated set.

Proposition 4.10. (Interpretation correctness) Let I be a variable assignment and

α a type. Then |α|I ⊆ Λ2
α[X1:=α1,...,Xn=αn] is a saturated set, where X1,. . . ,Xn are the

free variables of α and, for i = 1, . . . , n, I(Xi) ⊆ Λ2
αi

.

A standard substitution lemma holds for interpretations.

Proposition 4.11. (Substitution lemma) Let α, ν be two types, X a type variable,

I a variable assignment and suppose A = |ν|I ; then |α[X := ν]|I = |α|I[X←A].

Finally, we arrive to the main lemma.

Proposition 4.12. (Adequacy lemma) Let I be a variable assignment, u a term of

F2 of type α with free variables x1:α1, . . . , xk:αk and, for 1 ≤ i ≤ k, ti ∈ |βi|I , where

|βi|I ⊆ Λ2
αi

; then u[x1 := t1, . . . , xk := tk] ∈ |β|I , for some type β such that |β|I ⊆ Λ2
α.

Proof. We proved in the embedding lemma that if u is a term of F2 of type α, then

it is also a term of F and its derivation in F can be embedded in F2. Then to prove this

lemma we can use induction on the rules of F even if we are dealing with terms of F2.

Once said that, the proof of the lemma is identical to the proof of the lemma with the

same name given in (Krivine 1993), page 129.

We are now ready to prove the main result of this section.

Theorem 4.13. (Closure of F2 under first order substitution) F2 is closed under

first order substitution, i.e. if Γ, x:γ ⊢F2
u : α and Γ ⊢F2

t : γ, then Γ ⊢F2
u[x := t] : α.

Proof. Let x1:α1, . . . , xk:αk be the free variables of u. If x is not one of them then

u[x := t] ≡ u and the statement is trivially true.

If x ≡ xj for some j ∈ {1, . . . , k}, suppose X1, . . . , Xk are type variables and define a

variable assignment I by putting:

Xi 7−→ |Xi|I = Λ2
αi

for i ∈ {1, . . . , k}

Y 7−→ |Y |I = Λ2
Y if Y ≡/ Xi for any i ∈ {1, . . . , k}

Then xi ∈ |Xi|I and t ∈ |Xj |. So, by the adequacy lemma, u[x := t] ≡ u[x1 :=

x1, . . . , xj := t, . . . , xk := xk] ∈ Λ2
α and hence it is a term of F2.

As in the case of simply typed lambda calculus, once the theorem of closure under

substitution is proved, the proof of the equivalence of the two systems is easy.

Theorem 4.14. (Equivalence of F and F2) Γ ⊢F t : α if and only if Γ ⊢F2
t : α.

Proof. We already proved in the embedding lemma that if Γ ⊢F2
t : α then Γ ⊢F t : α.

The other implication can be proved exactly as in the case of simply typed lambda

Venanzio Capretta and Silvio Valentini 18

calculus and, like there, the theorems of closure under first and second order substitution

are necessary to prove that the system F2 is closed under the first and second order

application rules.

5. Conclusions

The method we exposed appears to be of very general applicability. Indeed, we think that

it should work for any typed lambda calculus such that any type has just one introduction

rule. In fact only in this case our algorithm of normalization can work. Nevertheless, we

think that the proof of closure under substitution will probably become more and more

demanding as the typed lambda calculus considered becomes more complex. It is anyway

important to stress that our method makes explicit the fact that the difficult step in a

proof of normalization usually correspond to the closure under substitution of some

internal interpretation (see for example the adequacy lemma for system F).

An interesting problem here would be to check the applicability of our method to the

general case of Pure Type Systems (Barendregt 1992).

Moreover, as Milena Stefanova pointed out to us after reading a first draft of this

paper, strong normalization follows from the weak normalization given by our algorithm.

Indeed it can be proved that all the terms of the second system are strongly normalizable,

by induction on their derivation.

A method to prove normalization that resemble the one we described has independently

been found and used by Ralph Matthes (see chapter 9 of (Matthes 1998) and (Matthes

and Joachimski 1998)).

Appendix A. Simply typed lambda calculus

In simply typed lambda calculus there are only basic types and function types. Hence

we have the following type formation rules:

Basic types
C basic type

C type

Arrow types
α type β type

(α→ β) type

By convention → associates to the right, so by α1 → α2 → α3 we mean (α1 → (α2 →

α3)).

We assume to have a countable set of variables for any type α and we use the notation

x:α to mean that x is a variable of type α. Then, we can form lambda terms according

to the following rules:

Variable
α type

x:α ⊢λ→ x : α

Application
Γ ⊢λ→ b : α→ β Γ ⊢λ→ a : α

Γ ⊢λ→ b(a) : β

Abstraction
Γ, x:α ⊢λ→ b : β

Γ ⊢λ→ (λx:α.b) : α→ β

The form of the judgments derivable by means of these rules is Γ ⊢λ→ t : α, that

A general method to prove the normalization theorem 19

is “t is a term of type α in the context Γ”. The context Γ comprises the declarations

of all the variables that appear free in the term t. We assume the standard operations

of weakening, contraction and exchange between the assumptions in a context. We will

write FV(t) to denote the set of the free variables in t. The substitution of a term for a

variable within a term is defined in the usual way (see e.g. (Barendregt 1992)).

The equality relation between two lambda terms is the minimal congruence relation,

with respect to λ-abstraction and application, such that the following rules hold.

α-equality
Γ, x:α ⊢λ→ b : β

Γ ⊢λ→ (λy:α.b[x := y]) = (λx:α.b) : α→ β
y /∈ FV(b)

η-equality
Γ ⊢λ→ b : α→ β

Γ ⊢λ→ (λx:α.b(x)) = b : α→ β
x /∈ FV(b)

β-equality
Γ, x:α ⊢λ→ b : β Γ ⊢λ→ a : α

Γ ⊢λ→ (λx:α.b)(a) = b[x := a] : β

Appendix B. Equality for dependent types

We give here the formal definition of the two equality relations, i.e. on types and on

terms, in the lambda calculus with dependent and product types. We don’t repeat the

rules for type formation and term deduction which we already showed in the main text.

Since types can depend on terms we need to define the equality also for types. The

equality is defined as the minimal congruence relation, with respect to all the type and

term construction operators, for which the following rules hold.

Type equality

Atomic types

C:(x:α) type [Γ]

Γ ⊢
λ

P
×

a1 = b1 : α1

. . .

Γ ⊢
λ

P
×

an = bn : αn[xn := an]

Γ ⊢λP
×

C(a1, . . . , an) = C(b1, . . . , bn)

α-equality
Γ, x:α ⊢

λ
P
×

β type

Γ ⊢
λ

P
×

(∀x:α) β = (∀y:α) β[x := y]
y /∈ FV(β)

Term equality

α-equality
Γ, x:α ⊢

λ
P
×

b : β Γ ⊢
λ

P
×

α = α′

Γ ⊢
λ

P
×

(λx:α.b) = (λy:α′.b[x := y]) : (∀x:α) β
y /∈ FV(b)

η-equality
Γ ⊢

λ
P
×

b : (∀x:α) β

Γ ⊢
λP

×
(λx:α.b(x)) = b : (∀x:α) β

x /∈ FV(b)

β-equality
Γ, x:α ⊢

λP
×

b : β Γ ⊢
λP

×
a : α

Γ ⊢
λP

×
(λx:α.b)(a) = b[x := a] : β[x := a]

n-tuple-equality
Γ ⊢

λP
×

a : α1 × . . .× αn

Γ ⊢
λP

×
a =< a(1), . . . , a(n) >: α1 × . . .× αn

sel.-equality
Γ ⊢

λP
×

a1 : α1 . . . Γ ⊢
λP

×
an : αn

Γ ⊢λP
×

< a1, . . . , an > (i) = ai : αi

1 ≤ i ≤ n

Venanzio Capretta and Silvio Valentini 20

Appendix C. System F

System F is a second order typed lambda calculus, i.e. there are variables for types and

quantification over them is allowed. Hence the type formation rules are the following:

Variable types Γ, X TypeVar ⊢F X type

Arrow types
Γ ⊢F α type Γ ⊢F β type

Γ ⊢F α→ β type

Polymorphic types
Γ, X TypeVar ⊢F β type

Γ ⊢F ΠX.β type

The rules for term derivation are similar to the ones of simply type lambda calculus,

but there are abstraction and application both for first and second order.

Variable
Γ ⊢F α type

Γ, x:α ⊢F x : α

First order abstraction
Γ, x:α ⊢F b : β

Γ ⊢F (λx:α.b) : α→ β

First order application
Γ ⊢F c : α→ β Γ ⊢F a : α

Γ ⊢F c(a) : β

Second order abstraction
Γ, X TypeVar ⊢F b : β

Γ ⊢F (ΛX.b) : ΠX.β

Second order application
Γ ⊢F c : ΠX.β Γ ⊢F α type

Γ ⊢F c(α) : β[X := α]

The equality between two terms of system F is the minimal congruence relation, with

respect to first and second order abstraction and application, such that the following

rules hold.

α1-equality
Γ, x:α ⊢F b : β

Γ ⊢F (λy:α.b[x := y]) = (λx:α.b) : α→ β
y /∈ FV(b)

η1-equality
Γ ⊢F b : α→ β

Γ ⊢F (λx:α.b(x)) = b : α→ β
x /∈ FV(b)

β1-equality
Γ, x:α ⊢F b : β Γ ⊢F a : α

Γ ⊢F (λx:α.b)(a) = b[x := a] : β

α2-equality
Γ, X TypeVar ⊢F b : β

Γ ⊢F (ΛY.b[X := Y]) = (ΛX.b) : α→ β
Y /∈ FV(b)

η2-equality
Γ ⊢F b : ΠX.β

Γ ⊢F (ΛX.b(X)) = b : ΠX.β
X /∈ FV(b)

β2-equality
Γ, X TypeVar ⊢F b : β Γ ⊢F α type

Γ ⊢F (ΛX.b)(α) = b[X := α] : β[X := α]

Acknowledgments. We would like to thank Tierry Coquand for bringing up to us the

problems related to the use of the conversion rule in the case of dependent types.

A general method to prove the normalization theorem 21

Appendix. References

Barendregt, H. (1984) The Lambda Calculus, its Syntax and Semantics, North–Holland, Ams-

terdam.

Barendregt, H. (1992) Lambda Calculi with Types, in Handbook of Logic in Computer Science,

Vol. II, S. Abramski, D. M. Gabbay and T. S. E. Maibaum (eds.), Oxford University Press.

Coquand, T. (1996) An Algorithm for Type-Checking Dependent Types, Science of Computer

Programming 26(1–3):167–177.

Gallier, J. H. (1990) On Girard’s “Candidats de Reductibilité”, in Logic and Computer Science,

P. Odifreddi (ed.), Academic Press, London, pp. 123–203.

Gandy, R. O. (1980) An early proof of normalization by A. M. Turing, in To H. B. Curry: Essays

on Combinatory Logic, Lambda Calculus and Formalism, S. P. Seldin and J. R. Hindley (eds.),

Academic Press, London, pp. 453–455.

Girard, J. Y. (1971) Une extension de l’interpretation de Gödel à l’analyse, et son application

à l’élimination des coupures dans l’analyse et la théorie des types, in Proceedings of 2nd

Scandinavian Logic Symposium, J. E. Fenstad (ed.), North–Holland, Amsterdam, pp. 63–92.

Girard, J. Y. (1986) The system F of variable types, fifteen years later, Theoretical Computer

Science 45, North–Holland, Amsterdam, pp 159–192.

Girard, J. Y., Lafont, Y.and Taylor, P. (1989) Proofs and Types, Cambridge University Press.

Krivine, J. L. (1993) Lambda-Calculus, Types and Models Masson, Paris, Ellis Horwood, Hemel

Hempstead.

Matthes, R. (1998) Extensions of System F by Iteration and Primitive Recursion on Mono-

tone Inductive Types, PhD thesis, Department of Mathematics and Informatics, University of

Munich.

Matthes, R. and Joachimski, F. (1998) Short proofs of normalization for the simply-typed lambda-

calculus, permutative conversions and Gödel’s T, submitted to the Archive for Mathematical

Logic.

Mayer, A. R. and Reinhold, M. B. (1986) Type’ is not a type: preliminary report, ACM, pp.

287–295

Valentini, S. (1994) A note on a straightforward proof of normal form theorem for simply typed

λ-calculi, Bollettino dell’Unione Matematica Italiana, 8-A, pp. 207-213.

Valentini, S. (1995) On the decidability of the equality theory of simply typed lambda-calculi,

Bollettino dell’Unione Matematica Italiana, 9-A, pp. 83-93.

