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Summary

We present a sequent calculus for the deontic logic D and prove its main syntactic and

semantic properties, i.e. cut-elimination, interpolation, completeness with respect to serial frames,

finite model property and decidability.

1. Introduction

The modal logic D (for deontic) is usually presented as the extension of the minimal normal

modal logic K by the axiom schema qA→¬q¬A [Seg], i.e. D is the minimal modal logic

obtained by adding to the classical propositional calculus the axioms

K-Ax: q(A→B)→(qA→qB)

D-Ax: qA→¬q¬A

and closing under

MP:
A    A→B

B  and Nec:
A

qA 

It is easy to see that D can equivalently be obtained by adding to a standard sequent calculus

for the classical propositional logic, for instance LK in [Tak], the modal rules:

KR:
X|—A

qX|—qA and DR’:
X|—A

qX|—¬q¬A 

where qX stands for the set of formulas {qB:B∈X} if X is a set of formulas.

In fact the sequent A1,…,An| —B1,…,Bm is provable in this sequent calculus if and only if

the formula A1∧…∧An→(B1∨…∨Bm) is a theorem of D and in particular we have | —B if and

only if B is a theorem of D. Let us here show only the modal steps of the obvious proof by

induction on the depth of the considered derivation since the non-modal ones are completely

standard1 .

On one hand we immediately have

                                                

1A more detailed proof of this theorem is shown in [Val] for the case of the modal logic K and

the sequent calculus obtained by adding to LK only the rule KR.
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K-Ax: 

A→B,A|—B
q(A→B),qA|—qB

q(A→B)|—qA→qB
|—q(A→B)→(qA→qB)  D-Ax: 

A|—A
qA|—¬q¬A

|—qA→¬q¬A Nec: 
|—A

|—qA 

and, on the other one, D is closed under KR and DR’ since from C→A using K-Ax and MP we

obtain qC→qA and hence using D-Ax and MP we have qC→¬q¬A and it is well known that,

in K, qC1∧…∧qCn→q(C1∧…∧Cn).

Even if these rules are very natural they are not the simplest ones since the conclusion of

DR’ can have more than one derivation, for instance by a ¬-introduction rule. This fact suggests

the new rule

DR:
X|—

qX|— 

where, according with the intended meaning of a sequent, the empty set on the right hand side

both in the premise and in the conclusion stands for falsum, i.e. the empty disjunction. In a

language which contains also the symbol ⊥ (to be interpreted in falsum) DR becomes 
X|—⊥

qX|—⊥ . 

It is easy to see that DR’ and DR are equivalent over a calculus for K, i.e. which contains KR

[Val]. In fact on one side we have

X|—A
X,¬A|—

qX,q¬A|—
qX|—¬q¬A and on the other

X|—
X|—⊥

qX|—¬q¬⊥    

⊥|—
|—¬⊥

|—q¬⊥
¬q¬⊥|—

qX|—   .

In this way we have also proved that D is the modal logic obtained from K by adding only

the axiom ¬q⊥, i.e. a particular instance of the characteristic axiom of D for A≡ ⊥ because in K

¬q¬⊥ is logically equivalent to ⊥, since in this case DR is a consequence of KR and an

occurrence of the cut-rule.

In the following we will refer to the modal system defined by KR and DR by DS.

2. Cut-elimination for DS

The theorem of cut-elimination can be easily proved for the sequent calculus DS by a

standard double induction on the degree (principal induction) and the length of the thread

(secondary induction) of the cut-formula. The steps to lower the thread and the non modal

reductions are completely standard [Tak], while the modal reductions, characteristic of DS, are
X|—A

qX|—qA    
A,Y|—B

qA,qY|—qB
qX,qY|—qB  ⇒

X|—A    A,Y|—B
X,Y|—B

qX,qY|—qB  

and
X|—A

qX|—qA    
A,Y|—

qA,qY|—
qX,qY|—  ⇒

X|—A    A,Y|—
X,Y|—

qX,qY|—  
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A standard consequence of cut-elimination is the interpolation theorem, which can be proved

for DS by the well-known technique of Maehara-Takeuti [Tak]; i.e. we prove that if the sequent

X| —Y is derivable in DS then, for any partition X1, X2 of X and any partition Y1, Y2 of Y there

is a formula C, the interpolant, which contains only the propositional variables common both to

the formulas in X1∪Y1 and X2∪Y2 such that the sequents X1| —Y1,C and C,X2| —Y1 are

provable. Here we show only the modal steps of the usual proof by induction on the depth of a

cut-free derivation of X| —Y in DS:

(KR-1) Let us suppose that the sequents X1| —C and C,X2| —A are provable. Then obviously

also the sequents qX1| —qC and qC,qX2| —qA are provable.

(KR-2) Let us suppose that the sequents X1| —A,C and C,X2| — are provable. Then it is not

difficult to see that the sequents qX1| —qA,¬q¬C and ¬q¬C,qX2| — are also provable.

(DR) let us suppose that the sequents X1| —C and C,X2| — are provable then the sequents qX1|

—qC and qC,qX2| — are provable.

3. Semantics
Let us call serial [Seg] a Kripke frame <F,R> such that for any x∈F there is a y∈F such that

xRy, i.e. a frame such that “there is always a future”; then any theorem of D is true in any

serial frame. In fact, since any frame verifies K-Ax and is closed under MP and Nec [Seg], we

must only show that qA→¬q¬A holds in any serial frame; this is obvious since, for any point

w of a Kripke frame, || —wqA,q¬A if and only if w has no successor. Since KR is valid in any

Kripke frame [Val], we can equivalently show that DR is valid in any serial frame; in fact if    ||
—wqX and wRy then || —yX, i.e. a D-countermodel for the sequent qX| — is also a

countermodel for the sequent X| —. We have hence shown the validity of DS with respect to the

class of the serial frames. We give now a proof of the completeness theorem which shows at the

same time also cut redundancy, decidability and the finite model property for D.

We can set up a proof procedure for D which looks for the provability of a sequent X| —Y as

follows. Let us write

DRR: O
 X|—C1   …   X|—Cn   X|—

P,qX|—qC1,…,qCn,Q  O

where P and Q are sets of propositional variables and X is a set of formulas, to mean that the

conclusion is derivable if at least one of the premises is derivable (DRR stands for D

Ramification Rule).

D is obviously closed under DRR (use weakening) and hence it is a valid rule, but much

more interesting is that DRR is sufficient to derive any theorem of D. In fact, consider a sequent

calculus whose rules are the standard propositional rules and DRR and whose axioms are the

sequents X| —Y such that X∩Y≠∅, then the procedure we look for is simply “apply any

applicable rule (cut excluded!!) and stop on the axioms”. First note that this procedure stops on

any sequent since the premises of every rule contain only proper subformulas of the formulas

present in the conclusion. Hence, provided the procedure is correct, we have proved that the logic
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D is decidable. Moreover since DRR is a valid rule any sequent the procedure declares to be

provable is really provable without using any cut. On the other hand if the procedure states a

sequent not to be provable then we can inductively construct a D-countermodel for that sequent

following the “proof-tentative” produced by the procedure starting from the leafs and going

toward the root.

In fact any leaf in the proof-tentative of a non provable sequent is obviously a sequent P|
—Q, where P and Q are sets of propositional variables such that no pi∈P is a qj∈Q; hence it

can be falsified at a reflexive point with a valuation which forces any pi∈P and no qj∈Q.

If any premise of a propositional rule is falsified by one point then also the conclusion of that

rule is falsified by the same point.

Finally if we have an occurrence of DRR then, by inductive hypothesis, we already have

constructed n+1 D-countermodels for the n+1 sequents X| —C1 … X| —Cn, X| —, and hence

we can obtain a D-countermodel for P,qX| —qC1,…,qCn,Q simply by adding a new irreflexive

point such that it forces any pi∈P and no qj∈Q and is linked by an intransitive relation to all the

n+1 countermodels.

Hence we have proved that a sequent that the procedure states not to be provable can really be

falsified in a D-countermodel, which is obviously finite since the procedure always stops in a

finite number of steps, constructed using only irreflexive points except for the top-most ones.

Finally we observe that the cut-rule is redundant since the proof of a provable sequent that can

be easily extracted by a successful proof tentative produced by the procedure uses no cut.
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