
Archive for Mathematical Logic manuscript No.
(will be inserted by the editor)

An elementary proof of strong normalization for
intersection types

Silvio Valentini

Dipartimento di Matematica Pura ed Applicata, Universitàdi Padova, via G. Belzoni n.7,
I–35131 Padova, Italy, e-mail:silvio@math.unipd.it

The date of receipt and acceptance will be inserted by the editor

Abstract We provide a new and elementary proof of strong normalization
for the lambda calculus of intersection types. It uses no strong method, like
for instance Tait-Girardreducibility predicates, but just simple induction on
type complexity and derivation length and thus it is obviously formalizable
within first order arithmetic.

To obtain this result, we introduce a new system for intersection types
whose rules are directly inspired by the reduction relation.

Finally, we show that not only the set of strongly normalizing terms of
pure lambda calculus can be characterized in this system, but also that a
straightforward modification of its rules allows to characterize the set of
weakly normalizing terms.

Key words Lambda calculus – intersection types – normalization

1 Introduction

It is well known that the pure lambda calculusΛ (see [1]) formalizes the
notion of computable function without any reference to the concepts of
domain and co-domain, contrary to what happens with the set theoretic
or the categorical approach. The main advantage of this approach is the
possibility of coding any recursive function within a very simple formalism.
Indeed, a lambda term is built inductively, starting from the variables, by
means of the lambda abstraction and afreeform of application, i.e. we have

Mathematics Subject Classification:03B40

2 Silvio Valentini

the following term formation rules:

Term := Var | (λ Var.Term) | Term(Term)

whereVar is a countable set whose elements are called variables.
Not only the syntax of the objects ofΛ is simple, but also the notion of

computation for this very abstract notion of function becomes the simple
notion ofβ-reduction(notation β). This is the relation between lambda
terms obtained by closing under the term construction operations the rela-
tion of β-contraction, that is

(λx.c)(a) c[x := a]

The computation of the value of a lambda term is then defined asa re-
duction process, i.e. successive steps ofβ-reduction, until anormal form
of the term is possibly reached, i.e. a form where noβ-contraction can be
applied. Given a lambda termc, there are in general many different reduc-
tion processes, according to the choice of theβ-contraction to be expanded
within c; hence, it is well possible that only some of the reduction processes
eventually terminate into a normal form. Moreover, since itis possible to
have a code withinΛ for any recursive function, there is no possibility to
know if a reduction process forc will eventually terminate, because of the
halting problem.

On the other hand, in the usual mathematical practice - both in the set
theoretic and in the categorical approach - and in many concrete algorithms,
functions are intended to operate over objects of a certain type in order to
produce objects of some other type. Following this idea, therule of appli-
cation should be no longer completely free; in fact a function should be
applicable only to arguments of the correct type. Thus it will be no longer
possible to build all the terms ofΛ. However, a main advantage of this ap-
proach is the possibility to prove more properties on the terms which can be
built because of the greater quantity of information. For instance, one of the
main problems on the terms ofΛ is to determine whether all the reduction
processes for a certain term will eventually terminate, i.e. thestrong nor-
malizationproblem, or if there exists at least one reduction process which
will eventually terminate, i.e. theweak normalizationproblem. In the case
of the lambda-calculi where functions and their arguments have a type there
are suitable tools to deal with these problems.

In order to keep the good aspects of both the sides, a possiblestrategy
is to find suitable typing systems for the terms ofΛ. Many typing systems
are possible and the choice among them depends on the particular problem
that one has to solve. For instance, provided one wants to solve the strong
normalization problem, a possibility is to usesimply typedlambda calculus

Normalization proof for Intersection Types 3

Λ→; its rules of type formation are the following:

Type := Const | Type → Type

wereConst is a set whose elements are calledbasic types.
The intended meaning is that a typeσ → τ of Λ→ denotes a set of

functions from elements of the set denoted by the typeσ into elements of
the set denoted by the typeτ . Thus, in order to build the elements of these
types, we use the following rules1:

(variable) Γ, x : σ ⊢ x : σ

(lambda abstraction)
Γ, x : σ ⊢ c : τ

Γ ⊢ λx.c : σ → τ

(application)
Γ ⊢ c : τ → σ Γ ⊢ a : τ

Γ ⊢ c(a) : σ

whereΓ is a commutative list of assumptions of the formx : σ for some
typeσ such that no variable appears more than once andΓ ⊢ c : τ means
thatc is an element of typeτ in thebaseΓ .

It is well known (see for instance [4] or here, section 4) thatall the terms
of Λ→ are strongly normalizing. Hence, the terms ofΛ→ form a subset of
the set of strongly normalizing terms ofΛ. But, not all the strongly normal-
izing terms ofΛ have a type inΛ→; for instance, consider the termλx.x(x):
it is in normal form, and hence it is trivially strongly normalizing, but it can-
not have a type withinΛ→ because of the instance ofself-application. It is
clear that a real solution of the strong normalization problem would be a
typing system which allows to build all the strongly normalizing terms of
Λ, and only them.

Surprisingly, this typing system exists and can be obtainedfrom Λ→ by
adding just one type. The abstract syntax of the types of the calculusΛ∧ of
intersection typesis the following:

Type := Const | Type → Type | Type ∧ Type

The intended meaning of the new typeσ∧ τ of Λ∧ is thatσ∧ τ denotes the
intersection of the two sets denoted by the typeσ andτ respectively. Thus,
in order to build the elements for these new types, we add the following
rules to the previous ones:

(intersection introduction)
Γ ⊢ c : σ Γ ⊢ c : τ

Γ ⊢ c : σ ∧ τ

(intersection elimination)
Γ ⊢ c : σ ∧ τ

Γ ⊢ c : σ

Γ ⊢ c : σ ∧ τ

Γ ⊢ c : τ
1 To be more precise we should speak here of typing systema la Curry versus a typing

systema la Church where all the variables within a term and the sub-terms themselves are
typed.

4 Silvio Valentini

Motivations for the study ofΛ∧ are widely discussed in the literature (see
for instance [3] or [5]). In particular, it is possible to prove that the terms
which are typable in this typed lambda calculus are precisely the strongly
normalizing terms ofΛ [7]. However, the proofs of the strong normalization
theorem for the terms ofΛ∧, which is possible to find in the literature [5],
use a version of the Tait-Girard’s reducibility predicates[8,4], that is, an
argument which is not elementary.

Here, we propose a new proof of the strong normalization theorem for
Λ∧ which is completely elementary. Indeed it uses no strong method but
just simple induction on type complexity and derivation length and thus it
is obviously formalizable within first order arithmetic. Toobtain this result,
in the next section we introduce a new systemΛs

∧
for intersection types,

whose rules are directly inspired by the reduction relation, and we state a
strong normalization theorem for the terms which are typable in this sys-
tem. Then, in the following sections, we show that all the terms ofΛ∧ can
be typed also withinΛs

∧
and hence that they are obviously strong normal-

izing. Finally, we show that not only the set of strongly normalizing terms
of pure lambda calculus can be characterized inΛs

∧
, but also that a straight-

forward modification of its rules allows to characterize theset of weakly
normalizing terms.

2 A new system for intersection types

In this section we will tailor toΛ∧ a technique to prove the strong nor-
malization theorem which was already used for the simple typed lambda
calculus in [9] and for more complex typed lambda calculi of first and sec-
ond order in [2]. The first step is the introduction of a new typing system
Λs
∧

. In order to distinguish the judgements of the new typing system from
those ofΛ∧ we will use the symbol⊢s instead of⊢ (in the following rules
we will write C to mean a basic type).

(λ-introduction)
Γ ⊢s c[x := a](a1) . . . (an) : C Γ ⊢s a : σ

Γ ⊢s (λx.c)(a)(a1) . . . (an) : C

(abstraction)
Γ, x : σ ⊢s b(x) : τ

Γ ⊢s b : σ → τ
x 6∈ FV(b) andx 6∈ Γ

(intersection)
Γ ⊢s c : σ Γ ⊢s c : τ

Γ ⊢s c : σ ∧ τ

The treatment of the variables in a base is more complex: we require that a
variable is introduced only when the term obtained by applying it to suitable
terms is of basic type. Thus, in order to deal with variables,we propose the

Normalization proof for Intersection Types 5

following rules:

(basic) Γ, x : C ⊢s x : C

(impl-left)
Γ ⊢s a : σ1 Γ, y : σ2 ⊢s y(a1) . . . (an) : C

Γ, x : σ1 → σ2 ⊢s x(a)(a1) . . . (an) : C
y 6∈ FV(a1) ∪ . . . ∪ FV(an) andy 6∈ Γ

(inters-left)
Γ, x : σ1, x : σ2 ⊢s x(a1) . . . (an) : C

Γ, x : σ1 ∧ σ2 ⊢s x(a1) . . . (an) : C

It may be useful to note that in this calculus we admit the possibility for
a variable to appear in a base more than once, as an hypothetical element of
different types; we think that this fact should not appear too strange within
the framework of intersection types: we are just assuming that this variable
is an element of all these types; for instance in theinters-left rule we just
state that from the assumption that an element is in the intersection of two
types we can infer all what we could infer from the assumptionthat it is
an element of both the two types. However, we have to take careof this
possibility in theabstractionrule where we want to discharge at once all
the assumptions of the abstracted variable within the base:this is the reason
of the second side condition, i.e.x 6∈ Γ , for the application of this rule; its
meaning is that the variablex does not appear in any assumption inΓ , i.e.,
for no typeσ, x : σ ∈ Γ .

Since the previous rules are not standard, let us show a simple example
of derivation withinΛs

∧
. A typical term which can be typed within the inter-

section types, and which is not in a more usual typing system because of the
instance of self-application, isλx.x(x). Here we will exhibit its derivation
by using the rules ofΛs

∧
(in order to keep the proof as simple as possi-

ble we suppose thatA andB are basic types). Consider first the following
derivation:

x : A, x : A → B ⊢s x : A

x : A ∧ (A → B) ⊢s x : A

x : A, z : A ⊢s z : A x : A, z : A, y : B ⊢s y : B

x : A, x : A → B, z : A ⊢s x(z) : B
impl-l

x : A ∧ (A → B), z : A ⊢s x(z) : B
inter-l

x : A ∧ (A → B) ⊢s x : A → B
abstr.

x : A ∧ (A → B) ⊢s x : A ∧ (A → B)
inters.

Now we obtain:
x : A ⊢s x : A x : A, y : B ⊢s y : B

x : A, x : A → B ⊢s x(x) : B
impl-l

x : A ∧ (A → B) ⊢s x(x) : B

...
x : A ∧ (A → B) ⊢s x : A ∧ (A → B)

x : A ∧ (A → B) ⊢s (λx.x(x))(x) : B
λ-intro

⊢s λx.x(x) : (A ∧ (A → B)) → B
abstraction

The main property ofΛs
∧

is the straightforward proof of the strong nor-
malization theorem.

6 Silvio Valentini

Theorem 1LetΓ ⊢s c : σ. Thenc is strongly normalizing.

Proof The proof is immediate by induction on the length of the derivation
of Γ ⊢s c : σ.

3 A logical calculus derived from the rules ofΛs

∧

If we strip all the terms in the rules ofΛs
∧

, we obtain an almost standard
sequent calculusPC∗ for the fragment of the propositional logic containing
only → and∧ formulas2.

(axiom∗) Γ,C ⊢l C

→-L∗
Γ ⊢l σ1 Γ, σ2 ⊢l C

Γ, σ1 → σ2 ⊢l C
→-R

Γ, σ ⊢l τ

Γ ⊢l σ → τ

∧-L∗
Γ, σ1, σ2 ⊢l C

Γ, σ1 ∧ σ2 ⊢l C
∧-R

Γ ⊢l σ Γ ⊢l τ

Γ ⊢l σ ∧ τ

The constrain is that theaxiomsand theleft rules can be applied only un-
der the assumption that thesideformula is atomic: we will prove that this
constrain does not change the set of provable sequents.

It is worth noting that the theorems ofPC∗ do not correspond to the non-
empty types ofΛs

∧
; consider for instance(A → A) ∧ (A → (B → A)):

this formula is provable inPC∗ whereas this type is not inhabited inΛs
∧

.
But PC∗ will be useful in the following and we think that it is an interesting
system of rules from a logical point of view.

Lemma 1 PC∗ is closed under theweakeningrule, i.e. the following rule

Γ ⊢l τ

Γ, σ ⊢l τ

is admissible for every formulaσ.

Proof Immediate, by induction on the length of the derivation ofΓ ⊢l τ .

In the following we will use theweakeningrule without any explicit
mention.

Lemma 2 The following axioms and rules are admissible in the proposi-
tional calculusPC∗

(axiom)Γ, τ ⊢l τ →-L
Γ ⊢l σ1 Γ, σ2 ⊢l τ

Γ, σ1 → σ2 ⊢l τ
∧-L

Γ, σ1, σ2 ⊢l τ

Γ, σ1 ∧ σ2 ⊢l τ

2 It is interesting to note that in [6] a calculus similar toPC
∗ for a wider fragment of

predicative logic is presented, starting from a completelydifferent perspective, with the
purpose to make easier the decision procedure for the provability of a formula.

Normalization proof for Intersection Types 7

that is, PC∗ is a complete calculus for the fragment of the propositional
logic containing only→ and∧ formulas.

Proof The admissibility of the axioms and the rules must be proved all
together by induction on the complexity of the formulaτ . The basis case,
that is the caseτ is an atomic formula, is valid by hypothesis. Thus, let us
analyze the caseτ ≡ τ1 → τ2:

1. We have to prove that

Γ, τ1 → τ2 ⊢l τ1 → τ2

By inductive hypothesis, we can assume

Γ, τ1 ⊢l τ1

and
Γ, τ2 ⊢l τ2

Hence, by using→-L in the case of the formulaτ2 which is simpler then
τ , we can obtain

Γ, τ1 → τ2, τ1 ⊢l τ2

and hence we conclude by→-R.
2. We have to prove that if

(a) Γ ⊢l σ1

(b) Γ, σ2 ⊢l τ1 → τ2

then
Γ, σ1 → σ2 ⊢l τ1 → τ2

The last rule in the derivation of (b) withinPC∗ must have been an
instance of→-R whose premise isΓ, σ2, τ1 ⊢l τ2. Thus, by using on
the latter sequent and (a) an instance of→-L in the case of the typeτ2

which is simpler thenτ , we obtain

Γ, σ1 → σ2, τ1 ⊢l τ2

and hence we conclude by→-R.
3. We have to prove that if

(a) Γ, σ1, σ2 ⊢l τ1 → τ2

then
Γ, σ1 ∧ σ2 ⊢l τ1 → τ2

The last rule in the derivation of (a) withinPC∗ must have been an
instance of→-R whose premise isΓ, σ1, σ2, τ1 ⊢l τ2. Thus, by using
an instance of∧-L in the case of the typeτ2 which is simpler thenτ , we
obtain

Γ, σ1 ∧ σ2, τ1 ⊢l τ2

and hence we conclude by→-R.

8 Silvio Valentini

Now, we have to analyze the caseτ ≡ τ1 ∧ τ2:

1. We have to prove that

Γ, τ1 ∧ τ2 ⊢l τ1 ∧ τ2

By inductive hypothesis, we can assume

Γ, τ1, τ2 ⊢l τ1

and
Γ, τ1, τ2 ⊢l τ2

Hence, by using∧-L in the case of the typeτ1 which is simpler thenτ ,
we obtain

Γ, τ1 ∧ τ2 ⊢l τ1

Analogously, we obtain

Γ, τ1 ∧ τ2 ⊢l τ2

and hence we conclude by∧-R.
2. We have to prove that if

(a) Γ ⊢l σ1

(b) Γ, σ2 ⊢l τ1 ∧ τ2

then
Γ, σ1 → σ2 ⊢l τ1 ∧ τ2

The last rule in the derivation of (b) withinPC∗ must have been an
instance of∧-R whose premises are

Γ, σ2 ⊢l τ1

and
Γ, σ2 ⊢l τ2

Thus, by using on (a) and the first of these two sequents an instance of
→-L in the case of the typeτ1 which is simpler thenτ , we obtain

Γ, σ1 → σ2 ⊢l τ1

In a completely analogous way we obtain

Γ, σ1 → σ2 ⊢l τ2

and hence we conclude by∧-R.

Normalization proof for Intersection Types 9

3. We have to prove that if

(a) Γ, σ1, σ2 ⊢l τ1 ∧ τ2

then
Γ, σ1 ∧ σ2 ⊢l τ1 ∧ τ2

But the last rule in the derivation of (a) withinPC∗ must have been an
instance of∧-R whose premises are

Γ, σ1, σ2 ⊢l τ1

and
Γ, σ1, σ2 ⊢l τ2

Thus, by using an instance of∧-L in the case of the typeτ1 which is
simpler thenτ , we obtain

Γ, σ1 ∧ σ2 ⊢l τ1

In a completely analogous way we obtain

Γ, σ1 ∧ σ2 ⊢l τ2

and hence we conclude by∧-R.

We will use the structure of the proof of this theorem in the next section.

4 Embedding ofΛ∧ into Λ
s

∧

After theorem 1, in order to prove that all the terms ofΛ∧ are strongly
normalizing, it is sufficient to show that they can be typed inΛs

∧
. In the

following lemmas we will show thatΛs
∧

is indeed closed for the rules of
Λ∧.

Lemma 3 Let τ be any type. ThenΓ, x : τ ⊢s x : τ .

To prove lemma 3 we just need to decorate all the judgements that we
used in the proof of lemma 2 with suitable terms; in fact, the axiom case is
what we are looking for. Anyhow, it is necessary to state before the follow-
ing lemma of closure under theweakeningrule ofΛs

∧
.

Lemma 4 Supposez is any variable andσ is any type. Then, ifΓ ⊢s c : τ

thenΓ, z : σ ⊢s c : τ .

Proof The proof is immediate by induction on the length of the derivation
of Γ ⊢s c : τ .

10 Silvio Valentini

It may be useful to note that in this lemma we do not assume thatthe
variablez is fresh.

We are now ready to prove that the following rules are admissible in
Λs
∧

:
Γ, x : τ ⊢s x : τ

Γ ⊢s a : σ1 Γ, y : σ2 ⊢s y(a1) . . . (an) : τ

Γ, x : σ1 → σ2 ⊢s x(a)(a1) . . . (an) : τ

Γ, x : σ1, x : σ2 ⊢s x(a1) . . . (an) : τ

Γ, x : σ1 ∧ σ2 ⊢s x(a1) . . . (an) : τ

Also in this case the admissibility of the axioms and the rules must be
proved all together by induction on the complexity of the type τ . Most of
the cases are straightforward rephrasing of the proof of lemma 2 and hence
we will show here only some of them. The basis case, i.e.τ is an atomic
type, is valid by hypothesis. Thus, let us analyze the caseτ ≡ τ1 → τ2:

– We have to prove that

Γ, x : τ1 → τ2 ⊢s x : τ1 → τ2

By inductive hypothesis, we can assume

Γ, y1 : τ1 ⊢s y1 : τ1

and
Γ, y1 : τ1, y2 : τ2 ⊢s y2 : τ2

for some fresh variablesy1 andy2. Hence we can obtain

Γ, x : τ1 → τ2, y1 : τ1 ⊢s x(y1) : τ2

and conclude byabstraction.
– We have to prove that if

(a) Γ ⊢s a : σ1

(b) Γ, y : σ2 ⊢s y(a1) . . . (an) : τ1 → τ2

then
Γ, x : σ1 → σ2 ⊢s x(a)(a1) . . . (an) : τ1 → τ2

The last rule in the derivation of (b) withinΛs
∧

must have been an in-
stance ofabstractionwhose premise is

Γ, y : σ2, z : τ1 ⊢s y(a1) . . . (an)(z) : τ2

for some fresh variablez. Thus, by inductive hypothesis, we obtain

Γ, x : σ1 → σ2, z : τ1 ⊢s x(a)(a1) . . . (an)(z) : τ2

and hence we conclude byabstraction.

Normalization proof for Intersection Types 11

Now, we have to analyze the caseτ ≡ τ1 ∧ τ2:

– We have to prove that

Γ, x : τ1 ∧ τ2 ⊢s x : τ1 ∧ τ2

By inductive hypothesis, we can assume

Γ, x : τ1, x : τ2 ⊢l x : τ1

and
Γ, x : τ1, x : τ2 ⊢s x : τ2

Hence we obtain
Γ, x : τ1 ∧ τ2 ⊢s x : τ1

and
Γ, x : τ1 ∧ τ2 ⊢s x : τ2

and we conclude byintersection.
– We have to prove that if

(a) Γ ⊢s a : σ1

(b) Γ, y : σ2 ⊢s y(a1) . . . (an) : τ1 ∧ τ2

then
Γ, x : σ1 → σ2 ⊢s x(a)(a1) . . . (an) : τ1 ∧ τ2

The last rule in the derivation of (b) must have been an instance of in-
tersectionwhose premises are

Γ, y : σ2 ⊢s y(a1) . . . (an) : τ1

and
Γ, y : σ2 ⊢l y(a1) . . . (an) : τ2

Thus, by inductive hypothesis, we obtain

Γ, x : σ1 → σ2 ⊢s x(a)(a1) . . . (an) : τ1

and
Γ, x : σ1 → σ2 ⊢l x(a)(a1) . . . (an) : τ2

and hence we conclude byintersection.

Also the remaining rule which we stated only for a basic type,i.e. the
λ-introductionrule, can be generalized to any type.

Theorem 2SupposeΓ ⊢s c[x := a](a1) . . . (an) : τ andΓ ⊢s a : σ. Then
Γ ⊢s (λx.c)(a)(a1) . . . (an) : τ .

Proof The proof is by induction on the complexity of the typeτ .

12 Silvio Valentini

– τ ≡ C: the result follows directly byλ-introduction.
– τ ≡ τ1 → τ2: the last rule in the derivation of

Γ ⊢s c[x := a](a1) . . . (an) : τ1 → τ2

must have been an instance of theabstractionrule whose premise is

Γ, y : τ1 ⊢s c[x := a](a1) . . . (an)(y) : τ2

for some fresh variabley. Then, by inductive hypothesis,

Γ, y : τ1 ⊢s (λx.c)(a)(a1) . . . (an)(y) : τ2

and hence
Γ ⊢s (λx.c)(a)(a1) . . . (an) : τ1 → τ2

by abstraction.
– τ ≡ τ1 ∧ τ2: the last rule in the derivation of

Γ ⊢s c[x := a](a1) . . . (an) : τ1 ∧ τ2

must have been an instance ofintersectionwhose premises are

Γ ⊢s c[x := a](a1) . . . (an) : τ1

and
Γ ⊢s c[x := a](a1) . . . (an) : τ2

Then, by inductive hypothesis,

Γ ⊢s (λx.c)(a)(a1) . . . (an) : τ1

and
Γ ⊢s (λx.c)(a)(a1) . . . (an) : τ2

and hence
Γ ⊢s (λx.c)(a)(a1) . . . (an) : τ1 ∧ τ2

by intersection.

The next step is to prove the closure ofΛs
∧

under theapplication rule.
Also in this case we need a preliminary lemma.

Lemma 5 Λs
∧

is closed under substitution, i.e. if

Γ, x : σ1, . . . , x : σn ⊢s b : τ,

wherex : σ1, . . . ,x : σn are all the assumptions of the variablex within
the base, and, for anyi = 1, . . . , n, Γ ⊢s a : σi, then

Γ ⊢s b[x := a] : τ.

Normalization proof for Intersection Types 13

Proof The proof is by principle induction on the complexityµ(σ1, .., σn) of
the sequenceσ1, .., σn of the types of the substituted variable and secondary
induction on the length of the derivation of the judgment

Γ, x : σ1, . . . , x : σn ⊢s b : τ

The inductive definition of the complexity measureµ is the following:

µ(Φ) =

1 if Φ = C

µ(σ) + µ(τ) + 1 if Φ = σ → τ

µ(σ) + µ(τ) + 1 if Φ = σ ∧ τ

µ(σ1 ∧ . . . ∧ σn) if Φ = σ1, . . . , σn

The intended meaning is to give a standard measure on types and consider
a sequence of types like the intersection of all of them.

Most of the cases do not use at all the main inductive hypothesis and
they work in a straightforward way by secondary inductive hypothesis. Let
us consider here only some cases (in order to simplify the notation we will
write x : σ as a shorthand forx : σ1, . . . , x : σn).

– (λ-introduction)

Γ, x : σ ⊢s c[y := d](a1) . . . (an) : C Γ, x : σ ⊢s d : δ

Γ, x : σ ⊢s (λy.c)(d)(a1) . . . (an) : C

By secondary inductive hypothesis, we obtain both

Γ ⊢s c[y := d][x := a](a1[x := a])..(an[x := a]) : C

and
Γ ⊢s d[x := a] : δ

But y is an abstracted variable and hence we can assume that it doesnot
appear ina; hence the first judgement is

Γ ⊢s c[x := a][y := d[x := a]](a1[x := a]) . . . (an[x := a]) : C

Thus, we obtain

Γ ⊢s (λy.c[x := a])(d[x := a])(a1[x := a]) . . . (an[x := a]) : C

by λ-introduction.
– (abstraction)

Γ, x : σ, y : τ1 ⊢s b(y) : τ2

Γ, x : σ ⊢s b : τ1 → τ2

y 6∈ FV(b) andy 6∈ Γ, x : σ

By secondary inductive hypothesis, we obtain

Γ, y : τ1 ⊢s b(y)[x := a] : τ2

Now, the side condition on theabstractionrule yields thatx 6= y and
thusb(y)[x := a] ≡ b[x := a](y); hence we conclude by an instance of
theabstractionrule.

14 Silvio Valentini

– (basic rule ony 6= x)

Γ, x : σ, y : C ⊢s y : C

In this case we have just to takeΓ, y : C ⊢s y : C, which is an axiom.
– (impl-left ony 6= x)

Γ, x : σ ⊢s c : τ1 Γ, x : σ, z : τ2 ⊢s z(a1)..(an) : C

Γ, x : σ, y : τ1 → τ2 ⊢s y(a)(a1)..(an) : C

wherez 6∈ FV(a1) ∪ . . . ∪ FV(an) andz 6∈ Γ, x : σ.
By secondary inductive hypothesis, we obtain both

Γ ⊢s c[x := a] : τ1

and
Γ, z : τ2 ⊢s z(a1) . . . (an)[x := a] : C

Now, the side condition on theimpl-left rule yields thatx 6= z and thus
z(a1) . . . (an)[x := a] ≡ z(a1[x := a]) . . . (an[x := a]). Hence we
conclude by an instance of theimpl-left rule.

More complex are the cases when the last rule used in the proofof
Γ, x : σ ⊢s b : τ is an instance of anaxiomor an instance of one of theleft
rules and the substituted variable is themainvariable in this rule.

– SupposeΓ, x : σ, x : C ⊢s x : C is an instance of anaxiom. Then
we have to proveΓ ⊢s a : C. But, in this case, this is one of the
assumptions.

– Suppose the last rule in the derivation ofΓ, x : σ ⊢s b : τ is

Γ, x : σ ⊢s d : τ1 Γ, x : σ, y : τ2 ⊢s y(a1) . . . (an) : C

Γ, x : σ, x : τ1 → τ2 ⊢s x(d)(a1) . . . (an) : C

wherey 6∈ FV(a1) ∪ . . . ∪ FV(an) andy 6∈ Γ, x : σ. By secondary
inductive hypothesis, we obtain

(a) Γ ⊢s d[x := a] : τ1

and
(b) Γ, y : τ2 ⊢s y(a1) . . . (an)[x := a] : C

and, since the side condition yieldsy 6= x, we get

y(a1)..(an)[x := a] ≡ y(a1[x := a])..(an[x := a])

Let us consider now the judgementΓ ⊢s a : τ1 → τ2; the last rule
used in its derivation must have been an instance of theabstractionrule
whose premise isΓ, z : τ1 ⊢s a(z) : τ2 for some fresh variablez
which does not appear inΓ . Hence, by principle inductive hypothesis,

Normalization proof for Intersection Types 15

sinceµ(τ1) < µ(σ, τ1 → τ2), we obtainΓ ⊢s a(d[x := a]) : τ2 by
substituting the termd[x := a] in (a) for z. Hence, again by principle
inductive hypothesis sinceµ(τ2) < µ(σ, τ1 → τ2) and y 6∈ Γ , we
obtain

Γ ⊢s a(d[x := a])(a1[x := a]) . . . (an[x := a]) : C

by substitutingΓ ⊢s a(d[x := a]) : τ2 for y in (b) since, for any
i = 1, . . . , n, y 6∈ FV(ai).

– Suppose the last rule in the derivation ofΓ, x : σ ⊢s b : τ is

Γ, x : σ, x : τ1, x : τ2 ⊢s x(a1) . . . (an) : C

Γ, x : σ, x : τ1 ∧ τ2 ⊢s x(a1) . . . (an) : C

Let us consider the judgementΓ ⊢s a : τ1 ∧ τ2; the last rule used in
its derivation must have been an instance of theintersectionrule whose
premises areΓ ⊢s a : τ1 andΓ ⊢s a : τ2. Hence, by secondary induc-
tive hypothesis, sinceµ(σ, τ1 ∧ τ2) = µ(σ, τ1, τ2) and the derivation of
Γ, x : σ, x : τ1, x : τ2 ⊢s x(a1) . . . (an) : C is shorter than the deriva-
tion of Γ, x : σ, x : τ1 ∧ τ2 ⊢s x(a1) . . . (an) : C, we can substitute

(a) Γ ⊢s a : σ

(b) Γ ⊢s a : τ1

(c) Γ ⊢s a : τ2

in
Γ, x : σ, x : τ1, x : τ2 ⊢s x(a1) . . . (an) : C

and obtain
Γ ⊢s a(a1[x := a]) . . . (an[x := a]) : C

Since the substitution is performed in a non-standard way, it may be
useful to illustrate how it works by means of an example.

SupposeΓ ⊢s a : A ∧ (A → B) and that we want to substitute the
terma for the variablex, which does not appear inΓ , within the following
derivation:

Γ, x : A ⊢s x : A Γ, x : A, y : B ⊢s y : B

Γ, x : A,x : A → B ⊢s x(x) : B
impl-left

Γ, x : A ∧ (A → B) ⊢s x(x) : B
inter-left

Then, we first analyze the proof ofΓ ⊢s a : A ∧ (A → B) and we obtain
that the last step has to have been an instance of theintersectionrule whose
premises are (a)Γ ⊢s a : A and (b)Γ ⊢s a : A → B. By using (a),
we substitute the variablex both in the axiomΓ, x : A ⊢s x : A, and
we get (c)Γ ⊢s a : A, and in the axiomΓ, x : A, y : B ⊢s y : B and
we get (d)Γ, y : B ⊢s y : B. Now, let us analyze the second premise

16 Silvio Valentini

Γ ⊢s a : A → B; it must have been derived by using an instance of
abstractionrule whose premise isΓ, z : A ⊢s a(z) : B for some fresh
variablez. Hence, we substitute the terma derived in (c) for the variablez
and we obtainΓ ⊢s a(a) : B. Finally, we substitute the terma(a) in this
judgement for the variabley in (d) and we obtainΓ ⊢s a(a) : B.

We can now prove the admissibility of theapplicationrule.

Lemma 6 If Γ ⊢s c : σ → τ andΓ ⊢s a : σ thenΓ ⊢s c(a) : τ .

Proof The last rule in the derivation ofΓ ⊢s c : σ → τ must have been
an instance of theabstractionrule whose premise isΓ, x : σ ⊢s c(x) : τ ,
where the only occurrence of the variablex in c(x) is the manifested one
andx 6∈ Γ . Then, by the previous lemma,Γ ⊢s c(x)[x := a] ≡ c(a) : τ .

Now we have to prove closure under lambda abstraction.

Lemma 7 If Γ, x : σ ⊢s c : τ andx 6∈ Γ thenΓ ⊢s λx.c : σ → τ .

Proof SinceΓ, x : σ ⊢s x : σ is provable by lemma 3 andc[x := x] ≡ c,
Γ, x : σ ⊢s c : τ yields Γ, x : σ ⊢s (λx.c)(x) : τ because of lemma 2.
Hence we obtainΓ ⊢s λx.c : σ → τ by abstractionsince we assumed that
x 6∈ Γ .

Finally, we have to deal with the rules for the intersection types, but
they are immediate: theintersection introductionrule is present in both
the systems while the admissibility of theintersection eliminationrules
follows from the fact that the last rule in the only possible derivation of
Γ ⊢s c : σ ∧ τ within Λs

∧
must have been an instance of theintersection

rule whose premises areΓ ⊢s c : σ andΓ ⊢s c : τ .

5 Weak normalization and strong normalization in pure lambda
calculus

We have already observed that one of the main results onΛ∧ is a charac-
terization theorem which states that a term of the pure lambda calculusΛ
is strongly normalizing if and only if it can be typed withinΛ∧. After the
proof of immersion ofΛ∧ into Λs

∧
of the previous section we know that the

same theorem holds also forΛs
∧

. Anyhow, we give here a short and direct
proof of this result. We think that this proof is interestingbecause it helps
to understand how to use directlyΛs

∧
and it suggests how to obtain later a

similar characterization for the weakly normalizing termsof Λ. Supposing
c is a strongly normalizing lambda term, the proof that it is possible to give

Normalization proof for Intersection Types 17

it a type withinΛs
∧

will be by main induction on the depthδ(c) of its re-
duction treeand secondary induction on its term complexity|c|. We recall
here the definition of the functionδ.

δ(c) =

0 if c is in normal form
max(δ(c1), .., δ(cn)) + 1 if c1, .., cn are the terms such

thatc β ci

Before the proof of the main theorem, we need the following lemma.

Lemma 8 Let
Γ, x : σ1, . . . , x : σn ⊢s b : τ,

wherex : σ1, . . . , x : σn are all the assumptions of the variablex within
the base. Then

Γ, x : σ1 ∧ . . . ∧ x : σn ⊢s b : τ.

Proof The proof is immediate by induction on the length of the derivation
of Γ, x : σ1, . . . , x : σn ⊢s b : τ

We can now prove the annunced theorem.

Theorem 3Letc be any strongly normalizing lambda term. Then, there are
a baseΓ and a typeσ such thatΓ ⊢s c : σ.

Proof Let us analyze the possible cases according to the shape of the term
c.

– c ≡ x for some variablex. This is the basic case in the induction. In this
case we putx : C ⊢s x : C, for some basic typeC, and this judgement
is an axiom inΛs

∧
.

– c ≡ x(a1) . . . (an). In this case, for anyi = 1, . . . , n, δ(ai) ≤ δ(c) and
|ai| < |c|. Then, by inductive hypothesis, there exist basisΓi and types
σi such thatΓi ⊢s ai : σi. Then consider the following derivation (recall
thatΛs

∧
is closed under theweakeningrule):

S

Γi ⊢s a1 : σ1

S

Γi ⊢s a2 : σ2

S

Γi ⊢s an : σn

S

Γi, yn : C ⊢s yn : C
S

Γi, yn−1 : σn → C ⊢s yn−1(an) : C

...
S

Γi, y2 : σ3 → .. → σn → C ⊢s y2(a3)..(an) : C
S

Γi, y1 : σ2 → .. → σn → C ⊢s y1(a2)..(an) : C
S

Γi, x : σ1 → .. → σn → C ⊢s x(a1)..(an) : C

– c ≡ λx.d. In this caseδ(d) = δ(c) and |d| < |c|. Then, by inductive
hypothesis, there exist a baseΓ and a typeσ such thatΓ ⊢s d : σ.
Observe thatΓ ≡ Γ ′, x : σ1, . . . , x : σn for someΓ ′ such thatx 6∈ Γ ′,
and hence, by the previous lemma 8,

Γ ′, x : σ1 ∧ . . . ∧ σn ⊢s d : σ

18 Silvio Valentini

Then, by lemma 7,

Γ ′ ⊢s λx.d : σ1 ∧ . . . ∧ σn → σ

sincex 6∈ Γ ′.
– c ≡ (λx.d)(a)(a1) . . . (an). Then,δ(d[x := a](a1) . . . (an)) < δ(c)

and δ(a) ≤ δ(c) and |a| < |c|. Then, by main inductive hypothesis,
there exist a baseΓ1 and a typeσ1, such that

Γ1 ⊢s d[x := a](a1) . . . (an) : σ1,

and, by secondary inductive hypothesis, there exist a baseΓ2 and a type
σ2 such thatΓ1 ⊢s a : σ2. Then, by closure under weakening and lemma
2, we obtain

Γ1, Γ2 ⊢s (λx.d)(a)(a1) . . . (an) : σ1 → σ2

It is interesting to note that a straightforward modification of the rules
of Λs

∧
allows to give a type exactly to the weakly normalizing termsof

Λ. To this aim, it is sufficient to consider the typed lambda calculus Λw
∧

obtained fromΛs
∧

by modifying theλ-introductionrule as follows (in order
to distinguish the judgements ofΛw

∧
from those ofΛs

∧
we write⊢w instead

of ⊢s):

(λw-introduction)
Γ ⊢w c[x := a](a1) . . . (an) : C

Γ ⊢w (λx.c)(a)(a1) . . . (an) : C
a ∈ Λ

The following theorem is immediate.

Theorem 4LetΓ ⊢w a : σ thena is weakly normalizing.

Proof The proof is immediate by induction on the length of the derivation
of Γ ⊢w a : σ.

Now, we want to prove that also the other implication holds. To this aim,
let us recall that a reduction strategy is an algorithm whichmaps lambda
terms into lambda terms and respects the transitive closureof β-reduction.
Then, it is possible to show that if a lambda term is weakly normalizing
then it can be normalized by using the following reduction strategyL (see
[1]).

Definition 1 The leftmost outermost reduction strategyis the map on the
set of lambda terms recursively defined as follows:

L(x(a1) . . . (an)) = x(L(a1)) . . . (L(an)) n ≥ 0
L(λx.c) = λx.L(c)
L((λx.c)(a)(a1) . . . (an)) = L(c[x := a](a1) . . . (an)) n ≥ 0

Normalization proof for Intersection Types 19

Now, we can prove that any weakly normalizing termc can be typed
within Λw

∧
. The proof of this theorem is completely similar to the proof

of the previous theorem 3, but we need to change the inductionparamiter
since the termc is no longer supposed to be strongly normalizing.

Theorem 5Let c be a weakly normalizing lambda term. Then, there are a
baseΓ and a typeσ such thatΓ ⊢w c : σ.

Proof Sincec is weakly normalizing, it can be normalized by using the re-
duction strategyL. Thus, induction on the number of steps of the reduction
strategyL is a correct proof method.

– Suppose the number of steps in the normalization ofc by usingL is 0.
Thenc must be a variablex. Thus, we putx : C ⊢w x : C, for some
basic typeC, and this judgement is an axiom ofΛw

∧
.

– Suppose that the number of steps of application ofL in the normalization
of c is k > 0. Then one of the following cases apply.
1. c ≡ x(a1) . . . (an). In this case, for anyi = 1, . . . , n, the number of

applications of the reduction strategyL which are necessary in order
to normalizeai is lower thank. Then, by inductive hypothesis, there
exist basesΓi and typesσi such thatΓi ⊢w ai : σi. Now we can
continue as in the similar case in proof of theorem 3 since also Λw

∧

is closed underweakening.
2. c ≡ λx.d. Then, the number of applications of the reduction strategy

L necessary in order to normalize the termd is lower thank and
hence, by inductive hypothesis, there exist a baseΓ and a typeσ
such thatΓ ⊢w d : σ. Hence we can conclude as in the similar case
in the proof of theorem 3, since we can prove forΛw

∧
a version of

lemma 7.
3. c ≡ (λx.d)(a)(a1) . . . (an). Then, the number of applications of

the reduction strategyL necessary in order to normalize the term
d[x := a](a1) . . . (an) is lower thank. Thus, there exist a baseΓ
and a typeσ, such thatΓ ⊢w d[x := a](a1) . . . (an) : σ. Hence,
by closure under weakening and a version forΛw

∧
of lemma 2, we

obtainΓ ⊢w (λx.d)(a)(a1) . . . (an) : σ

Acknowledgments.I want to thank Mario Coppo for his careful reading of
the first version of this work and for his precious suggestions which made
this work to look in the way it does. Moreover, I want to thank Michele
Bugliesi for some very useful discussions on the best presentation for the
rules ofΛs

∧
.

References

[1] H. Barendregt, The Lambda Calculus, its Syntax and Semantics, North–Holland, Am-
sterdam, 1984.

20 Silvio Valentini

[2] Capretta, V., Valentini, S., A general method to prove the normalization theorem for
first and second order typedλ-calculi, to appear in Mathematical Structure in Computer
Science.

[3] Dezani, M., Giovannetti, E., De Liguoro, U., Intersection types,λ-models and Böhm
trees, to appear.

[4] Girard, J., Lafont, Y., Taylor, P., Proofs and Types, Cambridge University Press, Cam-
bridge, 1989.

[5] Krivine, J.L., Lambda-Calculus, Types and Models, Masson, Paris, Ellis Horwood,
Hemel Hempstead, 1993.

[6] Miller, D., Nadathur, G., Pfenning, F., Scedrov, A., Uniform proofs as a foundation for
logic programming, Annals of Pure and Applied Logic, 51 (1991), pp. 125-157.

[7] Pottinger, G., A type assignment for strongly normalizableλ-terms, in “To H.B. Curry,
Essay on Combinatory Logic, Lambda Calculus and Formalism”, Academic Press,
New York, 1980, pp. 561-577.

[8] Tait, W.W., Intensional interpretation of functionalsof finite type I, J. of Symbolic
Logic, 32, 1967, pp. 198-212.

[9] Valentini, S., A note on a straightforward proof of normal form theorem for simply
typedλ-calculi, Boll. Un. Mat. It., 8-A, 1994, pp. 207-213.

