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Abstract We provide a new and elementary proof of strong normaliratio
for the lambda calculus of intersection types. It uses rangtmethod, like
for instance Tait-Girardeducibility predicatesbut just simple induction on
type complexity and derivation length and thus it is obvipdsrmalizable
within first order arithmetic.

To obtain this result, we introduce a new system for intdisedypes
whose rules are directly inspired by the reduction relation

Finally, we show that not only the set of strongly normaligterms of
pure lambda calculus can be characterized in this systetrglfwo that a
straightforward modification of its rules allows to chamte the set of
weakly normalizing terms.

Key words Lambda calculus — intersection types — normalization

1 Introduction

It is well known that the pure lambda calculds(see [1]) formalizes the
notion of computable function without any reference to teacepts of
domain and co-domain, contrary to what happens with thehesairétic

or the categorical approach. The main advantage of thisoappris the
possibility of coding any recursive function within a veigngle formalism.

Indeed, a lambda term is built inductively, starting frone trariables, by
means of the lambda abstraction arfceaform of application, i.e. we have
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the following term formation rules:
Term := Var | (A Var.Term) | Term(Term)

whereVar is a countable set whose elements are called variables.

Not only the syntax of the objects df is simple, but also the notion of
computation for this very abstract notion of function beesnthe simple
notion of 3-reduction(notation~-3). This is the relation between lambda
terms obtained by closing under the term construction dipeiathe rela-
tion of 5-contraction that is

(Az.c)(a) ~ c[x := a]

The computation of the value of a lambda term is then definedras
duction processi.e. successive steps @freduction, until anormal form
of the term is possibly reached, i.e. a form wherescontraction can be
applied. Given a lambda term there are in general many different reduc-
tion processes, according to the choice of #heontraction to be expanded
within ¢; hence, it is well possible that only some of the reductiatpsses
eventually terminate into a normal form. Moreover, sinces ipossible to
have a code withinl for any recursive function, there is no possibility to
know if a reduction process farwill eventually terminate, because of the
halting problem.

On the other hand, in the usual mathematical practice - oothd set
theoretic and in the categorical approach - and in many etaatgorithms,
functions are intended to operate over objects of a ceryaia in order to
produce objects of some other type. Following this idea tie of appli-
cation should be no longer completely free; in fact a functihould be
applicable only to arguments of the correct type. Thus it @l no longer
possible to build all the terms of. However, a main advantage of this ap-
proach is the possibility to prove more properties on th@sawhich can be
built because of the greater quantity of information. Fetamce, one of the
main problems on the terms dfis to determine whether all the reduction
processes for a certain term will eventually terminate,the strong nor-
malizationproblem, or if there exists at least one reduction processtwh
will eventually terminate, i.e. theveak normalizatiorproblem. In the case
of the lambda-calculi where functions and their argumeat&ta type there
are suitable tools to deal with these problems.

In order to keep the good aspects of both the sides, a possibtegy
is to find suitable typing systems for the terms/bfMany typing systems
are possible and the choice among them depends on the farficoblem
that one has to solve. For instance, provided one wants ve fioé strong
normalization problem, a possibility is to usienply typedambda calculus
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A_,; its rules of type formation are the following:
Type := Const | Type — Type

wereConst is a set whose elements are calbasic types

The intended meaning is that a type— 7 of A_, denotes a set of
functions from elements of the set denoted by the typeto elements of
the set denoted by the type Thus, in order to build the elements of these
types, we use the following rul&s

(variable) Irx:obzx:0o

. Ir:okc:
(lambda abstraction) L2 2T

I'FXxc:o0—r
I'Fec:7—>o0 I'Fa:7
I'tcela):o
wherel" is a commutative list of assumptions of the form o for some
type o such that no variable appears more than oncelafdc : - means
thatc is an element of type in thebaser.

It is well known (see for instance [4] or here, section 4) tibthe terms
of A_, are strongly normalizing. Hence, the terms/bf, form a subset of
the set of strongly normalizing terms df But, not all the strongly normal-
izing terms ofA have a type inl_,; for instance, consider the terhx.z(x):
itis in normal form, and hence it is trivially strongly norfizang, but it can-
not have a type withinl_, because of the instance sélf-application It is
clear that a real solution of the strong normalization peablould be a
typing system which allows to build all the strongly norrzaig terms of
A, and only them.

Surprisingly, this typing system exists and can be obtafrad A_. by
adding just one type. The abstract syntax of the types ofdlailtis A, of
intersection typess the following:

(application)

Type := Const | Type — Type | Type A Type

The intended meaning of the new type. T of A, is thato A 7 denotes the
intersection of the two sets denoted by the typendr respectively. Thus,
in order to build the elements for these new types, we adddtenfing
rules to the previous ones:

I'Fe:o I'kFe:T

(intersection introduction)

I'Fec:oNT
(intersection eIimination)FFC:U/\T I'Fc:onT
F}_C:O' Fl—c:T

! To be more precise we should speak here of typing systéarCurry versus a typing
systema la Church where all the variables within a term and the subgdtramselves are
typed.
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Motivations for the study ofl, are widely discussed in the literature (see
for instance [3] or [5]). In particular, it is possible to pethat the terms
which are typable in this typed lambda calculus are precited strongly
normalizing terms ofl [7]. However, the proofs of the strong normalization
theorem for the terms ol 5, which is possible to find in the literature [5],
use a version of the Tait-Girard’s reducibility predicafgs4], that is, an
argument which is not elementary.

Here, we propose a new proof of the strong normalizationrdrador
A, which is completely elementary. Indeed it uses no strondhatebut
just simple induction on type complexity and derivationgtmnand thus it
is obviously formalizable within first order arithmetic. dbtain this result,
in the next section we introduce a new systdr for intersection types,
whose rules are directly inspired by the reduction relataord we state a
strong normalization theorem for the terms which are tygpablthis sys-
tem. Then, in the following sections, we show that all thenteof A, can
be typed also withim? and hence that they are obviously strong normal-
izing. Finally, we show that not only the set of strongly natining terms
of pure lambda calculus can be characterized’inbut also that a straight-
forward modification of its rules allows to characterize #et of weakly
normalizing terms.

2 A new system for intersection types

In this section we will tailor toAd, a technique to prove the strong nor-
malization theorem which was already used for the simpledylambda
calculus in [9] and for more complex typed lambda calculi oftfand sec-
ond order in [2]. The first step is the introduction of a newitgpsystem
A7 . In order to distinguish the judgements of the new typingesysfrom
those ofA, we will use the symbat, instead of- (in the following rules
we will write C' to mean a basic type).

Fsclz:=al(ar)...(an):C I'kFsa:o
I'ts (A\x.c)(a)(ar)...(ap): C
INx:obgb(z): T
I'ksb:o—T
I'tsc:o I'tge:r

I'Fsc:oNT

. . r
(A-introduction)

(abstraction) x & FV(b)andz ¢ I

(intersection)

The treatment of the variables in a base is more complex: wénethat a
variable is introduced only when the term obtained by ajmgjyti to suitable
terms is of basic type. Thus, in order to deal with variablespropose the
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following rules:
(basic) Ne:Chlyax:C
I'bsa:o Iy:oyksylar)...(an): C

I'z:01— o9 ks z(a)(ar)...(ay): C
y € FV(a)U...UFV(a,)andy & I

(impl-left)

. Izx:op,z:09Fsz(a1)...(ap): C
(inters-left) Iz :o1Nogbsx(ay)...(ay): C

It may be useful to note that in this calculus we admit the ibdgy for

a variable to appear in a base more than once, as an hypatheé&ment of
different types; we think that this fact should not appeardtiange within
the framework of intersection types: we are just assumiagttiis variable
is an element of all these types; for instance inititers-leftrule we just
state that from the assumption that an element is in thesitéion of two
types we can infer all what we could infer from the assumptlaat it is
an element of both the two types. However, we have to take afatlgis
possibility in theabstractionrule where we want to discharge at once all
the assumptions of the abstracted variable within the laisds the reason
of the second side condition, i.e.¢ I, for the application of this rule; its
meaning is that the variabledoes not appear in any assumptiorfini.e.,

fornotypeo,x:0 €I

Since the previous rules are not standard, let us show aeiexgimple
of derivation withinA3. A typical term which can be typed within the inter-
section types, and which is not in a more usual typing systecatse of the
instance of self-application, sz.z(x). Here we will exhibit its derivation
by using the rules oft? (in order to keep the proof as simple as possi-
ble we suppose that and B are basic types). Consider first the following
derivation:

x:Az:Absz: A x:Az:Ay:Brsy: B
x:Ax:A—B,z: Arsx(2): B

impl-|

z:Ax:A—BFsz: A x:AA(AHB),z:AFSx(z):BIn;e:-l
z: ANA—-B)ksz: A x:A/\(AHB)}—Sx:AHB_asr'
inters.

z2:ANA—B)Fsz: AN(A— B)

Now we obtain:
z:AFsz: A z:Ay:Btsy: B
z:Ax:A— Bl z(z): B :
z:AN(A—B)tFsz(z): B x:A/\(A—>B)P.5x:A/\(A—>B)

z:AN(A— B)bFs (Az.z(x))(x): B

Fs Az.xz(z): (AAN(A— B)) — B

impl-|

A-intro

abstraction

The main property oftf is the straightforward proof of the strong nor-
malization theorem.
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Theorem 1Let " ¢ ¢ : 0. Thencis strongly normalizing.

Proof The proof is immediate by induction on the length of the diion
of 'k c: 0.

3 A logical calculus derived from the rules ofA%

If we strip all the terms in the rules of?, we obtain an almost standard
sequent calculuBC* for the fragment of the propositional logic containing
only — andA formulag.

(axiom®) rcHC
FF[O’l F,O’QF[C F,O"—lT
—-L* —--R —
Ioi—oobH C I'Ho—T1
r H Ik Ik
AL 01,000 C AR 1o K
Lot NogH C I'HoNT

The constrain is that thexiomsand theleft rules can be applied only un-
der the assumption that tlsedeformula is atomic: we will prove that this
constrain does not change the set of provable sequents.

It is worth noting that the theorems BL* do not correspond to the non-
empty types ofA%; consider for instancéA — A) A (A — (B — A)):
this formula is provable iPC* whereas this type is not inhabited itj, .
But PC* will be useful in the following and we think that it is an inésting
system of rules from a logical point of view.

Lemma 1 PC* is closed under theveakeningule, i.e. the following rule
' 7
N
is admissible for every formula.
Proof Immediate, by induction on the length of the derivation of; 7.

In the following we will use theveakeningrule without any explicit
mention.

Lemma 2 The following axioms and rules are admissible in the proposi

tional calculusPC*
Fl—l(fl F,O’Ql—lT /\-L F,O’l,O'Q}_lT

oy — ook T Loy Nog by 7

(axiom)I', 7 7 —-L

2 It is interesting to note that in [6] a calculus similarR€* for a wider fragment of
predicative logic is presented, starting from a completiifierent perspective, with the
purpose to make easier the decision procedure for the piibyath a formula.
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that is, PC* is a complete calculus for the fragment of the propositional
logic containing only— and A formulas.

Proof The admissibility of the axioms and the rules must be proved a
together by induction on the complexity of the formaaThe basis case,
that is the case is an atomic formula, is valid by hypothesis. Thus, let us
analyze the case= | — 7.

1. We have to prove that
' —>1nbHm—mn
By inductive hypothesis, we can assume
I

and
Iimybpm
Hence, by using--L in the case of the formula, which is simpler then
7, we can obtain
I'm—m,ntn
and hence we conclude by-R.
2. We have to prove that if

@It o

o) oy — 7
then

F,O'l — 09 l_lTl — T2

The last rule in the derivation of (b) withiRC* must have been an
instance of—-R whose premise i$’, 09,71 F; 7. Thus, by using on
the latter sequent and (a) an instance-eLl in the case of the type,
which is simpler therr, we obtain

I'oy — 09,71 T

and hence we conclude by-R.
3. We have to prove that if

@1I,01,00 71— T
then

Loy Noobpm1 — 1
The last rule in the derivation of (a) withiRC* must have been an
instance of—-R whose premise i$’, 01,09, 7 F; 7. Thus, by using
an instance of\-L in the case of the type, which is simpler ther, we
obtain

Iioy Nog, 11 7o

and hence we conclude by-R.
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Now, we have to analyze the case= 7, A 1o:
1. We have to prove that
I AT AT
By inductive hypothesis, we can assume
I, o1

and
I' 1,7 T

Hence, by using\-L in the case of the type, which is simpler therr,
we obtain

I Ak m
Analogously, we obtain
I Ao b

and hence we conclude byR.
2. We have to prove that if

@Ik o
(b) I'og =y 11 Ao

then
Loy — oo 1 AT

The last rule in the derivation of (b) withiRC* must have been an
instance ofA-R whose premises are

I'ioy b

and
I' oyt

Thus, by using on (a) and the first of these two sequents amicstof
—-L in the case of the type, which is simpler therr, we obtain

I'oy — o2k m
In a completely analogous way we obtain
F, o1 — 02 l_l T2

and hence we conclude byR.
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3. We have to prove that if
@1I,01,00 71 AT

then
Loy Noo b1 A1

But the last rule in the derivation of (a) withixC* must have been an
instance ofA-R whose premises are

I'oy,00 7

and
I' oy,00 1 1

Thus, by using an instance ofL in the case of the type; which is
simpler thenr, we obtain

oyt Noo b1y
In a completely analogous way we obtain

I'oi Noo 1o
and hence we conclude byR.

We will use the structure of the proof of this theorem in thetrsection.

4 Embedding of A, into A%

After theorem 1, in order to prove that all the terms/Af are strongly
normalizing, it is sufficient to show that they can be typediin In the
following lemmas we will show thatl?, is indeed closed for the rules of
An.

Lemma 3Let7r be any type. TheR,xz : 7 5z : 7.

To prove lemma 3 we just need to decorate all the judgemeatsaih
used in the proof of lemma 2 with suitable terms; in fact, tkiem case is
what we are looking for. Anyhow, it is necessary to state tzefoe follow-
ing lemma of closure under tiveeakeningule of A7 .

Lemma 4 Suppose: is any variable andr is any type. Then, if F; ¢ : 7
thenl,z:o0tsc:T.

Proof The proof is immediate by induction on the length of the dsion
of I'tgc: .
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It may be useful to note that in this lemma we do not assumetltieat
variablez is fresh.
We are now ready to prove that the following rules are adilisgn
A3
A e R

I'kFsa:o0; Iy:oabsylar)...(ap): 7
Iz:op —osbgsx(a)(ar)...(ay): 7

INx:oy,x:09Fsx(ar)...(an): 7
Ix:oyNogksx(ar)...(ay) : 7
Also in this case the admissibility of the axioms and thesuteust be
proved all together by induction on the complexity of theetyp Most of
the cases are straightforward rephrasing of the proof ofrlar® and hence
we will show here only some of them. The basis case,riis.an atomic
type, is valid by hypothesis. Thus, let us analyze the easer; — 7»:

— We have to prove that
I'e:mm—>mnbsx:m — 1
By inductive hypothesis, we can assume
Loyr:mibsy i

and
Fiyr:m,y2 o Fsy2 i T2
for some fresh variableg, andys. Hence we can obtain

Fx:m — 1,y 1 ks 2(yn) @ m

and conclude bgbstraction
— We have to prove that if

@I'tsa:o;
) I y:oobsylar)...(ay) 7 — T2

then
INz:op —ogbgsx(a)(ar)...(ay) : 11 — T

The last rule in the derivation of (b) withid} must have been an in-
stance ofabstractionwhose premise is

Ly:o,2z:mbsylar)...(an)(2) 1 72
for some fresh variable. Thus, by inductive hypothesis, we obtain
I'z:01—09,2z:1 Fsx(a)(ar)...(an)(2) : 1o

and hence we conclude lapstraction
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Now, we have to analyze the case= 7, A 1o:
— We have to prove that
Nr:miAnbsx T AT
By inductive hypothesis, we can assume
Lzx:m,x:mnkHx:mn
and
Nrx:m,z:mkFsx:m

Hence we obtain
Irx:mmAmbFsx:m

and
Ix:mMAnbsx:m

and we conclude bintersection
— We have to prove that if

@I'tsa:oy
(b) Iy o2 bsylar) ... (an) i 1 AT

then
I'x:01— oo bsx(a)(ar)...(ay) : 71 AT

The last rule in the derivation of (b) must have been an instasfin-
tersectionwhose premises are
Iy:ogbsylar)...(an) 171
and
Iy:oabpylar)...(an) : 7
Thus, by inductive hypothesis, we obtain
I'x:01— o9 bsz(a)(ar)...(ay): 7
and
I'z:op —osbpx(a)(ar)...(an) : T2
and hence we conclude Iytersection

Also the remaining rule which we stated only for a basic type,the
A-introductionrule, can be generalized to any type.

Theorem 2Supposd” + c[z :=a](a1) ... (ay,) : TandI' 5 a: 0. Then
I'ts (Ax.o)(a)(ay) ... (ay) : 7.

Proof The proof is by induction on the complexity of the type
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— 7 = (' the result follows directly by-introduction
— 7 =71 — T9: the last rule in the derivation of
I'kgclx:=al(ar)...(ap) i1 — T2
must have been an instance of diestractionrule whose premise is
Iy:mbsclz:=allar)...(an)(y) : 72
for some fresh variablg. Then, by inductive hypothesis,
Iy:7m s (Az.c)(a)(ar) ... (an)(y) : T2

and hence
I'ts (Ax.o)(a)(ay)...(ap): 11 — 72

by abstraction
— 7 = 711 A 7. the last rule in the derivation of

I'tsclz:=a](ar)...(ap) : 71 A To
must have been an instanceimtersectionwhose premises are
I'tsclz:=al(ar)...(an) : 71

and
I'kgclx :=al(ay)...(an) : 12

Then, by inductive hypothesis,
I'ts (A\x.c)(a)(ar)...(ap) : 11

and
I'ts (Ax.o)(a)(ay)...(ay) : T

and hence
I'ts (A\z.c)(a)(ar)...(ap) : 71 A T2

by intersection

The next step is to prove the closure4if under theapplicationrule.
Also in this case we need a preliminary lemma.

Lemma 5 A% is closed under substitution, i.e. if

Iz:o1,....,x:0,Fsb:T,
wherex : o1, ...,2 : 0, are all the assumptions of the variahtewithin
the base, and, forany=1,...,n, "', a : o;, then

I'ksblz:=a]: .
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Proof The proof is by principle induction on the complexjtyo, .., o,,) of
the sequence;, .., o,, of the types of the substituted variable and secondary
induction on the length of the derivation of the judgment

Ix:o,...,x:0,Fsb:T

The inductive definition of the complexity measuyrés the following:
1 if d=C
(@) = wo)+u(r)+1if@=0c—r71
HEZ Y o) +p(r) +1ifd=a AT
wor Ao hNop)if @ =01,...,0,

The intended meaning is to give a standard measure on tydesoasider
a sequence of types like the intersection of all of them.

Most of the cases do not use at all the main inductive hypsthersl
they work in a straightforward way by secondary inductivedipesis. Let
us consider here only some cases (in order to simplify thatioot we will
write T : o as ashorthand far : oq,...,2 : 0,).

— (A-introduction)
INz:okscly:=d|(a1)...(an):C L[T:TkFsd: 6
INz:5Fs (Ay.c)(d)(ar)...(ap): C
By secondary inductive hypothesis, we obtain both
I't5 cly :==d][z := a](a1[z := a])..(ap[z :=a]) : C

and

I'ksdlz:=a]:¢
But y is an abstracted variable and hence we can assume that nabes
appear inz; hence the first judgement is

Itk clz :=ad]ly :=d[z = a]|(a1[z :=a]) ... (ap]x :=a]) : C
Thus, we obtain
I'ts (\y.clz :=a])(d[z := a])(a1]r :=a]) ... (an[z :=a]) : C

by A-introduction
— (abstraction)

Iz :o,y:mFsb(y) : 12

FV(b)andy ¢ I'T : &
TTorbinon VEFVOadyglnz:o

By secondary inductive hypothesis, we obtain
Iy:mbsb(y)|z:=a]:m
Now, the side condition on thabstractionrule yields thatr # y and

thusb(y)[z := a] = b[z := al(y); hence we conclude by an instance of
theabstractionrule.
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— (basic rule ony # x)
I'z:o,y:Cksy:C

In this case we have just to takey : C' +, y : C, which is an axiom.
— (impl-left ony # x)
INz:cbsec:m IT:0,z:1ks 2z(a1)..(an) : C
INz:o,y:m — nksyla)(ar)..(ay) : C

wherez € FV(a;) U ... UFV(a,)andz ¢ IN'T : 7.
By secondary inductive hypothesis, we obtain both

I'ksclz:=a]:m

and
I'z:mbsz(a1)...(ap)x =a]: C

Now, the side condition on thienpl-leftrule yields that: # = and thus
z(aq)...(ap)[x := a] = z(a1]x = a])...(ax[xr = a]). Hence we
conclude by an instance of tivapl-leftrule.

More complex are the cases when the last rule used in the pfoof
I'T : 5 4 b: 7is an instance of aaxiomor an instance of one of tHeft
rules and the substituted variable is thainvariable in this rule.

— Supposel,T : 7,z : C k4 z : Cis an instance of aaxiom Then
we have to prove” +; a : C. But, in this case, this is one of the
assumptions.

— Suppose the last rule in the derivationlafz : c -, b : 7is

IN'z:0kFgd:m INz:o,y:mksylar)...(ay): C
INz:o,x:1 — 1o bsx(d)(ar)...(a) : C

wherey ¢ FV(a;) U...UFV(a,) andy ¢ I',T : 5. By secondary
inductive hypothesis, we obtain

@ I'tsdlx:=a]:n
and
(b) Iy:mtsylar)...(ap)[r:=a]: C
and, since the side condition yielgs# x, we get

y(a1)..(ap)[z := a] = y(a1]z := a])..(ap[z := a])

Let us consider now the judgemehtt, a : 1 — 79; the last rule
used in its derivation must have been an instance céliistractionrule
whose premise i,z : 7 ks a(z) : 7 for some fresh variable
which does not appear ifi. Hence, by principle inductive hypothesis,
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sinceu(m) < w(ea, 1 — 1), we obtainl” -, a(djz := al]) : ™ by
substituting the ternd[z := «a] in (a) for z. Hence, again by principle
inductive hypothesis sincg(r2) < p(o,71 — 7o) andy ¢ I', we
obtain

I''ts a(d[z :=a])(a1]x :=a]) ... (an[z:=a]) : C

by substitutingl” ¢ a(djx := a]) : ™ for y in (b) since, for any
i=1,...,n,y & FV(a;).
— Suppose the last rule in the derivationlgfz : -, b : 7 is

INz:o,z:m,x:1obksx(ar)...(ay): C
INz:o,xc:mAnksxz(ar)...(ay): C

Let us consider the judgement -, a : 71 A 7»; the last rule used in
its derivation must have been an instance ofithersectionrule whose
premises ard’ +, a : 71 andI" 4 a : 7. Hence, by secondary induc-
tive hypothesis, sincg(a, 71 A 12) = u(@, 71, 72) and the derivation of
Iz :o,z: 1,z : 19 b5 x(a1)...(a,) : Cis shorter than the deriva-
tionof Iz : 5,2 : 1y Ao Fs z(a1) ... (a,) : C, we can substitute

@Irtsa:o
)Y IMtsa:m
) Itsa:m
in
Iz :o,z:m,x:1bsx(ar)...(ay) : C
and obtain

I'tsa(ar]z :=al)...(ap[z:=a]) : C

Since the substitution is performed in a non-standard wayaly be
useful to illustrate how it works by means of an example.

Supposel” 5 a : AN (A — B) and that we want to substitute the
terma for the variabler, which does not appear ifi, within the following
derivation:

INex:Arsx: A @Nax:Ay:BbFsy: B
I'z:Ax:A— Bbtgsx(z): B
I''c: AN(A— B)Fgz(x): B

impl-left
inter-left

Then, we first analyze the proof éft-5; a : A A (A — B) and we obtain
that the last step has to have been an instance aftidwsectionrule whose
premises are (&)’ s a : Aand (b)I" 5 a : A — B. By using (a),
we substitute the variable both in the axioml,z : A +; = : A, and
we get ()" 5 a : A, and in the axioml,z : A,y : B+ y : B and
we get (d)I,y : B 5 y : B. Now, let us analyze the second premise
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I' s a : A — B; it must have been derived by using an instance of
abstractionrule whose premise i$’,z : A 5 a(z) : B for some fresh
variablez. Hence, we substitute the temderived in (c) for the variable
and we obtain” -5 a(a) : B. Finally, we substitute the tera(a) in this
judgement for the variablg in (d) and we obtaid” - a(a) : B.

We can now prove the admissibility of tia@plicationrule.

Lemma6lf I'Fsc:0 —7andl' kg a:othenl'k, c(a) : 7.

Proof The last rule in the derivation df +, ¢ : ¢ — 7 must have been
an instance of thabstractionrule whose premise i,z : o -5 ¢(z) : 7,
where the only occurrence of the variablén c(z) is the manifested one
andz ¢ I'. Then, by the previous lemma&, b c(z)[z := a] = ¢(a) : 7.

Now we have to prove closure under lambda abstraction.
Lemma7lfIz:obsc:7andz & I'thenl" 5 Az.c: 0 — 7.

Proof Sincel’,z : o b4 x : o is provable by lemma 3 andx := z] = ¢,
Iz :obgc:7yieldsIz : o b, (Az.c)(z) : 7 because of lemma 2.
Hence we obtaid” F; Ax.c : ¢ — 7 by abstractionsince we assumed that
zel.

Finally, we have to deal with the rules for the intersectigpess, but
they are immediate: thimtersection introductiorrule is present in both
the systems while the admissibility of thetersection eliminatiorrules
follows from the fact that the last rule in the only possibkridation of
I' ¢ ¢ : o A 7 within A% must have been an instance of th&ersection
rule whose premises alét; c:ocandl" b, c: 7.

5 Weak normalization and strong normalization in pure lambda
calculus

We have already observed that one of the main resultd,ois a charac-
terization theorem which states that a term of the pure landadculusA

is strongly normalizing if and only if it can be typed withify,. After the
proof of immersion ofA, into A7 of the previous section we know that the
same theorem holds also fdr,. Anyhow, we give here a short and direct
proof of this result. We think that this proof is interestibgcause it helps
to understand how to use directlfj; and it suggests how to obtain later a
similar characterization for the weakly normalizing terafisl. Supposing

c is a strongly normalizing lambda term, the proof that it isgible to give
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it a type within A% will be by main induction on the dept(c) of its re-
duction treeand secondary induction on its term complexity We recall
here the definition of the functioh

0 if ¢is in normal form
d(c) = < max(d(cr),..,0(cn)) + 1if ¢y, .., ¢, are the terms such
thatc ~3 ¢;

Before the proof of the main theorem, we need the followimgrie.

Lemma 8 Let
Ix:0q1,...,x:0,Fsb:T,
wherex : o1,...,x : o, are all the assumptions of the variahtewithin
the base. Then
Iz:oyN...\Nxz:0,Fsb:T.

Proof The proof is immediate by induction on the length of the dion
of INz:01,...,x:0,Fsb: 7T

We can now prove the annunced theorem.

Theorem 3Letc be any strongly normalizing lambda term. Then, there are
a basel" and a typer such thatl" F; ¢ : 0.

Proof Let us analyze the possible cases according to the shape terth
C.

— ¢ = x for some variable:. This is the basic case in the induction. In this
case we put : C' +, x : C, for some basic typ€’, and this judgement
is an axiom inA? .

—c=2x(ay)...(ay). Inthis case, forany=1,...,n, d(a;) < (c) and
la;| < |c|. Then, by inductive hypothesis, there exist bdsisnd types
o; such thatl’; -, a; : 0;. Then consider the following derivation (recall
that A7 is closed under theveakeningule):

ULtsan:on ULyn :Clsyn:C
UFiyynfl ton — Ol ynfl(an) :C

UlLitsaz:02 UL, y2:03 — .. — 0on - C ks y2(as)..(an) : C
Uliksai:or UL,y1:02 — .. — on — Clksyi(a)..(an) : C
ULi,z:01— .. w0, — Chksz(ar)..(an) : C

— ¢ = Az.d. In this case)(d) = d(c) and|d| < |c|. Then, by inductive
hypothesis, there exist a bageand a types such thatl” ¢ d : o.
Observe thal' = I",z : 01,...,x : 0, for somel"” such thatr & I,
and hence, by the previous lemma 8,

I''z:oiAN...Nop,Fsd:o
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Then, by lemma 7,
I' s zd:oyN...Nop, — 0

sincex ¢ I".

—c = (Azx.d)(a)(ar)...(ay). Then,d(d[z := al(ay)...(a,)) < d6(c)
andd(a) < d(c) andla|] < |c|. Then, by main inductive hypothesis,
there exist a basg; and a typeri, such that

I s dlx == al(a1) ... (ay) : o1,

and, by secondary inductive hypothesis, there exist a based a type
oo suchthatly 5 a : o9. Then, by closure under weakening and lemma
2, we obtain

I, Ih s (Ax.d)(a)(ay) ... (ay) : 01 — 09

It is interesting to note that a straightforward modificatuf the rules
of A3 allows to give a type exactly to the weakly normalizing terafis
A. To this aim, it is sufficient to consider the typed lambdacohls A%
obtained fromA?% by modifying theX-introductionrule as follows (in order
to distinguish the judgements df’ from those ofA? we writet-,, instead
of -¢):

I'ty clz:=al(ay) ... (an) :
I'ty (Az.o)(a)(ay) ... (ay) :

The following theorem is immediate.

(Aw-introduction) g ae/

Theorem 4Let "+, a : o thena is weakly normalizing.

Proof The proof is immediate by induction on the length of the diion
of 'ty a:o.

Now, we want to prove that also the other implication holdsthis aim,
let us recall that a reduction strategy is an algorithm whips lambda
terms into lambda terms and respects the transitive clafyereduction.
Then, it is possible to show that if a lambda term is weaklymmadizing
then it can be normalized by using the following reducticatsigyL (see

[1]).

Definition 1 Theleftmost outermost reduction strategyythe map on the
set of lambda terms recursively defined as follows:

L(z(a1)...(ay)) =z(L(a1))...(L(an)) m>0
L(Az.c) = Az.L(c)
L(Az.c)(a)(a1) ... (an)) = L(c[z :=a](a1)...(an)) n>0
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Now, we can prove that any weakly normalizing ternsan be typed
within AY. The proof of this theorem is completely similar to the proof
of the previous theorem 3, but we need to change the induptoamiter
since the termx is no longer supposed to be strongly normalizing.

Theorem 5Letc be a weakly normalizing lambda term. Then, there are a
basel” and a typer such thatl" -, ¢ : .

Proof Sincec is weakly normalizing, it can be normalized by using the re-
duction strategy.. Thus, induction on the number of steps of the reduction
strategyl is a correct proof method.

— Suppose the number of steps in the normalization lo§ usingL is 0.
Thenc must be a variable. Thus, we putz : C' +,, = : C, for some
basic typeC’, and this judgement is an axiom df’.

— Suppose that the number of steps of applicationiofthe normalization
of cis k > 0. Then one of the following cases apply.

1. ¢ =z(a1)... (ay). Inthis case, forany = 1,...,n, the number of
applications of the reduction stratefyvhich are necessary in order
to normalizeq; is lower thank. Then, by inductive hypothesis, there
exist based’; and typess; such thatl’; +,, a; : ;. Now we can
continue as in the similar case in proof of theorem 3 since A4l$
is closed undeweakening

2. ¢ = A\z.d. Then, the number of applications of the reduction strategy
L necessary in order to normalize the tedhis lower thank and
hence, by inductive hypothesis, there exist a bEsand a types
such thatl" +,, d : 0. Hence we can conclude as in the similar case
in the proof of theorem 3, since we can prove ff a version of
lemma 7.

3. ¢ = (Az.d)(a)(ay)...(an). Then, the number of applications of
the reduction strategl, necessary in order to normalize the term
dlx := al(a1)...(a,) is lower thank. Thus, there exist a bade
and a types, such thatl” +,, djz := al(a1)...(ay) : 0. Hence,
by closure under weakening and a version At of lemma 2, we
obtainI" k-, (A\x.d)(a)(a1)...(ay,) : o
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