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Sunto. Il lavoro presenta una nuova prova, basata su alcune idea di Martin Löf e Tait,

del ben noto teorema di forma normale per il λ-calcolo tipato semplice, la cui prima

dimostrazione è dovuta a Turing. Il metodo di prova usato è molto semplice, ma al tempo
stesso si presenta come molto generale e facilmente applicabile ad una varietà di λ-calcoli

tipati.
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Summary

We will illustrate a method to obtain the normal-form theorem for simply typed
λ-calculi (see [Bar]) which is both straightforward and general.

1. Introduction

In this paper we will describe a new method to prove the standard result of normal-
izability for simply typed λ-calculi due to Turing. Even if the method seems to be of
general applicability, in order to make the exposition more easy to understand we will
illustrate the very elementary example where only function types can be constructed
over some basic types1.

Definition: (Types).

C basic type

C type
(Basic types)

α type β type

α → β type
(Arrow types)

In this case one can assume to have variables of type α (notation x : α var), for
any type α, and one can form the following lambda expressions, in a context which
comprises all the variables used in the lambda expression2 , and, at the same time,
collect the variables which appear free within them.

Definition: (λ-expression).

x : α λ-exp [Γ, x : α var] FV (x) = {x}
(var-rule)

b : α → β λ-exp [Γ] a : α λ-exp [Γ]

b(a) : β λ-exp [Γ]
FV (b(a)) = FV (b) ∪ FV (a)

(app-rule)

b : β λ-exp [Γ, x : α var]

(λx.b) : α → β λ-exp [Γ]
FV ((λx.b)) = FV (b)\{x}

(abst-rule)

The substitution of a variable by a term within a lambda expression is introduced in
the usual way.

Definition: (Substitution). Let x : α var, e : α λ-exp and b : β λ-exp, then the
substitution of the variable x by the expression e in the expression b (notation b[x := e])

1A more general approach can be found in [Bos-Val].
2We assume the reader is aware of the standard operations of thining, contraction and exchange

between the assumptions in a context.
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is defined by induction on the structural complexity of b:

z[x := e] ≡

{

e if z ≡ x
z otherwise

(variable step)

b(a)[x := e] ≡ b[x := e](a[x := e])(application step)

(λz.b)[x := e] ≡











(λx.b) if z ≡ x
(λz.b[x := e]) if z 6≡ x and z /∈ FV (e)
(λt.b[z := t][x := e]) otherwise
where t is a new variable of the same type of z

(abstraction step)

Finally we recall that the usual equality between two λ-expressions induced by βη-
conversion3 is the minimal equivalence relation such that the following conditions hold.

Definition: (λ-equality).

x = x : α [Γ, x : α var]

(var-equality)

b1 = b2 : α → β [Γ] a1 = a2 : α [Γ]

b1(a1) = b2(a2) : β [Γ]

(app-equality)

b : β λ-exp [Γ, x : α var] a : α λ-exp [Γ]

(λx.b)(a) = b[x := a] : β [Γ]

(β-equality)

b = d : β [Γ, x : α var]

(λx.b) = (λx.d) : α → β [Γ]

(ξ-equality)

b : α → β λ-exp [Γ] x : α var

(λx.b(x)) = b : α → β [Γ]
provided x /∈ FV (b)

(η-equality)

2. Normal form.

The notion of normal form is central in the development of a simply typed λ-calculus:
it establishes a canonical form for the expressions, i.e. their simplest form. In the case
we are considering only one form of simplification is introduced.

Definition: (β-reduction). (λx.b)(a) ⇒ b[x := a]

The simplest form of an expression is obviously the one where no reduction can be
applied.

3As usual, we assume that two expressions which differ only for the name of the abstracted variables

are identical, i.e. the expressions (λx.b) and (λy.b[x := y]), where y /∈ FV (b), coincide.
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Definition: (Normal form). An expression is in normal form if no β-reduction can
be applied to any of its sub-expressions.

The following algorithm, provided it is totally correct, shows a method to obtain, for
any given expression, an equivalent expression in normal form.

Algorithm: (Conversion into normal form). Let e be an expression of type α and
consider the following recursive definition.

nf(e) =







(λx.nf(e(x))) if α ≡ β → γ where x is a new variable of type β
x(nf(b1)) . . . (nf(bn)) if α ≡ C and e ≡ x(b1) . . . (bn)
nf(c[x := a](b1) . . . (bn)) if α ≡ C and e ≡ (λx.c)(a)(b1) . . . (bn)

The proof of partial correctness is easy.

Theorem: (Partial correctness). Let e be an expression of type α, then nf(e) is an

expression of type α in normal form equivalent to e.

Proof. Provided the algorithm of conversion into normal form terminates the result
is almost obvious. In fact obviously nf(e) is an expression of type α such that no
β-reduction can be applied to any of its sub-expressions. Moreover induction on the
number of steps of the algorithm can be used to prove equivalence between e and nf(e).

3. A new system to derive expressions

Then the problem is to prove termination of the algorithm of conversion into normal
form. To this aim we will define a new system to derive expressions such that to form
an expression one need to have formed exactly the expressions that are needed to prove
its normalizability.

Definition: (Expression).

a1 : α1 exp [Γ] . . . an : αn exp [Γ]

x(a1) . . . (an) : C exp [Γ, x : α1 → (. . . (αn → C) . . . ) var]
n ≥ 0(1)

c [x := a](b1) . . . (bn) : C [Γ] a : α exp [Γ]

(λx.c)(a)(b1) . . . (bn) : C exp [Γ]
n ≥ 0(2)

b(x) : β exp [Γ, x : α var]

b : α → β exp [Γ]
(3)

where in 3. the only occurrence of x in b(x) is the manifested one.

It is obvious that the algorithm of normalization of the previous section terminates
if applied to one of this expression (just use induction on its derivation). Hence to
conclude the proof of normalizability of each λ-expression we must only show that each
λ-expression is an expression.

First note that it is easy to prove by induction on the type complexity the following
lemma that shows closure of the expression system under var-rule.
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Lemma: (Closure under var-rule). If x : α var then x : α exp.

The next step is to prove closure of the expression system under substitution.

Theorem: (Closure under substitution). Let b : β be an expression, x : α a variable

and a : α an expression, then b[x := a] : β is an expression.

Proof. By principal induction on the complexity of the type α and secondary induction
on the length of the derivation of b : β. The proof is straightforward if b is obtained by
3. while to deal with case 1. the principal induction is needed. Finally to deal with case
2. one must observe that, for any expression c, c[x := d][x := a] ≡ c[x := d[x := a]],
c[y := d][x := a] ≡ c[x := a][y := d[x := a]], provided y does not appear free in a, and
c[y := d][x := a] ≡ c[y := t][x := a][t := d[x := a]], provided t does not appear free in a.

Now the missing link can easily be established.

Theorem. Let b : β λ-exp then b : β exp.

Proof. By induction on the length of the derivation of b : β λ-exp. We already proved
closure under var-rule and, using the theorem on closure under substitution, it is easy to
prove closure under app-rule since if b : α → β is an expression then it must be formed
from b(x) : β for a suitable choice of the variable x of type α. Finally suppose b : β is an
expression, then it must be formed from b(x1) . . . (xn) : C, for a suitable choice of the
variables x1, . . . , xn. Since b ≡ b[x := x], by using 2. we obtain (λx.b)(x)(x1) . . . (xn) : C
and hence closure under abst-rule follows by repeated applications of 3.

Conclusion

The method we described is very simple and just the mandatory steps in a normal-
ization proof are involved. Moreover it is easy to enhance it in order to consider also
more complex kind of simply typed λ-calculi. Let us, for instance, consider the typed
λ-calculus obtained from the previous one by adding also cartesian product:

(product types)
α1 type . . . αn type

α1 × · · · × αn type

and hence the term formation rules:

a1 : α1 λ-exp [Γ] . . . an : αn λ-exp [Γ]

〈a1, . . . , an〉 : α1 × · · · × αn λ-exp [Γ]
(prod-rule)

a : α1 × · · · × αn λ-exp [Γ]

{a}i : αi λ-exp [Γ]
1 ≤ i ≤ n(sel-rule)

and the reduction rule

(selection) {〈a1, . . . , an〉}i ⇒ ai 1 ≤ i ≤ n

Then, it is easy to modify our rules to form expressions in order to be able to prove
total correctness of the obvious normalization algorithm, by adding the rules

ai · · · : C exp [Γ] a1 : α1 exp [Γ] . . . an : αn exp [Γ]

{〈a1, . . . , an〉}i · · · : C exp [Γ]
(4)

{a}1 : α1 exp [Γ] . . . {a}n : αn exp [Γ]

a : α1 × · · · × αn exp [Γ]
(5)
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Two interesting problems are not considered in this paper: can this normalization
proof be easily transformed into a strong normalization proof? Is it possible to work
out a similar proof for second order typed λ-calculus in the style of Girard’s System F

[Gir-Laf-Tay]?
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