
Meta-mathematical aspects of

Martin-Löf’s type theory

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Valentini, Silvio

Meta-mathematical aspects of Martin-Löf’s type theory
S. Valentini – [S.l. : s.n.]. – Ill.
Thesis Nijmegen – With ref. – With summary.
ISBN: 90-9013777-7
Subject headings: constructive type theory

c©Silvio Valentini, Padova, Italia, 2000

Meta-mathematical aspects of
Martin-Löf’s type theory

een wetenschappelijke proeve op het gebied van de
Natuurwetenschappen, Wiskunde en Informatica

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Katholieke Universiteit Nijmegen,

volgens besluit van het College van Decanen
in het openbaar te verdedigen
op donderdag 22 juni 2000,

des namiddags om 1.30 uur precies

door

Silvio Luigi Maria Valentini

geboren op 6 january 1953 te Padova, Italia

Promotor: prof. dr. H.P. Barendregt

Manuscript commissie:

prof. dr. Peter Aczel (University of Manchester, UK)
prof. dr. Dirk van Dalen (Utrecht University, NL)
dr. Herman Geuvers (University of Nijmegen, NL)

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Outline of the thesis . 1

1.2.1 General Introduction . 1
1.2.2 Canonical form theorem . 2
1.2.3 Properties of type theory . 2
1.2.4 Subset theory . 3
1.2.5 Program development . 3
1.2.6 Forbidden constructions . 4
1.2.7 Appendices . 4

2 Introduction to Martin-Löf’s type theory 5
2.1 Introduction . 5
2.2 Judgments and Propositions . 6
2.3 Different readings of the judgments . 6

2.3.1 On the judgment A set . 7
2.3.2 On the judgment A prop . 7

2.4 Hypothetical judgments . 8
2.5 The logic of types . 9
2.6 Some programs . 10

2.6.1 The sum of natural numbers . 10
2.6.2 The product of natural numbers . 11

2.7 All types are similar . 11
2.8 Some applications . 13

2.8.1 A computer memory . 13
2.8.2 A Turing machine on a two symbols alphabet 15

3 The canonical form theorem 17
3.1 Summary . 17
3.2 Introduction . 18
3.3 Assumptions of high level arity variables . 19
3.4 Modifications due to the new assumptions . 23
3.5 Some observations on type theory . 23

3.5.1 Associate judgements . 23
3.5.2 Substituted judgements . 24

3.6 The evaluation tree . 26
3.7 Computability . 26
3.8 The lemmas . 30
3.9 Computability of the rules . 34

3.9.1 The substitution rules . 34
3.9.2 U-elimination rules . 36
3.9.3 The structural rules . 37
3.9.4 The assumption rules . 46
3.9.5 The logical rules . 48

iii

iv CONTENTS

3.10 The computability theorem . 55

4 Properties of Type Theory 57
4.1 Summary . 57
4.2 Decidability is functionally decidable . 57

4.2.1 The main result . 59
4.3 An intuitionistic Cantor’s theorem . 61

4.3.1 Cantor’s theorem . 61
4.4 The forget-restore principle . 63

4.4.1 The multi-level typed lambda calculus . 64
4.4.2 The judgment A true . 65
4.4.3 Final remarks . 67

5 Set Theory 69
5.1 Summary . 69
5.2 Introduction . 69

5.2.1 Foreword . 70
5.2.2 Contents . 71
5.2.3 Philosophical motivations . 71

5.3 Reconstructing subset theory . 72
5.3.1 The notion of subset . 72
5.3.2 Elements of a subset . 74
5.3.3 Inclusion and equality between subsets . 75
5.3.4 Subsets as images of functions . 77
5.3.5 Singletons and finite subsets . 78
5.3.6 Finitary operations on subsets . 80
5.3.7 Families of subsets and infinitary operations 81
5.3.8 The power of a set . 82
5.3.9 Quantifiers relative to a subset . 84
5.3.10 Image of a subset and functions defined on a subset 85

6 Development of non-trivial programs 87
6.1 Summary . 87
6.2 Introduction . 87
6.3 Basic Definitions . 88

6.3.1 The set Seq(A) . 88
6.3.2 The set Tree(A) . 90
6.3.3 Expanding a finite tree . 91
6.3.4 Finitary Graphs . 92

6.4 Games and Games trees . 97
6.4.1 Game description . 97
6.4.2 Potential Moves . 98
6.4.3 The set of game trees. 99
6.4.4 Some general game problems . 99
6.4.5 Some general solutions . 100

6.5 Examples . 101
6.5.1 The knight’s tour problem . 101
6.5.2 A game with two players . 103

6.6 Generality . 104
6.7 Some type and functions we use . 105

6.7.1 The type N<(a) . 105
6.7.2 The function append2(s1, s2) . 106
6.7.3 The

∨
-function . 106

6.7.4 The
∧

-function . 106
6.7.5 The max-function. 106
6.7.6 The sets used in the games description and solutions 107

CONTENTS v

7 What should be avoided 109
7.1 Summary . 109
7.2 Introduction . 109
7.3 iTTP = iTT + power-sets . 110
7.4 iTTP is consistent . 114
7.5 iTTP is classical . 116
7.6 Some remarks on the proof . 121
7.7 Other dangerous set constructions . 121

7.7.1 The collection of the finite subsets . 122
7.7.2 The quotient set constructor . 123
7.7.3 The two-subset set . 123

A Expressions theory 125
A.1 The Expressions with arity . 125

A.1.1 Introduction . 125
A.2 Basic definitions . 126

A.2.1 Abbreviating definitions . 126
A.3 Some properties of the expressions system . 129
A.4 Decidability of “to be an expression” . 131

A.4.1 New rules to form expressions . 131
A.4.2 A hierarchy of definitions . 132
A.4.3 The algorithm . 133

A.5 Abstraction and normal form . 135
A.5.1 α, β, η and ξ conversion . 138
A.5.2 Normal form . 140

A.6 Relation with typed λ-calculus . 141

B The complete rule system 145
B.1 The forms of judgements . 145
B.2 The structural rules . 145

B.2.1 Weakening . 145
B.2.2 Assumptions rules . 146
B.2.3 Equality rules . 146
B.2.4 Equal types rules . 146
B.2.5 Substitution rules . 147

B.3 The logical rules . 148
B.3.1 Π-rules . 148
B.3.2 Σ-rules . 149
B.3.3 +-rules . 150
B.3.4 Eq-rules . 151
B.3.5 Id-rules . 152
B.3.6 S(A)-rules . 153
B.3.7 Nn-rules . 154
B.3.8 N-rules . 155
B.3.9 W-rules . 156
B.3.10 U-rules . 157

vi CONTENTS

Samenvatting

Vanaf de 70-er jaren heeft Martin-Löf in een aantal opeenvolgende varianten de intuitionistische
typetheorie ontwikkeld. (Zie [Mar84, NPS90].) Het oorspronkelijke doel was om een formeel
systeem voor constructieve wiskunde te definiëren, maar al snel werd ook het belang van de theorie
voor de informatica ingezien.

In dit proefschrift geven we eerst een algemene inleiding in Martin-Löfs typetheorie. Vervol-
gens bespreken we een aantal van de belangrijkste meta-mathematische eigenschappen. Daarna
behandelen we enkele toepassingen van de theorie binnen de constructieve wiskunde en de theo-
retische informatica. Tot slot analyseren we een aantal mogelijke uitbreidingen van de theorie met
impredicatieve verzamelingsconstructies.

In hoofdstuk 3 worden de belangrijkste meta-mathematische eigenschappen bewezen. Dit hoofd-
stuk bevat een volledig bewijs van de ‘canonieke vorm stelling’ (canonical form theorem), waaruit
de bekende corollaria van een normalisatie stelling volgen, zoals de consistentie van de theorie, de
disjunctie en existentie eigenschappen en de totale correctheid van partieel correcte programma’s.
We beschouwen de theorie zoals die gepresenteerd is in [Mar84], die universa en extensionele geli-
jkheid bevat en waarvoor een normalisatie stelling in zijn standaard vorm niet geldt. Het bewezen
resultaat in dit hoofdstuk zegt dat iedere gesloten welgetypeerde term in een aantal stappen gere-
duceerd kan worden naar een term in canonieke vorm.

In hoofdstuk 4 worden een aantal meta-mathematische eigenschappen geanalyseerd. We laten
eerst zien dat de bekende intuitionistische karakterisering van de beslisbaarheid van predikaten
equivalent is aan het bestaan van een beslissingsfunctie. Daarna bewijzen we een intuitionistis-
che versie van de stelling van Cantor. Preciezer: we laten zien dat er geen surjectieve functie
bestaat van de verzameling van natuurlijke getallen naar de verzameling van functies van natu-
urlijke getallen naar natuurlijke getallen. Tenslotte illustreren we het ‘vergeet-herstel principe’
forget-restore principle dat in [SV98] werd gëıntroduceerd om uit te leggen wat abstractie in con-
structieve zin betekent. We doen dit door een eenvoudig voorbeeld in Martin-Löfs typetheorie te
beschouwen, namelijk uitspraken van de vorm A true. De betekenis van A true is dat er een element
a is waarvoor a ∈ A geldt, maar het maakt niet uit welke specifieke a het is. De overgang van de
uitspraak a ∈ A naar de uitspraak A true is een duidelijk voorbeeld van een vergeet proces. In dit
hoofdstuk laten we zien dat dit een vergeet proces in constructieve zin is, daar we uit een bewijs
van de uitspraak A true, een element a kunnen reconstrueren waarvoor a ∈ A.

In hoofdstuk 5 laten we zien hoe een predicatieve lokale verzamelingenleer kan worden on-
twikkeld binnen Martin-Löfs typetheorie. In de literatuur vindt men verschillende voorstellen voor
een ontwikkeling van verzamelingenleer, binnen Martin-Löfs typetheorie of zodanig dat ze binnen
Martin-Löfs typetheorie gëınterpreteerd zouden kunnen worden. Het voornaamste verschil tussen
de benaderingen in de literatuur en de benadering die we hier kiezen is dat wij niet eisen dat
een deelverzameling zelf weer een verzameling is. In de andere benaderingen is het doel om de
bekende basis constructoren uit de typetheorie toe te passen op een algemeen verzamelingsbegrip,
inclusief verzamelingen verkregen met comprehensie (over een bestaande verzameling), of om een
axiomatische verzamelingenleer te definiëren waarvan de axioma’s een constructieve interpretatie
hebben. De theorie van deelverzamelingen die wij hier voorstellen is een soort ‘typeloze’ verza-
melingenleer, gelokaliseerd binnen één verzameling. We bewijzen dat de gehele ontwikkeling binnen
typetheorie gedaan kan worden. Uiteraard zijn niet alle axioma’s van de klassieke verzamelingen-
leer geldig in deze benadering. In het bijzonder is het onmogelijk om de axioma’s af te leiden die
geen constructieve betekenis hebben, zoals de machtsverzamelingsconstructie.

Hoofdstuk 6 behandelt de ontwikkeling van een aantal niet-triviale programma’s in Martin-Löfs
typetheorie. Dit kan gezien worden als een studie naar abstractie in functioneel programmeren.
Door de zeer krachtige type-constructies en het ingebouwde ‘proposities-als-types’ principe, onder-
steunt Martin-Löfs typetheorie de ontwikkeling van bewijsbaar-correcte programma’s. In plaats
van te werken aan specifieke problemen, specificeren we in dit hoofdstuk klassen van problemen en
we ontwikkelen algemene oplossingen voor deze klassen.

Tot slot is er hoofdstuk 7, waar we een uitbreiding bestuderen van Martin-Löfs intensionele
typetheorie met een verzamelingsconstructor P , zodat de elementen van P(S) de deelverzamelin-
gen van S zijn. Als we voor zo’n uitbreiding een vorm van extensionaliteit op de gelijkheid van
deelverzamelingen eisen (wat natuurlijk is), blijkt deze uitbreiding klassiek te zijn. Het hoofd-

CONTENTS vii

stuk wordt afgesloten door te laten zien dat het voornaamste probleem met de definitie van een
machtsverzamelingsconstructie hem zit in de vereiste extensionele gelijkheid tussen deelverzamelin-
gen. Om precies te zijn: we laten zien dat niet alleen de machtsverzamelingsconstructie de logica
klassiek maakt, maar dat klassieke logica al een gevolg is van de mogelijkheid om een verzameling
te definiëren waarvan de elementen precies de eindige verzamelingen van een gegeven verzameling
zijn. Zelfs is klassieke logica al een gevolg van de mogelijkheid om quotiëntverzamelingen te maken
en tevens al van de mogelijkheid om een extensionele verzameling te definiëren wier elementen twee
deelverzamelingen zijn.

De eerste appendix bevat de ‘theorie van expressies’ expression theory, een soort getypeerde
λ-calculus waar een definitiemechanisme wordt gebruikt in plaats van λ-abstractie. Deze theorie
is nodig om de syntax van Martin-Löfs constructieve typetheorie in uit te drukken. De tweede
appendix bevat alle regels van de theorie. Deze kan door het proefschrift heen gebruikt worden
als een referentie. Modulo kleine variaties zijn dit de standaard regels die op veel plaatsen in de
literatuur gevonden kunnen worden. Het leek ons een goed idee om ze te bij te voegen in het
proefschrift.

viii CONTENTS

Curriculum vitae

Silvio Valentini was born on January 6th 1953 in Padova, Italy. He lives in via Vittor Pisani n.
14, in Padova, Italy (tel. +39 049 802 44 86).

He attended the corso di laurea in Mathematics at the University of Padova and obtained
the laurea in Mathematics on July 8th 1977, with the thesis ‘L’uso del calcolo dei predicati per
la scrittura di algoritmi’ (in Italian) under the direction of Professor Giovanni Sambin of the
Mathematical Department of the University of Padova and Professor Enrico Pagello of L.A.D.S.E.B.
of C.N.R., the National Council for Researches.

Starting October 1st 1977, he won a grant of C.N.R., that he used at the Mathematical Institute
of the University of Siena, headed by Professor Roberto Magari.

After November 1st 1980, he became a Ricercatore Universitario Confermato at the Mathemat-
ical Institute of the University of Siena.

After April 2nd 1984, he was a Ricercatore Universitario Confermato at the Mathematical
Department of the University of Padova.

Then, after October 25th 1987, he has become an Associate Professor in Mathematical Logic
at the Computer Science Department of the University of Milan.

Now, after November 1st 1991, he is an Associate Professor in Mathematical Logic at the
Mathematical Department of the University of Padova.

Chapter 1

Introduction

1.1 Introduction

Since the 70s Martin-Löf has developed, in a number of successive variants, an Intuitionistic The-
ory of Types [Mar84, NPS90]. The initial aim was to provide a formal system for constructive
mathematics but the relevance of the theory also in computer science was soon recognized. In fact,
from an intuitionistic perspective, to define a constructive set theory is completely equivalent to
define a logical calculus [How80] or a language for problem specification [Kol32], and hence the
topic is of immediate relevance both to mathematicians, logicians and computer scientists. More-
over, since an element of a set can also be seen as a proof of the corresponding proposition or
as a program which solves the corresponding problem, the intuitionistic theory of types is also a
functional programming language with a very rich type structure and an integrated system to de-
rive correct programs from their specification [PS86]. These pleasant properties of the theory have
certainly contributed to the interest for it arisen in the computer science community, especially
among those people who believe that program correctness is a major concern in the programming
activity [BCMS89].

1.2 Outline of the thesis

In this thesis we will first give a general introduction to Martin-Löf’s Type theory and then we will
discuss some of its main meta-mathematical properties. Some applications of the theory both to
constructive mathematics development and theoretical computer science will follow. Finally some
extensions of the theory with impredicative set constructors will be analyzed.

1.2.1 General Introduction

In chapter 2 we will give an introduction to Martin-Löf’s type theory by presenting the main ideas
on which the theory is based and by showing some examples.

No theorem will be proved in this chapter, but we think that a general explanation of the
ideas on which the theory is built on is necessary in order to have a feeling for the theory before
beginning the meta-mathematical study. We think that this chapter is going to be useful to any
reader which does not know Martin-Löf’s type theory. In fact, only after a basic comprehension
of the general approach to set construction and proposition definition will be achieved, it will be
possible to understand the meaning of the technical mathematical results in the next chapters.
Indeed, these results are consequences of such a basic philosophical attitude even if sometime the
mathematical subtle details of their proofs can hide the intuitive content of the statements of the
theorems; moreover their relevance can be undertaken if it is not clear that they are important in
showing how the basic ideas are working and having effects which can be explained in mathematical
terms.

For this reason in this chapter we will introduce the theory by analyzing its syntax and ex-
plaining its semantics in term of computations. Then, the general idea of inductive set will be

1

2 CHAPTER 1. INTRODUCTION

introduced and some simple example of program development will be shown. Finally two less
tivial examples will be developed with some details: a computer memory and a Turing machine.

Most of the content of this chapter was presented in [Val96a].

1.2.2 Canonical form theorem

In chapter 3, the main meta-mathematical properties of the theory will be proved. Here, you will
find the complete proof of the canonical form theorem that allows to obtain most of the standard
consequence of a normalization theorem that is, the consistency of the theory, the disjunction and
existential properties and the total correctness of any partially correct program.

In this chapter we will consider the theory presented in [Mar84] which contains both universes
and extensional equality; it is well know that a standard normalization theorem does not hold for
such a theory (see the introduction of the chapter for a proof of this result). On the other hand
this theory is often the most useful in developing constructive mathematics and hence some kind
of normal form result is useful for it.

The result that we will prove in this chapter states that any closed typed term, whose derivation
has no open assumption, can be reduced by a sequence of reductions into an equivalent one in
canonical form, that is, a sort of external normal form, and that the proof of any provable judgement
can be transformed into an equivalent one in introductory form. These facts are sufficient to obtain
most of the usual consequence of a standard normalization theorem.

It is easy to extend the proof to a theory which contains both intensional and extensional
equality and it is even possible to prove a strong normalization theorem if only intensional equality
is present, nevertheless we think that the theory that we presented and the technique that we used
to prove the canonical form theorem are interesting enough to deserve a deep study in a case where
the full normalization theorem does not hold.

The content of this chapter is mainly contained in [BV92].

1.2.3 Properties of type theory

In chapter 4 some meta-mathematical properties of the theory will be analyzed.

We will first show that the usual intuitionistic characterization of the decidability of the propo-
sitional function B(x) prop [x : A], that is, to require that the predicate (∀x ∈ A) B(x) ∨ ¬B(x)
is provable, is equivalent to require that there exists a decision function, that is a function
φ : A → Boole such that (∀x ∈ A) (φ(x) =Boole true) ↔ B(x). This result turns out to be
very useful in many applications of Martin-Löf’s type theory and its proof is interesting since it
require to use some of the peculiarities of the theory, namely the presence of universes and the
fact that an intuitionistic axiom of choice is provable because of the strong elimination rule for the
existential quantifier.

The results of this section can be found in [Val96].

Then, we will prove that an intutionistic version of Cantor’s theorem holds. In fact, we will
show that there exists no surjective function from the set of the natural numbers N into the set
N → N of the functions from N into N. As the matter of fact a similar result can be proved for
any not-empty set A such that there exists a function from A into A which has no fixed point, as
is the case of the successor function for the set N.

This theorem was first presented in [MV96].

Finally, the “forget-restore” principle, introduced in [SV98] in order to explain what can be
considered a constructive way to operate an abstraction, will be illustrated by analyzing a simple
case in Martin-Löf’s type theory. Indeed, type theory offers many ways of “forgetting” information;
what will be analyzed in this section is the form of judgment A true. The meaning of A true is that
there exists an element a such that a ∈ A holds but it does not matter which particular element
a is (one should compare this approach with the notion of proof irrelevance in [Bru80]). Thus, to
pass from the judgment a ∈ A to the judgment A true is a clear example of the forgetting process.

In this section we will show that it is a constructive way of forgetting since, provided that there
is a proof of the judgment A true, an element a such that a ∈ A can be re-constructed.

The results of this section have been presented in [Val98].

1.2. OUTLINE OF THE THESIS 3

1.2.4 Subset theory

In chapter 5 we will show how a predicative local set theory can be developed within Martin-Löf’s
type theory.

In fact, a few years’ experience in developing constructive topology in the framework of type
theory has taught us that a more liberal treatment of subsets is needed than what could be achieved
by remaining literally inside type theory and its traditional notation. To be able to work freely
with subsets in the usual style of mathematics one must come to conceive them like any other
mathematical object and have access to their usual apparatus.

Many approaches were proposed for the development of a set theory within Martin-Löf’s type
theory or in such a way that they can be interpreted in Martin-Löf’s type theory (see for instance
[NPS90], [Acz78], [Acz82], [Acz86], [Hof94], [Hof97] and [HS95]).

The main difference between our approach and these other ones stays on the fact that we do
not require to a subset to be a set while in general in the other approaches the aim is to apply the
usual set-constructors of basic type theory to a wider notion of set, which includes sets obtained by
comprehension over a given set (see [NPS90], [Hof94], [Hof97] and [HS95]) or to define an axiomatic
set theory whose axioms have a constructive interpretation (see [Acz78], [Acz82], [Acz86]); hence
the justification of the validity of the rules and axioms for sets must be given anew and a new
justification must be furnished each time the basic type theory or the basic axioms are modified.
On the other hand the subset theory that we proposed here is a sort of type-less set theory localized
to a set and we prove that all of its development can be done within type theory without losing
control, that is by “forgetting” only information which can be restored at will. This is reduced to
the single fact that, for any set A, the judgment A true holds if and only if there exists a such that
a ∈ A, and it can be proved once and for all, see [Val98].

In this chapter we will provide with all the main definitions for a subset theory; in particular,
we will state the basic notion of subset U of a set S, that is we will identify U with a propositional
function over S. Hence a subset can never be a set and thus no membership relation is defined
between U and the elements of S. This is the reason why our next step will be the introduction of
a new membership relation between an element a of S and a subset U of S, which will turn out to
hold if and only if the proposition U(a) is true. Then the full theory will be developed based on
these ideas, that is, the usual set-theoretic operations will be defined in terms of logical operations.
Of course not all of the classical set theoretic axioms are satisfied in this approach. In particular it
is not possible to validate the axioms which do not have a constructive meaning like, for instance,
the power-set construction.

The topics of this section were first presented in [SV98].

1.2.5 Program development

Chapter 6 is devoted to the development of some non-trivial program within Martin-Löf’s type
theory and it can be considered like a sort of case study in abstraction in functional programming.

In fact, as regards computing science, through very powerful type-definitions facilities and the
embedded principle of “propositions as types”, Martin-Löf’s type theory primarily supplies means
to support the development of proved-correct programs, that is, it furnishes both the sufficient
expressive power to allows general problem descriptions by means of type definitions and meanwhile
a powerful deductive system where a formal proof that a type representing a problem is inhabited
is ipso facto a functional program which solves such a problem. Indeed here type checking achieves
its very aim, namely that of avoiding logical errors.

There are a lot of works (see for instance [Nor81, PS86]) stressing how it is possible to write
down, within the framework of type theory, the formal specification of a problem and then develop a
program meeting this specification. Actually, examples often refer to a single, well-known algorithm
which is formally derived within the theory. The analogy between a mathematical constructive
proof and the process of deriving a correct program is emphasized. Formality is necessary, but it is
well recognized that the master-key to overcome the difficulties of formal reasoning, in mathematics
as well as in computer science, is abstraction and generality. Abstraction mechanisms are very well
offered by type theory by means of assumptions and dependent types.

4 CHAPTER 1. INTRODUCTION

In this chapter we want to emphasize this characteristic of the theory. Thus, instead of speci-
fying a single problem we will specify classes of problems and we will develop general solutions for
them.

The content of this section can also be found in [Val96b].

1.2.6 Forbidden constructions

To end with, there is chapter 7 where it will be analyzed an extension of Martin-Löf’s intensional
type theory by means of a set constructor P such that the elements of P(S) are the subsets of
the set S. Since it seems natural to require some kind of extensionality on the equality among
subsets, it turns out that such an extension cannot be constructive. In fact we will prove that this
extension is classic, that is (A ∨ ¬A) true holds for any proposition A.

In the literature there are examples of intuitionistic set theories with some kind of power-set
constructor. For instance, one can think to a topos, where a sort of “generalized set theory”
is obtained by associating with any topos its internal language (see [Bel88]), or to the Calculus
of Constructions by Coquand and Huet, where the power of a set S can be identified with the
collection of the functions from S into prop. But in the first case problems arise because of the
impredicativity of the theory and in the second because prop cannot be a set from a constructive
perspective and hence also the collection of the functions from a set S into prop cannot be a set.
Of course, there is no reason to expect that a second order construction becomes constructive only
because it is added to a theory which is constructive. Indeed, we will prove that even the fragment
iTT of Martin-Löf’s type theory, which contains only the basic set constructors, i.e. no universe
and no well-orders, and the intensional equality, cannot be extended with a power-set constructor
in a way compatible with the usual explanation of the meaning of the connectives, if the power-set
is the collection of all the subsets of a given set equipped with some kind of extensional equality.
In fact, by using the so called intuitionistic axiom of choice, it is possible to prove that, given
any power-set constructor, which satisfies the conditions that we will illustrate, classical logic is
obtained. A crucial point in carrying on our proof is the uniformity of the equality condition
expressing extensionality on the power-set.

The chapter is completed by showing that the main problem in the definition of the power-set
constructor is the required extensionality among subsets. In fact it will be proved that not only
the power-set constructor allows to obtain classical logic but that it is a consequence also of the
possibility to define a set whose elements are the finite subsets of a given set, of the possibility to
define quotient sets and even of the possibility to define an extensional set whose elements are two
subsets.

The proofs in this chapter were first presented in [MV99] and [Val00].

1.2.7 Appendices

Finally, two appendices follow. The first contains expression theory, that is, a sort of typed lambda-
calculus where abbreviating definitions are used instead that λ-abstraction, which is necessary to
have a formal theory where the syntax for Martin-Löf’s constructive type theory can be expressed.

Expression theory was first presented in [BV89].
The second appendix contains all of the rules of the theory and it can be used like a reference

along all the thesis. With some small variants, such rules can be found in many printed papers
(see for instance [Mar84, NPS90, BV92] and others), but we thought that it could be handy to
have them within the thesis.

Chapter 2

Introduction to Martin-Löf’s type

theory

2.1 Introduction

Since the 70s Martin-Löf has developed, in a number of successive variants, an Intuitionistic The-
ory of Types [Mar84, NPS90] (ITT for short in the following). The initial aim was to provide
a formal system for constructive mathematics but the relevance of the theory also in computer
science was soon recognized. In fact, from an intuitionistic perspective, to define a constructive set
theory is completely equivalent to define a logical calculus [How80] or a language for problem spec-
ification [Kol32], and hence the topic is of immediate relevance both to mathematicians, logicians
and computer scientists. Moreover, since an element of a set can also be seen as a proof of the
corresponding proposition or as a program which solves the corresponding problem, ITT is also a
functional programming language with a very rich type structure and an integrated system to de-
rive correct programs from their specification [PS86]. These pleasant properties of the theory have
certainly contributed to the interest for it arisen in the computer science community, especially
among those people who believe that program correctness is a major concern in the programming
activity [BCMS89].

To develop ITT one has to pass through four steps:

• The first step is the definition of a theory of expressions which both allows to abstract on
variables and has a decidable equality theory; indeed the first requirement is inevitable to gain
the needed expressive power while the last is essential in order to guarantee a mechanical
verification of the correct application of the rules used to present ITT. Here the natural
candidate is a sort of simple typed lambda calculus which can be found in the appendix A.

• The second step is the definition of the types (respectively sets, propositions or problems) one
is interested in; here the difference between the classical and the intuitionistic approach is
essential: in fact a proposition is not merely an expression supplied with a truth value but
rather an expression such that one knows what counts as one of its verifications (respectively
one of its elements or one of the programs which solves the problem).

• The third step is the choice of the judgments one can express on the types introduced in the
previous step. Four forms of judgment are considered in ITT:

1. the first form of judgment is obviously the judgment which asserts that an expression is
a type;

2. the second form of judgment states that two types are equal;

3. the third form of judgment asserts that an expression is an element of a type;

4. the fourth form of judgment states that two elements of a type are equal.

• The fourth step is the definition of the computation rules which allow to execute the programs
defined in the previous point.

5

6 CHAPTER 2. INTRODUCTION TO MARTIN-LÖF’S TYPE THEORY

In this chapter we will show some of the standard sets and propositions in [Mar84] and some
examples of application of the theory to actual cases, while for the study of the main meta-
mathematical results on ITT the reader is asked to wait for the next chapters.

2.2 Judgments and Propositions

In a classical approach to the development of a formal theory one usually takes care to define
a formal language only to specify the syntax (s)he wants to use while as regard to the intended
semantics no a priori tie on the used language is required. Here the situation is quite different; in
fact we want to develop a constructive set theory and hence we can assume no external knowledge
on sets; then we do not merely develop a suitable syntax to describe something which exists
somewhere. Hence we have “to put our cards on the table” at the very beginning of the game and
to declare the kind of judgments on sets we are going to express. Let us consider the following
example: let A be a set,then

a ∈ A

which means that a is an element of A, is one of the form of judgment we are interested in (but
also the previous “A is a set” is already a form of judgment!). It is important to note that a
logical calculus is meaningful only if it allows to derive judgments. Hence one should try to define
it only after the choice of the judgments (s)he is interested in. A completely different problem is
the definition of the suitable notation to express such a logical calculus; in this case it is probably
more correct to speak of a well-writing theory instead of a logical calculus (see appendix A to see
a well-writing theory suitable for ITT).

Let us show the form of the judgments that we are going to use to develop our constructive set
theory. The first is

(type-ness) A type

(equivalently A set, A prop and A prob) which reads “A is a type” (respectively “A is a set”, “A is
a proposition” and “A is a problem”) and states that A is a type. The second form of judgment is

(equal types) A = B

which, provided that A and B are types, states that they are equal types. The next judgment is

(membership) a ∈ A

which states that a is an element of the type A. Finally

(equal elements) a = b ∈ A

which, provided that a and b are elements of the type A, states that a and b are equal elements of
the type A.

2.3 Different readings of the judgments

Here we can see a peculiar aspect of a constructive set theory: we can give many different readings
for the same judgment. Let us show some of them

A type a ∈ A

A is a set a is an element of A

A is a proposition a is a proof of A

A is a problem a is a method which solves A

The first reading conforms to the definition of a constructive set theory. The second one, which
links type theory with intuitionistic logic, is due to Heyting [Hey56, How80]: it is based on the iden-
tification of a proposition with the set of its proofs. Finally the third reading, due to Kolmogorov
[Kol32], consists on the identification of a problem with the set of its solutions.

2.3. DIFFERENT READINGS OF THE JUDGMENTS 7

2.3.1 On the judgment A set

Let us explain the meaning of the various forms of judgment; to this aim we may use many different
philosophical approaches: here it is convenient to commit to an epistemological one.

What is a set? A set is defined by prescribing how its elements are formed.

Let us work out an example: the set N of natural numbers. We state that natural numbers
form a set since we know how to construct its elements.

0 ∈ N
a ∈ N

s(a) ∈ N

i.e. 0 is a natural number and the successor of any natural number is a natural number.
Of course in this way we only construct the typical elements, we will call them the canonical

elements, of the set of the natural numbers and we say nothing on elements like 3 + 2. We can
recognize also this element as a natural number if we understand that the operation + is just
a method such that, given two natural numbers, provides us, by means of a calculation, with a
natural number in canonical form, i.e. 3+2 = s(2+2); this is the reason why, besides the judgment
on membership, we also need the equal elements judgment. For the type of the natural numbers
we put

0 = 0 ∈ N
a = b ∈ N

s(a) = s(b) ∈ N

In order to make clear the meaning of the judgment A set let us consider another example. Suppose
that A and B are sets, then we can construct the type A×B, which corresponds to the cartesian
product of the sets A and B, since we know what are its canonical elements:

a ∈ A b ∈ B

〈a, b〉 ∈ A×B

a = c ∈ A b = d ∈ B

〈a, b〉 = 〈c, d〉 ∈ A×B

So we explained the meaning of the judgment A set but meanwhile we also explained the
meaning of two other forms of judgment.

What is an element of a set? An element of a set A is a method which, when executed, yields a
canonical element of A as result.

When are two elements equal? Two elements a, b of a set A are equal if, when executed, they yield
equal canonical elements of A as results.

It is interesting to note that one cannot construct a set if (s)he does not know how to produce
its elements: for instance the subset of the natural numbers whose elements are the code numbers
of the recursive functions which do not halt when applied to 0 is not a type in ITT, due to the
halting problem. Of course it is a subset, since there is a way to describe it, and a suitable subset
theory is usually sufficient in order to develop a great deal of standard mathematics (see chapter
5 or [SV98]).

2.3.2 On the judgment A prop

We can now immediately explain the meaning of the second way of reading the judgment A type,
i.e. to answer to the question:What is a proposition?

Since we want to identify a proposition with the set of its proofs, in order to answer to this
question we have only to repeat for proposition what we said for sets: a proposition is defined by
laying down what counts as a proof of the proposition.

This approach is completely different from the classical one; in the classical case a proposition
is an expression provided with a truth value, while here to state that an expression is a proposition
one has to clearly state what (s)he is willing to accept as one of its proofs. Consider for instance
the proposition A&B: supposing A and B are propositions, then A&B is a proposition since we
can state what is one of its proofs: a proof of A&B consists of a proof of A together with a proof
of B, and so we can state

a ∈ A b ∈ B
〈a, b〉 ∈ A&B

but then A&B ≡ A×B and, more generally, we can identify sets and propositions.

8 CHAPTER 2. INTRODUCTION TO MARTIN-LÖF’S TYPE THEORY

A lot of propositions

Since we identify sets and propositions, we can construct a lot of new sets if we know how to
construct new propositions, i.e. if we can explain what is one of their proofs. Even if their
intended meaning is completely different with respect to the classical case, we can recognize the
following propositions.

a proof of consists of

A&B 〈a, b〉, where a is a proof of A and b is a proof of B

A ∨B inl(a), where a is a proof of A or
inr(b), where b is a proof of B

A→ B λ(b), where b(x) is a proof of B
provided that x is a proof of A

(∀x ∈ A) B(x) λ(b), where b(x) is a proof of B(x)
provided that x is an element of A

(∃x ∈ A) B(x) 〈a, b〉, where a is an element of A and b is a proof of B(a)

⊥ nothing

It is worth noting that the intuitionistic meaning of the logical connectives allows to recognize that
the connective → is just a special case of the quantifier ∀, provided the proposition B(x) does not
depend on the variable x, and the connective & is a special case of the quantifier ∃ under the same
assumption.

Let us see which sets correspond to the propositions we have defined so far.

The proposition corresponds to the set

A&B A×B, the cartesian product of the sets A and B

A ∨B A + B, the disjoint union of the sets A and B

A→ B A→ B, the set of the functions from A to B

(∀x ∈ A) B(x) Π(A, B), the cartesian product of a family
B(x) of types indexed on the type A

(∃x ∈ A) B(x) Σ(A, B), the disjoint union of a family
B(x) of types indexed on the type A

⊥ ∅, the empty set

2.4 Hypothetical judgments

So far we have explained the basic ideas of ITT; now we want to introduce a formal system. To
this aim we must introduce the notion of hypothetical judgment: a hypothetical judgment is a
judgment expressed under assumptions. Let us explain what is an assumption; here we only give
some basic ideas while a formal approach can be found in the next chapter 3 or in [BV92]. Let A
be a type; then the assumption

x : A

means both:

1. a variable declaration: the variable x has type A

2. a logical assumption: x is a hypothetical proof of A.

The previous is just the simplest form of assumption, but we can also use

y : (x : A) B

which means that y is a function which maps an element a ∈ A into the element y(a) ∈ B, and so
on, by using assumptions of arbitrary complexity (see appendix A to find some explanation on the
notation we use).

2.5. THE LOGIC OF TYPES 9

Let us come back to hypothetical judgments. We start with the simplest example of hypothetical
judgment; suppose A type then we can state that B is a propositional function on the elements of
A by putting

B(x) prop [x : A]

provided that we know what it counts as a proof of B(a) for each element a ∈ A. For instance,
one could consider the hypothetical judgment

x 6= 0→ (
3

x
∗ x = 3) prop [x : N]

whose meaning is obvious.
Of course, we also have:

B(x) = D(x) [x : A]
b(x) ∈ B(x) [x : A]

b(x) = d(x) ∈ B(x) [x : A]

The previous are just the simplest forms of hypothetical judgments and in general, supposing

A1 type, A2(x1) type [x1 : A1], . . . , An(x1, . . . , xn−1) type [x1 : A1, . . . , xn−1 : An−1]

we can introduce the hypothetical judgment

J [x1 : A1, . . . , xn : An(x1, . . . , xn−1)]

where J is one of the four forms of judgment that we have considered that can contain the variables
x1, . . . , xn.

2.5 The logic of types

We can now describe the full set of rules needed to describe one type. We will consider four
kinds of rules: the first rule states the conditions required in order to form the type, the second
one introduces the canonical elements of the type, the third rule explains how to use, and hence
eliminate, the elements of the type and the last one how to compute using the elements of the type.
For each kind of rules we will first give an abstract explanation and then we will show the actual
rules for the cartesian product of two types.

Formation. How to form a new type (possibly by using some previously defined types) and when
two types constructed in this way are equal.

Example:
A type B type

A×B type
A = C B = D
A×B = C ×D

which state that the cartesian product of two types is a type.

Introduction. What are the canonical elements of the type and when two canonical elements are
equal.

Example:
a ∈ A b ∈ B
〈a, b〉 ∈ A×B

a = c ∈ A b = d ∈ B
〈a, b〉 = 〈c, d〉 ∈ A×B

which state that the canonical elements of the cartesian product A×B are the couples whose first
element is in A and second element is in B.

Elimination. How to define functions on the elements of the type defined by the introduction
rules.

Example:
c ∈ A×B d(x, y) ∈ C(〈x, y〉) [x : A, y : B]

E(c, d) ∈ C(c)

which states that to define a function on all the elements of the type A×B it is sufficient to explain
how it works on the canonical elements.

10 CHAPTER 2. INTRODUCTION TO MARTIN-LÖF’S TYPE THEORY

Equality. How to compute the function defined by the elimination rule.
Example:

a ∈ A b ∈ B d(x, y) ∈ C(〈x, y〉) [x : A, y : B]

E(〈a, b〉, d) = d(a, b) ∈ C(〈a, b〉)

which states that to evaluate the function E(c, d), defined by the elimination rule, one has first
to evaluate c in order to obtain a canonical element 〈a, b〉 ∈ A × B and then to use the method
d : (x : A)(y : B) C(〈x, y〉), provided by the second premise of the elimination rule, to obtain the
value d(a, b) ∈ C(〈a, b〉).

The same approach can be used to obtain the rules for a type which is not a logical proposition.
Let us consider the case of the type N. It is interesting to note that there is no need to change
anything with respect to the general pattern in order to recover all the usual properties of natural
numbers.

Formation:
N set

Introduction:

0 ∈ N
a ∈ N

s(a) ∈ N

Elimination:
c ∈ N d ∈ C(0) e(x, y) ∈ C(s(x))[x : N, y : C(x)]

Nrec(c, d, e) ∈ C(c)

Equality:
d ∈ C(0) e(x, y) ∈ C(s(x)) [x : N, y : C(x)]

Nrec(0, d, e) = d ∈ C(0)
a ∈ N d ∈ C(0) e(x, y) ∈ C(s(x))[x : N, y : C(x)]

Nrec(s(a), d, e) = e(a, Nrec(a, d, e)) ∈ C(s(a))

As you see the elimination rule is an old friend: we have re-discovered the induction principle
on natural numbers.

We can now consider a new kind of rules which makes explicit the computation process which
is only implicit in the equality rule.

Computation:

c⇒ 0 d⇒ g

Nrec(c, d, e)⇒ g

c⇒ s(a) e(a, Nrec(a, d, e))⇒ g

Nrec(c, d, e)⇒ g

2.6 Some programs

Now we can develop some simple programs on natural numbers and look at their execution.

2.6.1 The sum of natural numbers

Let x, y ∈ N, then the sum of x and y is defined by means of the following deduction:

x ∈ N y ∈ N

[v : N]1

s(v) ∈ N

x + y ≡ Nrec(x, y, (u, v) s(v)) ∈ N
1

For instance we can evaluate 3 + 2 as follows:

3⇒ s(2) s(Nrec(2, 2, (u, v) s(v))⇒ s(2 + 2)

3 + 2 ≡ Nrec(3, 2, (u, v) s(v))⇒ s(2 + 2)

This simple example can already suggest that ITT is a functional programming language with a
strong typing system.

2.7. ALL TYPES ARE SIMILAR 11

2.6.2 The product of natural numbers

For any x, y ∈ N, we define the product of x and y by means of the following deduction which
makes use of the definition of the sum of the previous section.

x ∈ N 0 ∈ N

y : N [v : N]1....
y + v ∈ N

x ∗ y ≡ Nrec(x, 0, (u, v) y + v) ∈ N
1

In general, the recursive equation with unknown f :

{
f(0) = k ∈ A
f(s(x)) = g(x, f(x)) ∈ A

is solved in ITT by
f(x) ≡ Nrec(x, k, (u, v) g(u, v))

and it is possible to prove that

Nrec(x, k, (u, v) g(u, v)) ∈ A [x : N, k : A, g : (u : N)(v : A) A]

2.7 All types are similar

Looking at the rules for the types that we have introduced till now it is possible to realize that
they always follow the same pattern. First the formation rules state how to form the new type.
For instance in order to define the type A→ B we put:

A type B type

A→ B type
A = C B = D

A→ B = C → D

The second step is the definition of the canonical elements of the type; this is the step which
completely determines the type we are constructing since all the other rules directly depend on
these ones. For instance, for the type A→ B we state that the canonical elements are the functions
λ(b) such that b(x) ∈ B [x : A].

b(x) ∈ B [x : A]

λ(b) ∈ A→ B

b(x) = d(x) ∈ B [x : A]

λ(b) = λ(d) ∈ A→ B

The elimination rule is now determined; it states that the only elements of the type are those
introduced by the introduction rule(s) and hence that one can define a function on all the elements
of the type if (s)he knows how this function works on the canonical elements. Again let us use the
type A→ B as a paradigmatic example; for this type we have only one introduction rule and hence
in the elimination rule, besides the premise c ∈ A→ B, we have to consider only another premise,
i.e. d(y) ∈ C(λ(y)) [y : (x : A) B] which shows how to obtain a proof of C(λ(y)) starting from a
generic assumptions for the introduction rule. Now c ∈ A → B must be equal to λ(b) for some
b(x) ∈ B [x : A] and hence by using c one has to be able to construct anything (s)he can construct
starting from b : (x : A) B. Since the second premise states that we can obtain a proof d(b) of
C(λ(b)), then the elimination rule states that we have to be able to obtain a proof of C(c), which
we call F(c, d), depending on the two assumptions c ∈ A→ B and d : (y : (x : A) B) C(λ(y)).

c ∈ A→ B d(y) ∈ C(λ(y)) [y : (x : A) B]

F(c, d) ∈ C(c)

Let us now consider the equality rule: it shows how to compute the function defined by the elimi-
nation rule. Since in the elimination rule we have considered a different premise in correspondence
with each introduction rule, we will need also a particular equality rule in correspondence with each
introduction rule. In fact, consider the evaluation process of a function obtained by an elimination

12 CHAPTER 2. INTRODUCTION TO MARTIN-LÖF’S TYPE THEORY

rule for the type A. First the element of the type A which appears in the leftmost premise is
evaluated into a canonical element of A in correspondence to a suitable introduction rule; then the
premise(s) of this introduction rule can be substituted for the assumption(s) of the corresponding
premise of the elimination rule. Let us consider the case of the type A → B: we have only one
introduction rule and hence we have to define one equality rule which explains how to evaluate
a function F(z, d) ∈ C(z) [z : A → B] when it is used on the canonical element λ(b); the second
premise of the elimination rule states that we obtain a proof d(b) of C(λ(b)) simply by substituting
b for y and hence we put F(λ(b), d) = d(b).

b(x) ∈ B [x : A] d(y) ∈ C(λ(y)) [y : (x : A) B]

F(λ(b), d) = d(b) ∈ C(λ(b))

To show now a situation which is a little different, let us analyze the elimination and the equality
rules for the type N. In this case we have two introduction rules and hence in the elimination rule,
besides the premise c ∈ N, there will be two other premises. The first, in correspondence with the
introduction rule 0 ∈ N which has no premise, has no assumption and hence, supposing we want
to prove an instance of the propositional function C(z) prop [z : N], it must be a proof d of the
proposition C(0). The second premise is more complex here than in the previous case since the
second introduction rule for the type N is inductive, i.e. the premise contains the type N itself. In
this case we can suppose to have proved the property C(x) for the natural number x before we
construct the natural number s(x) and hence in the elimination rule, when we are going to prove
C(s(x)), besides the assumption due to the premise of the introduction rule, we can also assume
to have a proof of C(x).

Since we have two introduction rules we also have two equality rules. The first concerns
Nrec(c, d, e), in correspondence with the first introduction rule, i.e. when the value of c is 0.
In this case the second assumption shows that Nrec(0, d, e) = d. The second equality rule con-
cerns the case the value of c is s(a) for some natural number a: in this case we can suppose
to know that Nrec(a, d, e) is an element of C(a) and hence the third assumption shows that
Nrec(s(a), d, e) = e(a, Nrec(a, d, e)).

We can now play a little game and see how these formal considerations work even if one has no
a priori comprehension of the type (s)he is defining. Let us suppose to have the following formation
and introduction rules:

Formation:
A type B(x) type [x : A]

W(A, B) type

Introduction:

∗ ∈W(A, B)
a ∈ A b(y) ∈ W(A, B) [y : B(a)]

◦(a, b) ∈ W(A, B)

Can you find the correct elimination and equality rules?

The elimination rule is completely determined by the introduction rules: there are two intro-
duction rules and hence, besides the premise c ∈ W(A, B), there would be two minor premises. The
first will have no assumption because the first introduction rule has no premise, while the second
premise will have an assumption in correspondence with any premise of the second introduction
rule plus an inductive assumption since this introduction rule is inductive.

Elimination:

c ∈W(A, B) d ∈ C(∗)

[x : A, w : (y : B(x))W(A, B), z : (y : B(x))C(w(y))]1....
e(x, w, z) ∈ C(◦(x, w))

2(c, d, e) ∈ C(c)
1

Finally we have to define two equality rules in correspondence with the two introduction rules.

2.8. SOME APPLICATIONS 13

∗

t1 RRRRRRRRRRRRRRR ∗

t2

∗

t3qqqqqqqqqqq

∗

u1 KKKKKKKKKKK ∗

u2

b1[u3] ≡ ◦(a2, b2)

u3

lllllllllllll

∗

v1

WWWWWWWWWWWWWWWWWWWWWWWWWWW b[v2] ≡ ◦(a1, b1)

v2

RRRRRRRRRRRRR
∗

v3

∗

v4

rrrrrrrrrrr
∗

v5

kkkkkkkkkkkkkkkkk

◦(a, b)

B(a) ≡ {v1, v2, v3, v4, v5} B(a1) ≡ {u1, u2, u3} B(a2) ≡ {t1, t2, t3}

Figure 2.1: the tree ◦(a, b)

Equality:

d ∈ C(∗)

[x : A, w : (y : B(x))W(A, B), z : (y : B(x))C(w(y))]1....
e(x, w, z) ∈ C(◦(x, w))

2(∗, d, e) = d ∈ C(∗)
1

a ∈ A b(y) ∈W(A, B)[y : B(a)] d ∈ C(∗)

[x : A, w : (y : B(x))W(A, B), z : (y : B(x))C(w(y))]1....
e(x, w, z) ∈ C(◦(x, w))

2(◦(a, b), d, e) = e(a, b, (y) 2(b(y), d, e)) ∈ C(◦(a, b))
1

Can you guess what this type is? It is the type of the labeled tree: the element ∗ ∈ W(A, B) is a
leaf and ◦(a, b) ∈ W(A, B) is a node which has the label a ∈ A and a branch which arrives at the
tree b(y) ∈W(A, B) in correspondence with each element y ∈ B(a) (see figure 2.1).

2.8 Some applications

To understand the expressive power of ITT as a programming language, let us show some simple
programs: the first is the description of a computer memory and the second one is a Turing machine.

2.8.1 A computer memory

To describe a computer memory it is convenient to introduce the type Boole of the boolean values.

Formation:

Boole set

Introduction:

⊤ ∈ Boole ⊥ ∈ Boole

Elimination:
c ∈ Boole d ∈ C(⊤) e ∈ C(⊥)

if c then d else e endif ∈ C(c)

Equality:

d ∈ C(⊤) e ∈ C(⊥)

if ⊤ then d else e endif = d ∈ C(⊤)

d ∈ C(⊤) e ∈ C(⊥)

if ⊥ then d else e endif = e ∈ C(⊥)

14 CHAPTER 2. INTRODUCTION TO MARTIN-LÖF’S TYPE THEORY

Then we obtain the type Value of a m-bits memory word by using m times the cartesian product
of Boole with itself.

Value ≡ Boolem ≡ Boole× . . .× Boole
︸ ︷︷ ︸

m

By using the same construction we can define also the address space by putting

Address ≡ Boolen

if we want to specify a computer with an n-bits address bus.
The definition of a computer memory is now straightforward: a memory is a map which returns

a value in correspondence with any address.

mem ∈ Address→ Value

The first operation one have to define on a computer memory is its initialization at startup;
the following position is one of the possible solution of the problem of memory initialization:

mem ≡ λ((x) 〈⊥, . . . ,⊥〉)

where 〈a1, . . . , an〉 is the obvious generalization of the operation of couple formation that we used
for the cartesian product.

We can now define the two standard operations on a computer memory: reading and writing.
Suppose add ∈ Address and mem ∈ Address → Value, then the function read(mem, add), which
returns the value at the memory location add of the memory mem, consists simply in applying the
function mem to the address add:

read(mem, add) ≡ mem[add] ≡ F(mem, (y) y(add))

As regard to the function write(mem, add, value), which returns the new memory configuration
after writing the value val at the location add of the memory mem, we put:

write(mem, add, val) ≡ λ((x) if x = add then val else read(mem, x) endif)

It is obvious that the computer memory we proposed here is not very realistic, but we can
improve it a bit if we introduce the type ExtBoole.

Formation:
ExtBoole set

Introduction:
⊤ ∈ ExtBoole ⊥ ∈ ExtBoole ω ∈ ExtBoole

where the new canonical element ω ∈ ExtBoole can be used to specify the presence of a value still
undefined in the memory.
Elimination:

c ∈ ExtBoole d1 ∈ C(⊤) d2 ∈ C(⊥) d3 ∈ C(ω)

case c of ⊤ : d1; ⊥ : d2; ω : d3 endcase ∈ C(c)

Equality:
d1 ∈ C(⊤) d2 ∈ C(⊥) d3 ∈ C(ω)

case ⊤ of ⊤ : d1; ⊥ : d2; ω : d3 endcase = d1 ∈ C(⊤)

d1 ∈ C(⊤) d2 ∈ C(⊥) d3 ∈ C(ω)

case ⊥ of ⊤ : d1; ⊥ : d2; ω : d3 endcase = d2 ∈ C(⊥)

d1 ∈ C(⊤) d2 ∈ C(⊥) d3 ∈ C(ω)

case ω of ⊤ : d1; ⊥ : d2; ω : d3 endcase = d3 ∈ C(ω)

In this way we can improve the initialization function by putting

mem ≡ λ((x) 〈ω, . . . , ω〉)

which states that at startup the state of the memory is completely unknown. In this way it
becomes clear that we must write a real value at a particular address before we can read something
meaningful at that address.

2.8. SOME APPLICATIONS 15

2.8.2 A Turing machine on a two symbols alphabet

Our second example is the definition of a Turing machine which uses a two symbols alphabet. 1

Let us begin with some definitions which makes clearer what follows. The first definition
concerns the movements of the head.

Move ≡ Boole

left ≡ ⊤
right ≡ ⊥

Then, as regard the alphabet we put

Symb ≡ Boole

0 ≡ ⊤
1 ≡ ⊥

Finally we define our Turing machine. A Turing machine is made of a tape where a head
can read and write under the control of a program whose instructions are scanned by a program
counter which indicates the execution state. Thus we can formally identify a Turing machine with
a quadruple

TuringMachine ≡ 〈prog, tape, head, state〉

where, supposing

TapeType ≡ N→ Symb

HeadPos ≡ N

States ≡ N

ProgType ≡ (States× Symb)→ (Symb×Move× States)

we have
tape ∈ TapeType

i.e. the tape is a function which gives the symbol at the n-th location of the tape if applied to the
natural number n; 2

head ∈ HeadPos

i.e. head is the current position of the head over the tape;

state ∈ States

i.e. state is the current execution state of the machine, and finally

prog ∈ ProgType

i.e. prog is the transition function of the machine which, given the actual state and the symbol at
the current position of the head over the tape, returns the symbol to write at the current position,
the next movement of the head and the new state of the machine.

We can now describe the execution process of the Turing machine. Of course we have to start
by considering the initial conditions, i.e. the initial configuration of the tape, the initial position
of the head and the initial state of the machine. For instance we put

initTape ≡ λx. if x = 0 then 1
else if x = 1 then 1

...
else if x = n then 1
else 0 endifs ∈ TapeType

initHead ≡ 0 ∈ HeadPos

initState ≡ 0 ∈ States
1It is well known that the use of such a simple alphabet does not limit the expressive power of the machine; here

we prefer to limit the alphabet to avoid to introduce new types.
2In order to use the type of the natural numbers which we have already defined, we consider here Turing machines

whose tape is non-finite only at the right instead of the more standard machines whose tape has both sides not
finite; it is well-known that this requirement does not change the class of the computable functions.

16 CHAPTER 2. INTRODUCTION TO MARTIN-LÖF’S TYPE THEORY

to state that the machine works on the tape 11 . . . 1000 . . ., which contains the symbol 1 in its first
n locations and 0 in all the other ones, and starts in the execution state 0 with its head over the
location 0.

Let us now show how a computation step can be described. Let prog be a program and suppose
to have an actual description of the machine determined by the actual tape, the actual position
of the head and the actual state; then we want to obtain the new configuration of the tape, the
new position of the head and the new state of the machine which result after the execution of one
computation step. Hence we need a function

execStep ∈ ProgType→ (TapeType× HeadPos× States→ TapeType× HeadPos× States)

such that

execStep[prog][〈inTape, inHead, inState〉] = 〈outTape, outHead, outState〉

To define execStep it is convenient to put fst(c) ≡ E(c, (x, y) x) and snd(c) ≡ E(c, (x, y) y) so
that fst(〈a, b〉) = a and snd(〈a, b〉) = b and hence Π3

1(x) ≡ fst(fst(x)), Π3
2(x) ≡ snd(fst(x)) and

Π3
3(x) ≡ snd(x).

In fact we can now define outTape, outHead, outState as a function of inTape, inHead and
inState, besides the program prog, as follows:

outTape ≡ λx. if x = inHead
then Π3

1(prog[inState, inTape[inHead]])
else inTape[x] endif

outHead ≡ if Π3
2(prog[inState, inTape[inHead]])

then inHead− 1 else inHead + 1 endif
outState ≡ Π3

3(prog[inState, inTape[inHead]])

Hence we can define the function execStep by putting

execStep ≡ λprog.λ〈inTape, inHead, inState〉.〈outTape, outHead, outState〉

In order to define the execution of a Turing machine we only have to apply the function execStep

for an arbitrary number of times. To this aim it is useful to define the function iterate such that,
supposing a ∈ A and f ∈ A→ A,

{
iterate(0, f, a) = a ∈ A
iterate(s(x), f, a) = f [iterate(x, f, a)] ∈ A

i.e. iterate(n, f, a) ≡ fn(a). To solve this recursive equation within ITT, we put

iterate(n, f, a) ≡ It(n)[f, a]

so that {
It(0) = λf.λa.a
It(s(x)) = λf.λa.f [It(x)[f, a]]

which is solved by
It(n) ≡ Nrec(n, λf.λa.a, (u, v) λf.λa.f [v[f, a]])

Now we can use the function iterate to obtain

(execStep[prog])n[〈initTape, initHead, initState〉]

i.e. we can calculate the status of the Turing machine after any finite number of steps, but . . . see
the next chapter.

Chapter 3

The canonical form theorem

3.1 Summary

In this chapter we will prove a canonical form theorem for the extensional version of Martin-
Löf’s type theory with one universe. We choose to prove the theorem for such a version because
extensional equality is the most widely used in mathematics and hence this theory is probably the
nearest to the usual mathematical practice. Of course, it is possible to extend immediately the
proof to a theory which contain both intensional equality (denoted by the inductive type Id in the
appendix B) and extensional equality (denoted by the type Eq here and in the appendix B) and
even to obtain a full strong normalization result if only intensional equality is present [CCo98].
However we think that the technique that we use here to prove the canonical form theorem and
the theory presented are interesting enough to deserve a deep study of a case for which the full
normalization theorem does not hold, as we will prove here below1.

Assume that the empty set N0 is inhabited, that is, assume that y : N0. Then, by N0-elimination
over the universe U of the small types, we obtain that

R0(y) ∈ Eq(U, n, n→ n)

and hence, by extensional equality elimination, n = n→ n ∈ U which yields that

N = N→ N

that is, we proved that if the empty set is inhabited then the set N of the natural numbers and the
set N→ N of the functions from the natural numbers into the natural numbers are equal.

Consider now the following derivation2

[x : N]1

y : N0

...
N = N→ N

x ∈ N→ N [x : N]1

x[x] ∈ N

λ((x) x[x]) ∈ N→ N
1

It will be used in the next derivation to prove that a type can be assigned to the term

λ((x) x[x])[λ((x) x[x])]

1The proof that is exposed here was suggested to me by B. Nordstrom when we spoke about the possibility for
a formal proof of a normalization theorem for Martin-Löf’s type theory in late ’80. Later, other similar proofs of
the same result appeared in the literature; for instance in a personal communication H. Barendreght told me that
also S. Berardi obtained a similar result for the calculus of construction (see [Ber90]) and that other examples of
not wished consequences of extensional equality can be found in [Geu93].

2We write c[a] to denote the application of the function c to the element a.

17

18 CHAPTER 3. THE CANONICAL FORM THEOREM

under the assumption that the empty set is inhabited, while it is well known that this term does
have no normal form.

y : N0

...
λ((x) x[x]) ∈ N→ N

y : N0

...
λ((x) x[x]) ∈ N→ N

y : N0

...
N→ N = N

λ((x) x[x]) ∈ N

λ((x) x[x])[λ((x) x[x])] ∈ N

Note now that we can go a bit further and prove that the closed term

λ((y) λ((x) x[x])[λ((x) x[x])])

has type

N0 → N

and hence we can construct also closed proof which cannot be normalized.
So there is no possibility for a standard kind of normalization theorem for the theory that we are

considering. This is the reason why the theorem that we will present in the following does not prove
that any typed term can be reduced into an equivalent one in normal form. Nevertheless, it proves
that any closed term, namely a term which contains no free variables, such that the derivation of its
typebility has no open assumption, can be reduced into an equivalent one in canonical form, that
is a sort of external normal form. It can be useful to observe that, since the notion of reduction
that we will define will apply only to closed term, and hence non closed terms are not reducible,
such a result is not really different from a standard normalization theorem which states that a
term can be reduced into an equivalent one which contains no reducible parts. On the other hand,
the previous examples of non-normalizing terms show that this is the strongest result that we can
hope to obtain.

This result is clearly sufficient to prove that the usual consequences of a standard normalization
theorem hold also for this extensional version of Martin-Löf’s type theory, namely consistency,
disjunction and elimination property and introductory form theorem for any provable judgment.

Of course, due to Gödel second incompleteness theorem, no normalization theorem for a theory
as complex as Martin-Löf’s type theory is a satisfactory proof of its consistence. Indeed, a real
consistency argument can be based only on the reliability of the rules of the theory and this cannot
stay on any formal proof of consistency but only in the meaning of the rules themselves. On the
other hand, in our experience there is nothing like the search for a predicative proof of normalization
to learn all of the subtleties of a formal system and begin to understand why its rules are safe.

3.2 Introduction

Since the 70’s Per Martin-Löf has developed, in a number of successive variants, an Intuitionistic
Theory of Types [Mar75, Mar82, Mar84, NPS90]. The initial aim was that of providing a formal
system for Constructive Mathematics but the relevance of the theory also in Computer Science was
soon recognized. In fact, Martin-Löf’s type theory can equally well be viewed as a programming
language with a very rich type structure, as a specification language and as an integrated system
to derive correct programs from their specifications [NP83, NS84, PS86]. These pleasant properties
of the theory have certainly contributed to the interest for it arisen in the computer science com-
munity, especially among those people who believe that program correctness is a major concern
in the programming activity [BCMS89]. Actually the theory which is quite well known is the one
presented in [Mar82, Mar84]. This is the theory we shall consider in this chapter and refer to as
Martin-Löf’s Intuitionistic Type Theory (ITT), even if successive variations have been developed.
Sometime, ITT is referred to as the polymorphic theory opposite to the last version [NPS90] which
is monomorphic, i.e. each element can be uniquely typed, and decidable.

In this chapter we shall present an extension of ITT whose principal characteristic consists
in the possibility of assuming variables denoting higher order functions. Our main motivation in
developing this higher order version (HITT) has been the wish to complete the way first opened

3.3. ASSUMPTIONS OF HIGH LEVEL ARITY VARIABLES 19

by Per Martin-Löf. Indeed in the preface of [Mar84], while referring to a series of lectures given in
Munich (October 1980), he writes: “The main improvement of the Munich lectures, compared with
those given in Padova, was the adoption of a systematic higher level notation . . . ”. This notation
is called expressions with arity and yields a more uniform and compact writing of the rules of the
theory. An expression with arity is built up starting from primitive constants and variables with
arity, by means of abstractions and applications. The arity associated to an expression specifies
its functionality and constrains the applications, analogously to what the type does for typed
lambda-calculus. In our opinion, in order to fully exploit this approach and be able to establish
formal properties of the system, it is necessary to extend the formalization of the contexts as given
in [Mar84] to assumptions of variables of higher arity. Therefore we have defined this extension
that, even if conservative, supplies increased expressive power, advantageous especially when the
theory is viewed as a programming and a specification language. In fact, assuming a variable of
higher arity corresponds to assuming the possibility of putting together pieces of programs, thus
supporting a modular approach in program development [BV87].

Some properties of HITT are also proved, the principal ones are the consistency of HITT,
which also implies the consistency of ITT, and the computability of any judgement derived within
HITT. Besides we proved a canonical form theorem: to any derivable judgement we can associate
a canonical one whose derivation ends with an introductory rule. This result, even if weaker
than a standard normalization theorem [Pra65], suffices to obtain all the useful consequences
typical of a normal form theorem, mainly the consistency of the theory. Moreover, by using the
computational interpretation of types (i.e. types as problem descriptions and their elements as
programs to solve those problems) it immediately follows that the execution of any proved correct
program terminates. We assume the reader is familiar with the Intuitionistic Theory of Types as
presented in [Mar82, Mar84] and with typed lambda calculus [Bar84], or enjoyably, with the theory
of expressions with arity (see appendix A or [BV89, NPS90]).

The following is the outline of the chapter. In section 2. our characterization of assumptions
of variables of any arity is presented and some consequences of this are briefly sketched. We are
extremely grateful to Prof. Aczel for his suggestions on the notation to be used for the new kind
of assumptions. Further comments on the properties of our system are given in section 3. Section
4. deals with computability. The definition of computable judgement, which is the basis for the
computability theorem, is first given. The rest of the section is devoted to prove that each rule of
the theory preserves this property. The computability theorem, as well as some relevant corollaries,
is presented in the concluding section 5. All of the rules of HITT are listed in the appendix B.
Compared with ITT, besides the changes concerning the assumptions of higher level variables,
there are also changes in the notation and in the fact that we explicitly added to the premises of
a rule all the requirements that were only informally expressed in ITT.

3.3 Assumptions of high level arity variables

We assume the theory of expressions with arity (see appendix A and [Bee85, BV89, NPS90])
developed by Martin Löf in order to give an uniform and compact presentation of his theory of
types. The theory has many similarities with typed lambda-calculus [Bar84] and some familiarity
with this system should be sufficient to understand what follows. An expression with arity is
built up starting from primitive constants and variables with arity, by means of abstractions and
applications. The arity associated to an expression fully specifies its functionality, i.e. it indicates
the number and the arity of the expressions to which it can be applied, analogously to what the
type does for typed lambda-calculus.

The Intuitionistic Theory of Types [Mar82] consists of a language of constant symbols, each of
some arity, a system of computation rules and a system of rules of inference for deriving judgements.
Each instance of a rule of inference has the form

J1 . . . Jn

J

where J1,. . . ,Jn,J are judgements. A derivation is a tree of judgements built up in the usual way

20 CHAPTER 3. THE CANONICAL FORM THEOREM

using instances of the rules of inference. Judgements have the form

F [Γ]

where Γ is a “context”, and F has one of the forms

A type

A = B
a ∈ A

a = b ∈ A

Here A, B, a, b are expressions of arity 0. A context is a list A1, . . . , An of assumptions where,
for j = 1, . . . , n, Aj is an assumption over the context A1, . . . , Aj−1. We will call “order between
assumptions condition” this requirement on the assumptions of a context3. When the context is
empty we write only F instead of F [], and call J a “closed” judgement as opposed to “hypothetical”
judgement, that is with non-empty context. In the following we will say that the context Γ′ extends
the context Γ if Γ′ is obtained from Γ by adding some assumptions satisfying the “order between
assumptions” condition. Each assumption has the form

x : A [Γ]

where x is a variable of some arity, A is an expression of arity 0 and Γ is a context. We call
x the variable of the assumption and its arity is the arity of the assumption. The variables of
the assumptions of a context are also called the variables of the context. They must be pair-wise
distinct. We will say that the assumption of a variable x depends on all the assumptions of the
context. The conditions for forming an assumption over a context involve the notion of derivation,
so that the contexts and derivations have to be defined by simultaneous inductive definition. The
simple case of an assumption

y : B [Γ]

of arity 0 over a context Γ is the familiar one defined by Martin-Löf in the original theory [Mar84].
The conditions are that the judgement B type [Γ] should be derivable and that y should not
be a variable of the context Γ. It is easy to convince ourselves that these conditions are just a
formalization of those usually required for making an assumption in a natural deduction system.
The variable y keeps the place of a generic object of type B.

To deal with assumptions with arities of higher level we add to the language, for each arity
α ≡ (α1, . . . , αn), a constant

Tα

of arity
(0, (α1), (α1)(α2), . . . , (α1) . . . (αn−1), (α1) . . . (αn))

and if A1, . . . , An, A(x1, . . . , xn) are expressions of arity 0 and x1, . . . , xn are distinct variables of
arities α1, . . . , αn respectively then we write

(x1 : A1, . . . , xn : An)A(x1, . . . , xn)

for the expression of arity 0

Tα(A1, (x1)A2, . . . , (x1, . . . , xn−1)An, (x1, . . . , xn)A(x1, . . . , xn))

If
(∗) B ≡ (x1 : A1, . . . , xn : An)A(x1, . . . , xn)

we write
: B [Γ]

for the judgement
(∗∗) A(x1, . . . , xn) type [Γ, x1 : A1, . . . , xn : An].

3As in [Bru91] contexts are inserted like ‘telescopes’.

3.3. ASSUMPTIONS OF HIGH LEVEL ARITY VARIABLES 21

When Γ is empty we write only : B instead of : B [].
We can now state the conditions for forming the assumption

y : B [Γ]

of arity
α ≡ (α1, . . . , αn)

These conditions are that

• (∗) holds for some choice of variables x1, . . . , xn not free in B and in Γ and some expressions
A1, . . . , An, A(x1, . . . , xn) of arity 0.

• (∗∗) is derivable.

• y is a variable of arity α that is not a variable of the context Γ, x1 : A1, . . . , xn : An.

As an example suppose

x : A [Γ]

y : T(0)(V (x), (v)B(x, v)) [Γ, x : A]

are correct assumptions. The variable x keeps the place of a generic object of type A, while the
variable y keeps the place of a function from a generic object v of type V (x) to objects of type
B(x, v). Now the assumption of a variable z, which keeps the place of a function mapping objects
x and functions y to objects of type C(x, y)

z : T(0, (0))(A, (x)T (0)(V (x), (v)B(x, v)), (x, y)C(x, y)) [Γ]

or, using the abbreviation,

z : (x : A, y : (v : V (x))B(x, v))C(x, y)[Γ]

is correct if the judgement

C(x, y) type [Γ, x : A, y : (v : V (x))B(x, v)]

is derivable and z does not occur in the context [Γ, x : A, y : (v : V (x))B(x, v)].
In writing the inference rules we will adopt Martin Löf’s convention to present explicitly only

those assumptions that do not occur in both premises and conclusion. Hence all the assumptions
appearing in the premises are to be considered discharged by the application of the rule. Clearly,
as usual, the remaining assumptions of the context should not depend on the discharged ones, i.e.
they must be an initial segment in the ordered list of assumptions of the context. Moreover we
mean that the context of the conclusion of a rule is obtained by merging, without duplication,
the contexts (not explicitly present) of the assumptions and (possibly) the assumptions explicitly
present in the context of the conclusion.

The assumption rules introduce a new assumption in the context of the conclusion. In order to
formulate these rules it is convenient to introduce some abbreviations. When there is a derivation
of : B [Γ] then we use

b : B [Γ]

to abbreviate the judgement

b(x1, . . . , xn) ∈ A(x1, . . . , xn) [Γ, x1 : A1, . . . , xn : An]

where the variables x1, . . . , xn, of arities α1, . . . , αn respectively, are chosen not free in B and
C, so that (∗) holds, and b is an expression of arity (α1, . . . , αn) in which they may appear only
variables of the context Γ.

Similarly we use
b = b′ : B [Γ]

22 CHAPTER 3. THE CANONICAL FORM THEOREM

to abbreviate the judgement

b(x1, . . . , xn) = b′(x1, . . . , xn) ∈ A(x1, . . . , xn) [Γ, x1 : A1, . . . , xn : An]

Now, if y : B [Γ] is an assumption, then we have the following assumption rules:

a1 : A1 . . . an : An : B

y(a1, . . . , an) ∈ A(a1, . . . , an) [y : B]

a1 = a′
1 : A1 . . . an = a′

n : An : B

y(a1, . . . , an) = y(a′
1, . . . , a

′
n) ∈ A(a1, . . . , an) [y : B]

where, for j = 1, . . . , n, Aj ≡ ((x1, . . . , xj−1)Aj)(a1, . . . , aj−1).
Note that, in both cases, in the conclusion appears the new assumption y : B while in the

premises there may appear assumptions which are discharged by the rule.
As an example consider again the assumption

z : (x : A, y : (v : V (x))B(x, v))C(x, y)[Γ]

and suppose that the judgements:

1. : (x : A, y : (v : V (x))B(x, v))C(x, y) [Γ], that is

C(x, y) type [Γ, x : A, y : (v : V (x))B(x, v)]

2. a : A [Γ1], that is
a ∈ A [Γ1]

3. b : (s : V (a))B(a, s) [Γ2] that is

b(s) ∈ B(a, s) [Γ2, s : V (a)]

are all derivable judgements, then

a ∈ A b(s) ∈ B(a, s) [s : V (a)] C(x, y) type [x : A, y : (v : V (x))B(x, v)]

z(a, b) ∈ C(a, b) [z : (x : A, y : (v : V (x))B(x, v))C(x, y)]

is an instance of the assumption rule. The context in the conclusion of the rule is the merge,
without duplication, of the four contexts Γ, Γ1, Γ2 and z : (x : A, y : (v : V (x))B(x, v))C(x, y).
The assumptions of the variables s, x and y are discharged by the rule while the assumption of z
is possibly introduced.

The given abbreviations for the hypothetical judgements have the nice consequence of allowing
a notation quite close to that used by Martin-Löf [Mar84] for variable’s substitution, also in the
case of high-arity variables. To express the fact that a sequence of variables can be substituted by
a given sequence of expressions, we introduce the following concept of fitting substitutions.

Definition 3.3.1 (Fitting substitution) The sequences of judgements

b1 : B1 [Γ], . . . , bn : Bn [Γ]

and
b1 = b′1 : B1 [Γ], . . . , bn = b′n : Bn [Γ]

where
Bi ≡ ((y1, . . . , yi−1)Bi)(b1, . . . , bi−1)

are substitutions that fit with any context [Γ, y1 : B1, . . . , yn : Bn].

Note that a similar concept of “fitting” is already used in [Bru91] where only variables of arity
0 are considered.

3.4. MODIFICATIONS DUE TO THE NEW ASSUMPTIONS 23

3.4 Modifications due to the new assumptions

Clearly, the new form of assumptions compel us to extend the substitution rules. They are listed in
the appendix B among all the other rules but let us analyze an example. The following substitution
rule of the previous version [Mar84]

b ∈ B d(y) ∈ D(y) [y : B]

d(b) ∈ D(b)

which involves a variable y of arity 0, is extended to the new rule

b1 : B1 . . . bn : Bn d(y1, . . . , yn) ∈ D(y1, . . . , yn) [y1 : B1, . . . , yn : Bn]

d(b1, . . . , bn) ∈ D(b1, . . . , bn)

where Bi ≡ ((y1, . . . , yi−1)Bi)(b1, . . . , bi−1), i.e., b1 : B1 . . . bn : Bn is a substitution that fits with
the context [y1 : B1, . . . , yn : Bn]4. The pattern is rather similar but now the variables y1, . . . , yn

may have any arity.
The changes that can be made on other rules are more fundamental. For example, let us analyze

the W-elimination rule. In the previous version the W-elimination rule was (adopting our notation)

c ∈W(A, B)

[x : A, y : Π(B(x), (t)W(A, B)), z : Π(B(x), (u) C(Ap(y, u)))]1
...

d(x, y, z) ∈ C(sup(x, y))

Trec(c, d) ∈ C(c)
1

while the new one is

c ∈W(A, B)

[x : A, y : (t : B(x)) W(A, B), z : (u : B(x)) C(y(u))]1
...

d(x, y, z) ∈ C(sup(x, y))

Trec(c, d) ∈ C(c)
1

which is conceptually more straight. In fact while in the previous version y and z stands for func-
tions (i.e. elements of a Π-type), here they are functional expressions: this avoid the application-
abstraction circle, as in (u) C(Ap(y, u)), which can now be simply expressed by the application of
expressions C(y(u)) since it is possible to assume the variable y of arity (0)0.

3.5 Some observations on type theory

In the next section we will frequently often use some concepts and properties of HITT that we will
briefly describe here.

3.5.1 Associate judgements

Our rules differ from the ones introduced in [Mar84] both for the use of assumptions of variables of
higher arity and because when a type A appears in the conclusion of a rule the premises of the rule
are augmented with those of the formation rule for the judgement A type. This requirement allows
us to easily prove the following theorem 3.5.2 which shows a strong property on the structure of
the derivable judgements of HITT. We introduce first the notion of associate judgements.

Definition 3.5.1 (Associate judgements) The associate judgement(s) of

1) a ∈ A [x1 : A1, . . . , xn : An] is A type [x1 : A1, . . . , xn : An]

2) A = B [x1 : A1, . . . , xn : An] are A type [x1 : A1, . . . , xn : An]
and B type [x1 : A1, . . . , xn : An]

3) a = b ∈ A [x1 : A1, . . . , x1 : An] are a ∈ A [x1 : A1, . . . , xn : An]
and b ∈ A [x1 : A1, . . . , xn : An]

4If no confusion can arise we will use the abbreviation b : or b = c : to denote a substitution that fits with a given
context.

24 CHAPTER 3. THE CANONICAL FORM THEOREM

Theorem 3.5.2 (Associate judgements derivability) Let J be a derivable judgement. Then
the associate judgements of J are derivable.

Proof. The three cases should be proved simultaneously. The proof follows almost immediately
by induction on the length of the derivation of the considered judgement. Only in some cases
structural rules or substitution rules should be carefully used.

Actually, to obtain the previous result it would not be necessary to add in each rule the
premises of the formation rule of the judgement A type; for instance, they are superfluous in
the Π-introduction rule. We inserted this redundancies for sake of uniformity in view of proving
general properties of the theory at a level as much abstract as possible.

3.5.2 Substituted judgements

Substitution is a central operation on judgements. Many concepts that we shall introduce in the
next section will be based on the two kinds of substitutions we define now.

Definition 3.5.3 (Tail substituted judgements) Let ∆ ≡ [Γ, x1 : A1, . . . , xn : An] be a con-
text, a1 : A1 [Γ], . . . , an : An [Γ] and a1 = a′

1 : A1 [Γ], . . . , an = a′
n : An [Γ] be substitutions that

fit with the last n assumption in the context ∆, and J ≡ F [∆] be any judgement. Then

1. J [x1 := a1, . . . , xn := an] is an abbreviation for the tail substituted judgement of J which is
the following:

(1.1) ((x1, . . . , xn) A)(a1, . . . , an) type [Γ]
if F ≡ A type

(1.2) ((x1, . . . , xn) A)(a1, . . . , an) = ((x1, . . . , xn) B)(a1, . . . , an) [Γ]
if F ≡ A = B

(1.3) ((x1, . . . , xn) a)(a1, . . . , an) ∈ ((x1, . . . , xn) A)(a1, . . . , an) [Γ]
if F ≡ a ∈ A

(1.4) ((x1, . . . , xn) a)(a1, . . . , an) = ((x1, . . . , xn) b)(a1, . . . , an) ∈
((x1, . . . , xn) A)(a1, . . . , an) [Γ]

if F ≡ a = b ∈ A

2. J [x1 ← a1 = a′
1, . . . , xn ← an = a′

n] is an abbreviation for the tail substituted judgement of
J which is the following:

(2.1) ((x1, . . . , xn) A)(a1, . . . , an) = ((x1, . . . , xn) A)(a′
1, . . . , a

′
n) [Γ]

if F ≡ A type

(2.2) ((x1, . . . , xn) A)(a1, . . . , an) = ((x1, . . . , xn) B)(a′
1, . . . , a

′
n) [Γ]

if F ≡ A = B
(2.3) ((x1, . . . , xn) a)(a1, . . . , an) = ((x1, . . . , xn) a)(a′

1, . . . , a
′
n) ∈

((x1, . . . , xn) A)(a1, . . . , an) [Γ]
if F ≡ a ∈ A

(2.4) ((x1, . . . , xn) a)(a1, . . . , an) = ((x1, . . . , xn) b)(a′
1, . . . , a

′
n) ∈

((x1, . . . , xn) A)(a1, . . . , an) [Γ]
if F ≡ a = b ∈ A

The substitutions rules of HITT are sufficient to prove the following theorem.

Theorem 3.5.4 The tail substituted judgements of a derivable judgement are derivable.

Proof. Just apply the suitable substitution rule except for the cases (2.2) and (2.4). For these
cases first note that if a1 = a′

1 : A1 [Γ], . . . , an = a′
n : An [Γ] is a substitution that fits with

the tail of ∆, then also a1 : A1 [Γ], . . . , an : An [Γ], whose derivability is showed by theorem
3.5.2, is a substitution that fits with the tail of ∆. Then apply the suitable substitution rule (:=)
to A = B [∆] (case 2.2) or to a = b ∈ A [∆] (case 2.4) and the suitable substitution rule (←)
to B type [∆] (case 2.2) or to b ∈ A [∆] (case 2.4), which are the associates of A = B [∆] and
a = b ∈ A [∆] respectively. The result follows by transitivity.

3.5. SOME OBSERVATIONS ON TYPE THEORY 25

The second kind of substitution does not rely directly on the substitutions rules. It substitutes
the first part of a context and consequentially it modifies not only the form part of the judgement
but also the tail of the context.

Definition 3.5.5 (Head substituted judgements) Let ∆ ≡ [x1 : A1, . . . , xn : An] be a con-
text, a1 : A1, . . . , ai : Ai and a1 = a′

1 : A1, . . . , ai = a′
i : Ai for some i ≤ n, be substi-

tutions that fit with the first i assumptions of ∆, J ≡ F [∆] be any judgement. Moreover let
A′

j ≡ ((x1, . . . , xi) Aj)(a1, . . . , ai) for any i + 1 ≤ j ≤ n. Then

1. J [x1 := a1, . . . , xi := ai] is an abbreviation for the head substituted judgement of J which is
the following:

(1.1) ((x1, . . . , xi) A)(a1, . . . , ai) type [xi+1 : A′
i+1, . . . , xn : A′

n]
if F ≡ A type

(1.2) ((x1, . . . , xi) A)(a1, . . . , ai) =
((x1, . . . , xi) B)(a1, . . . , ai)[xi+1 : A′

i+1, . . . , xn : A′
n]

if F ≡ A = B
(1.3) ((x1, . . . , xi) a)(a1, . . . , ai) ∈

((x1, . . . , xi) A)(a1, . . . , ai)[xi+1 : A′
i+1, . . . , xn : A′

n]
if F ≡ a ∈ A

(1.4) ((x1, . . . , xi) a)(a1, . . . , ai) = ((x1, . . . , xi) b)(a1, . . . , ai) ∈
((x1, . . . , xi) A)(a1, . . . , an)[xi+1 : A′

i+1, . . . , xn : A′
n]

if F ≡ a = b ∈ A

2. J [x1 ← a1 = a′
1, . . . , xi ← ai = a′

i] is an abbreviation for the head substituted judgement of
J which is the following:

(2.1) ((x1, . . . , xi) A)(a1, . . . , ai) =
((x1, . . . , xi) A)(a′

1, . . . , a
′
i)[xi+1 : A′

i+1, . . . , xn : A′
n]

if F ≡ A type

(2.2) ((x1, . . . , xi) A)(a1, . . . , ai) =
((x1, . . . , xi) B)(a′

1, . . . , a
′
i)[xi+1 : A′

i+1, . . . , xn : A′
n]

if F ≡ A = B
(2.3) ((x1, . . . , xi) a)(a1, . . . , ai) = ((x1, . . . , xi) a)(a′

1, . . . , a
′
i) ∈

((x1, . . . , xi) A)(a1, . . . , ai)[xi+1 : A′
i+1, . . . , xn : A′

n]
if F ≡ a ∈ A

(2.4) ((x1, . . . , xi) a)(a1, . . . , ai) = ((x1, . . . , xi) b)(a′
1, . . . , a

′
i) ∈

((x1, . . . , xi) A)(a1, . . . , ai)[xi+1 : A′
i+1, . . . , xn : A′

n]
if F ≡ a = b ∈ A

Theorem 3.5.6 The head substituted judgements of a derivable judgement are derivable.

Proof. As regard to case (1.) note that if a1 : A1, . . . , ai : Ai is a substitution that fits with
[x1 : A1, . . . , xi : Ai] then a1 : A1, . . . , ai : Ai, xi+1 : Ai+1, . . . , xn : An is a substitution that fits
with [x1 : A1, . . . , xn : An]. Hence the result follows by using the suitable substitution rule. For
case (2.), if a1 = a′

1 : A1, . . . , ai = a′
i : Ai is a substitution that fits with [x1 : A1, . . . , xi : Ai]

then a1 = a′
1 : A1, . . . , ai = a′

i : Ai, xi+1 = xi+1 : Ai+1, . . . , xn = xn : An is a substitution that
fits with [x1 : A1, . . . , xn : An]. Hence the result follows by using directly the suitable substitution
rule except for the sub-cases 2.2 and 2.4 where the associate judgements must be considered (see
theorem 3.5.4).

Note that we use the same notation for the head and the tail substitutions since the names of
the variables and their positions in the context are sufficient to determine the kind of substitution
we want to perform.

26 CHAPTER 3. THE CANONICAL FORM THEOREM

3.6 The evaluation tree

In HITT, a set of computation rules is associated to each defined type such as Π, Σ, etc. They
specify a process for evaluating expressions denoting elements or types. They apply to variable-
free and saturated expressions, that is, expressions of arity 0 in which no variable occurs free. The
“normal form” theorem for expressions [BV89], assures us that a variable-free, saturated expression
is always definitionally equivalent to an expression of the form c(a1, . . . , an) where c is a constant.
Hence, to evaluate an expression, we first consider its normal form and then detect the suitable
computation rule. This can be done by looking at the outermost constant of the expression in
normal form and, only in some cases, at the value of its first argument. Then each premise of the
selected rule indicate how to continue the process recursively. Clearly, the process of evaluating
an expression denoting an element or a type using the computation rules naturally gives rise to a
finitary tree: we will refer to it as the evaluation tree. Of course an expression evaluates if and only
if its evaluation tree is finite. Hence if we know that an expression can be evaluated an induction
on the depth of its evaluation tree is a correct proof-method. It can be used to prove the following
theorem.

Theorem 3.6.1 Let c and C be variable-free and saturated expressions. Then

1. If c ⇒ g then g is a canonical expression for an element, i.e. exactly one of the following
holds: g ≡ λ(b), g ≡ 〈a, b〉, g ≡ inl(a), g ≡ inr(b), g ≡ e, g ≡ mn, g ≡ 0, g ≡ s(a),
g ≡ sup(a, b), g ≡ π(a, b), g ≡ σ(a, b), g ≡ +(a, b), g ≡ eq(a, b, d), g ≡ nn, g ≡ n, g ≡ w(a, b).

2. If C ⇛ G then G is a canonical expression for a type, i.e. exactly one of the following holds:
G ≡ Π(A, B), G ≡ Σ(A, B), G ≡ +(A, B), G ≡ Eq(A, b, d), G ≡ Nn, G ≡ N, G ≡ W(A, B),
G ≡ U.

Note that the objects in the conclusion of a formation rule or an introduction rule are al-
ways denoted by canonical expressions. We will call them canonical elements or canonical types
respectively. However a canonical expression does not necessarily denote a canonical element or
a canonical type. The successive canonical form theorem will certify this whenever we consider
judgements derived within the theory. More precisely, if the judgement a ∈ A (or A type) is derived
within the theory, then the canonical expression resulting from the evaluation of the expression a
(or A) denotes a canonical element (or a canonical type). Moreover, under the same hypothesis,
the evaluation process of the expression a (or A) always terminates.

Finally let us also observe that, since the computation rules do not “add” variables, it is obvious
that if no variable appears in a (respectively A) and a⇒ g (respectively A ⇛ G), then no variable
appears in g (respectively G).

3.7 Computability

In this section we introduce the main notions of the chapter: the definitions of computation tree
and computable judgement.

To prove a canonical-form theorem for the system we are considering, and whose complete set of
rules is reported in the appendix B, we will follow a proof style similar to the one used by Martin-
Löf in [Mar71] based on the method of Tait [Tai67] to prove normalization theorems. Therefore we
will introduce the notion of computable judgement. This notion applies both to closed judgements
and to hypothetical ones. Essentially, to express the computability of a judgement is equivalent to
express what it is necessary to know in order to be allowed to formulate that judgement. Hence the
definition formally summarizes the meaning of all the forms of judgements which can be obtained
by a derivation in type theory. Of course, it is directly inspired by the informal explanation of
the rules given in [Mar84], but the needs of formalization make it a very long definition. We will
base it on the concept of computation tree which represents the full process needed to recognize
the computability of a given judgement. The nodes of a computation tree are labeled by derivable
judgements and if J is the label of a node then the labels of its sons are all the judgements whose
computability is required in order to establish the computability of J .

3.7. COMPUTABILITY 27

As regards hypothetical judgements, their computability is referred to the computability of any
closed judgement that can be obtained by substituting, in any possible way, computable judgements
to the open assumptions.

As regards closed judgements, the definition obviously differs when considering one form of
judgement or another. Still there are some basic common points:

• any term appearing in the judgement must be (syntactically) valuable (evaluation) to a
canonical term. This requirement is directly expressed for the two forms A type and a ∈ A
and indirectly, by requiring the computability of the associate judgements (associate), for the
forms A = B and a = b ∈ A.

• the equality between a term and its corresponding evaluated form must be a provable judge-
ment (correct evaluation)

• the computability of a judgement is recursively referred to the computability of the compo-
nents (parts) of the judgement built up with the evaluated canonical terms.

Definition 3.7.1 (Computable judgement) The judgement J ≡ F [Γ] is computable if it is
derivable and
Case 1. There is no assumption, i.e. the context Γ is empty.

• Subcase 1.1: F ≡ A type. Then

– 1.1.1 (evaluation) A ⇛ GA

– 1.1.2 (correct evaluation) the judgement A = GA is provable

– 1.1.3 (parts) the parts of GA are computable type(s), i.e.

∗ if GA ≡ Π(A1, A2) then the judgements A1 type and A2(x) type [x : A1] are com-
putable

∗ if GA ≡ Σ(A1, A2) then the judgements A1 type and A2(x) type [x : A1] are com-
putable

∗ if GA ≡ +(A1, A2) then the judgements A1 type and A2 type are computable

∗ if GA ≡ Eq(A1, b, d) then the judgements A1 type, b ∈ A1 and d ∈ A1 are computable

∗ if GA ≡ Nn then no condition

∗ if GA ≡ N then no condition

∗ if GA ≡ W(A1, A2) then the judgements A1 type and A2(x) type [x : A1] are com-
putable

∗ if GA ≡ U, i.e. , A ≡ U, then no condition

• Subcase 1.2: F ≡ A = B then

– 1.2.1 (associate judgements) the associate judgements A type and B type are computable,
and hence A ⇛ GA and B ⇛ GB .

– 1.2.2 (parts) GA and GB are equal computable types, i.e.

∗ GA ≡ Π(A1, A2) iff GB ≡ Π(B1, B2) and the judgements A1 = B1 and
A2(x) = B2(x) [x : A1] are computable

∗ GA ≡ Σ(A1, A2) iff GB ≡ Σ(B1, B2) and the judgements A1 = B1 and
A2(x) = B2(x) [x : A1] are computable

∗ GA ≡ +(A1, A2) iff GB ≡ +(B1, B2) and the judgements A1 = B1 and
A2 = B2 are computable

∗ GA ≡ Eq(A1, a, c) iff GB ≡ Eq(B1, b, d) and the judgements A1 = B1,
a = b ∈ A1 and c = d ∈ A1 are computable

∗ GA ≡ Nn iff GB ≡ Nn

∗ GA ≡ N iff GB ≡ N

∗ GA ≡W(A1, A2) iff GB ≡W(B1, B2) and the judgements A1 = B1 and
A2(x) = B2(x) [x : A1] are computable

28 CHAPTER 3. THE CANONICAL FORM THEOREM

∗ GA ≡ U iff GB ≡ U

• Subcase 1.3: F ≡ c ∈ A then

– 1.3.1 (associate judgements) The associate judgement A type is computable, and hence
A ⇛ GA

– 1.3.2 (evaluation) c⇒ g

– 1.3.3 (correct evaluation) c = g ∈ A is provable

– 1.3.4 (parts) the parts of g are computable element(s) in GA, i.e.

∗ GA ≡ Π(A1, A2) iff g ≡ λ(b) and the judgement
b(x) ∈ A2(x) [x : A1] is computable

∗ GA ≡ Σ(A1, A2) iff g ≡ 〈a, b〉 and the judgements a ∈ A1 and b ∈ A2(a) are
computable

∗ GA ≡ +(A1, A2) iff either g ≡ inl(a) and the judgement a ∈ A1 is computable or
g ≡ inr(b) and the judgement b ∈ A2 is computable

∗ GA ≡ Eq(A1, b, d) iff g ≡ r and the judgement b = d ∈ A1 is computable

∗ GA ≡ Nn iff g ≡ mn for some 0 ≤ m ≤ n− 1

∗ GA ≡ N iff either g ≡ 0 or g ≡ s(a) and the judgement a ∈ N is computable

∗ GA ≡W(A1, A2) iff g ≡ sup(a, b) and the judgements
a ∈ A1 and b(x) ∈W(A1, A2) [x : A2(a)] are computable

∗ GA ≡ U iff

· either g ≡ π(a, b) and the judgements a ∈ U and
b(x) ∈ U [x :< a >] are computable

· or g ≡ σ(a, b) and the judgements a ∈ U and
b(x) ∈ U [x :< a >] are computable

· or g ≡ +(a, b) and the judgements a ∈ U and b ∈ U are computable

· or g ≡ eq(a, b, d) and the judgements a ∈ U, b ∈< a > and d ∈< a > are
computable

· or g ≡ nn

· or g ≡ n

· or g ≡ w(a, b) and the judgements a ∈ U and
b(x) ∈ U [x :< a >] are computable

• Subcase 1.4: F ≡ a = b ∈ A then

– 1.4.1 (associate judgements) the associate judgements a ∈ A and b ∈ A are computable,
and hence a⇒ ga, b⇒ gb and A ⇛ GA.

– 1.4.2 (parts) the parts of ga and gb are computable equal elements in GA, i.e.

∗ GA ≡ Π(A1, A2) iff ga ≡ λ(a′) and gb ≡ λ(b′) and the judgement
a′(x) = b′(x) ∈ A2(x) [x : A1] is computable

∗ GA ≡ Σ(A1, A2) iff ga ≡ 〈a′, a′′〉 and gb ≡ 〈b′, b′′〉 and the judgements
a′ = b′ ∈ A1 and a′′ = b′′ ∈ A2(a

′) are computable

∗ GA ≡ +(A1, A2) iff either ga ≡ inl(a′) and gb ≡ inl(b′) and the judgement
a′ = b′ ∈ A1 is computable or ga ≡ inr(a′′) and gb ≡ inr(b′′) and the judgement
a′′ = b′′ ∈ A2 is computable

∗ GA ≡ Eq(A1, c, d) iff ga ≡ r and gb ≡ r and the judgement c = d ∈ A1 is computable

∗ GA ≡ Nn iff ga ≡ mn and gb ≡ mn for some 0 ≤ m ≤ n− 1

∗ GA ≡ N iff either ga ≡ 0 and gb ≡ 0 or ga ≡ s(a′) and gb ≡ s(b′) and the judgement
a′ = b′ ∈ N is computable

∗ GA ≡ W(A1, A2) iff ga ≡ sup(a′, a′′) and gb ≡ sup(b′, b′′) and the judgements
a′ = b′ ∈ A1 and
a′′(x) = b′′(x) ∈ W(A1, A2) [x : A2(a

′)] are computable

3.7. COMPUTABILITY 29

∗ GA ≡ U iff

· either ga ≡ π(a′, a′′) and gb ≡ π(b′, b′′) and the judgements a′ = b′ ∈ U and
a′′(x) = b′′(x) ∈ U [x :< a′ >] are computable

· or ga ≡ σ(a′, a′′) and gb ≡ σ(b′, b′′) and the judgements a′ = b′ ∈ U and
a′′(x) = b′′(x) ∈ U [x :< a′ >] are computable

· or ga ≡ +(a′, a′′) and gb ≡ +(b′, b′′) and the judgements a′ = b′ ∈ U and
a′′ = b′′ ∈ U are computable

· or ga ≡ eq(a′, c, d) and gb ≡ eq(b′, e, f) and the judgements a′ = b′ ∈ U,
c = e ∈< a′ > and d = f ∈< a′ > are computable

· or ga ≡ nn and gb ≡ nn

· or ga ≡ n and gbn

· or ga ≡ w(a′, a′′) and gb ≡ w(b′, b′′) and the judgements a′ = b′ ∈ U and
a′′(x) = b′′(x) ∈ U [x :< a′ >] are computable

Case 2. There are assumptions, i.e. Γ ≡ x1 : A1, . . . , xn : An, for some n > 0. The judgement J
is computable if for any computable closed substitution (c.c.s.) a1 : A1, . . . , an : An (i.e. ai : Ai,
for 1 ≤ i ≤ n, are computable judgements), and for any computable closed substitution (c.c.s.)
a1 = c1 : A1, . . . , an = cn : An (i.e. ai = ci : Ai, for 1 ≤ i ≤ n, are computable judgements) that
fit with Γ

• Subcase 2.1: F ≡ B(x1, . . . , xn) type

– 2.1.1 (substitution :=) the judgement
B(a1, . . . , an) type is computable

– 2.1.2 (substitution ←) the judgement B(a1, . . . , an) = B(c1, . . . , cn) is computable

• Subcase 2.2: F ≡ B(x1, . . . , xn) = D(x1, . . . , xn) then

– 2.2.1 (associate) the judgement B(x1, . . . , xn) type [Γ] is computable

– 2.2.2 (substitution :=) the judgement B(a1, . . . , an) = D(a1, . . . , an) is computable

– 2.2.3 (substitution ←) the judgement B(a1, . . . , an) = D(c1, . . . , cn) is computable

• Subcase 2.3: F ≡ b(x1, . . . , xn) ∈ B(x1, . . . , xn) then

– 2.3.1 (associate) the judgement B(x1, . . . , xn) type [Γ] is computable

– 2.3.2 (substitution :=) the judgement b(a1, . . . , an) ∈ B(a1, . . . , an) is computable

– 2.3.3 (substitution ←) the judgement
b(a1, . . . , an) = b(c1, . . . , cn) ∈ B(a1, . . . , an) is computable

• Subcase 2.4: F ≡ b(x1, . . . , xn) = d(x1, . . . , xn) ∈ B(x1, . . . , xn) then

– 2.4.1 (associate) the judgement b(x1, . . . , xn) ∈ B(x1, . . . , xn) [Γ] is computable

– 2.4.2 (substitution :=) the judgement
b(a1, . . . , an) = d(a1, . . . , an) ∈ B(a1, . . . , an) is computable

– 2.4.3 (substitution ←) the judgement
b(a1, . . . , an) = d(c1, . . . , cn) ∈ B(a1, . . . , an) is computable

Note that the asymmetry in the conditions on associate judgements (point 2.2.1 and 2.4.1)
reflects the asymmetry in the rules of the theory. Actually we will prove that also the other associate
judgement is computable but the reduced requirement simplifies the next inductive proofs.

By looking at the above definition as a “generalized process” to search for computability of a
judgement, a search tree is naturally associate to any derivable judgement. It is clear that whenever
J is recognized to be a computable judgement its search tree is well founded. In such a case we
give the definition of computation tree.

30 CHAPTER 3. THE CANONICAL FORM THEOREM

Definition 3.7.2 (Computation tree) The computation tree of the computable judgement J is
a tree whose root is J and whose principal sub-trees are the computation trees of all the judgements
whose computability is required to prove that J is computable.

For instance, the computable judgement λ(s) ∈ Π(N, (x)N) has the following computation tree:

N type 0 ∈ N

vv

N type N type N type 0 ∈ N

ooo
N type s(0) ∈ N

ppp

N type
PPP

N type [x : N] N type [x : N]
VVVV

s(0) ∈ N s(s(0)) ∈ N

hhhhh
. . .

eeeeeeeeeeeee . . .

dddddddddddddddddd

Π(N, (x) N) type

WWWW
s(x) ∈ N [x : N]

hhhh

λ(s) ∈ Π(N, (x) N) type

In general the computation tree of a judgement J is an infinitary tree: a node has a finite
number of branches when we deal with closed judgements, and this number is related to the parts,
and a possibly infinite one when we deal with hypothetical judgements.

Note that if we know that a judgement is computable the use of induction on the complexity
of its well founded computation tree is a correct proof-method.

Definition 3.7.3 (Computational complexity) Let J be a computable judgement. We will call
computational complexity of J the ordinal which measures the complexity of its computation tree
T , in the following way:

0 if T is a leaf
∨

i∈I(αi + 1) if T has principal sub-trees Ti

of computational complexity αi, i ∈ I

We will use both the notation “comp(J) = β” and the notation “J comp β” to mean that J is
a computable judgement of computational complexity β.

3.8 The lemmas

We are now going to prove that any judgement derivable in the theory is computable. The proof will
consist in proving that each rule preserves computability, that is, if the judgements in the premises
of a rule are computable then also the judgement in the conclusion of the rule is computable. Of
course, this is the inductive step in a proof by induction on the depth of the derivation of the
considered judgement.

Note that the computability of the judgements in the base cases is given by definition. Gen-
erally, the inductive step for a particular rule will be carried on by subordinate induction on the
computational complexity of one of the judgements appearing in the premises of the rule, usually
the first one which has no assumption discharged.

We will consider only “full-context” derivations, i.e. derivations build up by applying a rule
only if the assumptions which are not discharged by the rule are equal in all the premises, with
the only exception of the assumption rules. Note that this is not restrictive since every derivable
judgement can be derived by a full-context derivation.

Before starting this analysis of the rules we state some results which follow rather directly from
the definition of computable judgement and which are useful in simplifying the subsequent lemmas.

Proposition 3.8.1 (N0 is empty) The closed judgement c ∈ N0 is not computable.

It is stated by the definition of computable judgement since there are no canonical elements in
N0.

Proposition 3.8.2 Every hypothetical judgement with open assumption x : N0 is computable.

Proposition 3.8.3 (Evaluation-free) The following relation between computational complexity
of computable judgements hold.

3.8. THE LEMMAS 31

A type
b(x) ∈ A2(x) [x : A1]

comp β

hhhhhh

a ∈ A
comp α ≥ β + 1

VVVVVV

a ∈ A
comp α

b(x) = b(x) ∈ A2(x) [x : A1]
comp β′ = β + 1 ≤ α

fffff

a = a ∈ A

comp α′ =
W

(α + 1, β′ + 1) = α + 1

Figure 3.1: reflexivity on elements: case Γ = ∅

1. If A type comp β and A ⇛ GA then GA type comp β.

2. If A = C comp β and A ⇛ GA and C ⇛ GC then GA = GC comp β.

3. If a ∈ A comp β and a⇒ ga and A ⇛ GA then ga ∈ GA comp β.

4. If a = b ∈ A comp β and a⇒ ga, b⇒ gb and A ⇛ GA then ga = gb ∈ GA comp β.

We will conclude this subsection with the analysis of the simplest rules; we establish also some
direct consequences of the definition of computable judgement.

Lemma 3.8.4 (Weakening rules) If F [Γ] is computable then, for any context Γ′ extending Γ,
F [Γ′] is computable.

Proof. When considering associate judgements, if any, the claim follows by induction on the
computational complexity of F [Γ]. When considering substitutions just observe that any c.c.s.
that fits with Γ′ fits also with Γ, with redundancies, and we yet know that the resulting substituted
judgement is computable.

The next lemma on the reflexivity rule states not only that the rule preserves computability but
gives us also a relation between the computational complexities of the judgements in the premise
and in the conclusion of the rule. This kind of information, on the dependencies among the
computational complexities of computable judgements, has a crucial role in the successive proofs
when we proceed by induction on the computational complexity of a judgement. The dependencies
are often easy to determine simply by looking at the computation tree of one of the considered
judgements.

Lemma 3.8.5 (Reflexivity on elements) The reflexivity on elements rule preserves computabi-
lity, that is, if

a ∈ A [Γ] comp α

then
a = a ∈ A [Γ] comp α + 1

Proof. By induction on the computational complexity of the computable judgement a ∈ A [Γ].
Subcase Γ = ∅. The associate judgements are computable by hypothesis. To prove the computabil-
ity of the parts we should analyze each possible form of the values of a and A. Let us consider only
the case a⇒ λ(b) and A ⇛ Π(A1, A2). Fig. 3.1 illustrates a piece of the computation tree for this
case. There is only one part judgement, that is b(x) = b(x) ∈ A2(x) [x : A1]. Its computability
follows, by inductive hypothesis, from the computability of the judgement b(x) ∈ A2(x) [x : A1].
Thus, a = a ∈ A is computable. It remains to prove the stated relations on complexities. Let
α, α′, β, β′ be the computational complexities of the computable judgements a ∈ A, a = a ∈ A,
b(x) ∈ A2(x) [x : A1], b(x) = b(x) ∈ A2(x) [x : A1]. The computability of a ∈ A depends on
the computability of b(x) ∈ A2(x) [x : A1], then we have α ≥ β + 1. By applying the inductive
hypothesis we have β′ = β + 1, and hence α′ =

∨
(α + 1, β′ + 1) = α + 1. For all the other cases

the proof is analogous.

Subcase Γ 6= ∅. The computability of the associate judgement of a = a ∈ A [Γ] is given by hypoth-
esis, while that of its substituted judgements directly follows by inductive hypothesis. Moreover, if

32 CHAPTER 3. THE CANONICAL FORM THEOREM

A type [Γ]

RRRRRR
a[x := e] ∈ A[x := e]

comp αi

a[x := e] = a[x := f] ∈ A[x := e]
comp αk

ggggggggg

a ∈ A [Γ]
comp α

a ∈ A [Γ]
comp α

UUUUUU

a[x := e] = a[x := e] ∈ A[x := e]
comp β = αi + 1 ≤ α

a[x := e] = a[x := f] ∈ A[x := e]
comp αk + 1 ≤ α

fffffffff

a = a ∈ A [Γ]
comp α′ = α + 1

Figure 3.2: reflexivity on elements: case Γ 6= ∅

comp(a[x := e] = a[x := e] ∈ A[x := e]) = β and comp(a[x := e] ∈ A[x := e]) = αi then, by induc-
tive hypothesis, β = αi +1, hence β +1 ≤ α+1 since a ≥ αi +1, and α′ =

∨
(α+1, β +1) = α+1.

See the Fig. 3.2.

Lemma 3.8.6 (Reflexivity on types) The reflexivity on types rule preserves computability, i.e.
if

A type [Γ] comp α

then
A = A [Γ] comp α′ = α + 1

Proof. The proof, by induction on the computational complexity of the computable judgement
A type [Γ], is analogous to the one of the previous lemma 3.8.5 except when the value of A is
Eq(A1, a, b) where the use of the reflexivity-on-elements lemma is needed.

The next corollary is a purely technical result that we will use in the next lemmas to make the
proofs shorter.

Corollary 3.8.7 The following statement on the computability of judgements hold:

1. Let a ∈ A and c ∈ A be computable closed judgements and g be the value both of a and c.
Then, if a = c ∈ A is derivable then it is also computable.

2. Let A type and C type be computable closed judgements and G be the value both of A and C.
Then, if A = C is derivable then it is also computable.

3. Let a ∈ A be a computable closed judgement and g be the value of a; then a = g ∈ A is
computable.

4. Let A type be a computable closed judgement and G be the value of A; then A = G is
computable.

Proof. Let us prove the various points one after the other.

1. The associate judgements are computable by hypothesis, then we must only prove that the
parts are computable. Since a ∈ A is computable and a⇒ g, if A ⇛ G then the judgement
g ∈ G is computable, by proposition 3.8.3 (point 3). Hence, by the reflexivity-on-element
lemma, also the judgement g = g ∈ G is computable and hence the parts of g and g are equal
computable elements in G.

2. The proof is analogous to point (1) except for the use of point 1 of proposition 3.8.3, instead
of point 3, and the use of the reflexivity-on-type lemma, instead of the reflexivity-on-element
lemma.

3. The proof follows by point (1) if we prove that g ∈ A is computable. By correct evaluation,
the judgement a = g ∈ A is derivable and hence also its associate judgement g ∈ A is
derivable. Its computability then follows by reflexivity and the fact that the parts of g ∈ A
are exactly those of a ∈ A which is computable by hypothesis.

3.8. THE LEMMAS 33

4. The proof is analogous to point (3) except for the use of point (2) instead of (1).

The following lemma does not concern one of the rules of the theory but states some properties
of computable judgements which will be very often referred to in the following subsections.

Lemma 3.8.8 (Head substitution) Let Γ ≡ [x1 : A1, . . . , xn : An] be a context, J ≡ F [Γ] be a
computable judgement, a1 : A1, . . . , ai : Ai and a1 = a′

1 : A1, . . . , ai = a′
i : Ai, for i < n, be c.c.s

that fit with the context [x1 : A1, . . . , xi : Ai]. Then

1. J [x1 := a1, . . . , xi := ai] is a computable judgement5.

2. J [x1 ← a1 = a′
1, . . . , xi ← ai = a′

i] is a computable judgement.

Proof. The proof is by induction on the computational complexity of J .
Let ∆ ≡ [xi+1 : A′

i+1, . . . , xn : A′
n], where A′

j ≡ ((x1, . . . , xi) Aj)(a1, . . . , ai), for i + 1 ≤ j ≤ n,
and let ai+1 : A′

i+1, . . . , an : A′
n be a c.c.s. that fits with the context ∆.

To prove the computability of the head substituted judgements we will show that for any c.c.s.
saturating J [x1 := a1, . . . , xi := ai] or J [x1 ← a1 = a′

1, . . . , xi ← ai = a′
i] it is possible to find out

a c.c.s. saturating J and yielding the same judgement. First of all note that for i + 1 ≤ j ≤ n,

Aj ≡ ((x1, . . . , xj−1) Aj)(a1, . . . , aj−1)
≡ ((xi+1, . . . , xj−1)(((x1, . . . , xi) Aj)(a1, . . . , ai))(ai+1, . . . , aj−1)
≡ A′

j .

Case i.
(associate judgements) The computability of the associate judgements, if any, follows by induc-

tive hypothesis.
(substitution :=) For any c.c.s. ai+1 : A′

i+1, . . . , an : A′
n we have that a1 : A1, . . . , an : An is a

c.c.s. that fits with Γ; hence

(J [x1 := a1, . . . , xi := ai])[xi+1 := ai+1, . . . , xn := an] ≡ J [x1 := a1, . . . , xn := an]

is computable.
(substitution ←) For any c.c.s. ai+1 = a′

i+1 : A′
i+1, . . . , an = a′

n : A′
n that fits with the context

∆, we have that a1 = a1 : A1, . . . , ai = ai : Ai, ai+1 = a′
i+1 : Ai+1, . . . , an = a′

n : An is a c.c.s.
that fits with Γ. Note that the reflexivity-on-elements lemma must be used here. Hence

(J [x1 := a1, . . . , xi := ai])[xi+1 ← ai+1 = a′
i+1, . . . , xn ← an = a′

n]
≡ J [x1 ← a1 = a1, . . . , xi ← ai = ai, xi+1 ← ai+1 = a′

i+1, . . . , xn ← an = a′
n]

is computable.
Case ii.

(associate judgements) The computability of the associate judgements follows from case (i)
since if a1 = a′

1 : A1, . . . , ai = a′
i : Ai, for i < n, are computable then also a1 : A1, . . . , ai : Ai are

computable and
J [x1 := a1, . . . , xi := ai]

is the associate judgement of

J [x1 ← a1 = a′
1, . . . , xi ← ai = a′

i]

whose computability is required.
(substitution :=) For any c.c.s. ai+1 : A′

i+1, . . . , an : A′
n that fits with the context ∆, we have

that a1 = a′
1 : A1, . . . , ai = a′

i : Ai, ai+1 = ai+1 : Ai+1, . . . , an = an : An is a c.c.s. that fits with
Γ; hence also

(J [x1 ← a1 = a′
1, . . . , xi ← ai = a′

i])[xi+1 := ai+1, . . . , xn := an]
≡ J [x1 ← a1 = a′

1, . . . , xi ← ai = a′
i, xi+1 ← ai+1 = ai+1, , xn ← an = an]

5Note that for i=n the claim is true by definition of computable judgement.

34 CHAPTER 3. THE CANONICAL FORM THEOREM

is computable.
(substitution ←) For any c.c.s. ai+1 = a′

i+1 : A′
i+1, . . . , an = a′

n : A′
n that fits with the context

∆, we have that a1 = a′
1 : A1, . . . , ai = a′

i : Ai, ai+1 = a′
i+1 : Ai+1, . . . , an = a′

n : An is a c.c.s.
that fits with Γ; hence

(J [x1 ← a1 = a′
1, . . . , xi ← ai = a′

i])[xi+1 ← ai+1 = a′
i+1, . . . , xn ← an = a′

n]
≡ J [x1 ← a1 = a′

1, . . . , xi ← ai = a′
i, xi+1 ← ai+1 = a′

i+1, . . . , xn ← an = a′
n]

is computable.

Remark 3.8.9 Let Γ ≡ [x1 : A1, . . . , xn : An] be a context, a1 : A1, . . . , an : An and a1 = a′
1 : A1,

. . . , an = a′
n : An be c.c.s.s that fit with Γ, and B ≡ (s1 : S1, . . . , sm : Sm) A(s1, . . . , sm), then

from the head substitution lemma we have that

• if : B [Γ] is computable then
: B [Γ][x1 := a1, . . . , xn := an] and
: B [Γ][x1 ← a1 = a′

1, . . . , xn ← an = a′
n] are computable;

• if b : B [Γ] is computable then
b : B [Γ][x1 := a1, . . . , xn := an] and
b : B [Γ][x1 ← a1 = a′

1, . . . , xn ← an = a′
n] are computable;

• if b = b′ : B [Γ] is computable then
b = b′ : B [Γ][x1 := a1, . . . , xn := an] and
b = b′ : B [Γ][x1 ← a1 = a′

1, . . . , xn ← an = a′
n] are computable.

We will continue now by proving that each rule listed in the appendix B preserves computability,
that is any judgement in the conclusion of that rule is computable whenever all the judgements in
the premises are computable. The ordering of the lemmas has been suitably chosen to allow us to
deal separately with each rule, thus mastering the complexity of the computability proof.

3.9 Computability of the rules

In the following sections we will show that all of the rules of type theory preserve computability.

3.9.1 The substitution rules

The definition of computable judgement directly states that the substitution rules preserve com-
putability in the special case of saturating substitutions. In the next lemma we will prove that
computability is preserved by substitution rules also in the general case of tail substitution. Since
the different forms of judgement of the six substitution rules are not essential to prove the result
we will compact the sentence as much as possible.

Lemma 3.9.1 (Substitution lemma) Let Γ be a context, ∆ ≡ [Γ, x1 : A1, . . . , xn : An] be a
context, J ≡ F [∆] be a computable judgement, a1 : B1 [Γ], . . . , an : Bn [Γ] and a1 = a′

1 : B1 [Γ],
. . . , an = a′

n : Bn [Γ] be two lists of substitutions that fit with the context [x1 : A1, . . . , xn : An],
that is, for any 1 ≤ j ≤ n, Bj ≡ ((x1, . . . , xj−1) Aj)(a1, . . . , aj−1). Then

1. J [x1 := a1, . . . , xn := an] is a computable judgement.

2. J [x1 ← a1 = a′
1, . . . , xn ← an = a′

n] is a computable judgement.

Proof. If the context Γ is empty then the claim holds by definition. Thus, let us suppose that
Γ ≡ [s1 : S1, . . . , sm : Sm], for some m > 0. The proof is by induction on the computational
complexity of J .
Case i.

(associate judgements) The computability of the associate judgements follows by inductive
hypothesis.

3.9. COMPUTABILITY OF THE RULES 35

(substitution :=) For any c.c.s. c1 : S1, . . . , cm : Sm fitting with the context Γ, we define

di ≡ ((s1, . . . , sm) ai)(c1, . . . , cm) 1 ≤ i ≤ n

By remark 3.8.9

di : ((s1, . . . , sm) Bi)(c1, . . . , cm) ≡ ai : Bi [Γ][s1 := c1, . . . , sm := cm]

is computable. Moreover we have

≡ ((s1, . . . , sm) Bi)(c1, . . . , cm)
≡ ((s1, . . . , sm)((x1, . . . , xi−1) Ai)(a1, . . . , ai−1))(c1, . . . , cm)
≡ ((s1, . . . , sm, x1, . . . , xi−1) Ai)(c1, . . . , cm, d1, . . . , di−1)
≡ Ai

Therefore c1 : S1, . . . , cm : Sm, d1 : A1, . . . , dn : An is a c.c.s. fitting with the context ∆. Hence

(J [x1 := a1, . . . , xn := an])[s1 := c1, . . . , sm := cm] ≡
J [s1 := c1, . . . , sm := cm, x1 := d1, . . . , xn := dn]

is computable.
(substitution ←) For any c.c.s. c1 = c′1 : S1, . . . , cm = c′m : Sm that fits with the context Γ, we

define
di ≡ ((s1, . . . , sm) ai)(c1, . . . , cm) 1 ≤ i ≤ n

and
d′i ≡ ((s1, . . . , sm) ai)(c

′
1, . . . , c

′
m) 1 ≤ i ≤ n

By remark 3.8.9

di = d′i : ((s1, . . . , sm) Bi)(c1, . . . , cm) ≡ ai : Bi [Γ][s1 ← c1 = c′1, . . . , sm ← cm = c′m] 1 ≤ i ≤ n

is computable. Moreover from the previous point we have

Ai ≡ ((s1, . . . , sm) Bi)(c1, . . . , cm)

Then, c1 = c′1 : S1, . . . , cm = c′m : Sm, d1 = d′1 : A1, . . . , dn = d′n : An is a c.c.s. that fits with the
context ∆. Hence

(J [x1 := a1, . . . , xn := an])[s1 ← c1 = c′1, . . . , sm ← cm = c′m] ≡
J [s1 ← c1 = c′1, . . . , sm ← cm = c′m, x1 ← d1 = d′1, . . . , xn ← dn = d′n]

is computable.
Case ii.

(associate judgements) The computability of the associate judgements follows from case (i).
(substitution :=) For any c.c.s. c1 : S1, . . . , cm : Sm fitting with the context Γ, we define

di ≡ ((s1, . . . , sm) ai)(c1, . . . , cm)

and
d′i ≡ ((s1, . . . , sm) a′

i)(c1, . . . , cm)

By remark 3.8.9

di = d′i : ((s1, . . . , sm) Bi)(c1, . . . , cm) ≡ ai = a′
i : Bi [Γ][s1 := c1, . . . , sm := cm]

is computable. Then, since Ai ≡ ((s1, . . . , sm) Bi)(c1, . . . , cm), c1 = c1 : S1, . . . , cm = cm : Sm,
d1 = d′1 : A1, . . . , dn = d′n : An is a c.c.s. fitting with the context ∆. Hence

(J [x1 ← a1 = a′
1, . . . , xn ← an = a′

n])[s1 := c1, . . . , sm := cm] ≡
J [s1 ← c1 = c1, . . . , sm ← cm = cm, x1 ← d1 = d′1, . . . , xn ← dn = d′n]

is computable.

36 CHAPTER 3. THE CANONICAL FORM THEOREM

(substitution ←) For any c.c.s. c1 = c′1 : S1, . . . , cm = c′m : Sm fitting with the context Γ, we
define

di ≡ ((s1, . . . , sm) ai)(c1, . . . , cm)

and
d′i ≡ ((s1, . . . , sm) ai)(c

′
1, . . . , c

′
m)

By remark 3.8.9

d1 = d′i : ((s1, . . . , sm) Bi)(c1, . . . , cm) ≡ ai = a′
i : Bi [Γ][s1 ← c1 = c′1, . . . , sm ← cm = c′m]

is computable. Then, since Ai ≡ ((s1, . . . , sm) Bi)(c1, . . . , cm), c1 = c′1 : S1, . . . , cm = c′m : Sm,
d1 = d′1 : A1, . . . , dn = d′n : An is a c.c.s. fitting with the context ∆. Hence

(J [x1 ← a1 = a′
1, . . . , xn ← an = a′

n])[s1 ← c1 = c′1, . . . , sm ← cm = c′m] ≡
J [s1 ← c1 = c′1, . . . , sm ← cm = c′m, x1 ← d1 = d′1, .., xn ← dn = d′n]

is computable.

3.9.2 U-elimination rules

The next lemma 3.9.2 deals with U-elimination rules. We need to know that they preserve both
computability and computational complexity to establish the next lemma 3.9.3 about computability
of the remaining structural rules. For this reason their analysis precede so much that of all the
other logical rules.

Lemma 3.9.2 (U-elimination) The U-elimination rules preserve computability and do not in-
crease computational complexity, that is

1. If a ∈ U [Γ] comp β then < a > type [Γ] comp β′ ≤ β

2. If a = b ∈ U [Γ] comp β then < a >=< b > [Γ] comp β′ ≤ β

Proof. By induction on the computational complexity β.
Case 1.
Subcase Γ = ∅.

(evaluation) < a >⇛ G<a> immediately follows from the computability of the judgement a ∈ U

by using the suitable computation rule.
(correct evaluation) the required derivation can be obtained by applying the suitable U-equality

rule to premises whose existence is guaranteed by the computability of the judgement a ∈ U. For
instance, if a⇒ π(a′, a′′) the required proof is the following:

a = π(a′, a′′) ∈ U

< a >=< π(a′, a′′) >

a′ ∈ U a′′(x) ∈ U [x :< a′ >]

< π(a′, a′′) >= Π(< a′ >, (x) < a′′(x) >)

< a >= Π(< a′ >, (x) < a′′(x) >)

(parts) the parts of G<a> are computable type(s) with computational complexity less or equal
of that one of the corresponding parts of the computable judgement a ∈ U. For instance, supposing
G<a> ≡ Π(< a′ >, (x) < a′′(x) >), by inductive hypothesis, we obtain both that a′ ∈ U comp β′

implies that < a′ > type comp γ′ ≤ β′ and that a′′(x) ∈ U [x :< a′ >] comp β′′ implies that
< a′′(x) > type [x :< a′ >] comp γ′′ ≤ β′′. The other cases are completely similar.
Subcase Γ 6= ∅.

(substitution :=) immediately follows by inductive hypothesis (1)
(substitution ←) immediately follows by inductive hypothesis (2)

Case 2.
Subcase Γ = ∅.

(associate) from a = b ∈ U comp β we obtain a ∈ U comp β1 < β and b ∈ U comp β2 < β.
Hence by inductive hypothesis, point 1,

< a > type comp β′
1 ≤ β1

3.9. COMPUTABILITY OF THE RULES 37

and
< b > type comp β′

2 ≤ β2

(parts) if < a >⇛ G<a> and < b >⇛ G then the parts of G<a> and G are equal
computable types with the same computational complexity of the corresponding parts of the com-
putable judgement a = b ∈ U. Let us analyze the case G<a> ≡ Π(< a′ >, (x) < a′′(x) >):

G<a> ≡ Π(< a′ >, (x) < a′′(x) >) iff a⇒ π(a′, a′′)
iff b⇒ π(b′, b′′)
iff G ≡ Π(< b′ >, (x) < b′′(x) >)

Moreover, by inductive hypothesis, we obtain both that a′ = b′ ∈ U comp β3 implies that
< a′ >=< b′ > comp β′

3 ≤ β3 and that a′′(x) = b′′(x) ∈ U [x :< a′ >] comp β4 implies that
< a′′(x) >=< b′′(x) > [x :< a′ >] comp β′

4 ≤ β.
Hence β′ =

∨
(β′

1 + 1, β′
2 + 1, β′

3 + 1, β′
4 + 1) ≤

∨
(β1 + 1, β2 + 1, β3 + 1, β4 + 1) = β. The other

cases are completely similar.
Subcase Γ 6= ∅.

(associate) immediately follows by inductive hypothesis, point 1.
(substitution :=) immediately follows by inductive hypothesis, point 2.
(substitution ←) immediately follows by inductive hypothesis, point 2.

Note that the computational complexity of the judgements in the premise and in the conclusion
are usually equal, but we may also have different complexities. For instance, the complexity of a
basic judgement, like N type, is 0 while the complexity of the corresponding judgement, < n >∈ U,
is 1 due to the requirement that the associate judgement U type is computable.

3.9.3 The structural rules

In the previous section we dealt with the reflexivity on elements and the reflexivity on types rule.
All the other structural rules, that is the transitivity on elements, the transitivity on types, the
symmetry on elements, the symmetry on types, the equal elements and the equal types rules, are
considered together in the next lemma 3.9.3. This lemma is a key point in the proof of computabil-
ity since it establishes, besides the fact that structural rules preserve computability, other basic
and important relationships among the computational complexities of related judgements. As we
already pointed out, these information are essential in the subsequent proof since they guarantee
the applicability of the inductive hypothesis when we proceed by induction on the computational
complexity of a judgement.

Lemma 3.9.3 (Structural rules) Let β be a computational complexity. Then

1. If a = c ∈ A [Γ] comp α1 < β, b = d ∈ A [Γ] comp α2 < β and a = b ∈ A [Γ] comp α then

• (i) α1 = α2 = α

• (ii) c = d ∈ A [Γ] comp α

• (1.1) (transitivity on elements) If a = b ∈ A [Γ] comp α1 < β and
b = c ∈ A [Γ] comp α2 < β then a = c ∈ A [Γ] comp α = α1 = α2

2. If A = C [Γ] comp α1 < β, B = D [Γ] comp α2 < β and A = B [Γ] comp α then

• (i) α1 = α2 = α

• (ii) C = D [Γ] comp α

• (2.1) (transitivity on types) If A = B [Γ] comp α1 < β and
B = C [Γ] comp α2 < β then A = C [Γ] comp α = α1 = α2

3. If A = C [Γ] comp β then

• (i.) (associate judgements) A type [Γ] comp α if and only if C type [Γ] comp α

• (ii.) (symmetry on types) C = A [Γ] comp β

38 CHAPTER 3. THE CANONICAL FORM THEOREM

A type a′(x) ∈ A2(x) [x : A1]

lll
ll

a ∈ A
comp γ1

PPP

c ∈ A

comp γ′

1

a′(x) = c′(x) ∈ A2(x) [x : A1]
comp α′

1

hhhhhh

a = c ∈ A
comp α1 < β

A type b′(x) ∈ A2(x) [x : A1]

lll
ll

b ∈ A
comp γ2

PPP

d ∈ A

comp γ′

2

b′(x) = d′(x) ∈ A2(x) [x : A1]
comp α′

2

hhhhhh

b = d ∈ A
comp α2 < β

a ∈ A
comp γ1

JJ

b ∈ A
comp γ2

a′(x) = b′(x) ∈ A2(x) [x : A1]
comp α′

1
< β

jjjjj

a = b ∈ A
comp α

Figure 3.3: Computation trees (Point 1.i. Π-case)

• (iii.) (element in equal types and equal elements in equal types)

– (iii.a) a ∈ A [Γ] comp α if and only if a ∈ C [Γ] comp α

– (iii.b) a = c ∈ A [Γ] comp α if and only if a = c ∈ C [Γ] comp α

• (iv.) (assumption in equal types) J [Γ, x : A] comp α if and only if J [Γ, x : C] comp α

4. If a = c ∈ A [Γ] comp β then

• (i.) (associate judgements) a ∈ A [Γ] comp α if and only if c ∈ A [Γ] comp α

• (ii.) (symmetry on elements) c = a ∈ A [Γ] comp β

Proof. By principal induction on the computational complexity β. The base cases are obvious.

• Point 1. The proof follows by subordinate induction on the computational complexity α.
As regards point 1.ii, a derivation for the judgement c = d ∈ A [Γ] can easily be found by
using symmetry and transitivity rules and the derivations for a = c ∈ A [Γ], b = d ∈ A [Γ]
and a = b ∈ A [Γ].

Subcase Γ = ∅. Let GA be the canonical value of A. The proof varies according to the
outermost constant of GA, but there is a common pattern. First, we prove that the three
considered judgements have corresponding part judgements with the same computational
complexity. Then, a similar result follows also for the corresponding associate judgements.
Here we analyze only three main cases; the other cases are similar.

– GA ≡ Π(A1, A2), and a⇒ λ(a′), b⇒ λ(b′), c⇒ λ(c′) and d⇒ λ(d′).

(Point 1.i Π-case) We know that (see fig. 3.3)

∗ a′(x) = c′(x) ∈ A2(x) [x : A1] comp α′
1 < α1 < β

∗ b′(x) = d′(x) ∈ A2(x) [x : A1] comp α′
2 < α2 < β

∗ a′(x) = b′(x) ∈ A2(x) [x : A1] comp α′ < α

hence, by subordinate inductive hypothesis, α′
1 = α′

2 = α′. Hence the parts have the
same computational complexity. Note that α′ < β.

As regards to the associate judgements, we obtain by inductive hypothesis 4.i, that:

∗ a = c ∈ A comp α1 < β yields

γ1 = comp(a ∈ A) = comp(c ∈ A) = γ′
1

3.9. COMPUTABILITY OF THE RULES 39

∗ b = d ∈ A comp α2 < β yields

γ2 = comp(b ∈ A) = comp(d ∈ A) = γ′
2

∗ a′(x) = b′(x) ∈ A2(x) [x : A1] comp α′ < β yields

comp(a′(x) ∈ A2(x) [x : A1]) = comp(b′(x) ∈ A2(x) [x : A1])

which guarantees γ1 = comp(a ∈ A) = comp(b ∈ A) = γ2. Hence γ′
1 = γ1 = γ2 = γ′

2.

(Point 1.ii Π-case) We proved that comp(c ∈ A) = comp(d ∈ A); hence c = d ∈ A comp α
follows by using inductive hypothesis (point 1.ii) on the part judgements of the four
considered judgements.

– GA ≡ Σ(A1, A2), and a⇒ 〈a′, a′′〉, b⇒ 〈b′, b′′〉, c⇒ 〈c′, c′′〉 and d⇒ 〈d′, d′′〉.

(Point 1.i Σ-case) We know that (see fig. 3.4)

∗ a′ = c′ ∈ A1 comp α′
1 < α1 < β

∗ b′ = d′ ∈ A1 comp α′
2 < α2 < β

∗ (*) a′ = b′ ∈ A1 comp α1 < α

hence, by subordinate inductive hypothesis, α′
1 = α′

2 = α′ < β. Moreover

∗ a′′ = c′′ ∈ A2(a
′) comp α′′

1 < α1 < β

∗ b′′ = d′′ ∈ A2(b
′) comp α′′

2 < α2 < β

∗ a′′ = b′′ ∈ A2(a
′) comp α′′ < α.

By using (*), we obtain

comp(A2(a
′) = A2(b

′)) < comp(A2(x) type [x : A1])
< comp(A type) < comp(a ∈ A)
< comp(a = c ∈ A)
< β

then, by inductive hypothesis (point 3.iii.b), we have

comp(b′′ = d′′ ∈ A22(a
′)) = α′′

2 < β

hence, by subordinate inductive hypothesis, α′′
1 = α′′

2 = α′′ < β.

The proof proceeds analogously to the Π-case. Simply note that to prove that the
three considered judgements have corresponding associate judgements with the same
computational complexity we need the inductive hypothesis (point 3.iii.a) to obtain
that comp(b′′ ∈ A2(a

′)) = comp(b′′ ∈ A2(b
′)).

(Point 1.ii. Σ-case) Since A2(a
′) = A2(b

′) comp δ < β, from b′′ = d′′ ∈ A2(b
′) comp α′′

2

by inductive hypothesis points 3.ii and 3.iii.b we obtain

b′′ = d′′ ∈ A2(a
′) comp α′′

2

Then, by using inductive hypothesis point 1.ii, from a′′ = c′′ ∈ A2(a
′) comp α′′

1 ,
b′′ = d′′ ∈ A2(a

′) comp α′′
2 and a′′ = b′′ ∈ A2(a

′) comp α′′ we can obtain that
c′′ = d′′ ∈ A2(a

′) comp α′′.

From this, since A2(a
′) = A2(c

′) comp γ < β, by inductive. hypothesis. point 3.iii.b,
we obtain c′′ = d′′ ∈ A2(c

′) comp α′′.

We can easily prove also that c ∈ A comp γ1, d ∈ A comp γ2, c′ = d′ ∈ A comp α′, and
hence that c = d ∈ A comp α.

– GA ≡ U.

We will develop in a detailed way only the case a⇒ π(a′, a′′), b⇒ π(b′, b′′), c⇒ π(c′, c′′)
and d⇒ π(d′, d′′).

(Point 1.i U-case) We know that

40 CHAPTER 3. THE CANONICAL FORM THEOREM

A2(a
′) = A2(b′)
comp δ

TTTTTTTT

. . . A2(a
′) = A2(c′)
comp γ

jjjjjjjj

A1 type

VVVVVVVVVVVV A2(x) type [x : A1]

A type

a ∈ A
comp γ1

VVVVVVVVVVVVVVV
c ∈ A

comp γ′

1

NN
NN

NN

a′ = c′ ∈ A1

comp α′

1
< β

nnnnnn

a′′ = c′′ ∈ A2(a
′)

comp α′′

1
< β

ffffffffffffffffff

a = c ∈ A
comp α1 < β

b ∈ A
comp γ2

VVVVVVVVVVVVVVV
d ∈ A

comp γ′

2

NN
NN

NN

b′ = d′ ∈ A1

comp α′

1
< β

nnnnnn

b′′ = d′′ ∈ A2(b
′)

comp α′′

2
< β

ffffffffffffffffff

b = d ∈ A
comp α2 < β

a ∈ A
comp γ1

UUUUUUUUUUUUUUU
b ∈ A

comp γ2

LLLLL

a′ = b′ ∈ A1

comp α′ < β

ooo
ooo

a′′ = b′′ ∈ A2(a′)
comp α′′ < α

ffffffffffffffffff

a = b ∈ A
comp α

Figure 3.4: Computation trees (Point 1.i. Σ-case)

∗ a′ = c′ ∈ U comp α′
1 < α1 < β

∗ b′ = d′ ∈ U comp α′
2 < α2 < β

∗ a′ = b′ ∈ U comp α′ < α

hence, by subordinate inductive hypothesis, α′
1 = α′

2 = α′ < β. Moreover we know that

∗ a′′(x) = c′′(x) ∈ U [x :< a′ >] comp α′′
1 < α1 < β

∗ b′′(x) = d′′(x) ∈ U [x :< b′ >] comp α′′
2 < α2 < β

∗ a′′(x) = b′′(x) ∈ U [x :< a′ >] comp α′′ < α.

Since a′ = b′ ∈ U comp α′ < β, we obtain < a′ >=< b′ > comp γ′ ≤ α′ < β, by lemma
3.9.2, and then, by inductive hypothesis (3.iv), b′′(x) = d′′(x) ∈ U [x :< a′ >] comp α′′

2

hence, by subordinate inductive hypothesis, α′′
1 = α′′

2 = α′′ < β. Analogously to the
previous cases, it is now possible to prove that the three considered judgements have
corresponding associate judgements of the same computational complexity .

(Point 1.ii. U-case) The proof proceeds analogously to the previous cases. It is worth
to describe only the proof that

c′′(x) = d′′(x) ∈ U [x :< c′ >] comp α′′

By subordinate inductive hypothesis we know that

c′′(x) = d′′(x) ∈ U [x :< a′ >] comp α′′

Since a′ = c′ ∈ U comp α′
1 < β, by lemma 3.9.2, we obtain

< a′ >=< c′ > comp γ′
1 ≤ α′

1 < β

and then, by inductive hypothesis (point 3.iv), we obtain the thesis.

Subcase Γ 6= ∅

(Point 1.i) We prove that the three considered judgements have the corresponding associate
judgements and substituted judgements of the same computational complexity.

(substitution :=) The result is immediate by subordinate inductive hypothesis (see fig. 3.5).

3.9. COMPUTABILITY OF THE RULES 41

a[x := e] = a[x := e]
∈ A[x := e] comp α∗

1

. . .

gggggggggggggg

a ∈ A [Γ]
comp α′

1

WWWWWWWWW
a[x := e] = c[x := e]
∈ A[x := e] comp α′′

1

a[x := e] = c[x := f]
∈ A[x := e] comp α′′′

1

ggggg

a = c ∈ A [Γ]
comp α1 < β

b[x := e] = b[x := f]
∈ A[x := e] comp α∗

2

. . .

gggggggggggggg

b ∈ A [Γ]
comp α′

2

WWWWWWWWW
b[x := e] = d[x := e]
∈ A[x := e] comp α′′

2

b[x := e] = d[x := f]
∈ A[x := e] comp α′′′

2

ggggg

b = d ∈ A [Γ]
comp α2 < β

a ∈ A [Γ]
comp α′ = α′

1

WWWWWWW

a[x := e] = b[x := e] ∈ A[x := e]
comp α′′

a[x := e] = b[x := f] ∈ A[x := e]
comp α′′′

eeeeeeeee

a = b ∈ A [Γ]
comp α < β

Figure 3.5: Point 1.i (substitution :=)

(substitution←) First observe that, by subordinate inductive hypothesis (1.i) α′′ = α′′′
1 = α′′′

2 .
Moreover, if e = f : is a c.c.s. fitting with Γ this holds also for e :. Hence α∗

1 < β and α∗
2 < β

and, by subordinate inductive hypothesis (points 1.i and 1.ii), α′′ = α∗
1 = α∗

2 = α′′′. Hence
α′′′ = α′′′

1 = α′′′
2 .

(associate judgements) Since α′ = α′
1, α′′ = α′′

1 and α′′′ = α′′′
1 then α = α1 < β and, by

inductive hypothesis 4.i, comp(b ∈ A [Γ]) = α′
2 = comp(a ∈ A [Γ]) = α′

1.

(Point 1.ii)

By inductive hypothesis (point 4.i) comp(c ∈ A [Γ]) = comp(a ∈ A [Γ]) = α′. Then, by
subordinate inductive hypothesis on substituted judgements, we obtain that, for any c.c.s.
e :, comp(c[x := e] = d[x := e] ∈ A[x := e]) = α′′ holds and for any c.c.s. e = f :,
comp(c[x := e] = d[x := f] ∈ A[x := e]) = α′′ holds. Hence comp(c = d ∈ A [Γ]) = α.

Point 1.1

By inductive hypothesis (point 4.ii), from comp(a = b ∈ A [Γ]) = α1 < β we obtain that
comp(b = a ∈ A [Γ]) = α1 < β. Hence b ∈ A [Γ] is computable and, by the reflexivity lemma
3.8.5, b = b ∈ A [Γ] is computable. Then the result follows from the previous point 1.ii.

• Point 2.

The proof follows by subordinate induction on the computational complexity α. The proof
of this case is analogous to the one of point 1. Just substitute the judgement ’equal ele-
ments in a type’ with the judgement ’equal types’ and pay attention in analyzing the case
GA ≡ Eq(A1, e, f) where an obvious application of point 1. is required.

Point 2.1.

By using inductive hypothesis point 3.ii, from comp(A = B [Γ]) = α1 < β we obtain that
comp(B = A [Γ]) = α1 < β. Hence B type [Γ] is computable and, by the reflexivity lemma
3.8.6, B = B [Γ] is computable. Then the result follows from the previous point 2.ii.

• Point 3.

Point 3.i Subcase Γ = ∅.

Let A ⇛ GA and C ⇛ GC we must prove that the parts of GA and GC have the same
computational complexity. The proof varies according to the outermost constant of GA. We
analyze only two significant cases; the other cases are similar.

42 CHAPTER 3. THE CANONICAL FORM THEOREM

– GA ≡ Π(A1, A2) hence, since A = C is a computable judgement, GC ≡ Π(C1, C2) and
we know that

(∗) comp(A1 = C1) < β

and hence, by inductive hypothesis point 3.i, comp(A1 type) = comp(C1 type);

(∗∗) comp(A2(x) = C2(x) [x : A1]) < β

and hence comp(A2(x) type [x : A1]) = comp(C2(x) type [x : A1]), by inductive hypoth-
esis point 3.i, and finally comp(A2(x) type [x : A1]) = comp(C2(x) type [x : C1]) by
using inductive hypothesis point 3.iv.

– GA ≡ Eq(A1, a
′, a′′) and GC ≡ Eq(C1, c

′, c′′) and we know that

(∗) comp(A1 = C1) < β

then, by inductive hypothesis point 3.i, comp(A1 type) = comp(C1 type);

(∗∗) comp(a′ = c′ ∈ A1) < β

hence, by inductive hypothesis point 4.i, comp(a′ ∈ A1) = comp(c′ ∈ A1) and then, by
inductive hypothesis point 3.iii.a, comp(a′ ∈ A1) = comp(c′ ∈ C1);

(∗ ∗ ∗) comp(a′′ = c′′ ∈ A1) < β

hence, by inductive hypothesis point 4.i, comp(a′′ ∈ A1) = comp(c′′ ∈ A1) and then, by
inductive hypothesis point 3.iii.a, comp(a′′ ∈ A1) = comp(c′′ ∈ C1).

Point 3.i. Subcase Γ 6= ∅

For any c.c.s. e :, since comp(A[x := e] = C[x := e]) < β, by inductive hypothesis 3.i, it
immediately follows that

comp(A[x := e] type) = comp(C[x := e] type)

For any c.c.s. e = f : we know that e : and, by reflexivity, e = e : are c.c.s fitting with Γ.
Hence,

comp(A[x := e] = A[x := e]) = comp(A[x := e] = A[x := f])

by inductive hypothesis 2.i, and

comp(A[x := e] = A[x := e]) = comp(C[x := e] = C[x := f])

by inductive hypothesis 2.ii. Hence

comp(A[x := e] = A[x := f]) = comp(C[x := e] = C[x := f])

and thus comp(A type [Γ]) = comp(C type [Γ])

Point 3.ii

(associate judgements) We must prove that the associate judgements of the derivable judge-
ment C = A [Γ] are computable and their computational complexities are equal to the
computational complexities of the corresponding associate of the judgement A = C [Γ]. This
result is obvious by the previous point 3.i.

Point 3.ii. Subcase Γ = ∅.

We must prove that the parts of C = A have the same computational complexity of the parts
of A = C. Let us show only two cases

– GA ≡ Π(A1, A2) and hence GC ≡ Π(C1, C2).

The parts of A = C are A1 = C1 comp α1 and A2(x) = C2(x) [x : A1] comp α2 and
the parts of C = A are C1 = A1 comp α′

1 and C2(x) = A2(x) [x : C1] comp α′
2. Now

α1 = α′
1, by inductive hypothesis point 3.ii, because α1 < β and, since, by inductive

hypothesis point 3.v,
comp(C2(x) = A2(x) [x : A1]) = α′

2

it follows that α2 = α′
2, again by using the inductive hypothesis point 3.ii, because

α2 < β.

3.9. COMPUTABILITY OF THE RULES 43

– GA ≡ Eq(A1, a
′, a′′) and hence GC ≡ Eq(C1, c

′, c′′).

The parts of the judgement A = C are A1 = C1 comp α1, a′ = c′ ∈ A1 comp α2

and a′′ = c′′ ∈ A1 comp α3 while the parts of C = A are C1 = A1 comp α′
1,

c′ = a′ ∈ C1 comp α′
2 and c′′ = a′′ ∈ C1 comp α′

3. Now α1 = α′
1 by inductive hy-

pothesis point 3.ii because α1 < β. Moreover, since, by inductive hypothesis point
4.ii, both comp(c′ = a′ ∈ A1) = α2 and comp(c′′ = a′′ ∈ A1) = α3, we obtain
comp(c′ = a′ ∈ C1) = α2 and comp(c′′ = a′′ ∈ C1) = α3 by using inductive hypothesis
point 3.iv.

Point 3.ii. Subcase Γ 6= ∅.

We have to prove that the two considered judgements have substituted judgements with the
same computational complexity.

(substitution :=) Immediate by inductive hypothesis 3.ii.

(substitution ←) For any c.c.s. e = f : fitting with Γ also e : is a c.c.s. fitting with Γ. Hence
by inductive hypothesis (2.i and 2.ii)

comp(A[x := e] = C[x := e]) = comp(A[x := e] = A[x := f])
= comp(A[x := e] = A[x := e])
= comp(C[x := e] = A[x := f])

comp(A[x := e] = C[x := e]) = comp(A[x := e] = C[x := f])
= comp(A[x := e] = A[x := e])
= comp(C[x := e] = C[x := f])

Hence comp(C[x := e] = A[x := f]) = comp(A[x := e] = C[x := f]).

Point 3.iii.a.

Let us prove the if-part (the proof of the only-if part is completely similar) by subordinate in-
duction on the computational complexity α. Note that, by point 3.i, the associate judgements
of a ∈ A [Γ] and a ∈ C [Γ] are computable judgements with the same complexity.

Point 3.iii.a. Subcase Γ = ∅.

(evaluation) a⇒ ga, by hypothesis

(correct evaluation) a = ga ∈ C is provable, immediate

(parts) Let us analyze here only three cases according to the form of GC .

– GC ≡ Σ(C1, C2) and hence GA ≡ Σ(A1, A2) and ga ≡ 〈a
′, a′′〉 and we know that

∗ A1 = C1 comp α1 < β,

∗ A2(x) = C2(x) [x : A1] comp α2 < β,

∗ a′ ∈ A1 comp α′ < α and

∗ a′′ ∈ A2(a
′) comp α′′ < α

and hence comp(a′ ∈ C1) = α′, by inductive hypothesis point 3.iii.a, and, since

comp(A2(a
′) = C2(a

′)) < comp(A2(x) = C2(x) [x : A1])
< comp(A = C)
< β

we obtain
a′′ ∈ C2(a

′) comp α′′

by using inductive hypothesis point 3.iii.a.

– GC ∈ Eq(C1, c
′, c′′) and hence GA ≡ Eq(A1, a

′, a′′) and ga ≡ e and we know that

∗ a′ = c′ ∈ A1 comp α2 < β,

∗ a′′ = c′′ ∈ A1 comp α3 < β and

∗ a′ = a′′ ∈ A1 comp α′ < α

44 CHAPTER 3. THE CANONICAL FORM THEOREM

and, by point 1., we obtain c′ = c′′ ∈ A1 comp α′ then, since A1 = C1 comp α1 < β, by
using inductive hypothesis point 3.iii.b,

comp(c′ = c′′ ∈ C1) = α′

– GC ≡ W(C1, C2) and hence GA ≡ W(A1, A2) and ga ≡ sup(a′, a′′) and we know that
A1 = C1 comp α1 < β and a′ ∈ A1 comp α′ < α; then, by inductive hypothesis 3.iii.a,
a′ ∈ C1 comp α′. Moreover we know that a′′(y) ∈ W(A1, A2) [y : A2(a

′)] comp α′′ < α
and A2(x) = C2(x) [x : A1] comp α2 < β.

Finally also a′′(y) ∈ W(A1, A2) [y : C2(a
′)] comp α′′ < α holds, by inductive hypothesis

point 3.iv, since comp(A2(a
′) = C2(a

′)) < comp(A2(x) = C2(x) [x : A1]) < β. Now to
prove

a′′(y) ∈W(C1, C2) [y : C2(a
′)] comp α′′

we must consider the associate judgements. Since

comp(W(A1, A2) type) = comp(W(C1, C2) type)

and

comp(W(A1, A2) = W(A1, A2)) = comp(W(C1, C2) = W(C1, C2))

then

comp(W(A1, A2) type [y : C2(a
′)]) = comp(W(C1, C2) type [y : C2(a

′)])

(substitutions) By subordinate inductive hypothesis 3.iii.a and 3.iii.b, for any c.c.s.
e ∈ C2(a

′) and e = f ∈ C2(a
′) we have

comp(a′′(e) ∈W(A1, A2)) = comp(a′′(e) ∈ W(C1, C2))

and

comp(a′′(e) = a′′(f) ∈W(A1, A2)) = comp(a′′(e) = a′′(f) ∈W(C1, C2))

Point 3.iii.a. Subcase Γ 6= ∅.

(substitution :=) The result immediately follows by using the inductive hypothesis point
3.iii.a.

(substitution ←) The result immediately follows by using the inductive hypothesis point
3.iii.b.

Point 3.iii.b.

The proof of this case is similar to the previous point 3.iii.a. Just note that, by point 3.iii.a,
the associate judgements of a = c ∈ A [Γ] and c = a ∈ C [Γ] are computable with the same
complexity.

Point 3.iv.

The proof is by subordinate induction on the computational complexity α. Let us prove the
if-part (the proof of the only if-part is completely similar).

(associate judgements) By subordinate inductive hypothesis the associate judgements of
J [Γ, x : C] are computable with the same complexity of those of J [Γ, x : A].

(substitutions) In order to analyse the substituted judgements, suppose Γ is the context
[y1 : B1, . . . , yn : Bn]. Since A = C [Γ] comp β then for any c.c.s. a1 : B1, . . . , an : Bn,
e : C (or a1 = a′

1 : B1, . . . , an = a′
n : Bn, e = e′ : C) fitting with [Γ, x : C], we have

comp(A[y := a] = C[y := a]) < β hence, by point 3.iii.a (or 3.iii.b), e : A (or e = e′ : A) is
a computable judgement and thus the same substitution fits also with [Γ, x : A]. Hence the
substituted judgements are computable with the same complexity.

3.9. COMPUTABILITY OF THE RULES 45

• Point 4.

Point 4.i.

Let us prove the if-part (the proof of the only if-part is completely similar).

(associate judgements) The associate judgement of both judgements is A type.

Point 4.i. Subcase Γ = ∅.

We must prove only that the parts of c ∈ A have the same computational complexity of the
corresponding parts of a ∈ A. According to the values of A and a we show here only three
cases:

– A ⇛ Σ(A1, A2) and a⇒ 〈a′, a′′〉.

We know that c ⇒ 〈c′, c′′〉, comp(a′ = c′ ∈ A1) < β and comp(a′′ = c′′ ∈ A2(a
′)) < β;

therefore comp(a′ ∈ A1) = comp(c′ ∈ A1) by inductive hypothesis 4.i; and, since

comp(A2(a
′) = A2(c

′)) < comp(A2(x) type [x : A1])
< comp(A type) < comp(a ∈ A)
< comp(a = c ∈ A)
= β

we obtain
comp(a′′ ∈ A2(a

′)) = comp(c′′ ∈ A2(c
′))

by using inductive hypothesis point 4.i and point 3.iii.a.

– A ⇛ W(A1, A2) and a⇒ sup(a′, a′′).

We know that c⇒ sup(c′, c′′), and that comp(a′ = c′ ∈ A1) < β; therefore

comp(a′ ∈ A1) = comp(c′ ∈ A1)

by using inductive hypothesis point 4.i. We know also that

comp(a′′(x) = c′′(x) ∈W(A1, A2) [x : A2(a
′)]) < β

and
comp(A2(a

′) = A2(c
′)) < comp(A2(x) = A2(x) [x : A1])

< comp(A2(x) type [x : A1]
< β

by inductive hypothesis point 4.i and point 3.iv, then we obtain

comp(a′′(x) ∈ W(A1, A2) [x : A2(a
′)]) = comp(c′′(x) ∈ W(A1, A2) [x : A2(a

′)])
= comp(c′′(x) ∈ W(A1, A2) [x : A2(c

′)])

– A ⇛ U and a⇒ π(a′, a′′), and therefore c⇒ π(c′, c′′).

We know both that comp(a′ = c′ ∈ U) < β and comp(a′′(x) = c′′(x) ∈ U[x :< a′ >]) < β.
Therefore, by inductive hypothesis (4.i), we obtain both comp(a′ ∈ U) = comp(c′ ∈ U)
and comp(a′′(x) ∈ U [x :< a′ >]) = comp(c′′(x) ∈ U [x :< a′ >]).

Moreover, comp(a′ = c′ ∈ U) < β. Then, by using lemma 3.9.2, we obtain that
comp(< a′ >=< c′ >) < β, and we obtain, by using inductive hypothesis (3.iv),

comp(c′′(x) ∈ U [x :< a′ >]) = comp(c′′(x) ∈ U [x :< c′ >])

Point 4.i. Subcase Γ 6= ∅.

(substitution :=) The result immediately follows by inductive hypothesis 4.i.

(substitution ←) The result follows by inductive hypothesis point 1 using the fact that if
e = f : is a c.c.s fitting with Γ so is e :.

Point 4.ii.

Point 4.ii. Subcase Γ = ∅.

46 CHAPTER 3. THE CANONICAL FORM THEOREM

Since the associate judgement of a = c ∈ A are exactly those of c = a ∈ A, we must prove only
that the parts of c = a ∈ A have the same computational complexity of the corresponding
parts of a = c ∈ A. The proof is similar to that of the previous point 4.i; let us analyze just
one case:

– A ⇛ Σ(A1, A2) and a ⇒ 〈a′, a′′〉. We know that c ⇒ 〈c′, c′′〉, comp(a′ = c′ ∈ A1) < β
and comp(a′′ = c′′ ∈ A2(a

′)) < β; therefore comp(a′ = c′ ∈ A1) = comp(c′ = a′ ∈ A1),
by inductive hypothesis 4.ii; and, since

comp(A2(a
′) = A2(c

′)) < comp(A2(x) type [x : A1])
< comp(A type)
< comp(a ∈ A)
< comp(a = c ∈ A)
= β

we obtain
comp(a′′ = c′′ ∈ A2(a

′)) = comp(c′′ = a′′ ∈ A2(c
′))

by using inductive hypothesis point 4.ii and point 3.iii.b.

Point 4.ii. Subcase Γ 6= ∅.

As for the previous case the result follows by inductive hypothesis (4.i. and 4.ii) by using
inductive hypothesis (point 1.1) and the fact that if e = f : is a c.c.s fitting with Γ so is e :.

It is worth noting that, the computability of the associate judgements which were left out from
the definition 3.7.1 of computable judgement (points 2.2.1 and 2.4.1) is now established by the
symmetry rules.

3.9.4 The assumption rules

In section 3.3 we presented the assumption rules of our system; they introduce variables of any
arity. The new assumption appears in the context Γ of the conclusion of the rule and for this
reason only the case Γ 6= ∅ has to be considered in order to prove that assumption rules preserve
computability.

Lemma 3.9.4 (First assumption rule) Let ai : Ai [Γi], for any 1 ≤ i ≤ n, be n computable
judgements and : B [Γ] ≡ A(x1, . . . , xn) type [Γ, x1 : A1, . . . , xn : An] be a computable judgement.
Then the judgement

y(a1, . . . , an) ∈ A(a1, . . . , an) [Γ′]

where Γ′ is the merge without duplication of the contexts Γ1, . . . , Γn, Γ, [y : B], is computable.

Proof. Let Γ′ ≡ s1 : S1, . . . , sk : Sk, y : B, z1 : C1, . . . , zm : Cm, for k ≥ 0 and m ≥ 0, where
z1 : C1, . . . , zm : Cm strictly depend on y : B. First note that, since the context Γ′ extends both
the contexts Γ and all the contexts Γi, for 1 ≤ i ≤ n, by the weakening lemma, we have that

A(x1, . . . , xn) type [Γ′, x1 : A1, . . . , xn : An]

and
ai : Ai [Γ′] 1 ≤ i ≤ n

are computable judgements.
(associate judgement) The computability of the judgement

A(a1, . . . , an) type [Γ′]

follows by the substitution lemma.
(substitution :=) Consider any c.c.s. fitting with the context Γ′ : d1 : S1, . . . , dk : Sk, b : B,

c1 : C1, . . . , cm : Cm. Note that, if A′
i ≡ ((s1, . . . , sk) Ai)(d1, . . . , dk) then b : B abbreviates:

b : B[s1 := d1, . . . , sk := dk] ≡ b(x1, . . . , xn) ∈ ((s1, . . . , sk) A)(d1, . . . , dk) [x1 : A′
1, . . . , xn : A′

n]

3.9. COMPUTABILITY OF THE RULES 47

Moreover, for any 1 ≤ i ≤ n, ai : Ai [Γ′] is a computable judgement; then, by the head substitution
lemma 3.8.8,

ai : Ai [Γ′][s1 := d1, . . . , sk := dk, y := b, z1 := c1, . . . , zm := cm]

is also computable, and

≡ ((s1, . . . , sk, y, z1, . . . , zm) Ai)(d1, . . . , dk, b, c1, . . . , cm)
≡ ((s1, . . . , sk) Ai)(d1, . . . , dk)
≡ A′

i

Let, for any 1 ≤ i ≤ n, ei ≡ ((s1, . . . , sk, y, z1, . . . , zm) ai)(d1, . . . , dk, b, c1, . . . , cm) then also the
judgement b : B[x1 := e1, . . . , xn := en] is computable.

But y : B, z1 : C1, . . . , zm : Cm cannot appear in the context [Γ, x1 : A1, . . . , xn : An]; then

((s1, . . . , sk, y, z1, . . . , zm) A)(d1, . . . , dk, b, c1, . . . , cm) ≡ ((s1, . . . , sk) A)(d1, . . . , dk)

and therefore

≡ b : B[x1 := e1, . . . , xn := en]
≡ y(a1, . . . , an) ∈ A(a1, . . . , an) [Γ′][s1 := d1, . . . , sk := dk, y := b, z1 := c1, . . . , zm := cm]

(substitution ←) Consider any c.c.s. d1 = d′1 : S1, . . . , dk = d′k : Sk, b = b′ : B, c1 = c′1 : C1,
. . . , cm = c′m : Cm fitting with Γ′. The, the proof proceeds as before after noting that, for any
1 ≤ i ≤ n, the judgement

ai : Ai [Γ′][s1 ← d1 = d′1, . . . , sk ← dk = d′k, y ← b = b′, z1 ← c1 = c′1, . . . , zm ← cm = c′m]

is computable and can be substituted for xi in b = b′ : B obtaining a computable judgement which
is exactly

y(a1, . . . , an) ∈ A(a1, . . . , an) [Γ′][s1 ← d1 = d′1, . . . , sk ← dk = d′k,
y ← b = b′, z1 ← c1 = c′1, . . . , zm ← cm = c′m]

Lemma 3.9.5 (Second assumption rule) Let ai = a′
i : Ai [Γi] for any 1 ≤ i ≤ n, be n com-

putable judgements and : B [Γ] ≡ A(x1, . . . , xn) type [Γ, x1 : A1, . . . , xn : An] be a computable
judgement. Then the judgement

y(a1, . . . , an) = y(a′
1, . . . , a

′
n) ∈ A(a1, . . . , an) [Γ′]

where Γ′ is the merge without duplication of the contexts Γ1, . . . , Γn, Γ, [y : B] is computable.

Proof. Let Γ′ ≡ s1 : S1, . . . , sk : Sk, y : B, z1 : C1, . . . , zm : Cm, for k ≥ 0, m ≥ 0, where
z1 : C1, . . . , zm : Cm strictly depend on y : B.

(associate judgement) By hypothesis, for any 1 ≤ i ≤ n, ai = a′
i : Ai [Γi] is a computable

judgement; then also its associate judgements ai : Ai [Γi] is computable. Hence, by the previous
lemma, the judgement

y(a1, . . . , an) ∈ A(a1, . . . , an) [Γ′]

is computable.
(substitution :=) Consider any c.c.s. d1 : S1, . . . , dk : Sk, b : B, c1 : C1, . . . , cm : Cm fitting

with Γ′. The proof proceeds as before after noting that b = b : B is computable by the reflexivity
lemma 3.8.5 and that, for any 1 ≤ i ≤ n,

ai = a′
i : Ai [Γ′][s1 := d1, . . . , sk := dk, y := b, z1 := c1, . . . , zm := cm]

is a computable judgement which can be substituted for xi in b = b : B obtaining a computable
judgement which is exactly

y(a1, . . . , an) = y(a′
1, . . . , a

′
n) ∈ A(a1, . . . , an) [Γ′]

[s1 := d1, . . . , sk := dk, y := b, z1 := c1, . . . , zm := cm]

48 CHAPTER 3. THE CANONICAL FORM THEOREM

(substitution ←) Consider any c.c.s. d1 = d′1 : S1, . . . , dk = d′k : Sk, b = b′ : B, c1 = c′1 : C1,
. . . , cm = c′m : Cm fitting with Γ′. The proof proceeds as before by noting that, for any 1 ≤ i ≤ n,

ai = a′
i : Ai [Γ′][s1 ← d1 = d′1, . . . , sk ← dk = d′k, y ← b = b′, z1 ← c1 = c′1, . . . , zm ← cm = c′m]

are computable judgements which can be substituted for xi in b = b′ : B obtaining a computable
judgement which is exactly

y(a1, . . . , an) = y(a′
1, . . . , a

′
n) ∈ A(a1, . . . , an) [Γ′][s1 ← d1 = d′1, . . . ,

. . . , sk ← dk = d′k, y ← b = b′, z1 ← c1 = c′1, . . . , zm ← cm = c′m]

3.9.5 The logical rules

We have now to analyze the rules that we call “logical” since they can be used to interpret a logical
intuitionistic first order calculus or a logical theory of natural numbers. An informal discussion on
the computability of these rules is usually depicted in many of the descriptions of the intuitionistic
type theory and we follow the same ideas. Nevertheless, we want to note that in our experience a
complete formal proof of computability for these rules cannot be carried on without a substantial
use of lemma 3.9.3 on structural rules.

Lemma 3.9.6 (Π-formation rules) The Π-formation rules preserve computability. That is

1. If J1 ≡ A type [Γ] and J2 ≡ B(x) type [Γ, x : A] are computable judgements then the
judgement

Π(A, B) type [Γ]

is computable

2. If J1 ≡ A = C [Γ] and J2 ≡ B(x) = D(x) [Γ, x : A] are computable judgements then the
judgement

Π(A, B) = Π(C, D) [Γ]

is computable.

Proof By induction on the computational complexity α of J1.
Case 1.
Subcase Γ = ∅.

(evaluation) Π(A, B) ⇛ Π(A, B) holds
(correct evaluation) Π(A, B) = Π(A, B) is derivable by using first the Π-formation rule and

then the reflexivity on types rule.
(parts) The parts are J1 and J2 which are assumed to be computable.

Subcase Γ 6= ∅.
(substitution :=) Consider any c.c.s. a1 : A1, . . . , an : An fitting with Γ ≡ [x1 : A1, . . . , xn : An],

then
A type [Γ][x1 := a1, . . . , xn := an]

is computable with computational complexity lower then α;

B(x) type [Γ, x : A][x1 := a1, . . . , xn := an]

is computable, by head substitution lemma 3.8.8, hence the result follows by inductive hypothesis
(case 1).

(substitution ←) Consider any c.c.s. a1 = a′
1 : A1, . . . , an = a′

n : An fitting with the context
Γ ≡ [x1 : A1, . . . , xn : An]. Then

A type [Γ][x1 ← a1 = a′
1, . . . , xn ← an = a′

n]

is computable with computational complexity lower then α;

B(x) type [Γ, x : A][x1 ← a1 = a′
1, . . . , xn ← an = a′

n]

3.9. COMPUTABILITY OF THE RULES 49

is computable, by head substitution lemma, hence the result follows by inductive hypothesis (case
2).
Case 2.
Subcase Γ = ∅.

(associate judgements) The judgements A type and B(x) type [x : A], associate of J1 and J2 are
computable by assumption, and, by point (3.i) of lemma 3.9.3 also C type and D(x) type [x : A] are
computable with the same computational complexity. By point 3.iv of the same lemma, we know
that also D(x) type [x : C] is computable and hence the result follows by inductive hypothesis (case
1).

(parts) They are J1 and J2 which are assumed to be computable.
Subcase Γ 6= ∅.

(associate judgement) The judgements A type [Γ] and B(x) type [Γ, x : A] associate respectively
of J1 and J2 are computable. Hence the result follows by inductive hypothesis (case 1) since the
computational complexity of the judgement A type [Γ] is lower than that of J1.

(substitution :=) and (substitution ←) Similar to the previous case 1 by using inductive hy-
pothesis (case 2).

Lemma 3.9.7 (Π-introduction rules) The Π-introduction rules preserve computability. That
is

1. If J1 ≡ b(x) ∈ B(x) [Γ, x : A], J2 ≡ A type [Γ] and J3 ≡ B(x) type [Γ, x : A] are computable
judgements then

λ(b) ∈ Π(A, B) [Γ]

is computable.

2. If J1 ≡ b(x) = d(x) ∈ B(x) [Γ, x : A], J2 ≡ A type[Γ] and J3 ≡ B(x) type [Γ, x : A] are
computable judgements then the judgement

λ(b) = λ(d) ∈ Π(A, B) [Γ]

is computable.

Proof. By induction on the computational complexity α of J2.
Case 1.

(associate judgement) The computability of the associate judgements is immediate by the pre-
vious lemma 3.9.6 on Π-formation rules.
Subcase Γ = ∅.

(evaluation) λ(b)⇒ λ(b) holds.
(correct evaluation) The judgement λ(b) = λ(b) ∈ Π(A, B) is derivable by using first the Π-

introduction rule and then the reflexivity on elements rule.
(parts) The part is J1 which is assumed to be computable.

Subcase Γ 6= ∅.
(substitution :=) Consider any c.c.s. a1 : A1, . . . , an : An fitting with Γ ≡ [x1 : A1, . . . , xn : An],

then

A type [Γ][x1 := a1, . . . , xn := an]

is computable with computational complexity lower then α;

B(x) type [Γ, x : A][x1 := a1, . . . , xn := an]

is computable, by head substitution lemma 3.8.8,

b(x) ∈ B(x) [Γ, x : A][x1 := a1, . . . , xn := an]

is computable, by head substitution lemma 3.8.8, hence the result follows by inductive hypothesis
(case 1).

50 CHAPTER 3. THE CANONICAL FORM THEOREM

(substitution ←) Consider any c.c.s. a1 = a′
1 : A1, . . . , an = a′

n : An fitting with the context
Γ ≡ [x1 : A1, . . . , xn : An], then also a1 : A1, . . . , an : An is a c.c.s. fitting with Γ, and so

A type [Γ][x1 := a1, . . . , xn := an]

is computable with computational complexity lower then α;

B(x) type [Γ, x : A][x1 := a1, . . . , xn := an]

is computable, by head substitution lemma 3.8.8, and

b(x) ∈ B(x) [Γ, x : A][x1 ← a1 = a′
1, . . . , xn ← an = a′

n]

is computable, by head substitution lemma 3.8.8, hence the result follows by inductive hypothesis
(case 2).
Case 2.
Subcase Γ = ∅.

(associate judgements) The judgement b(x) ∈ B(x) [x : A], which is the associate of J1, is
computable by definition and thus, by point 4.i of lemma 3.9.3, also d(x) ∈ B(x) [x : A] is
computable. Hence the result follows by case 1.

(parts) The part judgement is J1 which is assumed to be computable.
Subcase Γ 6= ∅.
(associate judgements) The judgement b(x) ∈ B(x) [x : A], associate of J1 is computable by

definition, hence the result follows by case 1.
(substitutions :=) and (substitution ←) Similar to the previous case 1 by using inductive

hypothesis (case 2).

Lemma 3.9.8 (Π-elimination rules) The Π-elimination rules preserve computability. That is

1. If the judgements J1 ≡ c ∈ Π(A, B) [Γ], J2 ≡ d(y) ∈ C(λ(y)) [Γ, y : (x : A)B(x)] and
J3 ≡ C(t) type [Γ, t : Π(A, B)] are computable then the judgement

F(c, d) ∈ C(c) [Γ]

is computable.

2. If the judgements J1 ≡ c = c′ ∈ Π(A, B) [Γ], J2 ≡ d(y) = d′(y) ∈ C(λ(y)) [Γ, y : (x : A)B(x)]
and J3 ≡ C(t) type [Γ, t : Π(A, B)] are computable then the judgement

F(c, d) = F(c′, d′) ∈ C(c) [Γ]

is computable.

Proof. By induction on the computational complexity α of J1.
Case 1.

(associate judgements) The computability of the judgement C(c) type [Γ], associate of the
judgement F(c, d) ∈ C(c) [Γ], follows by substitution lemma 3.8.9.
Subcase Γ = ∅.

(evaluation) J1 is computable and Π(A, B) ⇛ Π(A, B), then c ⇒ λ(b) and the judgement
b : (x : A)B(x) is computable; thus it is a c.c.s. fitting with y : (x : A)B(x); therefore J2[y := b],
which is d(b) ∈ C(λ(b)), is a computable judgement. Hence d(b) ⇒ g and the result follows by
using the computation rule.

(correct evaluation) Since J1 is computable, we know that there exists a derivation of the
judgement Π(A, B) type; hence x : Π(A, B) is a correct assumption, and c = λ(b) ∈ Π(A, B) is
derivable. Let Π1 be the following derivation

c = λ(b) ∈ Π(A, B)

x ∈ Π(A, B) [x : Π(A, B)] J2 J3

F(x, d) ∈ C(x) [x : Π(A, B)]

F(c, d) = F(λ(b), d) ∈ C(c)

c = λ(b) ∈ Π(A, B) J3

C(c) = C(λ(b))

F(c, d) = F(λ(b), d) ∈ C(λ(b))

3.9. COMPUTABILITY OF THE RULES 51

Since J1 is computable, so is b(x) ∈ B(x) [x : A] and then J2[y := b] is computable. Thus the
judgements d(b) = g ∈ C(λ(b)) and b(x) ∈ B(x) [x : A] are derivable. Let Π2 be the following
derivation

Π1

F(c, d) = F(λ(b), d) ∈ C(λ(b))

b(x) ∈ B(x) [x : A] Π(A, B) type J2 J3

F(λ(b), d) = d(b) ∈ C(λ(b)) d(b) = g ∈ C(λ(b))

F(λ(b), d) = g ∈ C(λ(b))

F(c, d) = g ∈ C(λ(b))

Hence

Π2

F(c, d) = g ∈ C(λ(b))

C(c) = C(λ(b))

C(λ(b)) = C(c)

F(c, d) = g ∈ C(c)

(parts) Since J1 is computable we know that c ⇒ λ(b) and, by point 3 of fact 3.8.3, that the
judgement λ(b) ∈ Π(A, B) is computable. Hence, by point i of lemma 3.8.7, we can deduce that
the judgement c = λ(b) ∈ Π(A, B) is computable. Therefore, since J3 is computable, we obtain
that the judgement C(λ(b)) = C(c) is a computable. Then, since d(b) ∈ C(λ(b)) is a computable
judgement, so is d(b) ∈ C(c), by point 3.iii of lemma 3.9.3. Hence, since d(b) ⇒ g, the parts of g,
which is also the value of F(c, d), are computable element(s) in the value of C(c).
Subcase Γ 6= ∅

(substitution :=) Immediate by inductive hypothesis (case 1).
(substitution ←) Immediate by inductive hypothesis (case 2).

Case 2.
(associate judgements) The computability of F(c, d) ∈ C(c) [Γ], which is the judgement associate

of F(c, d) = F(c′, d′) ∈ C(c) [Γ], follows by case 1. If Γ is empty, also the computability of
F(c′, d′) ∈ C(c′) follows by case 1. since from the fact that J1 and J2 are computable, by point 4.i
of lemma 3.9.3, we obtain that c′ ∈ Π(A, B) and d′(y)′ ∈ C(λ(y)) [y : (x : A)B(x)] are computable
judgements. Then, since the judgement C(c) = C(c′) is computable, by point 3.iii.a of lemma
3.9.3, F(c′, d′) ∈ C(c′) is computable.
Subcase Γ = ∅.

(parts) The judgement J1 is computable, then c ⇒ λ(b), c′ ⇒ λ(b′) and the judgement
b(x) = b′(x) ∈ B(x) [x : A] is computable. Moreover b = b′ : (x : A)B(x) is a c.c.s. for
y : (x : A)B(x) in J2, and then J2[y ← b = b′], that is the judgement d(b) = d′(b′) ∈ C(λ(b)) is
computable. Then, by point 3.iii.b of lemma 3.9.3, d(b) = d′(b′) ∈ C(c) is a computable judgement,
since, as in the previous point, we can prove that C(λ(b)) = C(c) is a computable judgement. So,
if d(b) ⇒ gd and d′(b′) ⇒ gd′ , the parts of gd and gd′ are computable equal elements in the value
of C(c).
Subcase Γ 6= ∅.

(substitution :=) and (substitution ←) Immediately follow by inductive hypothesis (case 2.).

Lemma 3.9.9 (Π-equality rule) The Π-equality rule preserves computability, i.e., if the judge-
ments J1 ≡ b(x) ∈ B(x) [Γ, x : A], J2 ≡ Π(A, B) type [Γ], J3 ≡ d(y) ∈ C(λ(y)) [Γ, y : (x : A)B(x)]
and J4 ≡ C(t) type [Γ, t : Π(A, B)] are computable then the judgement

F(λ(b), d) = d(b) ∈ C(λ(b)) [Γ]

is computable.

Proof. The proof is by induction on the computational complexity α of J2.
(associated judgements) J1 and J2 are computable judgements by assumption. Thus, lemma

3.9.7 on Π-introduction rules yields that λ(b) ∈ Π(A, B) [Γ] is a computable judgement, and hence
F(λ(b), d) ∈ C(λ(b)) [Γ] is computable by the previous lemma on Π-elimination rules. Moreover,
if Γ is empty, since J1 and J3 are computable, we obtain that J3[y := b], i.e. the second associate
judgement d(b) ∈ C(λ(b)), is computable.
Subcase Γ = ∅.

52 CHAPTER 3. THE CANONICAL FORM THEOREM

Since F(λ(b), d) and d(b) evaluate into the same canonical element, the computability of the
judgement F(λ(b), d) = d(b) ∈ C(λ(b)) follows from the computability of the associated judgements.
Subcase Γ 6= ∅.

(substitution :=) It immediately follows by inductive hypothesis.
(substitution ←) Consider any c.c.s. a1 = a′

1 : A1, . . . , an = a′
n : An fitting with the context

Γ ≡ [x1 : A1, . . . , xn : An], then also a1 : A1, . . . , an : An is a c.c.s. fitting with Γ, and, by inductive
hypothesis we obtain that

F(λ(b), d) = d(b) ∈ C(λ(b)) [Γ][x1 := a1, . . . , xn := an]

is computable.
Moreover, since J3[y := b] is computable, also J3[y := b][x1 ← a1 = a′

1, . . . , xn ← an = a′
n],

which is
d(b) ∈ C(λ(b)) [Γ][x1 ← a1 = a′

1, . . . , xn ← an = a′
n]

is computable and then the result follows by transitivity.

For all the other cases, with a few exceptions, the proof goes on analogously to the Π case. In
the following we will stress the essential points.

• We proceed always by induction on the computational complexity of the first premise such
that none of its assumptions is discharged.

• For each type we must consider the rules in the following association and ordering:

– the two formation rules

– the two introduction rules

– the two elimination rules (with the exception of the cases of the Eq and U types)

– the equality rule.

The ordering is important since, in some cases, to carry on the proof we need to apply a rule
which precedes the considered one in the given ordering and therefore we must have already
proved that such a rule preserves computability. For instance, when the first introduction rule
is considered, the computability of the associate judgement follows by applying the formation
rule to some suitable judgements which are among the premises.

The association is important since, when the first of the two associated rules is considered, to
prove the computability of the substituted judgements (substitution←) we apply the second
rule while, when the second rule is considered, the computability of the associate judgements
follows by applying the first rule.

(associate judgements)

• As regard to the first introduction rule, the computability of the associate judgements follows,
as already noted, by applying the formation rule to suitable judgements which are among
the premises.

• As regard to the first elimination rule, the computability of the associate judgements follows
by applying a suitable substitution to one of the premise. U -elimination rules are different
and they had been treated in Lemma 3.9.2.

• As regard to the second formation, introduction or elimination rule, the computability of
the associate judgements follows, by inductive hypothesis, by applying the first rule to the
associate of the premises or to their variants whose computability is assured by definition or
by lemma 3.9.3 and also lemma 3.9.2 when U -introductions are considered. These lemmas
are needed in order to prove the computability of the second associate judgement or to allow
switching the assumptions from one type to a computationally equal one. For instance, in
the Π-case from the computability of the judgements B(x) = D(x) [x : A] and A = C,
we deduced, by points 3.i and 3.iv of lemma 3.9.3, the computability of D(x) type [x : C]

3.9. COMPUTABILITY OF THE RULES 53

which is a variant of the computationally equal judgement B(x) type [x : A]. Only for the
elimination rules, in the case Γ 6= ∅, the application of the first rule does not immediately
produce the wanted associate: a changing of type is required, and allowed by lemma 3.9.3,
since C(c) = C(c′) is a computable judgement. Clearly Eq-elimination is an exception (there
is only one elimination rule). In this case, when a substitution e = f : is considered in order
to prove the computability of a hypothetical judgement a = b ∈ A [Γ] derived from the
computable premises c ∈ Eq(A, a, b) [Γ], A type [Γ], a ∈ A [Γ], b ∈ A [Γ], the computability of
the saturated judgement can be proved as follows. The substitution e : is first applied to the
premises in order to obtain, by inductive hypothesis, that the judgement a = b ∈ A [Γ][.. := e]
is computable; then the substitution e = f : is applied to the judgement b ∈ A [Γ]; the result
follows by transitivity (point 1.1 of lemma 3.9.3).

• As regard to the equality rule, the computability of the first associate is obtained by using
an instance of the introduction rule and an instance of the elimination rule of the considered
type. In the case Γ = ∅, the computability of the other associate judgement is obtained by
a suitable use of the substitution rules, that is easy, even if not immediate, also in the case
of the inductive types N and W. The only exception is the type U where suitable formation
rules, that preserves computability (see Lemma 3.9.2), must be applied to the judgements of
kind type that one obtain by using the first U-elimination rule.

(evaluation), (correct evaluation), (parts)

• When formation or introduction rules are considered, the points (evaluation), (correct eval-
uation), (parts), are always immediate.

• As regards elimination rule, the points (evaluation), (correct evaluation), (parts), in the case
Γ = ∅, must be a little more detailed.

Case 1: first elimination rule.

Let non− can− el ∈ C(c) be the conclusion of the considered rule (in the Π-case we have
F(c, d) ∈ C(c)). First of all, note that there is always a premise of the form c ∈ Tp where
the outermost constant of the expression Tp characterizes the type to which the elimination
refers (in the Π-case we have c ∈ Π(A, B)), a hypothetical type-judgement depending on Tp

(in the Π-case we have C(t) type [t : Π(A, B)]) and one or more other minor premises (in the
Π-case we have d(y) ∈ C(λ(y)) [y : (x : A)B(x)]). Then the proof gets on in the following
way.

– (evaluation) The canonical value gc of c (λ(b) in the Π-case), which exists since the major
premise c ∈ Tp is computable, allows one to choose which minor premises to analyze (in
the Π-case there is only one minor premise, that is d(y) ∈ C(λ(y)) [y : (x : A)B(x)]).
When this is a hypothetical judgement it must be saturated and the part judgements
of the major premise gives us some of the substitutions needed to saturate it (in the
Π-case we obtained d(b) ∈ C(λ(b))). This saturated judgement, sat− el ∈ C(gc) is
computable and its evaluation is exactly what we are looking for. Usually the parts of
the major premise together with the other premises provides all the needed substitutions;
exceptions are the cases U, which had been considered in lemma 3.9.2, N and W where
an induction on the complexity of the major premise is necessary to build the suitable
substitution. Let us develop these two cases in detail.

∗ N-elimination. The premises are c ∈ N, d ∈ C(0), e(x, y) ∈ C(s(x)) [x : N, y : C(x)]
and C(t) type [t : N] Then, c ∈ N is computable; thus either c⇒ 0 or c⇒ s(a).
If c ⇒ 0 then we choose d ∈ C(0) among the minor premises and the value of
d, which exists since d ∈ C(0) is computable, is just the value of Nrec(c, d, e).
Otherwise, if c ⇒ s(a), we choose e(x, y) ∈ C(s(x)) [x : N, y : C(x)]. Now,
a ∈ N is computable; then a : N is a c.c.s. fitting with x : N. Moreover,
comp(a ∈ N) < comp(c ∈ N); thus, by inductive hypothesis, Nrec(a, d, e) ∈ C(a) is
computable and hence a : N together with Nrec(a, d, e) : C(a) is a c.c.s. fitting with
x : N, y : C(x). Hence e(a, Nrec(a, d, e)) ∈ C(s(a)) is computable and the value of
e(a, Nrec(a, d, e)) is just the value of Nrec(c, d, e).

54 CHAPTER 3. THE CANONICAL FORM THEOREM

∗ W-elimination. Note that the judgment c ∈ W(A, B) is computable by assump-
tion; then c ⇒ sup(a, b) and a ∈ A and b(x) ∈ W(A, B) [x : B(a)], that is
b : (x : B(a)) W(A, B), are computable judgements. Hence we obtaind that a : A,
b : (x : B(a)) W(A, B) is a c.c.s. fitting with z : A, y : (x : B(z)) W(A, B). Then, by
applying a W-elimination rule on b(x) ∈ W(A, B)[x : B(a)] instead of c ∈ W(A, B)
we obtain by inductive hypothesis that Trec(b(x), d) ∈ C(b(x)) [x : B(a)] is a
computable judgement, because the computational complexity of the judgement
b(x) ∈W(A, B) [x : B(a)] is lower than the computational complexity of the judge-
ment c ∈ W(A, B). Now, note that the judgement Trec(b(x), d) ∈ C(b(x)) [x : B(a)]
is equivalent by definition to (x) Trec(b(x), d) : (x : B(a)) C(b(x)) and hence it
is a c.c.s. fitting with t : (x : B(a)) C(b(x)). Then, by substituting, we ob-
tain that d(a, b, (x) Trec(b(x), d)) ∈ C(sup(a, b)) is computable and the value of
d(a, b, (x) Trec(b(x), d)) is exactly the value of Trec(c, d) we are looking for.

– (correct evaluation) For each canonical value of the major premise a derivation can be
constructed analogously to what we did in the Π-case. It is sufficient to substitute
any application of Π-elimination and Π-equality rules by the corresponding one for the
considered type.

– (parts) The computability of the major premise c ∈ Tp guarantees, by lemma 3.8.3 and
point i of lemma 3.8.7, the computability of the judgement c = gc ∈ Tp (in the Π-case we
had c = λ(b) ∈ Π(A, B)). This fact yields that the type equality judgement C(c) = C(gc)
is computable (in the Π-case we proved that C(c) = C(λ(b)) is computable). Now, if
we consider the computable judgement built up to prove the previous evaluation point,
sat− el ∈ C(gc) (in the Π-case we had d(b) ∈ C(λ(b))), by point 3.iii of lemma 3.9.3, we
obtain that sat− el ∈ C(c) is computable (in the Π-case we had d(b) ∈ C(c)). Hence if
sat− el⇒ can− el and C(c)⇒ canC , then also non− can− el⇒ can− el and the parts
of can− el are computable elements in canC .

Case 2: second elimination rule.

Let non− can− el1 = non− can− el2 ∈ C(c) be the conclusion of the rule.

(parts) First of all, note that the computability of the first associate of the major premise,
c = c′ ∈ Tp, guarantees the computability of the judgement C(c) = C(gc). Then, analo-
gously to the case 1 of the first elimination rule, we can choose the suitable minor premise
and saturate it by using ← instead of :=. By the computability of the resulting judge-
ment sat− el1 = sat− el2 ∈ C(gc) together with that of C(c) = C(gc), we will obtain the
computability of sat− el1 = sat− el2 ∈ C(c). From this the result is immediate.

• For the equality rule, the point (parts), follow easily since, by point i of lemma 3.8.7 (or point
ii when the type U is considered), the computability of the associate judgements together with
the definition of the evaluation process⇒, guarantees the computability of the judgement in
the conclusion.

(substitution :=)

• The point (substitution :=) always follows, by induction, by first applying the same substi-
tution to the premises and next applying again the same rule to the resulting judgements.
Note that when a rule which discharges assumptions is considered, we must apply a head
substitution which preserves computability.

(substitution ←)

• For the first formation, introduction or elimination rule, the point (substitution←) follows, by
inductive hypothesis, by applying the second rule in the association to judgements obtained
by properly substituting the given premises. In some cases, when a rule which discharges
assumptions is considered, the computability of the suitably substituted premises is stated
by the head substitution lemma 3.8.8.

3.10. THE COMPUTABILITY THEOREM 55

• For the second formation, introduction or elimination rule, the proof of the point (substitution
←) follows by applying the same rule to judgements obtained by wisely applying the same
substitution e = f : or its associate e : to the given premises.

• For the equality rule, when the substitution e = f : is considered in proving the point (sub-
stitution ←), we will proceed as follows. On one side we apply the same rule to judgements
obtained by applying the associate substitution e : to the premises. On the other side, we
apply the substitution e = f : to a judgement built up by applying a suitable head substi-
tution to the minor premise analogously to what done for the (evaluation) point. The result
then follows by transitivity (consider again the Π-case as a typical example). For the U-case
we must build up a first judgement by applying the same rule to judgements obtained by
applying the substitution e : to the given premises, and a second one by applying a formation
rule to the result of applying the U-elimination to the premises. The result then follows by
transitivity. Note that all the rules used in the construction preserve computability.

3.10 The computability theorem

Now we can state our main theorem: it shows that any derivable judgement is computable and
hence that all the properties we ask for a judgement to be computable hold for any derivable
judgement.

Theorem 3.10.1 (Computability theorem) Let J be any derivable judgement. Then J is com-
putable.

From a proof-theoretical point of view the main meta-theoretical result on a deductive system in
natural deduction style as ours, is a normal form theorem, i.e. a theorem that states that any proof
can be transformed in a new one with the same conclusion but enjoying stronger structure prop-
erties. These properties generally allow in turn to deduce important properties on the considered
deduction system such as its consistency. Our computability theorem does not regard derivations
but still is strongly related to normal form theorems as the following definitions will clarify.

Definition 3.10.2 (Canonical proof) A proof Π of a judgement J is canonical if

1. J ≡ A type or J ≡ A = B and the last inference step in Π is a formation rule.

2. J ≡ a ∈ A or J ≡ a = b ∈ A and the last inference step in Π is an introduction rule.

A canonical proof might be also called “normal at the end”. Clearly not every closed judgement
can be derived by a canonical proof. This holds only for the judgements which, according to the
following definition, are in canonical form.

Definition 3.10.3 (Canonical form) Let J be a closed judgement. Then

• if J ≡ A type and A ⇛ GA then the canonical form of J is GA type;

• if J ≡ A = B and A ⇛ GA and B ⇛ GB then the canonical form of J is GA = GB ;

• if J ≡ a ∈ A and a⇒ ga and A ⇛ GA then the canonical form of J is ga ∈ GA;

• if J ≡ a = b ∈ A and a ⇒ ga and b ⇒ gb and A ⇛ GA then the canonical form of J is
ga = gb ∈ GA.

Corollary 3.10.4 (Canonical-form theorem) Let J be a derivable closed judgement then there
exists a canonical proof of the canonical form of J .

Proof. Since J is derivable then it is computable and hence there exist a derivation of its parts
judgements since they also are computable. By putting them together with a formation or an
introduction rule we obtain a canonical proof of the canonical form of J .

It is easy to see that if J is a derivable closed judgement then its computability implies that its
canonical form is a judgement equivalent to J , in fact:

56 CHAPTER 3. THE CANONICAL FORM THEOREM

• if J ≡ A type and A ⇛ GA then the canonical form of J is GA type and the computability
of J assures that A = GA is derivable.

• if J ≡ A = B and A ⇛ GA and B ⇛ GB then the canonical form of J is GA = GB and the
computability of J assures that A = GA and B = GB are derivable judgements.

• if J ≡ a ∈ A and a ⇒ ga and A ⇛ GA then the canonical form of J is ga ∈ GA and the
computability of J yields that A = GA and a = ga ∈ A are derivable judgements.

• if J ≡ a = b ∈ A and a ⇒ ga, b ⇒ gb and A ⇛ GA then the canonical form of J is
ga = gb ∈ GA and the computability of J assures that A = GA, a = ga ∈ A and b = gb ∈ A
are derivable judgements.

Then the previous canonical form theorem is, in our system, the counterpart of a standard
normal form theorem since it guarantees that if J is a closed derivable judgement then we can
construct a canonical proof for a judgement equivalent to J . Moreover it allows us to deduce most
of the results usually obtained by a normal form theorem such as, for instance, consistency.

Corollary 3.10.5 (Consistency of HITT) The Higher order Intuitionistic Theory of Type is
consistent.

Proof. Since the judgement c ∈ N0 is not computable and then it cannot be derivable.

Note that this result establishes also the consistency of the original ITT. As we could expect,
the minimal properties, which are usually asked for a logical system to be considered constructive,
immediately follow just by reading the definition of computable judgement.

Corollary 3.10.6 (Disjunction property) If the judgement c ∈ +(A, B) is derivable then either
there exists an element a such that a ∈ A is derivable or there exists an element b such that b ∈ B
is derivable.

Proof. If c ∈ +(A, B) is derivable then it is computable and hence either c⇒ inl(a) and a ∈ A is
derivable or c⇒ inr(b) and b ∈ B is derivable.

Corollary 3.10.7 (Existential property) If the judgement c ∈ Σ(A, B) is derivable then there
exists an element b such that the judgement b ∈ B(a) is derivable for some a ∈ A.

Proof. If c ∈ Σ(A, B) is derivable then it is computable and hence c ⇒ 〈a, b〉 and a ∈ A and
b ∈ B(a) are derivable judgements.

Other consequences of the computability theorem can be stated when the Intuitionistic Theory
of Type is viewed as a formal system to derive programs, that is when a type is interpreted as the
specification of a problem and an element in this type as the program which meets this specification.
In this environment an expression denoting an element in a type is thought as a program written in
a functional language whose operational semantics is given by the computation rules and hence to
execute a program corresponds to evaluating it. The computability theorem shows that whenever
we prove that a program a is partially correct with respect to its specification A, i.e. we derive the
judgement a ∈ A, then we know also that it is totally correct, that is its evaluation terminates.

Corollary 3.10.8 (Evaluation theorem) Any provable expression can be evaluated, that is

1. If A type is a provable judgement then A has a canonical value.

2. If a ∈ A is a provable judgement, then a has a canonical value.

Thus any program whose evaluation does not terminate, such as the famous Church’s non-
terminating function, cannot be typed in HITT.

Related works. We should like to thank the referee for his comments and suggestions and for
pointing out to us related works, in particular [All86] and [All87] where similar results are proved
by a realizability-like semantics.

Chapter 4

Properties of Type Theory

4.1 Summary

In this chapter some meta-mathematical properties of Martin-Löf’s type theory will be presented.

In the first part we will show that decidability of a property over elements of a set A can be
reduced to the problem of finding a suitable function from A into the set Boole (≡ N2).

Then an intuitionistic version of Cantor’s theorem will be shown which proves that there is
no bijection between the set N of the natural numbers and the set N → N of the functions from
natural numbers into natural numbers.

Finally, the “forget-restore” principle will be illustrated by analyzing a simple case in Martin-
Löf’s type theory. Indeed, type theory offers a way of “forgetting” information, that is, supposing
A set, the form of judgment A true. The meaning of A true is that there exists an element a
such that a ∈ A but it does not matter which particular element a is (see also the notion of proof
irrelevance in [Bru80]). Thus to pass from the judgment a ∈ A to the judgment A true is a clear
example of the forgetting process. In this section we will show that it is a constructive way to
forget since, provided that there is a proof of the judgment A true, an element a such that a ∈ A
can be re-constructed.

4.2 Decidability is functionally decidable

Introduction and basic lemmas

In this section we show that the usual intuitionistic characterization of the decidability of the
propositional function B(x) prop [x : A], that is to require that the predicate (∀x ∈ A) B(x)∨¬B(x)
is provable, is equivalent, when working within the framework of Martin-Löf’s Intuitionistic Type
Theory, to require that there exists a decision function φ : A→ Boole such that

(∀x ∈ A) (φ(x) =Boole true)↔ B(x)

Since we will also show that the proposition x =Boole true [x : Boole] is decidable, we can alter-
natively say that the main result of this section is a proof that the decidability of the predicate
B(x) prop [x : A] can be effectively reduced by a function φ ∈ A → Boole to the decidability of
the predicate φ(x) =Boole true [x : A]. All the proofs are carried out within the Intuitionistic Type
Theory and hence the decision function φ, together with a proof of its correctness, is effectively
constructed as a function of the proof of (∀x ∈ A) B(x) ∨ ¬B(x).

This result may not be completely new (for instance in a personal communication Martin-Löf
said that he already knew it) but since, to my knowledge, there is no published material on this
topic this note may be useful to a wider audience. In fact, apart from its intrinsic relevance, this
result is also a good exercise in ITT since in order to be able to obtain its proof one has to use
some of the most interesting properties of ITT. In this paragraph we will recall these properties,
and their proofs, to the reader who is not familiar with ITT, but to avoid to bore the reader who

57

58 CHAPTER 4. PROPERTIES OF TYPE THEORY

is familiar with ITT we will not recall all the basic definitions which can be found in [Mar84] or
[NPS90].

Since in most of the results the type Boole plays a central role, let us begin by recalling some
of its properties. First of all recall that the canonical elements of the type Boole are true and false

and that, supposing C(x) prop [x : Boole], the Boole-elimination rule allows to obtain

if c then d else e ∈ C(c)

provided c ∈ Boole, d ∈ C(true) and e ∈ C(false).

Lemma 4.2.1 Let P (x) prop [x : Boole] and c ∈ Boole; then

P (c)→ P (true) ∨ P (false)

Proof. The proof is just an application of the Boole-elimination rule. In fact if c ∈ Boole then

if c then λx.inl(x) else λy.inr(y) ∈ P (c)→ P (true) ∨ P (false)

since λx.inl(x) ∈ P (true)→ P (true) ∨ P (false) and λy.inr(y) ∈ P (false)→ P (true) ∨ P (false).

Let us recall that, supposing c, d ∈ Boole, by c =Boole d we mean the intensional equality
proposition for elements of Boole, denoted in the appendix B by the type Id. Its main properties
are that

• if c = d ∈ Boole then c =Boole d is true,

• if c =Boole d is true and A(x) prop [x : Boole] is a proposition on elements of Boole such that
a ∈ A(c) then move(c, a) ∈ A(d),

• if c =Boole d is true, a(x) ∈ A [x : Boole] and y =A z prop [y, z : A] is the intensional equality
proposition for elements of the type A then a(c) =A a(d) is true.

Hence the following corollary is immediate.

Corollary 4.2.2 Let c ∈ Boole; then (c =Boole true) ∨ (c =Boole false).

Proof. Suppose P (x) ≡ c =Boole x [x : Boole], then the previous lemma shows that

(c =Boole c)→ (c =Boole true) ∨ (c =Boole false)

Now the statement is obvious since c =Boole c is straightforward.

We have then proved that in Boole there are at most two elements; by means of the universe
of the small types U, whose elements are (the codes of) the basic types, we can show that in Boole

there are exactly two elements. To obtain this result it is convenient to use the equality proposition
A =U B prop [A, B : U] for elements of the type U. Besides the properties analogous to those above
for the equality proposition for the elements of the type Boole, in this case one can also prove that
if A =U B is true and a ∈ A then shift(a) ∈ B.

Lemma 4.2.3 ¬(true =Boole false)

Proof. Assume that y : Boole. Then a Boole-elimination can be used to shows that

if y then ⊤ else ⊥ ∈ U

where ⊤ is the one-element type and ⊥ is the empty type.
Let us now assume that x : true =Boole false, i.e. let us assume that true =Boole false is true.

Then we obtain that
if true then ⊤ else ⊥ =U if false then ⊤ else ⊥

and hence ⊤ =U ⊥ since the equality proposition is transitive and ⊤ =U if true then ⊤ else ⊥
and if false then ⊤ else ⊥ =U ⊥ hold; hence, supposing ∗ is the only element of the type ⊤,

4.2. DECIDABILITY IS FUNCTIONALLY DECIDABLE 59

shift(∗) ∈ ⊥, that is we have found an element in the empty type; so, by discharging the assumption
x : true =Boole false, we finally obtain λx. shift(∗) ∈ ¬(true =Boole false).

We showed a full detailed proof of this lemma to stress the fact that it is completely carried
out within ITT with the universe U of the small types.

By using lemma 4.2.3 and a little of intuitionistic logic one can prove the following not very
surprising result.

Lemma 4.2.4 (c =Boole false) if and only if ¬(c =Boole true).

Even if the previous lemma is straightforward when we combine it with 4.2.2 we obtain an
interesting result: the predicate x =Boole true [x : Boole] is decidable.

Corollary 4.2.5 For all c ∈ Boole, (c =Boole true) ∨ ¬(c =Boole true).

There is another property that we need to recall because of its relevance in the following: thanks
to the constructive meaning of the logical connectives a sort of Axiom of Choice holds in ITT (here
we show a statement which is not the strongest one that can be proved but it is sufficient for us).

Lemma 4.2.6 Let A, B be two types and C(x, y) prop [x : A, y : B]; then

((∀x ∈ A)(∃y ∈ B) C(x, y))→ ((∃f ∈ A→ B)(∀x ∈ A) C(x, f(x)))

Proof. A complete proof can be found in [Mar84] where a choice function f ∈ A→ B is constructed
together with a formal proof that for any x ∈ A, C(x, f(x)) holds; anyhow the basic intuition to
obtain the proof is rather simple: suppose h is (the code for) a proof of (∀x ∈ A)(∃y ∈ B) C(x, y)
then, for any x ∈ A, (the value of) h(x) is a couple whose first element fst(h(x)) belongs to B while
the second element is a proof of C(x, fst(h(x))); the choice function is then λx.fst(h(x)) ∈ A→ B.

Also in this case we want to observe that the proof explicitly shows how to construct a choice
function in A→ B provided that we have a proof of (∀x ∈ A)(∃y ∈ B) C(x, y).

4.2.1 The main result

This paragraph is completely devoted to the proof of the following theorem.

Theorem 4.2.7 Let B(x) prop [x : A]; then the following statements are equivalent:
(1) There exists a decision function φ : A→ Boole such that, for all x ∈ A, φ(x) =Boole true if

and only if B(x) is true.
(2) for all x ∈ A, B(x) ∨ ¬B(x).

We can straight away prove that (1) implies (2). In fact, let us suppose that φ : A → Boole

is a decision function for the proposition B(x) prop [x : A] and let us assume that x ∈ A. Then,
because of corollary 4.2.5, we know that

(φ(x) =Boole true) ∨ ¬(φ(x) =Boole true)

and hence we can conclude
B(x) ∨ ¬B(x)

by ∨-elimination. In fact φ(x) =Boole true immediately implies that B(x) is true, and hence that
B(x) ∨ ¬B(x) is true, since φ is a decision function. On the other hand the same conclusion can
be obtained from the assumption ¬(φ(x) =Boole true) by using the following derivation which again
makes use of the fact that φ is a decision function:

[B(x)]1

φ(x) =Boole true ¬(φ(x) =Boole true)

⊥
¬B(x)

1

B(x) ∨ ¬B(x)

60 CHAPTER 4. PROPERTIES OF TYPE THEORY

Let us now show that (2) implies (1); we do not only have to provide a function φ : A→ Boole,
which would be easy, but we have also to show that it is a decision function. This is the reason
why we need some preliminary lemmas.

Lemma 4.2.8 Let B(x) prop [x : A]; then

(∀x ∈ A) B(x) ∨ ¬B(x)→
(∀x ∈ A)(∃y ∈ Boole)(y =Boole true→ B(x)) & (y =Boole false→ ¬B(x))

Proof. The proof is just an application of the ∨-elimination rule. In fact let us suppose that
(∀x ∈ A) B(x) ∨ ¬B(x) holds and assume that x ∈ A, then we have to show

(∃y ∈ Boole) (y =Boole true→ B(x)) & (y =Boole false→ ¬B(x))

from B(x) ∨ ¬B(x) and hence all we need are the following deductions:

B(x)

true =Boole true→ B(x)

¬(true =Boole false)

true =Boole false→ ¬B(x)

(true =Boole true→ B(x)) & (true =Boole false→ ¬B(x))

(∃y ∈ Boole) (y =Boole true→ B(x)) & (y =Boole false→ ¬B(x))

and
¬(false =Boole true)

false =Boole true→ B(x)

¬B(x)

false =Boole false→ ¬B(x)

(false =Boole true→ B(x)) & (false =Boole false→ ¬B(x))

(∃y ∈ Boole) (y =Boole true→ B(x)) & (y =Boole false→ ¬B(x))

Thanks to lemma 4.2.8, we are in the position to take advantage of the axiom of choice in order
to obtain the following corollary.

Corollary 4.2.9 Let B(x) prop [x : A]; then

(∀x ∈ A) B(x) ∨ ¬B(x)→
(∃φ ∈ A→ Boole)(∀x ∈ A)(φ(x) =Boole true→ B(x))&(φ(x) =Boole false→ ¬B(x))

Hence we have obtained the proof of the main theorem; in fact this corollary shows that if we
have a proof of (∀x ∈ A) B(x) ∨ ¬B(x) then both

(†) there exists a function φ : A → Boole, and since all the proofs were developed within ITT
we can effectively construct it, and

(‡) such a function is a decision function for B(x); in fact if φ(x) =Boole true then B(x) is
true and, on the other hand, if B(x) is true we can use the following derivation to show that
φ(x) =Boole true:

φ(x) =Boole true ∨ φ(x) =Boole false

[φ(x) =Boole false]1 φ(x) =Boole false→ ¬B(x)

¬B(x) B(x)

⊥
¬(φ(x) =Boole false)

1

φ(x) =Boole true

We can save a curious reader the trouble of doing some work if we say that, supposing
h ∈ (∀x ∈ A) B(x) ∨ ¬B(x), the decision function which we obtain (after some unessential simpli-
fication) is

φ ≡ λx. fst(D(h(x),
(z) < true, < λw. z, λu. R0(shift(∗)) >>,
(z) < false, < λu. R0(shift(∗)), λw. z >>)).

4.3. AN INTUITIONISTIC CANTOR’S THEOREM 61

We can simplify it by far if we disregard all the parts which do not have a computational content
and which appear in φ only because of the way we obtained it; in fact the function

φ′ ≡ λx.D(h(x), (z) true, (z) false)

has obviously the same computational behavior as φ; the drawback is that we lack a formal proof
that φ′ is a decision function for B(x). Of course we can obtain such a proof by using the fact
that φ is a decision function for B(x). In fact we can prove that (∀x ∈ A) φ(x) =Boole φ′(x)
is true, because in general, supposing A, B, C, D are types, c ∈ A + B, d(z) ∈ C × D [z : A],
e(z) ∈ C ×D [z : B], the equality proposition

fst(D(c, (z) d(z), (z) e(z)) =C D(c, (z) fst(d(z)), (z) fst(e(z)))

holds.

4.3 An intuitionistic Cantor’s theorem

Introduction

An intuitionistic version of Cantor’s theorem, which shows that there is no surjective function from
the type of the natural numbers N into the type N→ N of the functions from N into N, is proved
within Martin-Löf’s Intuitionistic Type Theory with the universe of the small types.

4.3.1 Cantor’s theorem

In this section we show that within Martin-Löf’s Intuitionistic Type Theory with the universe of
the small types [Mar84, NPS90] (ITT for short in the following) a version of Cantor’s theorem
holds, which shows that there is no surjective function from the type of the natural numbers N

into the type N → N of the functions from N into N. As the matter of fact a similar result can
be stated for any not-empty type A such that there exists a function from A into A which has no
fixed point, as is the case of the successor function for the type N. In order to express Cantor’s
theorem within ITT we need the intensional equality proposition: let A be a type and a, c ∈ A,
then by a =A c we mean the intensional equality proposition for elements of type A (see the type
denoted by Id in the appendix B or [NPS90]).

Theorem 4.3.1 (ITT Cantor’s theorem) Let N be the type of the natural numbers; then

¬(∃f ∈ N→ (N→ N))(∀y ∈ N→ N)(∃x ∈ N) f(x) =N→N y

To prove this theorem some lemmas are useful. Indeed we need to obtain a contradiction from
the assumption

(∃f ∈ N→ (N→ N))(∀y ∈ N→ N)(∃x ∈ N) f(x) =N→N y

i.e. from the two assumptions f ∈ N→ (N→ N) and (∀y ∈ N→ N)(∃x ∈ N) f(x) =N→N y.
By using the basic idea of the classic proof of Cantor’s theorem, from the first assumption we

can prove λx.s(f(x)(x)) ∈ N → N, where s : (x : N)N is the successor function, by the following
deduction:

[x : N]1

[x : N]1 f ∈ N→ (N→ N)

f(x) : N→ N

f(x)(x) ∈ N

s(f(x)(x)) ∈ N

λx.s(f(x)(x)) ∈ N→ N
1

We can now use this function in the second assumption in order to obtain

(∃x ∈ N) f(x) =N→N λx.s(f(x)(x)).

So our problem becomes to obtain a contradiction from the two assumptions x : N and
f(x) =N→N λx.s(f(x)(x)). We can use these assumptions to prove, by transitivity of the equality

62 CHAPTER 4. PROPERTIES OF TYPE THEORY

proposition, that f(x)(x) =N s(f(x)(x)) is true since in general if A and B are types and a =A c
and f =A→B g then f(a) =B g(c) and obviously (λx.s(f(x)(x)))(x) =N s(f(x)(x)) is true.

We can thus re-state our aim by saying that we have to prove that ITT is not consistent with
the assumption that the successor function has a fixed point. To prove this result we can transpose
a well known categorical arguments within ITT [Law69, HP90]. Let us recall that we can solve the
usual recursive definition of the sum between two natural numbers

{
n + 0 = n : N

n + s(x) = s(n + x) : N

by putting n + x ≡ Nrec(x, n, (u, v) s(v)). Then the following lemma can be proved by induction.

Lemma 4.3.2 For any n, x ∈ N, n + s(x) =N s(n) + x.

As for the sum, we can solve the recursive equation for the predecessor function

{
p(0) = 0 : N

p(s(x)) = x : N

by putting p(x) ≡ Nrec(x, 0, (u, v) u), and then that for the subtraction

{
n− 0 = n : N

n− s(x) = p(n− x) : N

by putting n− x ≡ Nrec(x, n, (u, v) p(v)).

Lemma 4.3.3 For any x ∈ N, (∀n ∈ N) (n + x) − x =N n.

Proof. By induction on x. If x = 0 then (n + 0) − 0 =N n + 0 =N n. On the other hand,
if we assume by inductive hypothesis that (∀n ∈ N) (n + x) − x =N n, then we obtain that
(n + s(x)) − s(x) =N p((n + s(x))− x) =N p((s(n) + x) − x) =N p(s(n)) =N n. 2

We can apply this lemma to the case n = 0 and obtain the following corollary.

Corollary 4.3.4 For any x ∈ N, x− x =N 0.

Proof. Immediate, since 0 + x =N x holds for each x ∈ N. 2

Now we conclude our proof. Let us write ω to mean the fixed point of the successor function,
i.e. ω =N s(ω). Then the following lemma holds.

Lemma 4.3.5 For any x ∈ N, ω − x =N ω.

Proof. Again a proof by induction on x. If x = 0 then ω − 0 =N ω and, supposing ω − x =N ω,
we obtain ω − s(x) =N p(ω − x) =N p(ω) =N p(s(ω)) =N ω. 2

So we proved that ω − ω =N 0 by corollary 4.3.4 and also that ω − ω =N ω by lemma 4.3.5;
hence 0 =N ω =N s(ω). Finally we reach a contradiction.

Theorem 4.3.6 For any x ∈ N, ¬(0 =N s(x))

Proof. By using an elimination rule for the type N, from the assumption y : N, we obtain
Nrec(y,⊥, (u, v) ⊤) ∈ U, where U is the universe of the small types, ⊥ is the empty type and
⊤ is the one-element type. Now let us assume that x ∈ N and that 0 =N s(x) is true, then
Nrec(0,⊥, (u, v) ⊤) =U Nrec(s(x),⊥, (u, v) ⊤) since in general if A and B are types and a =A c
is true and b(x) ∈ B [x : A] then b(a) =B b(c) is true. Hence, by transitivity of the equality
proposition, ⊥ =U ⊤ since ⊥ =U Nrec(0,⊥, (u, v) ⊤) and Nrec(s(x),⊥, (u, v) ⊤) =U ⊤. Then,
because of one of the properties of the equality proposition for the elements of the type U, ⊥
is inhabited since ⊤ is and hence, by discharging the assumption 0 =N s(x), we obtain that
¬(0 =N s(x)) is true. 2

4.4. THE FORGET-RESTORE PRINCIPLE 63

Thus the proof of theorem 4.3.1 is finished since we have obtained the contradiction we were
looking for. Anyhow we stress on the fact that a similar result holds for any type A such that there
exists a function from A into A with no fixed point. In fact, in this hypothesis, we can prove that
there exists a function g from A→ (A → A) into A→ A which supplies, for any function h from
A into A→ A, a function g(h) ∈ A→ A which is not in the image of h.

Theorem 4.3.7 Let A be a type; then

(∃f ∈ A→ A)(∀x ∈ A) ¬(f(x) =A x)→
(∃g ∈ (A→ (A→ A))→ (A→ A))(∀h ∈ A→ (A→ A))(∀x ∈ A) ¬(g(h) =A→A h(x))

The proof of this theorem is similar to the first part of the proof of theorem 4.3.1. In fact
we only have to use the function f ∈ A → A, instead of the successor function, to construct the
function

g ≡ λk.λy.f(k(y)(y)) ∈ (A→ (A→ A))→ (A→ A)

such that, for any h ∈ A→ (A→ A) and any x ∈ A, allows to prove h(x)(x) =A f(h(x)(x)), which
is contrary to the assumption that the function f has no fixed point.

4.4 The forget-restore principle

Introduction

The aim of this section is to give a simple but instructive example of the forget-restore principle,
conceived by Giovanni Sambin as a discipline for a constructive development of mathematics and
first appeared in print in the introduction of [SV98]. The best way to explain such a philosophical
position is to quote from that paper: “To build up an abstract concept from a raw flow of data,
one must disregard inessential details . . . this is obtained by forgetting some information. To forget
information is the same as to destroy something, in particular if there is no possibility of restoring
that information . . . our principle is that an abstraction is constructive . . . when information . . . is
forgotten in such a way that it can be restored at will in any moment.”

The example we want to show here refers to Martin-Löf’s intuitionistic type theory (just type
theory from now on). We assume knowledge of the main peculiarities of type theory, as formulated
in [Mar84] or [NPS90].

Type theory is a logical calculus which adopts those notions and rules which keep total control
of the amount of information contained in the different forms of judgment. However, type theory
offers a way of “forgetting” information, that is, supposing A set, the form of judgment A true.

The meaning of A true is that there exists an element a such that a ∈ A but it does not matter
which particular element a is (see also the notion of proof irrelevance in [Bru80]). Thus to pass
from the judgment a ∈ A to the judgment A true is a clear example of the forgetting process.

We will show that it is a constructive way to forget since, provided that there is a proof of the
judgment A true, an element a such that a ∈ A can be re-constructed.

Of course the simple solution of adding only the rule

a ∈ A

A true

allows to obtain such a result but is completely useless in practice. In fact, it does not allow
to operate with judgments of the form A true and, in our experience, judgments of this form
are essential in developing constructive mathematics, like for instance in formal topology, and in
developing meta-mathematical arguments (see for instance [SV98] and [MV99]).

To obtain the same result, but avoiding this limitation, we provide a general calculus for ex-
pressions, directly inspired by Martin-Löf’s Siena lectures in April 1983 (see [BV89]). This calculus
was first published in [Val96a] and is similar for instance to that in [NPS90]. The advantage of our
calculus with respect to the other ones present in the literature is that its rules, besides to allow
to express all of the judgments of basic type theory, also permit a rigorous treatment of judgments
of the form A true.

64 CHAPTER 4. PROPERTIES OF TYPE THEORY

4.4.1 The multi-level typed lambda calculus

The first idea for the definition of our calculus is to use a sort of simple typed λ-calculus (see
[Bar92]). In this way it is possible both to abstract on variables and to preserve a decidable theory
of equality, which is an essential feature to describe any logical system since decidability is necessary
in order to recognize the correct application of the inference rules. On the other hand, to describe
type theory a simple typed λ-calculus is not sufficient. Thus we define the following multi-level
typed λ-calculus: the intuitive idea is to construct a tower of dependent typed λ-calculi, each one
over another, marked by a level. Hence the rules of the multi-level typed λ-calculus are those of a
simple typed λ-calculus enriched by a label which specifies the level.

(assumption)
Γ ⊢ N :i M

Γ, x :i−1 N ⊢ x :i−1 N
i ≥ 1

(weakening)
Γ ⊢ N :i M Γ ⊢ K :j L

Γ, x :i−1 N ⊢ K :j L
i ≥ 1

(abstraction)
Γ, x :j N ⊢ K :i L

Γ ⊢ ((x :j N)K) :i ((x :j N)L)

(application)
Γ ⊢ N :i ((x :j L)M) Γ ⊢ K :j L

Γ ⊢ N(K) :i M [x := K]

The assumption rule tells that, if N is an expression of level greater than zero, then we may assume
it to be inhabited. The weakening rule tells that we may add assumptions of the form x :i−1 N
provided that the level of N is greater than zero. Abstraction and application are like usual, except
that they apply to any level; note that they do not change the level of an expression.

These rules by themselves are not sufficient to develop any logical calculus since no expression
can be assigned a type because to prove the conclusion of a rule one should have already proved
its premise(s). So, in order to start, one needs some axioms. The first thing one has to do is to
settle the maximum level m needed to describe a particular theory; to this aim we will introduce
the symbol ∗ to indicate the only type of the highest level. One can then define all the other types
downward from ∗ by means of axioms of the form ⊢ c :m ∗ for some constant c. Note that the only
elements of ∗ are constants. Then, all the other axioms will have the form Γ ⊢ c :j−1 M for some
constant c provided that j > 0 and there exists a type N such that Γ ⊢M :j N . It is not difficult
to recognize here some analogies with the approach to typed lambda-calculi used in the Pure Type
Systems approach (see [Bar92]).

In the case of type theory, we define a chain

a :0 A :1 set :2 ∗

to mean that a is an element of A which is a set, i.e. an element of set, which is the only element
of ∗. Thus our first axiom is:

⊢ set :2 ∗

We can now begin our description of type theory; to this aim we will follow the informal
explanation by Martin-Löf in [Mar84]. We start by stating an axiom which introduces a constant
for each set-constructor in correspondence with each formation rule of type theory. For instance,
suppose we want to describe the set Π(A, B); to this aim we add the axiom

⊢ Π :1 (X :1 set)(Y :1 (x :0 X) set) set

which means that Π is a set-constructor constant which gives a new set when applied to the set X
and to the propositional function Y on elements of X . It is straightforward to verify that this is a
correct axiom since

⊢ (X :1 set)(Y :1 (x :0 X) set) set :2 (X :1 set)(Y :1 (x :0 X) set) ∗

The next step corresponds to the introduction rule(s): we add a new axiom for each kind of
canonical element. Let us consider again the case of the set Π(A, B); then we put

⊢ λ :0 (X :1 set)(Y :1 (x :0 X) set)(y :0 (x :0 X) Y (x)) Π(X, Y)

4.4. THE FORGET-RESTORE PRINCIPLE 65

which states that, if X is a set, Y is a propositional function on elements of X and y is a function
which gives a proof of Y (x) for any x in X , then λ(X, Y, y) is an element of the set Π(X, Y). Thus
this axiom is just a rephrasing of the Π-introduction rule in [Mar84].

Also the elimination rule becomes a new axiom. In fact, it defines the term-constructor con-
stant introduced by the elimination rule. For instance for the set Π(A, B), following the standard
elimination rule (see the introduction of [Mar84]), we put

⊢ F :0 (X :1 set)(Y :1 (x :0 X) set)(Z :1 (z :0 Π(X, Y)) set)
(c :0 Π(X, Y))(d :0 (y :0 (x :0 X) Y (x)) Z(λ(X, Y, y))) Z(c)

which states that, if X is a set, Y is a propositional function on elements of X , Z is a propositional
function on elements of Π(X, Y), c is an element of Π(X, Y) and d is a method which maps any
function y from x in X to Y (x) into an element of Z(λ(X, Y, y)), then F (X, Y, c, d) is an element
of Z(c).

In a similar way all of the rules of type theory become axioms of the multi-level typed λ-calculus.
The notion of level will not be necessary to prove the main theorem in this section but it is

useful to prove that the multi-level typed lambda-calculus is normalizing. In fact, because of the
presence of the levels, the multi-level typed lambda-calculus is obtained just putting together many
dependent typed lambda-calculi with constants which cannot interact one with the other. Hence
one can adapt to this framework any normalization proof for a dependent typed lambda calculus
present in the literature (for instance see [CV98]). Anyway, in order to simplify the notation, in
the following we will not write all the indexes of the levels whenever they are not necessary.

4.4.2 The judgment A true

The main novelty of our approach with respect to a standard simple typed lambda calculus, besides
the notion of level, is that, besides the judgments of the form N : M together with their rules,
we can introduce here also the new form of judgment “M true”, whose intended meaning is that
the type M is inhabited. The rules we require on this form of judgment are completely similar to
those for the judgment N : M in the previous section. This fact will be crucial in the proof of the
next theorem 4.4.1 which links the judgments of the form N : M with those of the form M true.

(assumption)
Γ ⊢ N :i M

Γ, x :i−1 N ⊢ N true
i ≥ 1

(weakening)
Γ ⊢ N :i M Γ ⊢ L true

Γ, x :i−1 N ⊢ L true
i ≥ 1

(abstraction)
Γ, x :j N ⊢ L true

Γ ⊢ ((x :j N)L) true

(application)
Γ ⊢ ((x :j L)M) true Γ ⊢ K :j L

Γ ⊢M [x := K] true

It may be useful to note that in most of the previous rules, besides judgments of the form
M true, it is necessary to use also those of the form N : M and thus this calculus cannot be
expressed independently from the previous one.

Like for the judgments of the form N : M in the previous section, no type M can be proved to
be inhabited, i.e. ⊢ M true, unless some specific axioms are added. The intended meaning of the
judgment M true suggests to add the axiom Γ ⊢M true whenever an axiom of the form Γ ⊢ c : M
is present for some constant c. For instance, when we consider the set Π(A, B) we will add the
following two axioms:

⊢ (X : set)(Y : (x : X) set)(y : (x : X) Y (x)) Π(X, Y) true

which states that the type (X : set)(Y : (x : X) set)(y : (x : X) Y (x)) Π(X, Y) is inhabited;
by using it, one can prove for instance that Γ ⊢ Π(A, B) true, provided that Γ ⊢ A : set and
Γ, x : A ⊢ B(x) : set and Γ, x : A ⊢ B(x) true hold, since if Γ, x : A ⊢ B(x) true holds then, by the
next theorem 4.4.1, it is possible to construct an expression b such that Γ, x : A ⊢ b(x) : B(x);

⊢ (X : set)(Y : (x : X) set)(Z : (z : Π(X, Y)) set)
(c : Π(X, Y))(d : (y : (x : X) Y (x)) Z(λ(X, Y, y))) Z(c) true

66 CHAPTER 4. PROPERTIES OF TYPE THEORY

which shows
Γ ⊢ C(c) true

provided that Γ ⊢ A : set, Γ, x : A ⊢ B(x) : set, Γ, z : Π(A, B) ⊢ C(z) : set, Γ ⊢ c : Π(A, B) and
Γ, y : (x : A) B(x) ⊢ C(λ(A, B, y)) true hold. Note that, if the set C(z) does not depend on z, the
last axiom can be simplified to obtain

Γ ⊢ C true

provided that Γ ⊢ A : set, Γ, x : A ⊢ B(x) : set, Γ, z : Π(A, B) ⊢ C : set, Γ ⊢ Π(A, B) true and
Γ, y : (x : A) B(x) ⊢ C true hold, since, by theorem 4.4.1, Γ ⊢ Π(A, B) true implies that there
exists an element c such that Γ ⊢ c : Π(A, B).

Since the rules for the judgment N : M are completely similar to those for the judgment M true

and whenever an axiom of the form Γ ⊢ c : M is added to the calculus also the axiom Γ ⊢M true

is added, we can prove the following theorem 4.4.1. It allows to give a formal counterpart of
the intended meaning of the judgment Γ ⊢ M true. Its proof, in one direction, shows how the
reconstruct a witness for the judgment M true while, in the other, it shows how it is possible to
forget safely.

Theorem 4.4.1 Let Σ be any set of axioms of the form Γ ⊢ c : K, for some constant c and type
K, and let Σ∗ be obtained from Σ by suitably substituting some of the axioms Γ ⊢ c : K in Σ with
the corresponding axiom Γ ⊢ K true. Then Γ ⊢ M true is derivable from Σ∗ if and only if there
exists an expression N such that Γ ⊢ N : M is derivable from Σ.

Proof. In both directions the proof is by induction on the given proof. When we are “forgetting”
we must start from below so that we know what can be forgotten. Let us show the inductive steps
(provided Π is a proof, we will write Π∗ to mean the proof obtained by inductive hypothesis).
(axiom)

Π
Γ ⊢ K :i N

Γ ⊢ c :i−1 K
⇒

Π
Γ ⊢ K :i N

Γ ⊢ K true
i > 0

(assumption)
Π

Γ ⊢ N :i M

Γ, x :i−1 N ⊢ x :i−1 N
⇒

Π
Γ ⊢ N :i M

Γ, x :i−1 N ⊢ N true
i > 0

(weakening)

Π
Γ ⊢ N :i M

Σ
Γ ⊢ K :j L

Γ, x :i−1 N ⊢ K :j L
⇒

Π
Γ ⊢ N :i M

Σ∗

Γ ⊢ L true

Γ, x :i−1 N ⊢ L true
i > 0

(abstraction)
Π

Γ, x :i N ⊢ K :j L

Γ ⊢ ((x :i N)K) :j ((x :i N)L)
⇒

Π∗

Γ, x :i N ⊢ L true

Γ ⊢ ((x :i N)L) true

(application)

Π Σ
Γ ⊢ N :j ((x :i L)M) Γ ⊢ K :i L

Γ ⊢ N(K) :j M [x := K]
⇒

Π∗ Σ
Γ ⊢ ((x :i L)M) true Γ ⊢ K :i L

Γ ⊢M [x := K] true

It should now be clear how we obtain the set of axioms Σ∗ from the set of axioms Σ: we have
to change only those axioms which appear on a modified proof and this is the reason why we have
to “forget” from below: for instance in the rules of weakening or application only one the premises
is modified and only the axioms on that premise have to be changed.

On the other side, in the case we are “restoring”, we must start from above in such a way that
an axiom (possibly in Σ∗) is replaced with a suitable instance of an axiom (in Σ).

4.4. THE FORGET-RESTORE PRINCIPLE 67

(axiom)
Π

Γ ⊢M :i N

Γ ⊢M true
⇒

Π
Γ ⊢M :i N

Γ ⊢ c :i−1 M
i > 0

(assumption)
Π

Γ ⊢ N :i M

Γ, x :i−1 N ⊢ N true
⇒

Π
Γ ⊢ N :i M

Γ, x :i−1 N ⊢ x :i−1 N
i > 0

(weakening)

Π
Γ ⊢ N :i M

Σ
Γ ⊢ L true

Γ, x :i−1 N ⊢ L true
⇒

Π
Γ ⊢ N :i M

Σ∗

Γ ⊢ K :j L

Γ, x :i−1 N ⊢ K :j L
i > 0

(abstraction)
Π

Γ, x :i N ⊢ L true

Γ ⊢ ((x :i N)L) true
⇒

Π∗

Γ, x :i N ⊢ K :j L

Γ ⊢ ((x :i N)K) :j ((x :i N)L)

(application)

Π Σ
Γ ⊢ ((x :i L)M) true Γ ⊢ K :i L

Γ ⊢M [x := K] true
⇒

Π∗ Σ
Γ ⊢ N :j ((x :i L)M) Γ ⊢ K :i L

Γ ⊢ N(K) :j M [x := K]

It is worth noting that in the process which transforms first the proof of Γ ⊢ N : M into
Γ ⊢ M true and then into Γ ⊢ N ′ : M we will not in general obtain the same element, i.e. N and
N ′ may differ for the constants used in the axioms with the same type.

4.4.3 Final remarks

What we have illustrated in the previous sections is just an example of the process of “forgetting”;
for instance, as somebody suggested after reading a first version of this section, one could consider
also the judgments M type and M element as a forgetting abbreviation for the judgment M :j N
with j > 0 and j = 0 respectively and develop for these judgments a suitable calculus analogous
to the one we proposed for the judgment M true.

Moreover it should be clear that what we have done is just a simple illustration of the forget-
restore paradigm and that it is not a complete description of a full theory for judgments of the
form A true within type theory. In fact we chose to develop a dependent type multilevel lambda
calculus since it is well suited for the framework of the Martin-Löf’s dependent type theory that
we have described but it is not of immediate application if we consider also the non-dependent
part of the theory like for instance when we define A → B as Π(A, (x : A) B) provided that the
proposition B does not depend on the elements of A. For instance the rule

Γ ⊢ A→ B true Γ ⊢ A true

Γ ⊢ B true

is admissible in our system but it is not derivable ; hence we have a too weak theory for judgments
of the form A true. To solve this problem the first step is to be able to deal also with assumptions
of the form A true, instead that only with those of the form x : A, when the variable x does not
appear in the conclusion B true. This is not possible in a general dependent type calculus since
even a conclusion of the form B true may in general depend on the variables in the assumptions.

We can obtain this result if, when performing the forgetting process, we will take into account
also which variables appear in the types in the conclusion of a rule. Thus we will have the following
transformation of a full proof into a forgetting one:

(assumption)

Π
Γ ⊢ N :i M

Γ, x :i−1 N ⊢ x :i−1 N
⇒

Π
Γ ⊢ N :i M

Γ, N true ⊢ N true

68 CHAPTER 4. PROPERTIES OF TYPE THEORY

since the variable x is introduced by the rule and hence cannot appear in N ;

(weakening)

Π Σ
Γ ⊢ N :i M Γ ⊢ K :j L

Γ, x :i−1 N ⊢ K :j L
⇒

Π Σ∗

Γ ⊢ N :i M Γ ⊢ L true

Γ, N true ⊢ L true

since the variable x is assumed by weakening and hence it cannot appear in L. The case of the
abstraction rule

(abstraction)

Π
Γ, x :i N ⊢ K :j L

Γ ⊢ ((x :i N)K) :j ((x :i N)L)

deserves a more detailed analysis; in fact we can surely use the transformation that we have
proposed in the proof of theorem 4.4.1, but, provided the variable x does not appear in L, also the
following transformation can be used

Π∗

Γ, N true ⊢ L true

Γ ⊢ ((N)L) true

where we have introduced the new notation ((N)L) to mean that the abstracted variables does not
appear in the body of the abstraction. Finally also for the application rule

(application)

Π
Γ ⊢ N :j ((x :i L)M)

Σ
Γ ⊢ K :i L

Γ ⊢ N(K) :j M [x := K]

two transformations are possible according to the variables which appear in the conclusion. The
first is the one that we used in the proof of theorem 4.4.1 and it can be applied in any case.
However, provided M does not depend on x, it is possible to use also the following

Π∗

Γ ⊢ ((L)M) true

Σ∗

Γ ⊢ L true

Γ ⊢M true

It is now possible to change also the form of the axioms. Here we will show only a simple
example. Suppose that we want to introduce the type A→ B. Then we need the following axioms:

⊢→:1 (X :1 set)(Y :1 set) set

⊢ λ :0 (X :1 set)(Y :1 set)(y :0 (x :0 X) Y) X → Y
⊢ Ap :0 (X :1 set)(Y :1 set)(f :0 X → Y)(x :0 X) Y

If we now consider the transformations used in the prove of theorem 4.4.1 we will obtain

⊢ (X :1 set)(Y :1 set)(y :0 (x :0 X) Y) X → Y true

⊢ (X :1 set)(Y :1 set)(f :0 X → Y)(x :0 X) Y true

but, provided that we use also the notation ((X)Y) for the abstractions when Y does not depends
on the elements in X , we can add to them the following new axioms:

⊢ (X :1 set)(Y :1 set)(((X) Y) X → Y) true

⊢ (X :1 set)(Y :1 set)(f :0 X → Y)((X) Y) true

⊢ (X :1 set)(Y :1 set)((X → Y)(x :0 X) Y) true

⊢ (X :1 set)(Y :1 set)((X → Y)((X) Y)) true

and it is straightforward to use the last one to derive the rule

Γ ⊢ A→ B true Γ ⊢ A true

Γ ⊢ B true

Since any of the new axioms is the result of a forgetting process from a standard axiom and we
can restore it simply by adding the abstracted variables, which can be done in an algorithmic way,
this is again an instance of a constructive way of forgetting and a theorem like theorem 4.4.1 can
be proved also in this case.

Chapter 5

Set Theory

5.1 Summary

In this chapter we will show how a local set theory can be developed within Martin-Löf’s type
theory. In particular, we will show how to develop a predicative theory of subsets within type
theory. In fact, a few years’ experience in developing constructive topology in the framework of
type theory has taught us that a more liberal treatment of subsets is needed than what could be
achieved by remaining literally inside type theory and its traditional notation. To be able to work
freely with subsets in the usual style of mathematics one must come to conceive them like any other
mathematical object (which technically means for instance that the judgment that something is a
subset can be taken as assumption) and have access to their usual apparatus (for instance, union
and intersection).

Many approaches were proposed for the development of a set theory within Martin-Löf’s type
theory or in such a way that they can be interpreted in Martin-Löf’s type theory (see for instance
[NPS90], [Acz78], [Acz82], [Acz86], [Hof94], [Hof97] and [HS95]).

The main difference between our approach and these other ones stays in the fact that we do
not require a subset to be a set while in general in the other approaches the aim is to apply the
usual set-constructors of basic type theory to a wider notion of set, which includes sets obtained by
comprehension over a given set (see [NPS90], [Hof94], [Hof97] and [HS95]) or to define an axiomatic
set theory whose axioms have a constructive interpretation (see [Acz78], [Acz82], [Acz86]); hence
the justification of the validity of the rules and axioms for sets must be given anew and a new
justification must be furnished each time the basic type theory or the basic axioms are modified.

In this chapter we will provide all the main definitions for a subset theory; in particular, we
will state the basic notion of subset U of a set S, that is we will identify U with a propositional
function over S and hence we will require that a subset is never a set; then we will introduce the
membership relation between an element a of S and a subset U of S, which will turn out to hold
if and only if the proposition U(a) is true. Then the full theory will be developed based on these
simple ideas, that is the usual set-theoretic operations will be defined in terms of logical operations.
Of course not all of the classical set theoretic axioms are satisfied in this approach. In particular
it is not possible to validate the axioms which do not have a constructive explanation like, for
instance, the power-set construction.

5.2 Introduction

The present work originates from the need of subsets in the practical development of a constructive
approach to topology (see [Sam87] and [Sam97] and references therein) and most of what we
present here is the answer to problems actually encountered. The solution we arrived at is inspired
by a philosophical attitude, and this too has become clear along the way. Thus the aim of this
Introduction is to explain such attitude and to make the resulting principles explicit, which might
help to understand better some of the technical choices.

69

70 CHAPTER 5. SET THEORY

5.2.1 Foreword

Beginning in 1970, Per Martin-Löf has developed an intuitionistic type theory (henceforth type
theory tout-court) as a constructive alternative to the usual foundation of mathematics based on
classical set theory. We assume the reader is aware at least of the main peculiarities of type theory,
as formulated in [Mar84] or [NPS90]; here we recall some of them to be able to introduce our point
of view.

The form of type theory is that of a logical calculus, where inference rules to derive judgments are
at the same time set theoretic constructions, because of the “propositions-as-sets”1 interpretation.
The spirit of type theory - expressing our interpretation in a single sentence - is to adopt those
notions and rules which keep total control of the amount of information contained in the different
forms of judgment. We now briefly justify this claim.

First of all, the judgment asserting the truth of a proposition A, which from an intuitionistic
point of view means the existence of a verification of A, in type theory is replaced by the judgment
a ∈ A which explicitly exhibits a verification a of A. In fact, it would be unwise, for a constructivist,
to throw away the specific verification of A which must be known to be able to assert the existence
of a verification!

The judgment that A is a set, which from an intuitionistic point of view means that there exists
an inductive presentation of A, is treated in type theory in a quite similar way (even if in this case
no notation analogous to a ∈ A is used) since the judgment A set in type theory becomes explicit
knowledge of the specific inductive presentation of A. In fact, the rules for primitive types and for
type constructors are so devised that whenever a judgment A set is proved, it means that one has
also complete information on the rules which describe how canonical elements of A are formed.
Such property, which might look like a peculiarity of type theory, is as a matter of fact necessary
in order to give a coherent constructive treatment of quantifiers. Consider for instance universal
quantification, and take for granted that an intuitionistically meaningful explanation of universal
quantification is possible only for domains with an inductive presentation, that is for what have
been called sets above (by the way, this is the reason why the distinction between sets and types
is so basic in type theory, see [Mar84]). Then the pure knowledge that A is a set is sufficient to
say that universal quantification over A gives rise to propositions; however, it would be unwise to
forget which specific rules generate A inductively, since, in general, a method verifying a universally
quantified proposition over A can be produced, by means of an elimination rule, only by direct
reference to the method by which A is generated.

Summing up, we see not only that type theory is inspired by the principle of control of infor-
mation, but also that the same principle should be at the base of any coherent treatment of sets
and propositions, if it has to be both intuitionistic and free of wastes.

Coming back to the formalism in which type theory is expressed, one can see that the principle
of keeping control of information is revealed also at the level of syntax, since most inference rules
are formulated in a fully analytic style, i.e. everything which appears in the premises is present
somehow also in the conclusion. A consequence is, for instance, that the derivation of a judgment
a ∈ A is so detailed that a is ipso facto a program which satisfies the requirements specified by A.
This is why type theory is particularly interesting for computer science.

However, our experience in developing pieces of actual mathematics within type theory has led
us to believe that “orthodox” type theory is not suitable because its control of information is too
strict for this purpose. In fact, the fully analytic character of type theory becomes a burden when
dealing with the synthetic methods of mathematics, which “forget” or take for granted most of the
details. This, in our opinion, could be the reason why type theory has collected, up to now, more
interest among logicians and computer scientists as a formal system than among mathematicians
as a foundational theory.

We claim that there is no intrinsic reason why it should remain so, and that actually it is only a
matter of developing a stock of “utilities”, that is, of building up a toolbox which covers the territory
between the basic formalism and mathematical practice; after all, this happened for classical set
theory ZF long ago. In other words, the situation seems analogous to that of a programmer who,
maybe because of a particular skill with the machine language, has not yet developed those higher

1Called “formulae-as-types” in [How80]. A little warning on terminology is necessary here: we use “set” exactly
as in [Mar84], while “category” of [Mar84] is here replaced with “type”as in [NPS90].

5.2. INTRODUCTION 71

level constructs and languages which allow him to save time and mental energy, and thus in the
end are necessary to free the mind for a common human, i.e. abstract, comprehension.

So our general aim is to build up those tools, that is definitions and rules, which “forget” some
information, and thus allow a higher level of abstraction, which can make type theory more handy
and suitable to work out (intuitionistic) mathematics basing on mathematical intuition, as it has
been and should be.

5.2.2 Contents

Here, completing the work first announced in [SV93], we make a substantial step in the direction
stated above and show how to develop a predicative theory of subsets within type theory.2 A few
years’ experience in developing topology in the framework of type theory has taught us that a more
liberal treatment of subsets is needed than what could be achieved by remaining literally inside
type theory and its traditional notation. In fact, to be able to work freely with subsets in the
usual style of mathematics one must come to conceive them like any other mathematical object
(which technically means for instance that the judgment that something is a subset can be taken
as assumption) and have access to their usual apparatus (for instance, union and intersection).

Subset theory as developed in [NPS90] does not meet the above demands since, being motivated
by programming, its aim is different. We could say, in fact, that the aim of [NPS90] is to apply the
usual set-constructors of basic type theory to a wider notion of set, which includes sets obtained by
comprehension over a given set; the price they have to pay is that the justification of the validity
of rules for sets must be given anew. The same price must be paid whenever the basic type theory
is modified; another example is the recent [Tur97].

The way out is to adopt the simple idea that it is not compulsory that a subset be a set.
Then one is free to define subsets in a natural way as propositional functions (as first suggested
in [Mar84], page 64, and explicitly adopted in [Sam87]), and then to introduce the new notion of
element of a subset, in terms of which also the other standard notions, like inclusion and extensional
equality, arbitrary unions and intersections, singletons and finite subsets, quantifiers and functions
defined on subsets can be defined. The resulting subset theory is a sort of type-less set theory
localized to a set and we have experienced that it is sufficient for instance for the development of
topology. We prove that all of this can be done in type theory without losing control, that is by
“forgetting” only information which can be restored at will. This is reduced to the single fact that,
for any set A, the judgment A true holds if and only if there exists a such that a ∈ A, and it can
be proved once and for all, see [Val98]; this is the price we have to pay to justify our approach.

Since for all notions related to subsets we adopt essentially the standard notation, the result is
that at first sight a page of mathematics written using subset theory looks like a page of standard
mathematical writing, and one might easily overlook or forget the underlying substantial novelty,
namely that everything is directly formalized in type theory. Far from being a drawback, this is
in a sense our main intention, since it would show that one can develop an intuition free from the
underlying formalism.

5.2.3 Philosophical motivations

The attitude illustrated so far in this introduction can be seen as the specific outcome of a more
general philosophical position (see [Sam91]) when applied to type theory, and the results we prove
can be seen as fragments of a general program (see [PV93]) not necessarily bound to type theory.
Here we describe briefly both the philosophical position and the general program in the form of
some principles, just enough to be able to state the connection with the problem of foundations.

To build up an abstract concept from a raw flow of data, one must disregard inessential details;
in other words, to simplify the complexity of concrete reality one must idealize over it, and this
is obtained by “forgetting” some information. To forget information is the same as to destroy
something, in particular if there is no possibility of restoring that information, like when the
magnetic memory of a disk is erased. So to abstract involves a certain amount of destruction; our
principle is that an abstraction is constructive, that is, a reliable tool in getting knowledge which

2The second step should be on quotient sets, or abstract data types, or setoids.

72 CHAPTER 5. SET THEORY

is faithful to reality, not when information is kept as much as possible, but when it is “forgotten”
in such a way that it can be restored at will in any moment. This after all is the test to show that
an abstraction does not lead astray from reality, that is, that it preserves truth.

It is clear that the first step, and often the only one, to be able to restore what has been
“forgotten” is to know, to be aware of, what has been forgotten, and to keep control of it. So
the second principle is that constructivism does not consist of a a priori self-limitation to full
information, which would tie constructivism with reluctance to abstraction (as was the case around
the twenties when finitism and intuitionism were somehow identified), but rather in the awareness
of the destruction which has been operated to build up a certain abstract concept.

When it comes to mathematical terms, awareness of what has been destroyed or forgotten can
sometimes be put in objective terms, and then it takes the form of a method by which the previous
state can be restored. If T ′ is a theory obtained from a more basic theory T by adding some more
abstract constructs and their rules, then a method must be supplied which allows us to transform
whatever proof in T ′ into a proof within T with the same computational content. This allows us to
“forget safely”, since it guarantees that faithfulness to the more concrete level of T is not lost by
the more abstract concepts of T ′.

This, we believe, is the only reasonable way for a constructivist to extract a philosophical and
mathematical value out of Hilbert’s program. To obtain a foundation which justifies itself, in
Hilbert’s view it is necessary to rely on a part of mathematics, called real mathematics, which has
to be safe beyond any doubt and without any proof. In Hilbert’s conception this is identified with
finitistic mathematics, that is manipulation of concrete objects; here instead real mathematics is
identified with type theory, which is of course far richer than finitistic mathematics but still serves
the purpose. In fact, on the one hand the contextual explanation of judgments and rules and on the
other hand its interpretation as a programming language (the modern “manipulation of concrete
objects”) indeed make it reliable beyond doubt and without any proof.

Hilbert was right, of course, in saying that mathematics cannot be restricted to real mathe-
matics; in fact, even the most radical constructivist certainly uses more abstract notions or ideas,
even if they do not appear in his communications. But which abstract notions can be accepted?
We propose an answer here. It is well known that Hilbert’s view puts no limitation, as long as
the consistency of the formalism in which ideal mathematics is expressed is proven within real
mathematics. This cannot be accepted by a constructivist, since a consistency proof is not enough
to restore, once and for all, the constructive meaning, i.e. faithfulness to the concrete reality of
computations. After all, even classical logic is consistent, and with a finitistic proof! So the pro-
gram is to analyze, case by case, how a certain abstract notion is linked with real mathematics;
when it is clear which concrete aspects are forgotten and how they can be restored by a suitable
method, then that abstract notion can be used freely and safely. In this chapter we show how
this is possible for the theory of subsets, and thus we accomplish a fragment of the constructive
version of Hilbert’s program, which we have called the Camerino program from the place where
we spoke about it for the first time (see [PV93]). The aim is, paradoxically, to save the intuition
of an intuitionist from the rigidity of formal systems by supplying safe bridges between intuition
and computation.

5.3 Reconstructing subset theory

5.3.1 The notion of subset

In classical mathematics a subset U of a set S is usually defined to be a set such that if a ∈ U
then a ∈ S. Importing in type theory this definition as it stands, however, would give a notion
of subset not general enough to include all examples of what is undoubtedly to be considered a
subset. In fact, if S is a set and U : (x : S) prop is a propositional function3 over S, then we
surely want the collection of elements of S satisfying U , usually written {x ∈ S| U(x)}, to be a
subset of S. In ZF, {x ∈ S| U(x)} would be a set, by the separation principle; in type theory,
however, no form of the separation principle is justified, since in general there are no rules telling
how the canonical elements of the collection {x ∈ S| U(x)} are formed. In fact, a is an element of

3Which means that U applied to x, for x ∈ S, is a proposition, written U(x) prop [x : S].

5.3. RECONSTRUCTING SUBSET THEORY 73

{x ∈ S| U(x)} if a ∈ S and U(a) is true, that is, if there exists b such that b ∈ U(a), but this form
of judgment is not one of the four forms of judgments considered in type theory and hence there is
no canonical way to reach the conclusion that such b exists. For example, if U(x) is the property
“the Turing machine with index x does not stop on input x”, then there are no effective rules to
generate {x ∈ N| U(x)}. Thus, the conclusion is that we want {x ∈ S| U(x)} to be a subset of S
for any property U , but also that it does not need to be a set.

A second observation is that in ordinary mathematics, operations like union and intersection
are freely defined on the class of all sets, while at the opposite extreme in type theory there is no
operation of union or intersection in the ordinary sense available on sets. In fact, the result of any
operation of set-formation gives rise to a set whose elements are specific of the constructed set,
and thus, for instance, we could not have a common statement like a ∈ S ∩ T iff a ∈ S and a ∈ T ,
because if ∩ were a set-constructor then S∩T would be a set different from S and T , and hence its
elements could not be in common with S and T . As we will soon see, however, such set-theoretic
operations can easily be defined on subsets of a set, as soon as we do not require a subset to be a
set. We are thus led to take the step of relaxing the requirement that a subset be a set. Therefore
a subset will not have canonical elements, nor rules of elimination or of equality.

Two ways of defining subsets are traditionally available which do not require a subset to be a
set. The first is that a subset of S is given by a property U(x) with x ranging over S; while in a
classical perspective it can be conceived that there are many more subsets than properties, from
a constructive point of view there is no sense in assuming the existence of a subset unless we can
specify it, namely by a property. Thus the conclusion would be that a subset U of S is nothing
but a propositional function U over S.

The second conception of subset of S, namely as a function f : S → {0, 1} usually called
characteristic function, brings in the end to the same conclusion, as we now see. Classically, any
function f : S → {0, 1} gives rise to a property over S, namely the property f(x) = 1, and, given
a property U(x) over S, the associated function is

fU (x) =

{
1 if U(x) true

0 otherwise

If we transfer this as it stands into type theory, we obtain a notion of subset which is too narrow. In
fact, due to the different notion of function, the above argument, when properly translated in type
theory, gives a bijective correspondence between functions S → {0, 1} and decidable propositional
functions over S (for a detailed proof, see for instance section 4.2 or [Val96]).

However, in the classical conception the above definition of fU can be seen just as a different
way of denoting the propositional function U itself. In fact, classically a proposition is just a way to
denote a truth value (see [Fre1892]), so {0, 1} can be identified with the set of values of propositions.
Under this reading, the intuitionistic analogue of a characteristic function is a function from S into
the type of intuitionistic propositions, i.e. a propositional function over S.

So both traditional approaches lead to the same intuitionistic version. We thus put:

Definition 5.3.1 (Definition of subset) For any set S, a propositional function U with argu-
ment ranging in S is called a subset of S, and is written U ⊆ S.

Thus we can think that a subset U of S is obtained by abstracting the variable x in the
judgment U(x) prop [x : S], i.e. U ≡ (x : S) U(x). The same effect is usually expressed with the
brace notation to form a subset {x ∈ S| U(x)}, which does not depend on x any longer. So we
put:

{x ∈ S| U(x)} ≡ U ≡ (x : S) U(x)

However, it must be said explicitly that, even if we adopt the common expression {x ∈ S| U(x)}
for a subset, it remains true that a subset is a propositional function and hence a subset can never
coincide with a set, for the simple reason that propositional functions are of a type different from
that of sets.

By similar reasons, the notion of subset is not automatically accompanied by that of element
of a subset: writing a ∈ {x ∈ S| U(x)}, for a ∈ S, does never give a well formed expression and,
on the other hand, writing u : U would mean (x : S) u(x) : (x : S) U(x), which corresponds to the

74 CHAPTER 5. SET THEORY

judgment u(x) ∈ U(x) [x : S] in the notation of [Mar84], and hence has nothing to do with the
intuitive notion of element of the subset U . So this notion has to be introduced anew. And indeed
we need it, because only in virtue of it an extensional theory of subsets can be reconstructed like
that of usual mathematical practice; for instance, we surely want two subsets to be equal iff they
have the same elements.4

It is worth noting that much of what we are going to do in the case of subsets extends to
relations in a natural way. In fact, contrary to the classical approach, a relation in type theory is
just a propositional function with several arguments and thus it is a straightforward generalization
of the notion of subset.

5.3.2 Elements of a subset

Given a set S and a subset U ⊆ S, the intuitive idea is that the element a of S is an element of U
when the property U holds on a. In type theory, this is expressed by requiring U(a) true, which
means that there exists b such that b ∈ U(a). However, as in mathematical practice, we surely
wish not to bother about the information of the specific b which makes U(a) true: for a to be
an element of U , it is the pure existence of a proof which is required and not the actual specific
verification, which we want to “forget”5. Theorem 4.4.1 in chapter 4 tells that we can restore such
information when wished, at the cost of some meta-mathematical work.

In the same time, it is essential to keep the information of which element a is (see for instance
⊆S-elimination in proposition 5.3.4), and thus express “U holds on a” rather than “U(a) true”. In
fact, U(a) may loose the information of which element a is considered without the possibility of
restoring it from U(a) true. For instance, if U ≡ (x : S) N, where N is the set of natural numbers,
then U(a) ≡ ((x : S) N)(a) = N is true, but there is no way to recover the element a to which U is
applied.

Therefore, what we wish is a proposition a ǫS U which, besides giving U(a) true, “recalls” which
a is considered, that is, which satisfies

(∗) a ǫS U true iff U(a) true and a ∈ S

Note that the right side of (∗) is the conjunction of two judgments, which is usually not treated in
type theory: this is the problem we have to face.

It can be shown that (∗) is equivalent to the following two conditions together

- for every a ∈ S, a ǫS U true iff U(a) true

- if a ǫS U true, then a ∈ S

To develop subset theory more smoothly, however, it is convenient to adopt an apparently stronger
formulation in which the first condition is expressed by a proposition, namely the following condi-
tions:

1. (∀x ∈ S) (x ǫS U ↔ U(x)) true

2. if a ǫS U true, then a ∈ S

From now on, we will refer to them as the first and second ǫ-condition; we will see that they
are all what is needed to be able to develop all of subset theory.

Now, to solve the ǫ-conditions, that is to find a proposition which satisfies them, the crucial
remark is that there is substantially one way to include the information given by the judgment
a ∈ S into a proposition, and that is Id(S, a, a). In fact, it is easy to prove that a ∈ S if and only
if Id(S, a, a) true: one direction is just the rule of Id-introduction, while the other is obtained by a
simple meta-mathematical argument, namely that from a proof of Id(S, a, a) true one can effectively

4While the identification of subsets with propositional functions is common to several approaches (for instance
see [Coq90] for a calculus of constructions), an explicit introduction of the notion of element of a subset seems to
be peculiar of the present one. The details to export it to other type theories must be worked out on purpose.

5After the talk in Venice during the conference “Twenty-five years of Constructive Type Theory” in October
1995, Prof. de Bruijn has kindly called our attention to his notion of proof-irrelevance (see [Bru80]), which seems
connected with our idea of “forgetting”.

5.3. RECONSTRUCTING SUBSET THEORY 75

obtain a proof of Id(S, a, a) prop, which in turn must include a proof of a ∈ S. This is the only
addition to be made on top of an implementation of type theory to obtain an implementation of
our toolbox. Note that requiring a formal equivalence would not make sense.

Thus we simply put

x ǫS U ≡ U(x) & Id(S, x, x)

The verification of the ǫ-conditions is immediate; let us note explicitly, however, that to prove
U(x) & Id(S, x, x) ↔ U(x) true the knowledge of x ∈ S is essential. This agrees perfectly with the
informal requirement that the proposition a ǫS U must coincide with U(a) when a ∈ S is known,
but differs from U(a) since it keeps track of a by containing knowledge of a ∈ S.

Other solutions of the ǫ-conditions are possible. The one proposed above can be seen as the
proposition corresponding to “U(a) true & a ∈ S” which means “there exists b such that b ∈ U(a)
and a ∈ S”. If we formalize it directly, we obtain (∃z ∈ U(a)) Id(S, a, a), which is exactly
U(a) & Id(S, a, a), by the definition of & (see [Mar84] p. 43). If we note that “there exists b
such that b ∈ U(a) and a ∈ S” is equivalent to “there exists c ∈ Σ(S, U) such that fst(c) = a ∈ S”,
we reach another solution for the ǫ-conditions, namely (∃z ∈ Σ(S, U)) Id(S, fst(z), a) (see also sec-
tion 5.3.4). However, the particular form of the solution is inessential, as long as it satisfies the
ǫ-conditions. We thus put:

Definition 5.3.2 Let S be any set and U any subset of S. If (x : S) x ǫS U is any propositional
function satisfying the ǫ-conditions, we say that a is an element of U when a ǫS U is true.

Since a ǫS U is a proposition for any a ∈ S and U ⊆ S, the property of being an element of U
respects equality of elements of S; in fact,

(substitution of elements)
Id(S, a, b) true a ǫS U true

b ǫS U true

is a consequence of the Id-elimination rule (see [NPS90], p. 64).

The few simple steps taken above are enough to develop a theory of subsets. The usual relations
(like inclusion and extensional equality), operations on subsets (like finitary and infinitary union
and intersection) and other usual tools (families indexed over a subset, quantifiers ranging over
a subset, the image of a function between sets, functions defined on subsets, finite subsets, etc.)
can be introduced in a straightforward way by means of the above ǫ-conditions and intuitionistic
logic. We repeat such work here with some detail, of course not expecting to produce surprise,
but to give a direct feeling (experience) that ǫ-conditions are really enough, and that they allow a
complete formalization which is faithful to usual intuitions and practice.

In this way subset theory, even if type-less, is developed in a predicative way, a fact which is
inherited directly from type theory.

5.3.3 Inclusion and equality between subsets

Given two subsets U and V of a set S, it is usual to say that U is included in V if every element
of U is also an element of V . We thus put:

Definition 5.3.3 (Inclusion) For any U, V ⊆ S, we define the inclusion of U into V by

U ⊆S V ≡ (∀x ∈ S) (x ǫS U → x ǫS V)

Thus, contrary to U ⊆ S, U ⊆S V is a proposition even if often, as in usual mathematical
practice, we write U ⊆S V to mean U ⊆S V true.

By the first ǫ-condition, U ⊆S V ↔ (∀x ∈ S)(U(x) → V (x)) is true; this tells that U ⊆S V
could equivalently be defined as (∀x ∈ S)(U(x)→ V (x)).

The usual basic rules connecting membership with inclusion are immediately derivable from
the above definition by means of the ǫ-conditions; they confirm the understanding that U ⊆S V is
true if and only if every element of U is also an element of V .

76 CHAPTER 5. SET THEORY

Proposition 5.3.4 For any S set and U, V ⊆ S, the following rules are derivable:

⊆S-introduction
[x ǫS U true]1

|
x ǫS V true

U ⊆S V true
1

⊆S-elimination
a ǫS U true U ⊆S V true

a ǫS V true

Proof. A derivation of ⊆S-introduction is:

S set U ⊆ S [x ∈ S]2
�|�

x ǫS U prop

[x ǫS U true]1
|

x ǫS V true

x ǫS U → x ǫS V true
1

U ⊆S V true
2

and a derivation of ⊆S-elimination is:

a ǫS U true

U ⊆S V true

a ǫS U true

a ∈ S
second ǫ-cond.

a ǫS U → a ǫS V true
∀-elim.

a ǫS V true

Since ⊆S is defined in terms of the connective of implication, it inherits all its properties. For
instance, ⊆S is a preorder on subsets, with a top and a bottom element:

Proposition 5.3.5 For any S set and any U, V, W ⊆ S, the following hold:

(reflexivity) U ⊆S U (transitivity)
U ⊆S V V ⊆S W

U ⊆S W

Moreover, putting ⊤S ≡ {x ∈ S| Id(S, x, x)} and ⊥S ≡ ∅S ≡ {x ∈ S| ¬Id(S, x, x)} we obtain

(top) U ⊆S ⊤S (bottom) ∅S ⊆S U

While the first two statements are an immediate consequence of ⊆S-rules (and in turn of
reflexivity and transitivity of implication), the second two follow by logic from

(∀x ∈ S) (x ǫS U → Id(S, x, x)) true

and by ex falso quodlibet, respectively, whatever propositional function U is.

Equality between subsets is usually defined by extensionality, that is, for any U, V ⊆ S, U and
V are said to be equal if they have the same elements. We thus put:

Definition 5.3.6 (Extensional equality) For any U, V subsets of the set S, we define exten-
sional equality of U and V to be the proposition:

U =S V ≡ (∀x ∈ S) (x ǫS U ↔ x ǫS V).

We say that the subset U is (extensionally) equal to the subset V if U =S V true.

5.3. RECONSTRUCTING SUBSET THEORY 77

The subsets U and V are (extensionally) equal if and only if for any a ∈ S, a ǫS U true iff
a ǫS V true, and thus, by the first ǫ-condition, U(a) true iff V (a) true. Such equality must be
distinguished from the stronger equality U(x) = V (x) [x : S], which means that, for any a ∈ S,
b ∈ U(a) if and only if b ∈ V (a), which is one of the basic judgments of type theory, and which
could be called the intensional equality of the subsets U and V (since it requires U and V to have
the same elements and, for each of them, with the same proofs).

By the definitions, it is immediate that the proposition

(U =S V)↔ (U ⊆S V & V ⊆S U)

holds. Actually, =S is the equivalence relation on subsets induced by the preorder ⊆S by forcing
symmetry to hold. As for properties of ⊆S , the properties characterizing equivalences, in this case

reflexivity U =S U
symmetry U =S V → V =S U
transitivity U =S V & V =S W → U =S W

can also be seen as inherited from the properties of the logical connective ↔.
Once the notion of equality has been clarified, the definition of the type of subsets of a given

set S is completed:

Definition 5.3.7 (Power of a set) For any set S, the type of all subsets of S equipped with
extensional equality is called the power of S and is denoted by PS.

When a function (or operation) is to be defined on PS, one must take care to check that it is
well defined on PS, that is, that it respects extensional equality; in the sequel this verification is
sometime not spelled out.

5.3.4 Subsets as images of functions

The notion of subset can be further illustrated, after the introduction of extensional equality, by
looking at it from a slightly different perspective.

For any set S, and any set I, a function f(i) ∈ S [i : I] is usually associated with the subset
of S whose elements are those a ∈ S for which there exists i ∈ I such that Id(S, f(i), a) true. Here
this is achieved simply by defining the image of a function as follows:

Definition 5.3.8 (Image of a set along a function) For any sets S and I, and for any func-
tion f(i) ∈ S [i : I], the subset of S defined by:

Imf [I] ≡ {x ∈ S| (∃i ∈ I) Id(S, f(i), x)}

is called the image of I along f . Other notations for Imf [I] include {f(i)| i ∈ I} and f [I]. More
generally, given a function with n arguments f(i1, . . . , in) ∈ S [i1 : I1, . . . , in : In] the image of
I1, . . . , In along f is defined by

Imf [I1, . . . , In] ≡ {x ∈ S| (∃i1 ∈ I1) . . . (∃in ∈ In) Id(S, f(i1, . . . , in), x)}

The definition of image associates a subset of a set S with a function into S. Actually, this
gives an alternative characterization of subsets since the converse can also be proved (see [Mar84],
page 64). In fact, every subset U of S is extensionally equal to the image of some set I along some
function f(i) ∈ S [i : I] or, in more informal and suggestive words, we could say that subsets are
just one function apart from sets:

Theorem 5.3.9 Every subset U of a set S is extensionally equal to the image of the set Σ(S, U)
along the left projection fst(i) ∈ S [i : Σ(S, U)]; in symbols,

U =S Imfst[Σ(S, U)]

that is, by unwinding definitions,

U =S {x ∈ S| (∃i ∈ Σ(S, U)) Id(S, fst(i), x)}

holds for every set S and U ⊆ S.

78 CHAPTER 5. SET THEORY

Proof. By the definitions and the ǫ-conditions, the claim U =S fst[Σ(S, U)] becomes

(∀x ∈ S) (U(x)↔ (∃y ∈ Σ(S, U)) Id(S, fst(y), x))

To prove it, assume that a is an arbitrary element of S, and that z ∈ U(a). Then 〈a, z〉 ∈ Σ(S, U),
thus fst(〈a, z〉) = a ∈ S, hence r(a) ∈ Id(S, fst(〈a, z〉), a), and therefore

〈〈a, z〉, r(a)〉 ∈ (∃y ∈ Σ(S, U)) Id(S, fst(y), a)

This proves that λz.〈〈a, z〉, r(a)〉 is the term making U(a)→ (∃y ∈ Σ(S, U)) Id(S, fst(y), a) true.
To prove the converse, assume z ∈ (∃y ∈ Σ(S, U)) Id(S, fst(y), a). Then fst(z) ∈ Σ(S, U) and

hence snd(fst(z)) ∈ U(fst(fst(z))) which, together with the fact that snd(z) ∈ Id(S, fst(fst(z)), a),
gives subst(snd(fst(z)), snd(z)) ∈ U(a), as wished (see [NPS90], p. 64).

The theorem above gives further evidence to the fact that the notion of being an element of a
subset is the result of disregarding some information. Given a function f(i) : S [i : I], the subset
Imf [I] can be seen as the result of a process with two different abstraction steps. First, we realize
that to know that a is an element in Imf [I] we can abstract on the particular argument i such that
Id(S, f(i), a) true and prove only c ∈ (∃i : I) Id(S, f(i), a) for some c. Note however that, due to
the constructive meaning of existential quantification in type theory, a specific element i ∈ I such
that Id(S, f(i), a) true can immediately be obtained from c. So, the second step, where we really
forget some information, is to say that a is in Imf (I) if and only if (∃i : I) Id(S, f(i), a) true.

Now let us consider the case of the function fst(z) ∈ S [z : Σ(S, U)], for some subset U ⊆ S.
Then the above considerations bring to the conclusion that a is in Imfst[Σ(S, U)] if and only if
(∃z : Σ(S, U)) Id(S, fst(z), a) true. By the theorem above, a ǫS U true is equivalent to a is
in Imfst[Σ(S, U)], and hence also to (∃z : Σ(S, U)) Id(S, fst(z), a) true. It is then interesting to
observe that to pass from a given verification of (∃z : Σ(S, U)) Id(S, fst(z), a) to the judgment
(∃z : Σ(S, U)) Id(S, fst(z), a) true means to forget the verification making U(a) true without for-
getting a, since a appears explicitly in the proposition itself. To supply all the details we left out
amounts to find a proof of (∃z : Σ(S, U)) Id(S, fst(z), a) ↔ U(a) & Id(S, a, a) true..

It is interesting to note that, since U(a) & Id(S, a, a) is the “canonical” solution of the ǫ-
conditions, the above equivalence gives an alternative, and more formal, proof of the fact that also
the proposition (∃z : Σ(S, U)) Id(S, fst(z), a) is a solution of the ǫ-conditions, as we already stated
in section 5.3.2.

5.3.5 Singletons and finite subsets

Every element a of a set S is equal to any element b of the same set S making the propositional
function (x : S) Id(S, x, a) true at b; such triviality means that for any a ∈ S we can intuitively
form the singleton {a} by putting

{a} ≡ {x ∈ S| Id(S, x, a)}

And then the idea is that a finite subset is the union of a finite number of singletons; so if
a0, . . . , an−1 ∈ S, for some natural number n, we put

{a0, . . . , an−1} ≡ {a0} ∪ {a1} ∪ . . . ∪ {an−1}
≡ {x ∈ S| Id(S, x, a0) ∨ . . . ∨ Id(S, x, an−1)}

But what does it mean, more precisely, to give a0, . . . , an−1 ∈ S? It means that a is a function
from N(n), a set with n elements, into S, and a0, . . . , an−1 are its values.

It is easy to define a family of sets N(n) set [n : N] such that N(0) has no elements and, for
n > 0, the elements of N(n) are 0n, . . . , (n − 1)n. Then a singleton is the image of a function
a : N(1) → S, and a finite subset of S with n elements is the image of a function a : N(n) → S.
We thus put:

Definition 5.3.10 (Singletons and finite subsets) For every set S, a subset U of S is said to
be finite if U is extensionally equal to the image of some function a ∈ N(n)→ S, for some n ∈ N

and in particular it is called a singleton if n = 1; more formally U is finite if

(∃z ∈ Σ(N, (n) N(n)→ S)) (U =S Imsnd(z)[N(fst(z))]) true

5.3. RECONSTRUCTING SUBSET THEORY 79

In particular, the empty subset of S is also finite, being equal to the image of a function from
N(0) into S.

Given the above definition, the assertion “U is finite” is just a proposition with parameter U .
This allows for instance to express rigorously in type theory a statement of the form “there exists
a finite subset U0 of U such that . . . U0 . . .” by

(∃z ∈ Σ(N, (n) N(n)→ S)) Imsnd(z)[N(fst(z))] ⊆S U & . . . Imsnd(z)[N(fst(z))] . . .

(a typical example is the definition of Stone cover in [Sam87]).

Proposition 5.3.11 For any set S, if U is a finite subset of S, then either U is empty or there
exist a natural number n > 0 and a0, . . . , an−1 ∈ S such that U =S {a0, . . . , an−1}.

Proof. The proof is nothing but working out definitions, using properties of finite sets, and fixing
notation. U finite means that

(∃z ∈ Σ(N, (n) N(n)→ S)) (U =S Imsnd(z)[N(fst(z))]) true

If w is one of its verifications then fst(w) ∈ Σ(N, (n) N(n)→ S)), and so n ≡ fst(fst(w)) is a natural
number and a ≡ snd(fst(w)) is a function in N(n)→ S. Then U =S Ima[N(n)] holds. If n is zero we
have finished since Ima[N(n)] is empty. Otherwise, by definition of image, x ǫS Ima[N(n)] true if and
only if (∃i ∈ N(n)) Id(S, a(i), x) true. Then, writing ai for a(in), by the rule of N(n)-elimination
we have

(x ǫS Ima[N(n)])↔ (Id(S, x, a0) ∨ Id(S, x, a1) ∨ . . . ∨ Id(S, x, an−1)) true

as wished.

Set theoretic operations can be defined among finite subsets which give a finite subset as result.
For instance, suppose that U and V are finite subsets determined by the elements c and d in
Σ(N, (n) N(n)→ S), i.e. U =S Imsnd(c)[N(fst(c))] and V =S Imsnd(d)[N(fst(d))]. Then the union of
U and V is the finite subset determined by

〈fst(c) + fst(d), λx. if x < fst(c) then snd(c)(x) else snd(d)(x − fst(c))〉

On the other hand, intersection between the finite subsets U and V , determined by c and d,
cannot be determined by an element in Σ(N, (n) N(n) → S) unless equality among elements of S
is decidable. In fact, suppose that there exists a function g such that g(c, d) ∈ Σ(N, (n) N(n)→ S)
determines the finite subset which corresponds to the intersection of U and V . Then consider the
case in which U and V are the singletons {a} and {b} for a, b ∈ S, i.e. U and V are determined
by 〈1, λx. a〉 and 〈1, λx. b〉 in Σ(N, (n) N(n) → S) respectively. Then the subset determined by
g(〈1, λx. a〉, 〈1, λx. b〉) is either a singleton or empty according to whether Id(S, a, b) is true or not.
Hence fst(g(〈1, λx. a〉, 〈1, λx. b〉)) ∈ N is equal to 1 if and only if Id(S, a, b) true, which allows to
decide on the equality of a and b since equality in N is decidable6.

Many usual properties of singletons and finite subsets are obtained by intuitionistic logic from
the above definitions. We give the following proposition as a sample:

Proposition 5.3.12 For any S set, U ⊆ S and a ∈ S,

a ǫS U true iff {a} ⊆S U true

Proof. Assume a ǫS U true and let x ǫS {a} true; then Id(S, x, a) true, and hence by the rule of
substitution on elements x ǫS U true, so that, by ⊆S-introduction {a} ⊆S U true. Conversely if
{a} ⊆S U true then, by ⊆S-elimination, a ǫS U true because obviously a ǫS {a} true.

However, some other common properties require new definitions to be expressed. An example
is for instance U =S

⋃

aǫSU{a}, where the notion of union indexed over a subset is necessary (see
section 5.3.9).

6A solution to the problem of intersection exists, but it requires a more complex definition of finite subset, for
which proposition 5.3.11 fails. The intuitive idea is that, given a finite set J and, for any j ∈ J , a finite set I(j), a
subset is finite if it is extensionally equal to the subset {x ∈ S|

W

j∈J (
V

i∈I(j) x = aji)}. More formally, the finite

subsets are determined by the elements of the set Σ(N, (n) Σ(N(n) → N, (k) Π(N(n), (x) N(k(x)) → S))). It can be
shown that this definition reduces to the one in the main text if the equality of S is decidable.

80 CHAPTER 5. SET THEORY

5.3.6 Finitary operations on subsets

One of the main reasons for the definition of subsets as propositional functions is that it allows to
define operations on subsets with a subset as value. We begin with usual set-theoretic operations.

Definition 5.3.13 (Finitary operations on subsets) For any U, V ⊆ S, we define

intersection : U ∩ V ≡ {x ∈ S| U(x) & V (x)}
union : U ∪ V ≡ {x ∈ S| U(x) ∨ V (x)}
implication : U ⇒ V ≡ {x ∈ S| U(x)→ V (x)}
opposite : −U ≡ {x ∈ S| ¬U(x)}

Note the common pattern of the above definitions: an operation on subsets, i.e. propositional
functions, is obtained by lifting (through abstraction) a connective acting on propositions. More
formally, if • is a given connective, then the corresponding operation on subsets ◦ is defined by

◦ ≡ (S : set)(U : (x : S) prop)(V : (x : S) prop)(x : S)(U(x) • V (x))

and hence ◦ : (S : set)(U : (x : S) prop)(V : (x : S) prop)(x : S) prop. This is the direct link
between “subset-theoretic” operations and intuitionistic logical connectives. It is also clear that
all of the above operations on subsets respect extensional equality, by the logical meta-theorem of
replacement of equivalent propositions.

The following proposition tells that each of them can be characterized in terms of elements in
the expected, traditional way:

Proposition 5.3.14 For any U, V ⊆ S and any a ∈ S, the following hold

a ǫS U ∩ V true iff a ǫS U & a ǫS V true

a ǫS U ∪ V true iff a ǫS U ∨ a ǫS V true

a ǫS U ⇒ V true iff a ǫS U → a ǫS V true

a ǫS −U true iff ¬(a ǫS U) true

Proof. Under the assumption a ∈ S, the judgment a ǫS U ∩ V true is equivalent to the judge-
ment ((x : S) U(x) & V (x))(a) true, that is U(a) & V (a) true, which in turn is equivalent to
a ǫS U & a ǫS V true by the first ǫ-condition.

Exactly the same argument applies to all other operations.

Even if a ǫS U and U(a) are logically equivalent under the assumption that a ∈ S, note that
it is the use of the ǫ-notation which allows to make evident an intuitive content which otherwise
would be completely hidden in the syntactic rule of reduction by which for instance (U&V)(a) and
U(a) & V (a) are just equal expressions. This is one of the main reasons for introducing it.

As for inclusion and equality, the properties of operations on subsets are an immediate conse-
quence of the properties of the corresponding logical connective used to define them.

The logical rules of &-elimination say that

U ∩ V ⊆S U and U ∩ V ⊆S V

while by &-introduction it is immediate that

W ⊆S U W ⊆S V

W ⊆S U ∩ V

and thus U ∩ V is the infimum of U and V with respect to the partial order ⊆S.
Similarly, by the ∨-rules, we have

U ⊆S U ∪ V and V ⊆S U ∪ V

and
U ⊆S W V ⊆S W

U ∪ V ⊆S W

5.3. RECONSTRUCTING SUBSET THEORY 81

which say that U ∪ V is the supremum of U and V .
If instead of rules we consider logical truths, then it is immediate that

associativity (U ∩ V) ∩W =S U ∩ (V ∩W)
commutativity U ∩ V =S V ∩ U
idempotency U ∩ U =S U

hold, and that the same properties hold for ∪.
The link between ⇒ and ⊆S , is given by

(U ⇒ V) =S ⊤S iff U ⊆S V

that is (∀x ∈ S) ((x ǫS U → x ǫS V) ↔ ⊤) iff (∀x ∈ S) (x ǫS U → x ǫS V), which is obvious
because (A→ B)↔ ⊤ is logically equivalent to A→ B, for any propositions A and B.

In general, the usual informal argument to prove a certain property of set-theoretic operations
is perfectly reflected into a rigorous proof through intuitionistic logic.

5.3.7 Families of subsets and infinitary operations

We now turn to infinitary operations on subsets. The order of conceptual priority, however, is
to deal before with families of subsets. The traditional notion of family of subsets has a simple
definition in the present approach:

Definition 5.3.15 (Set-indexed family of subsets) A family of subsets of S indexed by a set
I is a propositional function U : (i : I)(x : S) prop with two arguments, one in I and one in S.
Applying U to an element i of I we obtain a propositional function U(i) on elements of S, i.e.
U(i) ⊆ S. Following traditional notation, given any i ∈ I, we put

Ui ≡ U(i)

Hence the usual notation (Ui)i∈I can be used for a set-indexed family of subsets.
Two families of subsets U, V , indexed by I, are said to be equal if for any index i ∈ I it is

Ui =S Vi, that is we put

((Ui)i∈I =S (Vi)i∈I) ≡ (∀i ∈ I) (Ui =S Vi)

In other terms, U and V are equal if they are extensionally equal as binary relations between I and
S, i.e. (∀i ∈ I)(∀x ∈ S) (U(i, x)↔ V (i, x)).

Infinitary operations are easily defined on set-indexed families of subsets. Just as propositional
connectives were used to define unary and binary operations, now quantifiers are used to define
infinitary operations.

Definition 5.3.16 (Infinitary operations) Let (Ui)i∈I be a set-indexed family of subsets of S.
Then we put:

⋃

i∈I Ui ≡ {x ∈ S| (∃i ∈ I) U(i, x)} ≡ (x : S)(∃i ∈ I) U(i, x)

⋂

i∈I Ui ≡ {x ∈ S| (∀i ∈ I) U(i, x)} ≡ (x : S)(∀i ∈ I) U(i, x)

Clearly
⋃

i∈I Ui and
⋂

i∈I Ui are subsets of S. Moreover, they behave in the expected way with
respect to elements:

Proposition 5.3.17 For any set-indexed family (Ui)i∈I of subsets of S, and any a ∈ S:

a ǫS

⋃

i∈I Ui true iff (∃i ∈ I) (a ǫS Ui) true

a ǫS

⋂

i∈I Ui true iff (∀i ∈ I) (a ǫS Ui) true

82 CHAPTER 5. SET THEORY

Proof. The proof is perfectly similar to the proof of proposition 5.3.14.

The standard properties of union are obtained, as expected, from logical properties of the exis-
tential quantifier. Given any set-indexed family of subsets (Ui)i∈I , for any j ∈ I the ∃-introduction
rule gives (∀x ∈ S) (x ǫS Uj → (∃i ∈ I) x ǫS Ui) true, which says that

for all j ∈ I, Uj ⊆S

⋃

i∈I

Ui (5.1)

Note that, since Uj ⊆S

⋃

i∈I Ui is a proposition and not a judgment, we could, more formally ,
express the above as (∀j ∈ I) (Uj ⊆S

⋃

i∈I Ui).
Similarly, for any x ∈ S and W ⊆ S, the rule of ∃-elimination

(∃i ∈ I) x ǫS Ui true

[i ∈ I, x ǫS Ui true]
|

x ǫS W true

x ǫS W true

can be put in the form
(∀i ∈ I) (x ǫS Ui → x ǫS W)

((∃i ∈ I) x ǫS Ui)→ x ǫS W

which says that
Ui ⊆W for all i ∈ I

⋃

i∈I Ui ⊆W
(5.2)

Of course, the above two properties (5.1) and (5.2) say that union is the supremum of set-indexed
families w.r.t. the order ⊆S .

An equivalent formulation of (5.1) and (5.2) together is

⋃

i∈I

Ui ⊆W iff for all i ∈ I, Ui ⊆W

which corresponds to

(∀x ∈ S) ((∃i ∈ I) x ǫS Ui)→ x ǫS W iff (∀i ∈ I)(∀x ∈ S) (x ǫS Ui → x ǫS W)

which is true by the intuitionistic laws of permutation of quantifiers with implication. One can
actually prove a somewhat stronger statement, namely

(∀x ∈ S) (((∃i ∈ I) (x ǫS Ui)→ x ǫS W)↔ (∀i ∈ I) (x ǫS Ui → x ǫS W))

which can also be expressed in terms of subsets, as

(
⋃

i∈I

Ui ⇒W) =S

⋂

i∈I

(Ui ⇒W)

and shows the use of the subset operation ⇒.
Quite similarly, from the rules for ∀, one obtains that intersection is the infimum of a set-indexed

family (Ui)i∈I .

5.3.8 The power of a set

In this section some facts specific of the type of subsets of a set S, equipped with extensional
equality, will be illustrated. Let us stress that the type we are considering is not the type of
the propositional functions over S, even if a subset of S is the same as a propositional function
over S. In fact, a type is determined both by its elements and its equality relation, and we do
not consider intensional equality between propositional functions as in [Mar84], but extensional
equality as defined in definition 5.3.6.

5.3. RECONSTRUCTING SUBSET THEORY 83

First of all, we want to analyze the structure of PS, equipped with finitary and infinitary
operations, in algebraic terms. The fact that PS is equipped with extensional equality gives as a
consequence that inclusion ⊆S is a partial order on PS.

Moreover, (PS,∩) and (PS,∪) are semi-lattices7 because of the results in section 5.3.6. To
show that (PS,∩,∪) is a lattice, we have to check that ⊆S is the partial order induced by the
semi-lattice operations ∩ and ∪, i.e.

U ∩ V =S U iff U ⊆S V iff U ∪ V =S V

The first equivalence is immediate by logic (and proposition 5.3.14) once we expand definitions
into (∀x ∈ S) (x ǫS U ∩ V ↔ x ǫS U) if and only if (∀x ∈ S) (x ǫS U → x ǫS V). Similarly, the
second equivalence holds because A ∨B ↔ B iff A→ B, for any propositions A and B.

The next step is to show that PS is a complete lattice with respect to infinitary union and
intersection. The traditional definition is that a lattice L is complete if any family (fi)i∈I , where
I is a set, of elements of L has a supremum. To express this inside type theory, we lack only the
definition of set-indexed family of elements in a type (or in a set):

Definition 5.3.18 (set-indexed family of elements) Let C be any type or set. A set-indexed
family of elements of C is a function f defined on a set I with values in C. As usual, the notation,
(fi)i∈I , where fi ≡ f(i), is used.

We already used set-indexed family of elements of a type within this chapter in section 5.3.7,
where we introduced the notion of set-indexed family of subsets of a set. In general, the foundational
reason for introducing set-indexed families of elements of a type is that they allow to give a meaning
to quantification over the elements of some sub-types. In fact, given a function f from the set I
into the type C, the quantification over the image of f is reduced to a quantification over the set
of indexes I. An example coming from mathematical practice is in [SVV96], where we introduced
set-based Scott domains, i.e. Scott domains such that the type of compact elements can be indexed
by a set.

Now, the definition of complete lattice in our approach is literally as above, but one must be
careful that it has a different meaning according to the foundational attitude. In the classical view,
any sub-type of PS can be indexed by a set, while we expect this to be false in type theory. We
believe, however, that from a computational point of view it is necessary, but in the same time
sufficient, to consider only families of subsets which are set-indexed.

Hence PS is a complete lattice because we have shown in section 5.3.7 that any set-indexed
family of subsets has both supremum and infimum. It is now easy to prove also:

Theorem 5.3.19 For any set S, PS = 〈PS,∩,
⋃

,⊤S ,⊥S〉 is a frame (alias locale, complete
Heyting algebra).

Proof. After the preceding results, it remains to be proved only that infinitary union distributes
over intersection, that is:

(
⋃

i∈I

Ui ∩W) =S

⋃

i∈I

(Ui ∩W)

It is immediate to see that this correspond exactly to a logical law of quantifier shifting, namely

(∀x ∈ S) ((∃i ∈ I) x ǫS Ui & x ǫS W ↔ (∃i ∈ I) (x ǫS Ui & x ǫS W))

As an example of how a classical theorem is rendered in our notion of power of a set, we give
here a constructive version of Cantor’s diagonalization theorem:

Theorem 5.3.20 (Cantor’s diagonalization) Let S be any set. Then for any set-indexed fam-
ily (Fx)x∈S of subsets of S, there is a subset DF ⊆ S which is extensionally different from Fx for
any x ∈ S.

7Here and in the whole chapter we adhere to the principle of adopting standard algebraic terminology for struc-
tures (A, f1, . . . , fn), where A is a type, and not necessarily a set.

84 CHAPTER 5. SET THEORY

Proof. Given the family (Fx)x∈S, i.e. F (x, y) prop [x : S, y : S], put DF ≡ (y : S) ¬F (y, y), that
is, DF (y) ≡ ¬F (y, y). For any x ∈ S, DF =S Fx would mean that (∀y ∈ S) ¬F (y, y) ↔ F (x, y),
which for y = x would give ¬F (x, x) ↔ F (x, x), which is a contradiction. So for any x ∈ S, it is
¬(DF =S Fx)

Another example, inspired by topos theory, is the bi-univocal correspondence between PS and
S → PN1, the collection of families of subsets of the one-element set N1 equipped with equality as
defined in 5.3.15. We leave the details.

5.3.9 Quantifiers relative to a subset

The meaning of quantification over a subset U of a set S is that the range of quantification is
restricted to elements of U , rather than all elements of S. A common definition in pure logic is
that of quantifiers relative to a property; the idea is to adapt it to type theory in such a way to
make it visible that U is considered as the domain of quantification.

Definition 5.3.21 (Quantifiers relative to a subset) Let S be a set and U ⊆ S. Then, for
any propositional function A(x) prop [x : S, x ǫS U true] we put:

(∀x ǫS U) A(x) ≡ (∀x ∈ S) (x ǫS U → A(x))
(∃x ǫS U) A(x) ≡ (∃x ∈ S) (x ǫS U & A(x))

The operators (∀x ǫS U) and (∃xS ǫS U) are called, respectively, the universal and existential
quantifier relative to U .

Note that the above definition makes use of the fact, specific to type theory, that A → B
and A & B are propositions provided that A is a proposition and B is a proposition under the
assumption that A is true.

It is an easy matter now to check that quantifiers relative to a subset U obey to rules completely
similar to those for quantifiers in intuitionistic logic, but with explicit mention of the domain of
quantification, as in [Mar84]:

∀-introduction
[x ǫS U true]

|
A(x) true

(∀x ǫS U) A(x) true

∀-elimination
a ǫS U true (∀x ǫS U) A(x) true

A(a) true

∃-introduction
a ǫS U true A(a) true

(∃x ǫS U) A(x) true

∃-elimination

(∃x ǫS U) A(x) true

[x ǫS U true, A(x) true]
|

C true

C true

Such rules are only abbreviations for deductions in type theory. For instance, the ∀-introduction

rule relativized to U is an abbreviation of

S set U ⊆ S [x ∈ S]2
�|�

x ǫS U prop

[x ǫS U true]1
|

A(x) true

x ǫS U → A(x) true
1

(∀x ǫS U)A(x) true
2

5.3. RECONSTRUCTING SUBSET THEORY 85

Once we have access to quantifiers relative to subsets, many of the notions defined on sets
can be extended to subsets in a straightforward way; we now see the case of arbitrary unions
and intersections. Before that, the notion of set-indexed family of subsets must be generalized to
subset-indexed families.

Definition 5.3.22 (Subset-indexed family of subsets) Let S and I be two sets and U be a
subset of I. Then a propositional function

V : (i : I)(y : U(i))(x : S) prop

is said to be a family of subsets of S indexed on the subset U if the truth of V (i, y, x) does not
depend on y, i.e. V (i, y1) =S V (i, y2) for any y1, y2 ∈ U(i); then one can hide the variable y and
write

Vi ⊆ S [i ǫI U true].

The infinitary operations of union and intersection are immediately extended to subset-indexed
families of subsets, simply by replacing quantifiers with quantifiers relative to a subset. So, if
Vi ⊆ S [i ǫI U true], we put

⋃

iǫIU

Vi ≡ {x : S| (∃i ǫI U) x ǫS Vi} ≡ (x : S)(∃i ∈ I) (i ǫI U & x ǫS Vi)

and ⋂

iǫIU

Vi ≡ {x : S| (∀i ǫI U) x ǫS Vi} ≡ (x : S)(∀i ∈ I) (i ǫI U → x ǫS Vi)

As an exercise, we can prove here the property we left out in section 5.3.5.

Proposition 5.3.23 For any S set and U ⊆ S,

U =S

⋃

iǫSU

{i}

Proof. The subset-indexed family is of course {i} ⊆ S [i ǫS U]. In fact, for any x ∈ S, we have
x ǫS

⋃

iǫSU{i} true if and only if (∃i ǫS U) x ǫS {i} true if and only if (∃i ǫS U) Id(S, x, i) true if
and only if (∃i ∈ S) i ǫS U & Id(S, x, i) true if and only if x ǫS U true.

We propose a second exercise: prove that if U ⊆I W and Vi ⊆ S [i : I], then
⋃

iǫIU

Vi ⊆S

⋃

iǫIW

Vi

A similar result holds also in the weaker assumption Vi ⊆ S [i ǫI W], but with a more complicated
statement and proof.

5.3.10 Image of a subset and functions defined on a subset

The idea of relativized quantifiers, makes it natural to extend to subsets also the notion of image
of a set:

Definition 5.3.24 (Image of a subset) Let S and I be sets. Then, given any function

f(i) ∈ S [i : I]

and any subset U of I, the subset of S defined by:

f [U] ≡ {x ∈ S| (∃i ǫI U) Id(S, f(i), x)} ≡ (x : S)(∃i ∈ I) (i ǫI U & Id(S, f(i), x))

is called the image of U along f . An alternative notation for the image of U along f is {f(x)| U(x)}.
More generally, given a function f(x1, . . . , xn) ∈ S [x1 : I1, . . . , xn : In] and a relation

R(x1, . . . , xn) prop [x1 : I1, . . . , xn : In] both with n arguments, the image of R along f is de-
fined by

Imf [R] ≡ (x : S)(∃i1 ∈ I1) . . . (∃in ∈ In) (R(i1, . . . , in) & Id(S, f(i1, . . . , in), x))

Alternative notations for Imf [R] are f [R] and {f(x1, . . . , xn)| R(x1, . . . , xn)}.

86 CHAPTER 5. SET THEORY

Of course, if U is the trivial subset ⊤I , then f [⊤i] =S Imf [I]. In general, all the expected
properties can easily be checked. For instance, for any U, V ⊆ I,

U ⊆I V

f [U] ⊆S f [V]

follows immediately from definitions by intuitionistic logic. Another instructive exercise is to realize
that f [U] ≡ ∪iǫIU{f(i)}.

It is also worthwhile to notice that the image f [U] is always extensionally equal to the im-
age Img[J] of some set J along some function g: it is enough to consider J ≡ Σ(I, U) and
g ≡ λx. f(fst(x)).

If n subsets U1 ⊆ I1, . . . , Un ⊆ In are given, then the image of U1, . . . , Un under f is obtained
as a special case, by putting

R(i1, . . . , in) ≡ i1 ǫI1 U1 & . . . & in ǫIn
Un

For instance, given an operation · : S2 → S, and writing as usual b · c for ·(b, c), the image of the
two subsets U, V ⊆ S is the subset

(x : S)(∃b, c ∈ S) (b ǫS U & c ǫS V & Id(S, x, b · c))

that is
(x : S)(∃b ǫS U)(∃c ǫS V) Id(S, x, b · c)

which, following the above conventions, is written also {b · c| b ǫS U, c ǫS V } or ·[U, V]; it is the
latter notation which gives raise to U · V , which is the standard notation for such subset used in
algebra to mean, for instance, the product of ideals I ·J or of subgroups H ·K, and which we found
useful in formal topology.

The notion of function itself can be relativized to a subset in the following sense:

Definition 5.3.25 (Function defined on a subset) If S is a set, I is a set and U ⊆ I, a
function of two arguments f(i, y) ∈ S [i : I, y : U(i)] is said to be a function from U to S, if the
value f(i, y) does not depend on y, that is if (∀y, y′ ∈ U(i))Id(S, f(i, y), f(i, y′)) true; then one can
hide the variable y and write simply

f(i) ∈ S [i ǫI U true].

The intuitive content of such definition is that, just like the notion of element of a subset U
is obtained by “forgetting” the witness y of U(i), so a function f relativized to U is obtained by
“forgetting” the second argument of the input. This of course can be done only when the specific
value of y is irrelevant for the computation of f(i, y), i.e. when f(i, y) and f(i, y′) have the same
value for any y, y′ ∈ U(i) as required above.

A similar definition can be given also when f is a function from I and U(i) set [i : I] into a type
C. In this case, to express the fact that f does not depend on the second argument, the equality
in C must be used instead of propositional equality, and thus, in general, the condition can not be
expressed by a proposition.

Extending the previous terminology to functions defined on subsets, a function f(i) ∈ C [i ǫI U]
is also called a subset-indexed family of elements of C. The remark following definition 5.3.18 applies
here equally well. Again, examples are to be found in [SVV96].

Chapter 6

Development of non-trivial

programs

6.1 Summary

In this chapter we will show how a non-trivial program schema can be formally developed within
Martin-Löf’s type theory. With respect to the other chapters we will use here also some types that
are not described in appendix B but can be found in [NPS90].

6.2 Introduction

Since the 70s Martin-Löf has developed, in a number of successive variants, an Intuitionistic Theory
of Types [Mar84, NPS90] (ITT for short in the following). The initial aim was to provide a
formal system for constructive mathematics but the relevance of the theory also in computer
science was soon recognized. In fact, from an intuitionistic perspective, defining a constructive set
theory is equivalent to defining a logical calculus [How80] or a language for problem specification
[Kol32]. Hence the topic is of immediate relevance both to mathematicians, logicians and computer
scientists. Moreover, since an element of a set can also be seen as a proof of the corresponding
proposition or as a program which solves the corresponding problem, ITT is also a functional
programming language with a very rich type structure and an integrated system to derive correct
programs from their specification [PS86]. These pleasant properties of the theory have certainly
contributed to the interest for it arisen in the computer science community, especially among
those people who believe that program correctness is a major concern in the programming activity
[BCMS89]. Many are the peculiarities of the theory which justify this wide concern. As regards
computing science, through very powerful type-definition facilities and the embedded principle of
“propositions as types” it primarily supplies means to support the development of proved-correct
programs. Indeed here type checking achieves its very aim, namely that of avoiding logical errors.
There are a lot of works (see for instance [Nor81, PS86]) stressing how it is possible to write down,
within the framework of type theory, the formal specification of a problem and then develop a
program meeting this specification. Actually, examples often refer to a single, well-known algorithm
which is formally derived within the theory. The analogy between a mathematical constructive
proof and the process of deriving a correct program is emphasized. Formality is necessary, but it is
well recognized that the master-key to overcome the difficulties of formal reasoning, in mathematics
as well as in computer science, is abstraction and generality. Abstraction mechanisms are very well
offered by type theory by means of assumptions and dependent types. In this chapter we want to
emphasize this characteristic of the theory.

Instead of specifying a single problem we specify classes of problems and develop general so-
lutions for them. Correctness of any specific instance is clearly assured by the theory. Another
aspect we think of some interest in the chapter is the introduction of some new dependent types;
especially the type Tree(A) of finite trees labeled by elements of A. This type has been defined by
means of the W -type: the type of well-orderings.

87

88 CHAPTER 6. DEVELOPMENT OF NON-TRIVIAL PROGRAMS

Let us simply recall that if B is a type and C(x) is a family of types, where x ranges on B,
then W(B, C) can be thought of as the set of all well-founded trees with labels in B and branches
determined by C(x). More precisely if a node is labeled by b ∈ B then the branches coming out
from that node correspond to the elements of C(b). Transfinite induction gives us the elimination
rule for elements of this type: if, from the assumption that a proposition holds for the predecessors
(sub-trees) of an element t ∈ W(B, C) it is possible to derive that it holds for t, then it holds for
any element in W(B, C).

The chapter is organized as follows. In section 6.3, we begin the description of the types which
allow to express the following game problems within type theory. First the type Seq(A), of finite
sequences of elements in A, the type Tree(A) and some general functions defined on them are
presented. Then Graph(A), the type of finitary directed graphs is introduced and it is shown how
its elements can be viewed as laws for building up finite trees. Theorems characterizing this class
of trees follow. In section 6.4 the problems we deal with are defined and their solutions developed.
They are problems on “games” and clearly their specification strongly depends on how we describe
a game. Finally two simple examples, based on the knight’s tour problem are considered and
discussed. Finally, in section 6.7 there are most of the details on the constructions we use.

6.3 Basic Definitions

In this section we will introduce some general types we will use in the next of the chapter. Let us
recall that in section 6.7.1 you will find the definition of the type N<(a), that is, given a ∈ N, the
type of all the natural number less than a, that is 0, . . . , a− 1, and such that N<(0) = ∅ holds.

6.3.1 The set Seq(A)

Instead of introducing the type of the lists on A directly, we will implement them as pairs since
this approach makes the following easier. The first component of a pair is the length n ∈ N of the
list and the second a function mapping an element i ∈ N<(n) to the i-th element of the list. Thus,
we put

Seq(A) ≡ (∃x ∈ N) N<(x)→ A

and, supposing a ∈ A and s ∈ Seq(A), we make the following definitions:

nil ≡ 〈0, λx. R0(x)〉
a • s ≡ 〈s(fst(s)), λx. if x <N fst(s) then snd(s)[x] else a〉

which implies that, if

C(x) prop [x : Seq(A)]
d ∈ C(nil)
e(x, y, z) ∈ C(x • y) [x : A, y : Seq(A), z : C(y)],

then
Listrec(s, d, e) ≡ E(s, (n, f) Nrec(n, d, (u, v) e(f [u], 〈u, f〉, v)))

is a correct proof-method to find a proof of C(s).
We will use the abbreviations

♯s ≡ fst(s) for the length of s and
s{i} ≡ snd(s)[i] for the i-th element of s

If a ∈ A and s ∈ Seq(A) then the proposition a InSeq s holds if and only if a is an element of
the sequence s. The following equations hold:

{
a InSeq nil = ⊥
a InSeq b • t = (a =A b) ∨ (a InSeq t)

where a =A b is a shorthand for Id(A, a, b) (see sppendix B). The solution is

a InSeq s ≡ Listrec(s,⊥, (x, y, z) (a =A x) ∨ z)

6.3. BASIC DEFINITIONS 89

To filter out, from a given sequence s, all the elements which do not satisfy a given condition
f(x) ∈ Boole [x : A] we define the function

filter(f, s) ∈ Seq(A) [f : (x : A) Boole, s : Seq(A)]

such that, for all a ∈ A, a InSeq filter(f, s) if and only if both f(a) =Boole true and a InSeq s. The
recursive equations for the function filter are

{
filter(f, nil) = nil

filter(f, a • s) = if f(a) then a • filter(f, s) else filter(f, s)

and they can be solved by making the explicit definition

filter(f, s) ≡ Listrec(s, nil, (x, y, z) if f(x) then x • z else z)

Theorem 6.3.1 If
a ∈ A
s ∈ Seq(A)
f(x) ∈ Boole [x : A]

then
a InSeq filter(f, s) is true if and only if (f(a) =Boole true) & (a InSeq s)

Proof. The proof is by list-induction over s. In the base case

a InSeq filter(f, nil)⇐⇒ (f(a) =Boole true) & (a InSeq nil)

must be proven. But this is obvious, since

filter(f, nil) = nil ∈ Seq(A) and a InSeq nil = ⊥.

In the induction step, assume that

a InSeq filter(f, s)⇐⇒ (f(a) =Boole true) & (a InSeq s);

the goal is to prove

a InSeq filter(f, b • s)⇐⇒ (f(a) =Boole true) & (a InSeq b • s).

The proof will proceed by a Boole-elimination on f(b). Suppose f(b) =Boole true, then we must
prove

a InSeq b • filter(f, s)⇐⇒ (f(a) =Boole true) & ((a =A b) ∨ (a InSeq s)),

that is:

(a =A b) ∨ (a InSeq filter(f, s))⇐⇒ (a =A b) ∨ ((f(a) =Boole true) & (a InSeq s))

that obviously holds by induction hypothesis.
In the second case, if f(b) =Boole false, we must prove

a InSeq filter(f, s)⇐⇒ (f(a) =Boole true) & ((a =A b) ∨ (a InSeq s))

that is, by inductive hypothesis, our goal is to prove

(f(a) =Boole true) & (a InSeq s)⇐⇒
(f(a) =Boole true) & ((a =A b) ∨ (a InSeq s)).

One implication is obvious. To obtain the proof of the other one, assume

(f(a) =Boole true) & ((a =A b) ∨ (a InSeq s)),

then we have
(a =A b) ∨ (a InSeq s)

by &-elimination. Then the result follows by ∨-elimination since (a =A b) yields f(a) =Boole f(b), by
extensionality, and hence true = false ∈ Boole; but then one obtains (f(a) =Boole true) & (a InSeq s),
by ⊥-elimination; on the other hand, if (a InSeq s) then (f(a) =Boole true) & (a InSeq s), follows
by &-introduction.

90 CHAPTER 6. DEVELOPMENT OF NON-TRIVIAL PROGRAMS

6.3.2 The set Tree(A)

The set Tree(A) is the set of all finite trees whose nodes are labeled with elements in the set A.
As we saw earlier, the well-ordering type has labeled trees of finite depth as elements, so to obtain
finite trees we only have to add the constrain that any node has a finite set of predecessors. We
make the following definition

Tree(A) ≡W(A × N, (x) N<(snd(x)))

which is the set of finitely branched trees with nodes of the form 〈a, n〉 where a is an element in A
and n is the number of immediate successors.

Then, for instance, the singleton tree with only one node labeled by a0 ∈ A, can be defined as

leaf(a0) ≡ sup(〈a0, 0〉, empty) • a0

where empty ≡ λx.R0(x) is the only function from the empty type into Tree(A). The following is
a formal proof that leaf(a0) ∈ Tree(A):

a ∈ A 0 ∈ N

〈a, 0〉 ∈ A× N

[t ∈ N<(0)]1 Tree(A) set

R0(t) ∈ Tree(A)

sup(〈a0, 0〉, R0) ∈ Tree(A)
1

We can build up more complex trees: let

e0(a0) ≡ leaf(a0)

then

e1(a0, a1) ≡ sup(〈a1, 1〉, (x) e0(a0))

• a0

• a1

is the tree with the root labeled by a1 and one child e0(a0), and

sup(〈a2, 3〉, (x) if x ≃N 0 then e1(a0, a1) else e0(a0))

• a0

• a1

JJ
JJ

J
• a0 • a0

tt
tt

t

• a2

is the tree with root 〈a2, 3〉 and three sub-trees, the first being e1(a0, a1) and the other two being
e0(a0).

Let t ∈ Tree(A), the root of the tree t and the i-th sub-tree of the tree t are defined by

root(t) ≡ Trec(t, (x, y, z) x)
subtree(t, i) ≡ Trec(t, (x, y, z) y(i))

The value of the function depth(t) ∈ N [t : Tree(A)] is the depth of the tree t. Its recursive equation
is

depth(sup(〈a, n〉, b)) = s(max(n, (i) depth(b(i))))

where the function max(n, f) ∈ N [n : N, f : (i : N<(n)) N], whose value is the maximum among n
arguments, is described in section 6.7.5. The solution is

depth(w) ≡ Trec(w, (x, y, z) s(max(snd(x), z)))

A useful function on trees is the function

travel(t) ∈ Seq(A) [t : Tree(A)]

which associates to a given tree t the sequence of all the labels present in t. It must follow the
recursive equations

travel(sup(〈a, n〉, f)) = a • append(n, (i) travel(f(i)))

6.3. BASIC DEFINITIONS 91

where the function

append(n, f) ∈ Seq(A) [n : N, f : (i : N<(n)) Seq(A)]

associates to n sequences on A the sequence obtained by appending them; it is defined by solving
the following recursive equations

{
append(0, f) = nil

append(s(n), f) = append2(f(n), append(n, f))

where append2(s1, s2) ∈ Seq(A) [s1, s2 : Seq(A)] is the standard function to append two sequences
(see section 6.7.2). Hence we solve them as follow

append(n, f) ≡ Nrec(n, nil, (x, y) append2(f(x), y))
travel(w) ≡ Trec(w, (x, y, z) fst(x) • append(snd(x), z))

Supposing a ∈ A and t ∈ Tree(A), we can use the proposition a InSeq s to define the proposition
a InTree t that holds if and only if a is the label of a node in t.

a InTree t ≡ a InSeq travel(t)

Suppose now that b(x) ∈ Boole [x : A] is a boolean function, and that we are interested to know
if in the finite tree t there is a node, whose label is a, such that b(a) =Boole true. The recursive
equation for a solution of this problem is

(find(sup(〈a, n〉, h), b) = b(a)) ∨
∨

(n, (i) find(h(i), b))

where the function
∨

(n, f) ∈ Boole [n : N, f : (i : N<(n)) Boole], whose value is the disjunction of
n elements, is described in section 6.7.3. The solution of the previous equation is

find(w, b) ≡ Trec(w, (x, y, z) b(fst(x)) ∨
∨

(snd(x), z))

Theorem 6.3.2 If t ∈ Tree(A), b(x) ∈ Boole [x : A], then find(t, b) =Boole true if and only if
(∃x ∈ A) (f(x) =Boole true) & (x InTree t).

Proof. The proof is by induction on the construction of t and is similar to the proof of theorem
6.3.1.

6.3.3 Expanding a finite tree

Suppose that preds ∈ A→ Seq(A) and t ∈ Tree(A). We want to define a function expand(preds, t)
whose value is the tree t expanded in all leaves, leaf(a), such that the sub-trees of a are all
singleton trees with nodes whose labels are taken from the sequence preds[a]. In other words, all
leaves leaf(a) will be replaced by trees with root 〈a, ♯preds[a]〉 and sub-trees leaf(preds[a]{i}) for
i ∈ N<(♯preds{a}). For instance, if preds ∈ N → Seq(N) maps 0 to the sequence 1 • 2 • nil, 1 to
the sequence 0 • nil and 2 to the sequence nil, and if t ∈ Tree(N) is the tree

sup(〈0, 3〉, λx. leaf(x))
0

0

����
1 2

====

then expand(preds, t) will be the tree

0

0

pppppppp
1 2

LLLLLLL

1

����
2

====

0

92 CHAPTER 6. DEVELOPMENT OF NON-TRIVIAL PROGRAMS

The following recursive equations holds for the function expand

expand(preds, sup(〈a, 0〉, f)) =
sup(〈a, ♯preds[a]〉, (i) leaf(preds[a]{i}))

expand(preds, sup(〈a, s(n)〉, f)) =
sup(〈a, s(n)〉, (i) expand(preds, f(i)))

This equations can be solved in type theory by

expand(preds, t) ≡ Trec(t, (x, y, z) if snd(x) ≃N 0
then sup(〈fst(x), ♯preds[fst(x)]〉,

(i) leaf(preds[fst(x)]{i}))
else sup(x, z))

Examples
Define

pre ≡ λx. 〈x, λy. y〉 ∈ N→ Seq(N),

that is pre is the function which associates to the number x the sequence of all the numbers strictly
less then x. Then one can see how some trees can be constructed using repeated expansions:

expand(pre, leaf(4))
4

0

pppppppp
1

����
2

====

3

UUUUUUUUUUUUUUU

(expand(pre))2(leaf(4))

4

0

pppppppp
1

����
2

====

3

WWWWWWWWWWWWWWWWW

0 0

����
1

====

0

����
1 2

====

and notice that
smaller(k) ≡ (expand(pre))k(leaf(k))

is the tree representing the natural number k together with the ordinary order relation in N.

6.3.4 Finitary Graphs

We will identify a finitary graph on A with a function which maps an element to its neighbors:

Graph(A) ≡ A→ Seq(A)

Here are some examples:

loop ≡ λx. x • nil ∈ Graph(N<(1)) 0::

pre ∈ Graph(N<(3))

3

��

����
��

��=
==

=

1

��=
==

= 2oo

����
��

0

A tree t is expanded with respect to a graph g if the children of any node a in the tree are
exactly the neighbors of the node a in the graph, i.e. the following equality holds for the predicate
Expanded:

Expanded(g, sup(〈a, n〉, f)) = (♯g[a] =N n) & (∀i < n) ((g[a]{i} =A root(f(i))) & Expanded(g, f(i)))

This equation can be solved by transfinite recursion.

6.3. BASIC DEFINITIONS 93

As an example, there is no tree t such that Expanded(loop, t) holds. On the other side,
Expanded(pre, smaller(k)) is true for any k.

The following sets will be useful:

ExpandedTrees(A, g) ≡ {t ∈ Tree(A)| Expanded(g, t)}

It is the set of all the expanded trees with label in A, while

ExpandedTree(A, g, a) ≡ {t ∈ Tree(A)| Expanded(g, t) & root(t) =A a}

is the set of all the expanded trees with label in A and root a. The first observation is that there
is at most one element in ExpandedTree(A, g, a).

Theorem 6.3.3 If A is a set, g ∈ Graph(A), a ∈ A then there is at most one element in
ExpandedTree(A, g, a), i.e. if t1, t2 ∈ ExpandedTree(A, g, a) then t1 = t2 ∈ ExpandedTree(A, g, a).

We are also interested in defining the set of all the trees that are only partially expanded
with respect to the graph g, that is their leaves are not fully expanded. We then introduce the
proposition

PartiallyExpanded(g, t) prop [g : Graph(A), t : Tree(A)]

which is recursively defined by

PartiallyExpanded(g, sup(< a, n >, f)) =
(n =N 0) ∨ ((n =N ♯g[a]) & (∀i < n) ((g[a]{i} = root(f(i))) & PartiallyExpanded(g, f(i))))

As before, this equation can be solved by transfinite recursion. Also the following sets will be
useful:

PartiallyExpandedTrees(A, g) ≡ {t ∈ Tree(A)| PartiallyExpanded(g, t)}

It is the set of all the partially expanded trees with label in A, while

PartiallyExpandedTree(A, g, a) ≡ {t ∈ Tree(A)| PartiallyExpanded(g, t)& root(t) =A a}

is the set of all the partially expanded trees with label in A and root a. Clearly, each expanded
tree is also a partially expanded tree.

We want now to characterized the set ExpandedTree(A, g, a) as a suitable subset of the set
PartiallyExpandedTrees(A, g, a). First one proves that the function expand, introduced in section
6.3.3, yields a partially expanded tree when applied to a partially expanded tree.

Theorem 6.3.4 Suppose g ∈ Graph(A), a ∈ A and t ∈ PartiallyExpandedTree(A, g, a) Then
expand(g, t) ∈ PartiallyExpandedTree(A, g, a).

Proof. We must prove that

1. expand(g, t) ∈ Tree(A)

2. PartiallyExpanded(g, expand(g, t)) is true

3. root(expand(g, t)) = a

(1) and (3) immediately follow from the very definition of the function expand. So only (2)
must be proved. It will be proved be transfinite induction on the construction of the tree t. Let
t = sup(〈a, n〉, f). The inductive hypothesis is that, for each i < ♯g(a),

expand(g, f(i)) ∈ PartiallyExpandedTree(A, g, root(f(i)))

Two cases must be considered:

• n = 0. Then expand(g, t) = sup(〈a, ♯g(a)〉, (i) leaf(g(a)[i])), by definition. If ♯g(a) = 0 then
the result is quite immediate, otherwise, if ♯g(a) 6= 0,

PartiallyExpanded(g, sup(〈a, ♯g(a)〉, (i) leaf(g(a)[i])))

is true follows from the fact that PartiallyExpanded(g, leaf(g(a)[i])) is true, by the definition
of the function leaf.

94 CHAPTER 6. DEVELOPMENT OF NON-TRIVIAL PROGRAMS

• n 6= 0. Since t ∈ PartiallyExpandedTree(A, g, a), then t = sup(〈a, ♯g(a)〉, f) and ♯g(a) 6= 0,
hence

expand(g, t) = sup(〈a, ♯g(a)〉, (i) expand(g, f(i)))

and
PartiallyExpanded(g, sup(〈a, ♯g(a)〉, (i) expand(g, f(i))))

is true follows by using the inductive hypothesis.

Since for each a ∈ A, leaf(a) ∈ PartiallyExpandedTree(A, g, a) we can immediately obtain

Corollary 6.3.5 Let n ∈ N, g ∈ Graph(A) and a ∈ A. Then

(expand(g))n(leaf(a)) ∈ PartiallyExpandedTree(A, g, a).

Proof. The statement is a consequence of the previous theorem and the definition of (expand(g))n.

The main lemma now follows.

Lemma 6.3.6 If A is a set, g ∈ Graph(A), t ∈ Tree(A) then

Expanded(g, t) if and only if PartiallyExpanded(g, t) & t = expand(g, t).

Proof. By induction on the construction of t. Let t ≡ sup(〈a, n〉, f).

• (if) The inductive hypothesis is that, for each i < n,

Expanded(g, f(i))→ PartiallyExpanded(g, f(i)) & f(i) = expand(g, f(i))

Assume Expanded(g, sup(〈a, n〉, f)) then PartiallyExpanded(g, sup(〈a, n〉, f)) can be derived as
well as

1. ♯g(a) = n

2. Expanded(g, f(i))

It remains to prove
sup(〈a, n〉, f) = expand(g, sup(〈a, n〉, f))

There are two cases to analyze.

– n = 0. By the definition of expand and (1) we have:

expand(g, sup(〈a, n〉, f)) = sup(〈a, n〉, (i) leaf(g(a)[i])) ∈ Tree(A)

and since f(i) = leaf(g(a)[i]) ∈ Tree(A) [i : N0] can be derived, the result holds in this
case.

– n 6= 0. Since (2) holds, by inductive hypothesis we have:

f(i) = expand(g, f(i)) ∈ Tree(A)

and then
sup(〈a, n〉, f) = sup(〈a, n〉, (i) expand(g, f(i))) ∈ Tree(A)

and, by transitivity, also in this case the result holds.

• (only if) The inductive hypothesis is: for each i < n

PartiallyExpanded(g, f(i)) & f(i) = expand(g, f(i))→ Expanded(g, f(i))

Assume

PartiallyExpanded(g, sup(〈a, n〉, f)) & sup(〈a, n〉, f) = expand(g, sup(〈a, n〉, f))

From these assumptions we can derive:

6.3. BASIC DEFINITIONS 95

1. sup(〈a, n〉, f) = expand(g, sup(〈a, n〉, f))

2. n = ♯g(a)

3. PartiallyExpanded(g, f(i))

4. root(f(i)) = g(a)[i]

There are two cases to analyze.

– n = 0.

Since (2) holds, we can easily derive Expanded(g, sup(< 〈a, n〉, f)).

– n 6= 0.

From the definition of the function expand we obtain:

expand(g, sup(〈a, n〉, f)) = sup(〈a, n〉, (i) expand(g, f(i))) ∈ Tree(A)

which, together with (1), by transitivity gives

sup(〈a, n〉, f) = sup(〈a, n〉, (i) expand(g, f(i))) ∈ Tree(A)

and then f(i) = expand(g, f(i)).

This and (3) above, by the inductive hypothesis gives Expanded(g, f(i)) which, together
with (2) and (4) gives, also in this case, Expanded(g, sup(〈a, n〉, f)).

We can thus characterize ExpandedTree(A, g) as the subset of Tree(A) whose elements are both
partially expanded with respect to the graph g and are fixed-points of the function expand(g).

Theorem 6.3.7 If A is a set, a ∈ A, g ∈ Graph(A) then

ExpandedTree(A, g) = {t ∈ Tree(A)| PartiallyExpanded(g, t) & (t = expand(g, t))}

ExpandedTree(A, g, a) = {t ∈ Tree(A)| PartiallyExpanded(g, t) & (t = expand(g, t))
& (root(t) = a)}

Proof. The proof is immediate from the previous lemma by using the equal subset formation rule
(see [NPS90]).

Remark.
Note that if, for some m ∈ N, (expand(g))m(leaf(a)) = (expand(g))m+1(leaf(a)) ∈ Tree(A)

then, by corollary 6.3.5 and theorem 6.3.7, (expand(g))m(leaf(a)) is the “only” tree in the set
ExpandedTree(A, g, a). We will indeed show that the existence of such an m is also a necessary
condition for ExpandedTree(A, g, a) be inhabited.

Let us prove first a technical lemma.

Lemma 6.3.8 If A is a set, a ∈ A, g ∈ Graph(A) and ♯g[a] 6= 0 then

(expand(g))k+1(leaf(a)) = sup(〈a, ♯g[a]〉, (i) (expand(g))k(leaf(g[a]{i})))

Proof. By induction on k, the basis case being obvious, let us prove the inductive step:

(expand(g))k+2(leaf(a)) (by inductive hypothesis)
= (expand(g))((expand(g))k+1(leaf(a))) (by definition of expand)
= expand(g)(sup(〈a, ♯g(a)〉, (i) (expand(g))k(leaf(g(a)[i]))))
= sup(〈a, ♯g(a)〉, (i) (expand(g))((expand(g))k+1(leaf(a))))

Now we have:

Theorem 6.3.9 If A is a set, a ∈ A, g ∈ Graph(A) then

(∀t ∈ ExpandedTree(A, g, a)) (∃k ∈ N) t =Tree(A) (expand(g))k(leaf(root(t))))

96 CHAPTER 6. DEVELOPMENT OF NON-TRIVIAL PROGRAMS

Proof. Assume t ∈ ExpandedTree(A, g, a). We will prove that

(∃k ∈ N) t =Tree(A) (expand(g))k(leaf(root(t))))

by induction on the construction of t = sup(〈a, n〉, f). The inductive hypothesis is:

x(i) ∈ (∃k ∈ N) f(i) =Tree(A) (expand(g))k(leaf(root(f(i))))) [i < n]

We distinguish two cases.

• n = 0. The result immediately follows from:

(expand(g))0(leaf(root(sup(〈a, 0〉, f)))) = sup(〈a, n〉, f)

• n 6= 0. From sup(〈a, n〉, f) ∈ ExpandedTree(A, g, a) we can derive:

1. Expanded(g, sup(〈a, n〉, f))

2. n = ♯g(a)

3. root(f(i)) = g(a)[i] [i < n]

4. Expanded(g, f(i))[i < n]

By inductive hypothesis:

f(i) = (expand(g))fst(x(i))(leaf(root(f(i)))) [i < n]

hence, from (3):
f(i) = (expand(g))fst(x(i))(leaf(g(a)[i])) [i < n]

Now, let xmax = max(n, (i) fst(x(i))), by the theorem 6.3.7, which says that expand acts as
the identity on an expanded tree, we have:

f(i) = (expand(g))xmax(leaf(g(a)[i])) [i < n]

moreover, by lemma 6.3.8 since (2) holds, i.e. n 6= 0, we have also

(expand(g))xmax+1(leaf(a)) = sup(〈a, n〉, (i) (expand(g))xmax(leaf(g(a)[i])))

and then we obtain
(expand(g))xmax+1(leaf(a)) = sup(〈a, n〉, f)

which allows us to conclude:

(∃k ∈ N) (expand(g))k(leaf(a)) = sup(〈a, n〉, f)

Hence

Corollary 6.3.10 If A is a set, a ∈ A, g ∈ Graph(A) and

P (x) prop [x : ExpandedTree(A, g, a)]

then
(∃t ∈ ExpandedTree(A, g, a)) P (t)

if and only if

(∃m ∈ N) (expand(g))m+1(leaf(a)) = (expand(g))m(leaf(a))
& P ((expand(g))m(leaf(a)))

Proof. Let us note that from

y ∈ (∃t ∈ ExpandedTree(A, g, a)) P (t)

we obtain by ∃-elimination

6.4. GAMES AND GAMES TREES 97

1. fst(y) ∈ ExpandedTree(A, g, a)

2. snd(y) ∈ P (y1)

From (1), by lemma 6.3.6 we obtain fst(y) = expand(g, fst(y)), and by theorem 6.3.9 we obtain

(∃m ∈ N) fst(y) = (expand(g))m(leaf(root(fst(y)))

Hence

(∃m ∈ N) (expand(g))m+1(leaf(a)) = (expand(g))m(leaf(a)) & P ((expand(g))m(leaf(a)))

can be derived.

As we noticed in the remark after Theorem 6.3.7, if

(expand(g))m+1(leaf(a)) = (expand(g))m(leaf(a))

then (expand(g))m(leaf(a)) is the “only” tree in ExpandedTree(A, g, a).

6.4 Games and Games trees

6.4.1 Game description

When we want to explain a game to somebody we often start by describing the states (i.e. con-
figurations, situations) of the game. Then we describe the moves of the game, i.e. we describe all
the different ways a game can continue from one state to the next. Finally we describe the initial
state and describe how to recognize a winning state. If there is only one player that is all, if there
are two or more players let us think that the information about who is the player in turn is part
of the state of the game and that, for each player, we can explain if a state is winning for him or
not. We will consider games which are characterized by the following entities:

〈numPlayers, State, s0, ♯, next, playerInTurn, winning〉

where
numPlayers ∈ N the number of players;

State set
the set of states of
the game;

s0 ∈ State the initial state;
♯(s) ∈ N

[s : State]
the number of alternati-
ve moves in the state s;

next(s, i) ∈ State

[s : State, i : N<(♯(s))]

the state after making
the i-th alternative
move in the state s;

winning(s, k) ∈ Boole

[s : State, k : N<(numPlayers)]

is true if the state
s is a winning state
for the k-th player,
false otherwise;

playerInTurn(s) ∈ N<(numPlayers)
[s : State]

the number of the next
player to make a move
in the state s.

The course of a game starts in an initial state s0. It proceeds by moving from one state to the
next according to the rules of the game. The state of the game is an instantaneous description of
the game. For instance, the state of a game played with pieces on a board contains a description
of where each piece is situated and which player is in turn. In choosing this way of characterizing
a game, we have made the following restrictions:

1. The number of alternative moves in a certain state s is always finite and, moreover, it can
be computed from s.

98 CHAPTER 6. DEVELOPMENT OF NON-TRIVIAL PROGRAMS

2. All possible next states can be computed from the current state.

3. It is decidable if a state is winning for a player or not.

The reasons for choosing the first two restrictions is that we want to have a general algorithm
which decides if it is possible to reach a winning position or not. The third restriction is not a
severe restriction; it is just a concrete way of expressing that there should be no doubt if a game
is won or not.

6.4.2 Potential Moves

To describe the rules for making a move, it is often more convenient to first describe all potential
moves and then disallow some of them as illegal. For instance in chess, we describe how each piece
can potentially move and then disallow the illegal ones, for instance it is impossible to move a piece
outside the board or to put a piece on already occupied fields. It is often convenient to define the
constants State, next, and ♯ in the following way:

• Define a set of “extended states”, a set which contains illegal as well as legal states of the
game:

ExtendedState set

• Define, for each extended state s, a boolean which says if s describes a legal state of the game
or not:

legal(s) ∈ Boole [s : ExtendedState]

• Give the upper bound of the number of alternative potential moves in the state s:

maxMoves(s) ∈ N [s : State]

• Define, for each state s and each potential move i (0 ≤ i < maxMoves(s)) the extended state
obtained by performing the i-th potential move from s:

try(s, i) ∈ ExtendedState [s : State, i : N<(maxMoves(s))]

We can show that in this case we can give the description of the game in terms of the entities
State, ♯ and next. The states of the game are the subset of the legal extended states, i.e.

State ≡ {s ∈ ExtendedState| legal(s) =Boole true}

We can define ♯(s) and next(s, i) by using a general filtering technique in the following way. We
will first build up for each state s the finite sequence of all extended states associated with s:

potentialMoves(s) ≡ 〈maxMoves(s), λi. try(s, i)〉 ∈ Seq(ExtendedState)

Then we will filter out the illegal states, by means of the function filter defined in section 6.3.1.

legalMoves(s) ≡ filter(potentialMoves(s), legal)

and finally we define

♯(s) ≡ ♯legalMoves(s)
next(s, i) ≡ legalMoves(s){i}

6.4. GAMES AND GAMES TREES 99

6.4.3 The set of game trees.

Let

Game ≡ 〈numPlayers, State, s0, ♯, next, playerInTurn, winning〉

be a given game. We notice that the functions ♯ and next define a graph, namely

g0 ≡ λs. 〈♯(s), λi. next(s, i)〉

This is the graph which defines the rules of the game in the sense that the neighbors of any
node s in the graph are exactly all possible states immediately following s in the game. In section
6.3.4 we saw how to associate a tree with a graph. For instance, the set

ExpandedTree(State, g0, s0)

contains at most one element, the game tree associated with Game. This is a tree with a game
state in each node and the initial state s0 in the root. Furthermore, for each node s in the tree,
the i-th child of s is the resulting state after choosing the i-th alternative move from s. We saw
also, in section 6.3.4, that if there is a game tree, it can be written as (expand(g0))

m(leaf(s0)) for
some m ∈ N.

6.4.4 Some general game problems

Given a game there are many different questions we could ask. For instance, let us consider the
following ones:

1. Is it possible for the k-th player to win the game?

2. Is there a winning strategy for the k-th player?

3. Let s be a situation. Give me the list of all the winning moves for the k-th player.

It should be clear that all of these questions can be formalized within type theory by using the
set ExpandedTree(State, g0, s0).

As a first example, let us consider the question: “Is it possible for the k-th player to win the
game?” We have to find a boolean function which associates to the k-th player true if and only
if there exists the game tree and it has a node labeled with a state which is winning for the k-th
player. The problem can be expressed by the following type:

(∀k < numPlayers) {x ∈ Boole| (x = true)↔
(∃g ∈ ExpandedTree(State, g0, s0))HasWinning(g, k)}

where

HasWinning(g, k) ≡ (∃a ∈ State) (a InTree g) & (winning(a, k) = true).

To solve the second problem: “Is there a winning strategy for the k-th player?”, we have to
find a boolean function which associates to the k-th player true if and only if there exists the game
tree and it is winning for the k-th player. A game tree is winning for the player k if:

1. k is in turn

• and the situation of the game is winning for k or

• there exists a move for k to a tree that is winning for k

2. k is not in turn

• and the situation of the game is winning for k or

• the situation is not terminal and every move that the player in turn can do turns out
in a game tree that is winning for k.

100 CHAPTER 6. DEVELOPMENT OF NON-TRIVIAL PROGRAMS

Then the recursive equation defining the proposition

IsWinningTree(t, k) [t : Tree(State), k < numPlayers]

is:

IsWinningTree(sup(〈a, n〉, f), k) = if (playerInTurn(a) = k)
then (winning(a, k) = true) ∨ (∃i < n) IsWinningTree(f(i), k))
else (winning(a, k) = true) ∨ ((n 6= 0) & (∀i < n) IsWinningTree(f(i), k))

This recursive equation can be solved in type theory by a standard technique (see section 6.7.6);
then the second problem can be expressed as:

(∀k < numPlayers) {x ∈ Boole| (x = true)↔
(∃t ∈ ExpandedTree(State, g0, s0))IsWinningTree(t, k)}

To solve the problem “Give me the list of all the winning moves for the k-th player in a situation
s” we have to find a function which associates to a player k and a state s the sequence of the winning
moves for the k-th player from the state s. This is an element w of Seq(N<(♯s)) which satisfies the
condition:

(∃t ∈ ExpandedTree(State, g0, s))(∀i < ♯s) (i InSeq w)↔ IsWinningTree(subtree(t, i), k)

Now the problem is expressed by the type:

(∀k < numPlayers)(∀s ∈ State) { w ∈ Seq(N<(♯s))|
(∃t ∈ ExpandedTree(State, g0, s))
(∀i < ♯s) (i InSeq w)↔ IsWinningTree(subtree(t, i), k)}

6.4.5 Some general solutions

We can observe that in the types expressing the three considered problems there is always a
construction of the form:

(∃t ∈ ExpandedTree(State, g0, s)) Q(t)

for a suitable proposition Q(t) prop [t : ExpandedTree(State, g0, s)].
By corollary 6.3.10:

(∃t ∈ ExpandedTree(State, g0, s)) Q(t)↔
(∃m ∈ N) (expand(g0))

m+1(leaf(s)) = (expand(g0))
m(leaf(s)) & Q((expand(g0))

m(leaf(s)))

holds; hence whenever

(expand(g0))
m+1(leaf(s)) = (expand(g0))

m(leaf(s))

holds we can give equivalent formalizations of the problems given in the previous section.

1. (∀k < numPlayers){x ∈ Boole| (x = true)↔ HasWinning((expand(g0))
m(leaf(s0)), k)}

2. (∀k < numPlayers){x ∈ Boole| (x = true)↔ IsWinningTree((expand(g0))
m(leaf(s0)), k)}

3.
(∀k < numPlayers)(∀s ∈ State)
{w ∈ Seq(N<(♯s))| (∀i < ♯s) (i InSeq w)↔

IsWinningTree(subtree((expand(g0))
m(leaf(s)), i), k)}

A general solution of the problem (1) is then given by the function

λk. find((expand(g0))
m(leaf(s0)), (s) winning(s, k))

since we proved (see theorem 6.3.2) that

find(t, p) ∈ {x ∈ Boole| (x = true)↔ (∃a ∈ State) (a InTree g) & (p(a) = true)}

6.5. EXAMPLES 101

For the problem (2) we can easily find a function

winningTree(t, k) ∈ Boole [t : Tree(State), k < numPlayers]

satisfying the condition:

(winningTree(t, k) =Boole true)↔ IsWinningTree(t, k).

Its recursive definition mimics the definition of the type IsWinningTree and can be solved in a
similar way (see section 6.7.6). Hence

λk. winningTree((expand(g0))
m(leaf(s0)), k)

is a general solution of the problem (2).
Finally, a general solution for the problem (3) is

λk. filter((i) winningTree(subtree(t, i), k), 〈♯a, λx. x〉)

whose correctness follows from Theorem 6.3.1.

6.5 Examples

6.5.1 The knight’s tour problem

We have an n × n board with n2 fields and a knight placed on an initial field. The problem is to
find out if there exists a covering of the entire board, i.e. a sequence of moves such that every field
of the board is visited exactly once. This is a game with only one player; let us describe it following
section 6.4. First, note that there is a fixed number of potential moves: maxMoves(s) = 8, for any
state s of the game. A state of this game can be characterized by a current field (the position of
the knight) together with the necessary information about the history of the game, i.e., we need
to know all the fields visited by the knight before the current one. Clearly, for this game

numPlayers ≡ 1;
playerInTurn(s) ≡ 1.

We represent a field by a pair of natural numbers:

Field ≡ N× N

Since we are considering a chess board of a certain dimension n, let us identify the limits of an
n× n board as in fig. 6.1, and, given f ∈ Field and n ∈ N, define the proposition:

WithinLimits(f, n) ≡ (2 ≤ fst(f) ≤ n + 1) & (2 ≤ snd(f) ≤ n + 1)

Let us define a field to be busy if it is outside the board or if it has already been visited by the
knight; otherwise it is free. A marked-board is a function which associates to each field a boolean
saying if the field is free or busy:

MarkedBoard ≡ Field→ Boole

We will use the abbreviations:
free ≡ true

busy ≡ false

Clearly, in a legal state the current field must be free, but we relax this condition in defining
the set:

ExtendedState ≡ Field× (∃n ∈ N) MarkedBoardSize(n)

where

MarkedBoardSize(n) ≡ {m ∈ MarkedBoard| (∀f ∈ Field) Free(f, m)→WithinLimits(f, n)}

102 CHAPTER 6. DEVELOPMENT OF NON-TRIVIAL PROGRAMS

Figure 6.1: the limits of an n× n board

The elements of this type consist of triples 〈n, f, m〉 where n is a natural number (the dimension
of the board), f ∈ Field, m ∈ MarkedBoardSize(n).

Supposing s ∈ ExtendedState, we will use the following abbreviations:

pos(s) ≡ fst(s) (the first component of s is equal to the actual position)
dim(s) ≡ snd(s) (the second component of s is equal to the dimension)

occupied(s) ≡ trd(s) (the third component of s is the marking function)

Whenever f ∈ Field and m ∈ MarkedBoard, Free(f, m) is a proposition which is true if f is free
in m. It is defined by:

Free(f, m) ≡ (m[f] =Boole free)

To define the set State as a subset of ExtendedState we have only to require that the actual field
is free; hence:

legal(s) ≡ occupied(s)[pos(s)]

and

State ≡ {s ∈ ExtendedState| (legal(s) =Boole true)}

To define try(s, i) ∈ ExtendedState [s : State, i < maxMoves(s)], let us first define, by using a
displacement function according to fig. 6.2,

nextField(s, i) ∈ Field [s : State, i < maxMoves(s)],

namely the field reached by choosing the i-th potential move from the state s:

nextField(s, i) ≡ 〈fst(pos(s)) + fst(disp(i)), snd(pos(s)) + snd(disp(i))〉

where

disp(i) ≡ case i of 0 : 〈2, 1〉; 1 : 〈1, 2〉; . . . ; 7 : 〈2,−1〉 endcase

then

try(s, i) ≡ 〈nextField(s, i), dim(s), (f) if (f = pos(s)) then busy else occupied(s)[f]〉

Note that a field is marked as busy only after moving from it.
To complete the description we have to define

winning(s, k) ∈ Boole [s : State, k < numPlayers].

6.5. EXAMPLES 103

Figure 6.2: the eight potential moves of a knight

We know that a state is winning if there is no free field except for the actual one. This can be
checked by filtering a sequence of all the fields within the board:

fields(s) = 〈n2, λi. 〈(i div n) + 2, (i mod n) + 2〉〉

with the function (f) occupied(s)[f], to obtain the sequence of the free fields in state s:

freeFields(s) ≡ filter(fields(s), (f) occupied(s)[f])

and then looking if in the filtered sequence there is only the actual field:

winning(s, k) ≡ (♯freeFields(s) = 1) & (freeFields(s){0} = pos(s)).

Hence, (see section 6.4.2) for any initial field s0, the set of game trees of this game

Game ≡ 〈numPlayers, State, s0, ♯, next, playerInTurn, winning〉

can be defined. Now we have only to note that for m = n2 − 1 (the number of fields in the board
minus one), it holds:

(expand(g0))
m+1(leaf(s0)) = (expand(g0))

m(leaf(s0))

where g0 ≡ λs. 〈♯s, λi. next(s, i)〉. Hence the general solution for the problem (1) developed in
section 6.4.5 can be instantiated.

6.5.2 A game with two players

As an example of a game with two players, let us modify the knight’s tour in the following way.
There is again an n × n board and a knight placed on an initial field. The moves are performed
by two players in turn with the same restrictions as before, i.e. the knight cannot be placed on a
yet visited field. A player wins when the opponent cannot move. To describe this game we will
use most of the previous definitions. The number of players is 2, hence

numPlayers′ ≡ 2

A state must now comprise the information about whose turn it is, this is achieved simply by
adding one more component to the sets ExtendedState and State. Thus:

ExtendedState′ ≡ ExtendedState× N<(numPlayers′)

and

State′ ≡ {s ∈ ExtendedState′| legal′(s) =Boole true}

104 CHAPTER 6. DEVELOPMENT OF NON-TRIVIAL PROGRAMS

Clearly:
pos′(s) ≡ pos(s) ≡ fst(s)
dim′(s) ≡ dim(s) ≡ snd(s)

occupied′(s) ≡ occupied(s) ≡ trd(s)
playerInTurn′(s) ≡ fth(s)

legal′(s) ≡ legal(s) ≡ occupied(s)[pos(s)]
nextField′(s, i) ≡ nextField(s, i)

To define try′(s, i) we first define the function nextPlayer which, given a player j among n-players
yields the player in turn after j

nextPlayer(numPlayers, j) ≡ (j + 1) mod numPlayers

then
try′(s, i) ≡ 〈 nextField′(s, i),

dim′(s),
(f) if (f = pos′(s)) then busy else occupied′(s)(f),
nextPlayer(numPlayers′, playerInTurn(s))〉

Finally:
winning′(s, k) ≡ (playerInTurn′(s) = nextPlayer(numPlayers′, k))

&
∧

(maxMoves(s), (i) occupied′(s)(nextField′(s, i)))

As before the general solution developed in section 6.4.5 can be instantiated.

6.6 Generality

The ideas and the definitions we will give in this section are not related to a particular paragraph
in the chapter but are of general interest.

In general, the function f recursively defined on the index x ∈ N by
{

f(0, y) = k(y)
f(s(x), y) = g(x, y, f(x, d(y)))

can be solved in type theory by the definition

f(x, y) ≡ F (x)[y]

where F (x) ≡ Nrec(x, λy. k(y), (u, v) λy. g(x, y, v(d(y)))).
The functions f and h recursively defined on x ∈ N by

f(0) = k1

f(s(x)) = g1(x, f(x), h(x))
h(0) = k2

h(s(x)) = g2(x, f(x), h(x))

can be solved in type theory by

f(x) ≡ fst(Nrec(x, 〈k1, k2〉, (u, v) 〈g1(u, fst(v), snd(v)), g2(u, fst(v), snd(v))〉))
h(x) ≡ snd(Nrec(x, 〈k1, k2〉, (u, v) 〈g1(u, fst(v), snd(v)), g2(u, fst(v), snd(v))〉))

In a similar way the function f recursively defined on the set of well-ordering by

f(sup(a, b), k) = g(a, b, k, (v) f(b(v), d(k)))

can be solved in type theory by
f(t, k) ≡ F (t)[k]

where F (t) ≡ Trec(t, (x, y, z) λk. g(x, y, k, (v) z(v)[d(k)])) and the functions f and h recursively
defined by

{
f(sup(a, b)) = g1(a, b, (v) f(b(v)), (t) h(b(t)))
h(sup(a, b)) = g2(a, b, (v) f(b(v)), (t) h(b(t)))

6.7. SOME TYPE AND FUNCTIONS WE USE 105

can be solved in type theory by
{

f(c) ≡ fst(F (c))
h(c) ≡ snd(F (c))

where

F (c) ≡ Trec(c, (x, y, z) 〈 g1(x, y, (v) fst(z(y(v))), (t) snd(z(y(t)))),
g2(x, y, (v) fst(z(y(v))), (t) snd(z(y(t))))〉)

In the chapter we will use the following abbreviating definitions:

R0(x) ≡ Rec0(x) if x then y else z ≡ Rec2(x, z, y)
fst(x) ≡ E(x, (u, v) u) snd(x) ≡ E(x, (u, v) v)
⊥ ≡ ∅ ¬A ≡ A→ ⊥

a =A b ≡ Eq(A, a, b) a 6=A b ≡ ¬Eq(A, a, b)

where we omit the superscript A when the type is clear from the context.

6.7 Some type and functions we use

6.7.1 The type N<(a)

Let a ∈ N, we want to define a new type N<(a) whose canonical elements are all the natural
numbers less than a, i.e. 0, . . . , a − 1; moreover we want that N<(0) = ∅ holds. This can be
accomplished by solving the following equations:

{
N<(0) = ∅
N<(s(a)) = {y ∈ N| y < s(a)}

where the proposition x <N a, if x ∈ N and a ∈ N, defined by

x <N a ≡ Nrec(a, ∅, (u, v) (x =N u) ∨ v)

is the type resulting from the solution of the following equations:

{
x <N 0 = ∅
x <N s(a) = (x =N a) ∨ (x <N a)

Hence,

N<(a) ≡ Nrec(a, ∅, (t, z) {y ∈ N| y <N s(t)})

Let us give you some examples

N<(0) = Nrec(0, ∅, (t, z) {y ∈ N| y <N s(t)})
= ∅

N<(2) = Nrec(2, ∅, (t, z) {y ∈ N| y <N s(t)})
= {y ∈ N| y <N 2}
= {y ∈ N| Nrec(2, ∅, (u, v) (y =N u) ∨ v)}
= {y ∈ N| (y =N 1) ∨ (y <N 1)}
= {y ∈ N| (y =N 1) ∨ (y =N 0) ∨ ⊥}

In the chapter we have used both the notation (∀i ∈ N<(n)) B(i) and (∀i < n) B(i) to mean
the type Π(N<(n), B) and (∃i ∈ N<(n)) B(i) and (∃i < n) B(i) to mean the type Σ(N<(n), B);
moreover, with the same intention, sometime we denoted the assumption of the variable k ∈ N<(n)
by k < n.

106 CHAPTER 6. DEVELOPMENT OF NON-TRIVIAL PROGRAMS

6.7.2 The function append2(s1, s2)

The recursive equations for the function

append2(s1, s2) ∈ Seq(A) [s1, s2 : Seq(A)]

whose value is the sequence obtained by appending the sequence s2 to the sequence s1, are

{
append2(nil, s2) = s2

append2(a • s1, s2) = a • append2(s1, s2)

that are solved by putting

append2(s1, s2) ≡ Listrec(s1, s2, (x, y, z) x • z)

6.7.3 The
∨

-function

Let us suppose that f(x) ∈ Boole [x : A]. We want to define the function

∨

(n, (i) f(t(i))) ∈ Boole [n : N, t : (x : N) A]

whose value is true if and only if at least one among f(t(0)),. . . , f(t(n)) is true; then the following
equations must hold

{ ∨
(0, (i) f(t(i))) = false

∨
(s(n), (i) f(t(i))) = f(t(s(n))) or

∨
(n, (i) f(t(i)))

where x or y ≡ if x then true else y. We can solve them by the definition

∨

(n, (i) f(t(i))) ≡ Nrec(n, false, (u, v) f(t(s(u))) or v).

6.7.4 The
∧

-function

Let us suppose that f(x) ∈ Boole [x : A]. We want to define the function

∧

(n, (i) f(t(i))) ∈ Boole [n : N, t : (x : N) A]

whose value is true if and only if f(t(0)),. . . , f(t(n)) are all true; then the following equations must
hold { ∧

(0, (i) f(t(i))) = true
∧

(s(n), (i) f(t(i))) = f(t(s(n))) and
∧

(n, (i) f(t(i)))

where x and y ≡ if x then y else false. So

∧

(n, (i) f(t(i))) ≡ Nrec(n, true, (u, v) f(t(s(u))) and v).

6.7.5 The max-function.

We define a function to compute the greatest value among the value in the set {f(0), . . . , f(n)},
where n ∈ N and f(x) ∈ B [x : N] where B is a type where a binary order relation <B is defined.
Then we are looking for a function max(n, f) ∈ B [n : N, f : (u : N) B] such that

{
max(0, f) = f(0)
max(s(x), f) = max2(f(s(x)), max(x, f))

and hence
max(n, f) ≡ Nrec(n, f(0), (u, v) max2(f(s(u)), v))

where max2(x, y) ∈ B [x, y : B] is the function to obtain the greatest value among x and y that
can be defined by

max2(x, y) ≡ if x >B y then x else y

6.7. SOME TYPE AND FUNCTIONS WE USE 107

As an example, we can define the usual order relation among two natural numbers as follow

x <N y ≡ apply(Nrec(x,
λt. Nrec(t, false, (u, v) true),
(u, v) λt. Nrec(t, false, (h, k) apply(v, Nrec(t, 0, (n, m) n)))),

y)

and

x ≤N y ≡ apply(Nrec(x, λt. true, (u, v) λt. Nrec(t, false, (h, k) apply(v, Nrec(t, 0, (n, m) n)))), y)

Note that in a similar way the usual difference among two natural numbers can be derived (warning:
0− x = 0 ∈ N [x : N])

x− y ≡ apply(Nrec(x, λt. 0, (u, v) λt. Nrec(t, s(u), (h, k) apply(v, Nrec(t, 0, (n, m) n)))), y)

6.7.6 The sets used in the games description and solutions

Along this section we will use concepts and ideas related with the universes [Mar84, NPS90]. Let
T (x1, . . . , xn) set [x1 : A1, . . . , xn : An] be the type defined by

T (x1, . . . , xn) ≡ t(x1, . . . , xn)

where t(x1, . . . , xn) is an element of a universe where the types A1, . . . , An have a code, constructed
by the use of &, ∨, (∀i < k) B(i), (∃i < k) B(i), starting from ⊥ and a =Ai b, possibly by using
recursion. Then, if for each 1 ≤ i ≤ n, one can define the function x ≃Ai y ∈ Boole [x, y : Ai]
such that x ≃Ai y has true as a value if and only if x =Ai y is true, it is possible to define a
function f(x1, . . . , xn) ∈ Boole [x1 : A1, . . . , xn : An] such that f(x1, . . . , xn) =Boole true if and only
if T (x1, . . . , xn) is true.

To obtain f one must only follow the definition of t and use the translation

(⊥)∗ = false (a =Ai b)∗ = a ≃Ai b
(&)∗ = and (∨)∗ = or
(¬)∗ = not
((∀i < n) B(i))∗ =

∧
(n, (i) (B(i))∗) (∃i < n) B(i))∗ =

∨
(n, (i) (B(i))∗)

For instance, we can introduce a boolean function x ≃N y ∈ Boole [x, y : N], whose value is true

if and only if x and y have the same value and hence if and only if x =N y, by solving the following
recursive equations

0 ≃N 0 = true

s(x) ≃N 0 = false

0 ≃N s(y) = false

s(x) ≃N s(y) = x ≃N y

The solution, that is obtained by using the ideas of the previous sections, is

x ≃N y
≡ apply(Nrec(x,

λt. Nrec(t, true, (u, v) false),
(u, v) λt. Nrec(t, false, (h, k) apply(v, Nrec(t, 0, (n, m) n)))),

y)

Much easier is to define the boolean function

x ≃Boole y ∈ Boole [x, y : Boole],

whose value is true if and only if x and y have the same value:

x ≃Boole y ≡ if x then y else not(y)

where the boolean function
not(x) ∈ Boole [x : Boole]

is defined by
not(x) ≡ if x then false else true

108 CHAPTER 6. DEVELOPMENT OF NON-TRIVIAL PROGRAMS

The set Expanded(g, t)

We must solve in type theory the following equation

Expanded(g, sup(〈a, n〉, f)) =
(♯g(a) =N n) & (∀i < n) (g(a))[i] =Tree(A) root(f(i)) & Expanded(g, f(i))

The solution can be obtained by transfinite induction in a universe U where the type A has a
code. In this case we must solve the following equation

Expanded(g, sup(〈a, n〉, f)) =

(♯g(a) =N n) &
∧

(n, (i) g(a))[i] =Tree(A) root(f(i)) & Expanded(g, f(i)))

and hence to obtain the code for Expanded(g, t) we make the definition

Expanded(g, t) ≡ Trec(t, (x, y, z) ♯g(fst(x)) =N snd(x) &
∧

(snd(x), (i) g(a))[i] =Tree(A) root(y(i)) & Expanded(g, y(i)))

The proposition IsWinningTree(t, k)

Now, let us analyze the definition of the proposition

IsWinningTree(t, k) [t : Tree(State), k < numPlayers];

This proposition must satisfy the equation

IsWinningTree(sup(〈a, n〉, f), k) =
if (playerInTurn(a) ≃N k)
then (winning(a, k) =Boole true) ∨

(∃i < n) IsWinningTree(f(i), k)
else (winning(a, k) =Boole true) ∨

((n 6=N 0) & (∀i < n) IsWinningTree(f(i), k))

This equation can be solved by the definition

IsWinningTree(t, k) ≡ (isWinningTree(t, k) =Boole true)

where
isWinningTree(t, k) ≡

apply(Trec(t,
(x, y, z) λk. if (playerInTurn(fst(x)) ≃N k)

then winning(fst(x), k) =Boole true

∨(∃i < n) z(i)[k]
else winning(fst(x), k) =Boole true

∨(¬(snd(x) =N 0)
&(∀i < n) z(i)[k])),

k)

Then the set IsWinningTree(t, k) is inhabited if and only if the following function

winningTree(t, k) ∈ Boole [t : Tree(State), k < numPlayers]

has true as value:

winningTree(t, k) ≡
apply(Trec(t,

(x, y, z) λk. if (playerInTurn(fst(x)) ≃N k)
then (winning(fst(x), k) ≃Boole true)

or
∨

(snd(x), (i) z(i)[k])
else (winning(fst(x), k) ≃Boole true)

or (not(snd(x) ≃N 0) and
∧

(snd(x), (i) z(i)[k]))),
k)

Chapter 7

What should be avoided

7.1 Summary

In this chapter we will analyze an extension of Martin-Löf’s intensional type theory by means of a
set constructor P such that the elements of P(S) are the subsets of the set S.

Since it seems natural to require some kind of extensionality on the equality among subsets, it
turns out that such an extension cannot be constructive. In fact we will prove that this extension
is classic, that is (A ∨ ¬A) true holds for any proposition A.

7.2 Introduction

In [GR94] it is shown that the proof theoretic strength of Martin-Löf’s set theory [Mar84, NPS90]
with restricted well-orders and the universe of the small sets is that of a subsystem of second order
arithmetic with ∆1

2 comprehension and bar-induction. Thus, it is natural to wonder whether it is
possible to enforce it to a theory with the strength of the full comprehension schema by adding a
power-set constructor; in fact, this extension is necessary if we want to quantify over the subsets
of a given set since in Martin-Löf’s set theory quantification is meaningful only on elements of a
set.

In the literature there are already examples of constructive set theories with some kind of power-
set constructor. For instance, one can think of a topos as a “generalized set theory” by associating
with any topos its internal language (see [Bel88]). The logic underlying such a set theory is the
intuitionistic predicate calculus and so any topos can be thought of as an intuitionistic universe
of sets. Then, the lack of the rule of excluded middle seems to assure the constructivity of any
proof developed within topos theory. The problem of adapting the topos theoretic approach to
Martin-Löf’s set theory is due to the impredicativity of the former. Indeed, Martin-Löf’s set theory
is predicative and provides a fully algorithmic way to construct the elements of the sets and the
proofs of the propositions over these sets.

Another approach which should be considered is the Calculus of Constructions by Coquand and
Huet, where the power of a set S can be identified with the collection of the functions from S into
prop. But, if we identify sets and propositions, which is basic for a constructive explanation of the
meaning of Martin-Löf’s set theory, the power-set so obtained is not a set, since prop cannot be a
set and hence also the collection of the functions from a set S to prop cannot be a set. Thus, there
is no chance to give a constructive, i.e. intuitionistic and predicative, meaning to quantification
over its elements. A second problem with this approach is that in this way we would obtain an
intensional notion of power-set, which is not the intended one since we think that equality among
subsets has to be understood extensionally. Finally, it can be proved that the strong sum type,
which is characteristic in Martin-Löf’s set theory, cannot consistently be added to the Calculus
of Constructions at the level of propositions (see [Coq90]); thus, this approach cannot have the
full strong sum on propositions (see for instance [Luo90]) and hence it cannot be considered an
extension of Martin-Löf’s set theory.

Of course, there is no reason to expect that a second order construction becomes constructive

109

110 CHAPTER 7. WHAT SHOULD BE AVOIDED

only because it is added to a theory which is constructive. Indeed, we will prove that even the
weaker fragment iTT, which contains only the basic set constructors, i.e. no universes and no
well-orders, and the intensional equality, cannot be extended with a power-set constructor in a
way compatible with the usual semantical explanation of the connectives, if the power-set is the
collection of all the subsets of a given set equipped with extensional equality expressed in a uniform
way at the propositional level. In fact, by using the so called intuitionistic axiom of choice, it is
possible to prove that, given any power-set constructor, which satisfies the conditions that we will
illustrate in the next section, classical logic arises (see also [Hof95] page 170, where it is suggested
that a similar result holds in the setoid model built upon the Calculus of Constructions). A crucial
point in carrying on our proof is the uniformity of the equality condition expressing extensionality
on the power-set. This is to be contrasted with the proofs of similar results already proposed in
the literature, after Diaconescu’s original proof in [Dia75], where proof-irrelevance of propositions,
which does not hold in constructive type theory, is used.

7.3 iTTP = iTT + power-sets

To express the rules and the conditions that we are going to require on the power-set we need to
use judgements of the form A true (see [Mar84]) and hence it is convenient to recall their main
property: A true holds if and only if there exists a proof-element a such that a ∈ A holds (for a
formal approach to this topic see [Val98]). In particular, the following rule is admissible

(True Introduction)
a ∈ A

A true

as well as all the rules of the intuitionistic predicative calculus with equality, where the judgement
A true is the type theoretic interpretation of ⊢ A (see [Mar84] for the definition of the embedding
of the intuitionistic predicative calculus within iTT). Here, we only recall the rules for the set of
the intensional propositional equality Id (see [NPS90], page 61) which plays a central role in this
chapter (for sake of clearness, supposing A is a set and a, b ∈ A, we will write a =A b to mean
Id(A, a, b)). The formation and introduction rules are

A set a ∈ A b ∈ A

a =A b set

A = C a = c ∈ A b = d ∈ A

(a =A b) = (c =A d)

A set a ∈ A

r(a) ∈ a =A a

A set a = b ∈ A

r(a) = r(b) ∈ a =A a

whereas the elimination rule is

c ∈ a =A b

[x : A]1
|

d(x) ∈ C(x, x, r(x))

[x : A, y : A, z : x =A y]1
|

C(x, y, z) set

K(c, d) ∈ C(a, b, c)
1

and, if C(x, y, z) set [x : A, y : A, z : x =A y] and D(x, y) set [x : A, y : A], it yields the admissibility
of the following two rules:

c ∈ a =A b

[x : A]
|

C(x, x, r(x)) true

C(a, b, c) true

a =A b true

[x : A]
|

D(x, x) true

D(a, b) true

The rules for the set P(S) depend on the definition of what a subset is within iTT. Following
a long tradition, we identify a subset of S with a propositional function on S, i.e., provided that
U(x) set [x : S], we say that U ≡ (x : S) U(x) is a subset of S, and hence, we say that an element
a ∈ S is an element of U if U(a) is inhabited, i.e. the judgement U(a) true holds (see [Bru80] and
[SV98] for a detailed discussion on this topic).

7.3. ITTP = ITT + POWER-SETS 111

Thus, provided that we want to have an extensional equality between subsets, we are forced
to consider equal two subsets U and V of S if and only if they have the same elements, i.e.
U(x)↔ V (x) true [x : S].

The will to construct a set out of the collection of the propositional functions over a set equipped
with an equality relation between propositional functions based on equi-provability is the point
where classical logic breaks into the system.

Inspired by the previous explanations, here we propose the following formation and introduction
rules for P(S):

Formation
S set

P(S) set

S = T

P(S) = P(T)

Introduction
U(x) set [x : S]

{(x : S) U(x)} ∈ P(S)

Now, we should formulate the next rules for the set P(S), i.e. the equality introduction rule,
the elimination rule and the equality rule. But the aim of this chapter is to show that it is actually
impossible to formulate any rules which make valid the conditions that we are going to discuss in
the following and that seem to be necessary to make P(S) the power-set of S, because otherwise
we would obtain a Heyting semantics for classical logic.

As already said, it is necessary to formalize the fact that the equality between subsets is
extensional; otherwise, P(S) would not be the set of the subsets of S but the collection of the
propositional functions over S, and to add this collection as a set is not consistent (see [Jac89]).
Thus, one seems to be forced to require that, whenever the two subsets U and V of S are equal,
that is if U(x) ↔ V (x) true [x : S] then {(x : S) U(x)} = {(x : S) V (x)} ∈ P(S). However, as
noted by Peter Aczel after reading a preliminary version of this work, this should not be a formal
rule for the set P(S) since the use of an extensional equality rule for power-sets does not fit with
the idea of treating the judgmental equalities as definitional, which is basic in iTT. To avoid this
problem, we require here a weaker condition, which is a consequence of the judgmental equality
above.

Equality introduction condition
Let U(x)↔ V (x) true [x : S]. Then there exists a proof-term c(U, V) such that

c(U, V) ∈ {(x : S) U(x)} =P(S) {(x : S) V (x)}

Also this condition does not follow completely the general approach used in Martin-Löf’s set
theory since some information is lost in the path from the premise to the conclusion, that is the
proof term which testifies that

U(x)↔ V (x) true [x : S]

For this reason we do not want to consider it a formal rule. In the following we will prove that
this lack of information is one of the main point in obtaining classical logic by adding the power-
set constructor and this fact suggests that there is still some hope to be able to add a power-set
constructor to constructive set-theory. For instance, one could consider the following rule

f(x) ∈ U(x)↔ V (x) [x : S]

c(U, V, f) ∈ {(x : S) U(x)} =P(S) {(x : S) V (x)}

and in this case it would be no more possible to carry on our proof to its end. In any case
it is worth noting that even this approach is not sufficient to avoid classical logic in most of
the actual implementations of constructive set theory (see for instance [Mag92]). Indeed, such
implementations use pattern-matching instead of elimination rules and thus they validate stronger
conditions, as the uniqueness of equality proofs [HS95] which allows to obtain classical logic also
with this rule if an extensional power-set would be added. Moreover, this rule seems not to satisfy
the condition that any element in a propositional equality set is of the form r(−), i.e. we loose the
adequacy property of the calculus.

112 CHAPTER 7. WHAT SHOULD BE AVOIDED

Before going on, it is worth noting that the previous equality condition, even if reasonable, can
already be pretty dangerous. In fact, if we try to follow the same approach within a calculus which
allows to quantify over the collection of all the propositions, then we would obtain proof-unicity.
And note that to allow to quantify over the collection of all the propositions is not really different
than to allow to quantify over the collection P(⊤) of the subsets of the one-element set ⊤.

To prove this result first observe that the following lemma holds.

Lemma 7.3.1 The intensional equality proposition is equivalent to the Leibniz equality proposition.

Proof. Recall that the Leibniz equality is defined as follows by using a quantification over the
collection of the propositional functions.

LEq(A, a, b) ≡ (∀P ∈ A→ prop) P (a)→ P (b)

that is, those things which cannot be distinguished by means of a proposition are equal.
Now, we want to show that, for any set A, and elements a and b in A, a =A b if and only

if LEq(A, a, b). Thus, let us suppose that c ∈ a =A b, P : A → prop, w : P (a), and put
Q(x, y, z) ≡ P (x) → P (y). Then, supposing x is any element in A, Q(x, x, r(x)) ≡ P (x) → P (x)
and hence, λ((y) y) ∈ Q(x, x, r(x)). So, by using the elimination rule for intensional equality, we
obtain K(c, λ((y) y)) ∈ P (a)→ P (b) and hence, by discharging the assumptions P : A→ prop and
w : P (a),

λ((P) λ((w) K(c, λ((y) y))[w])) ∈ LEq(A, a, b)

On the other hand, suppose c ∈ LEq(A, a, b), that is

c ∈ (∀P ∈ A→ prop) P (a)→ P (b),

and put P ≡ (x : A) a =A x. Then c[P] ∈ (a =A a)→ (a =A b). But we know that r(a) ∈ a =A a
and hence

c[P][r(a)] ∈ a =A b

Now, we can prove the following theorem.

Theorem 7.3.2 Extensionality yields proof-unicity, that is, if

(extensionality) (∀P, Q ∈ prop) (P ↔ Q)→ P =prop Q
then

(proof-unicity) (∀P ∈ prop)(∀x, y ∈ P) x =P y

Proof. Let P be any proposition and put Q ≡ ⊤, that is Q is the one-proof proposition inductively
generated by the following introduction and elimination rules.

∗ ∈ ⊤
c ∈ ⊤ C(x) prop [x : ⊤] d ∈ C(∗)

R1(c, d) ∈ C(c)

Suppose now that x and y are proofs of P . Then P is true and hence P ↔ ⊤ holds (for instance one
can consider the proof-elements λ((z) ∗) ∈ P → ⊤ and λ((w) x) ∈ ⊤ → P). Then extensionality
yields P =prop ⊤. Consider now the following property on propositions:

OneEl(A) ≡ (∀x, y ∈ A) x =A y

which states that the proposition A has at most one proof-element. It is easy to show that OneEl(⊤)
holds. In fact, let us put C(x) ≡ x =⊤ ∗ and use the ⊤-elimination rule in order to obtain, for
any x and y in ⊤, that R1(x, r(∗)) ∈ x =⊤ ∗ and R1(y, r(∗)) ∈ y =⊤ ∗. Hence it is sufficient to
use the fact that for the intensional equality proposition symmetry and transitivity hold to obtain
that x =⊤ y holds.

But then P =prop ⊤ yields, by the previous lemma, that P and ⊤ satisfy the same propositions
and hence also OneEl(P) holds, that is, we obtained proof-unicity.

Now we have an immediate corollary.

7.3. ITTP = ITT + POWER-SETS 113

Corollary 7.3.3 Extensionality is not consistent with inductive propositions and strong elimina-
tion1.

Proof. The proof is straightforward since by using strong elimination it is possible to prove that
there are inductive propositions with more then one proof (see next lemma 7.5.2 for a proof which
does not use strong elimination).

The elimination and the equality rules are even more problematic. In fact it is difficult to give
a plain application of the standard approach that requires to obtain the elimination rule out of the
introduction rule(s) (see [Mar71]). In fact, the introduction rule does not act over elements of a
set but over elements of the collection ((x : S) set)↔. Thus, if one wants to follow for P(S) the
general pattern for a quotient set, he could look for a rule similar to the following:

c ∈ P(S)

[Y : (x : S) set]
|

d(Y) ∈ C({Y })

[Y, Z : (x : S) set, Y (x)↔ Z(x) true [x : S]]
|

d(Y) = d(Z) ∈ C({Y })

Prec(c, d) ∈ C(c)

But this rule requires the use of variables for propositional functions, which are difficult to justify
since prop is not a set.

Moreover, a standard equality rule should be something similar to the following

[x : S]
|

U(x) set

[Y : (x : S) set]
|

d(Y) ∈ C({Y })

[Y, Z : (x : S) set, Y (x)↔ Z(x) true [x : S]]
|

d(Y) = d(Z) ∈ C({Y })

Prec({(x : S) U(x)}, d) = d((x : S) U(x)) ∈ C({(x : S) U(x)})

These rules are a direct consequence of the introduction rule and the equality introduction
condition and they are already not completely within standard Martin-Löf’s set theory. But, the
problem is that, as they stand, they are not sufficient to make P(S) the set of the subsets of S.
For instance, there is no way to obtain a proposition out of an element of P(S) and this does not
fit with the introduction rule. Thus, to deal with the set P(S), one should add some rules which
links its elements both with the elements of the type set and with those of the collection set↔,
whose elements are propositions but whose equality is induced by the logical equivalence.

Again, we don’t want to propose any particular rule since we are going to show that there can
be no suitable rule, but we simply require that two conditions, which should be a consequence of
such rules, are satisfied. The first condition is:

Elimination condition
Let c ∈ P(S) and a ∈ S. Then there exists a proposition aεc.

This condition is suggested by the elimination rule that we have considered. In fact, a free use
of the elimination rule with C(z) ≡ set↔ allows to obtain that Prec(c, (Y) Y (a)) is an element of
set↔ and hence that it is a proposition and we can identify such a proposition with aεc. Of course,
the above condition is problematic because it requires the existence of a proposition but it gives
no knowledge about it; in particular it is not clear if one has to require a new proposition (which
are its canonical elements? which are its introduction and elimination rules?) or an old one (which
proposition should one choose?).

As a consequence of the suggested equality rule, we require the following equality condition.

Equality condition
Suppose U(x) set [x : S] and a : S then aε{(x : S) U(x)} ↔ U(a) true.

This condition can be justified in a way similar to the justification of the elimination condition,
but using the equality rule instead of the elimination rule; in fact, supposing U(x) set [x : S] and
a : S, the equality rule allows to obtain that aε{(x : S) U(x)} and U(a) are equal elements of set↔
which yields our condition. This condition cannot be justified from a semantical point of view since

1Strong elimination corresponds to the elimination rule for the universe U in the appendix B.

114 CHAPTER 7. WHAT SHOULD BE AVOIDED

we have no way to recover the proof element for its conclusion; this is the requirement which allows
us to develop our proof in the next section without furnishing term constructors for classical logic.

It is worth noting that no form of η-equality, like

c ∈ P(S)

{(x : S) xεc} = c ∈ P(S)
x 6∈ V F (c),

is required on P(S), but its validity is a consequence of the suggested elimination rule for P(S) at
least within the extensional version of Martin-Löf’s set theory eTT. This theory is obtained from
iTT by substituting the intensional equality proposition by the extensional equality proposition
Eq(A, a, b) which allows to deduce a = b ∈ A from a proof of Eq(A, a, b). The problem with
extensional equality is that it causes the lack of decidability of the equality judgement; for this
reason it is usually rejected in the present version of the theory. To prove the η-equality in eTT let
us assume that Y is a subset of S and that x : S, then Y (x) set and hence xε{Y } ↔ Y (x) true holds
because of the equality condition and it yields Eq(PS, {(x : S) xε{Y }}, {Y }); thus, if c ∈ PS, by
using the elimination rule one obtains Eq(PS, {(x : S) xεc}, c) and hence {(x : S) xεc} = c ∈ PS.
Note that the last step is not allowed in iTTP .

It is interesting to note that also this kind of extensionality is dangerous if we are working
within a framework which allows to quantify over the collection of all the propositions. In fact
in this case we can argue like in [Coq90] (or also [Jac89]) where it is proved that if there exists a
proposition B and two elements code ∈ prop→ B and decode ∈ B → prop such that

(∀A ∈ prop) A↔ decode(code(A))

then we obtain an inconsistent theory since the inconsistent PTS λU (see [Bar92] for its definition)
can be embedded into it.

Now, note that the possibility to build the power-set of the one-element set, together with the
required logical equivalence condition for the membership proposition, allow us to define a set B
and the necessary elements by putting

B ≡ P(⊤)
code(U) ≡ {w ∈ ⊤| U}
decode(c) ≡ ∗εc

In fact, the required equivalence condition yields that, for any proposition U ,

∗ε{w ∈ ⊤| U} ↔ U

that is

decode(code(U))↔ U

Then it is clear that we have to avoid to use this kind of power-set constructor together with
impredicative quantification.

7.4 iTTP is consistent

It is well known that by adding as a set to iTT the collection P(⊤), whose elements are (the code
for) the non-dependent sets, but using an equality between its elements induced by the intensional
equality between sets, one obtains an inconsistent extension of iTT [Jac89]. On the contrary, we
will prove that any extension of iTT with a power-set as proposed in the previous section, i.e.
where the equality between two elements of a power-set is induced by the provability equivalence,
is consistent or at least it is not inconsistent because of the rules we proposed on the power-sets
and the conditions we required.

The easiest way to prove such a result is to show first that iTTP can be embedded in the
extensional theory eTTΩ, which is an extension of the extensional version of type theory eTT only
with the power-set Ω ≡ P(⊤) of all the subsets of the one element set ⊤. Then we will prove that
such a theory is consistent.

7.4. ITTP
IS CONSISTENT 115

Thus we have the following formation and introduction rules

Ω set Ω = Ω
U(x) set [x : ⊤]

{(x : ⊤) U(x)} ∈ Ω

Moreover, we require that the introduction equality condition holds, i.e. if U(x)↔ V (x) true [x : ⊤]
then there exists a proof-term c(U, V) such that

c(U, V) ∈ {(x : ⊤) U(x)} =Ω {(x : ⊤) V (x)}

where if x, y : Ω then x =Ω y is the abbreviation for the extensional propositional equality set
Eq(Ω, x, y).

Now, the condition on the existence of a proposition aεc set [a : ⊤, c : Ω] can be satisfied by
putting, for any c ∈ Ω,

aεc ≡ (c =Ω ⊤⊤)

where ⊤⊤ ≡ {(x : ⊤) x =⊤ x}; here, any reference to the element a disappears in the definiens
because all the elements in ⊤ are equal. Finally, we require that

if U(x) set [x : ⊤] then ({(x : ⊤) U(x)} =Ω ⊤⊤)↔ U(w) true [w : ⊤]

Now, any power-set can be defined by putting

P(S) ≡ S → Ω

since, for any proposition U(x) set [x : S], one obtains an element in P(S) by putting

{(x : S) U(x)} ≡ λ((x : S) {(w : ⊤) U(x)})

where we suppose that w does not appear free in U(x), which is in fact an element in S → Ω.
Then the equality introduction condition holds provided that the propositional equality on

functions is at least weakly extensional, i.e. for f, g : A→ B,

(∀x ∈ A) (f(x) =B g(x)) → (λx.f(x) =A→B λx.g(x))

is inhabited, as it happens when the extensional version of type theory is considered.
Moreover, for any element c ∈ P(S), i.e. a function from S into Ω, and any element a ∈ S, one

obtains a proposition by putting
aεc ≡ (c(a) =Ω ⊤⊤)

which indeed satisfies the required equality condition.
Thus, any proof of c ∈ ⊥ in iTTP , i.e. any inconsistency in iTTP , can be reconstructed in eTTΩ.

Hence, it is sufficient to show that this new theory is consistent and this will be done by defining
an interpretation I of this theory into Zermelo-Fraenkel set theory with the axiom of choice ZFC.

The basic idea is to interpret any non-dependent set A into a set I(A) of ZFC and, provided
that
I(A1) is a set of ZFC,
I(A2) is a map from I(A1) into the collection of all sets of ZFC,
. . . ,
I(An) is a map from the disjoint union

⊎

α1∈I(A1),...,αn−2∈I(An−2)(〈α1,...,αn−3〉)

I(An−1)(〈α1, . . . , αn−2〉)

into the collection of all sets of ZFC, then the dependent set

A(x1, . . . , xn) set [x1 : A1, . . . , xn : An(x1, . . . , xn−1)],

i.e. the propositional function A : (x1 : A1) . . . (xn : An(x1, . . . , xn−1)) set, is interpreted into a
map from the disjoint union

⊎

α1∈I(A1),...,αn−1∈I(An−1)(〈α1,...,αn−2〉)

I(An)(〈α1, . . . , αn−1〉)

116 CHAPTER 7. WHAT SHOULD BE AVOIDED

into the collection of all sets of ZFC.
Since the axiom of replacement allows to avoid the use of maps into the collection of all sets,

which can be substituted by indexed families of sets, all the interpretation can be explained within
basic ZFC, but we think that the approach we use here is more perspicuous and well suited for the
interpretation of a theory like eTTΩ where propositional functions have to be considered.

The interpretation I(a) of a closed term a ∈ A, where A is a non-dependent set, will be an
element of the set I(A) whereas the interpretation of a not-closed term

a(x1, . . . , xn) ∈ A(x1, . . . , xn) [x1 : A1, . . . , xn : An(x1, . . . , xn−1)],

i.e. the function-element a : (x1 : A1) . . . (xn : An(x1, . . . , xn−1)) A(x1, . . . , xn), is a function I(a)
which, when applied to the element

α ∈
⊎

α1∈I(A1),...,αn−1∈I(An−1)(〈α1,...,αn−2〉)

I(An)(〈α1, . . . , αn−1〉)

gives the element I(a)(α) of the set I(A)(α).
Now, for the basic sets we put:

I(⊥) ≡ ∅
I(⊤) ≡ {∅}
I(Boole) ≡ {∅, {∅}}

and there is an obvious interpretation of their elements. Moreover, the sets Σ(A, B) and Π(A, B)
(or, equivalently, the propositions (∃x ∈ A) B(x) and (∀x ∈ A) B(x)) are interpreted respectively
in the disjoint union and the indexed product of the interpretation of B(x) indexed on the elements
of the interpretation of A. The disjoint sum set A + B is interpreted in the disjoint union of the
interpretation of A and B and the interpretation of the extensional equality proposition a =A b is
the characteristic function of the equality of the interpretation of a and b.

Finally, the interpretation of the set Ω is the set {∅, {∅}}.
Moreover, the judgement A(x1, . . . , xn) true [Γ] is interpreted in I(A)(γ) 6= ∅ for every γ ∈ I(Γ),

which gives I(A) 6= ∅ when A is a non-dependent set.
The interpretation of all the terms is straightforward; thus, here we only illustrate the inter-

pretation of the elements related to the set Ω:

I({(x : ⊤) U(x)}) ≡

{
∅ if I(U(∗)) = ∅
{∅} if I(U(∗)) 6= ∅

and I(c(U, V)) ≡ ∅.
After these definitions, for any subset U of ⊤,

I(({(x : ⊤) U(x)} =Ω ⊤⊤)↔ U(∗)) 6= ∅

by the axiom of choice and hence the equality condition is valid.
It is tedious, but straightforward, to check that all the rules of eTTΩ are valid in this interpreta-

tion and hence that any proof of the judgement a ∈ ⊥ within eTTΩ, i.e. any form of inconsistency,
would result in a proof that there is some element in ∅, that is, an inconsistency in ZFC.

7.5 iTTP is classical

We are going to prove that iTTP gives rise to classical logic, that is, for any proposition A the
judgement A∨¬A true holds. Even if iTTP is not a topos, the proof that we show here is obtained
by adapting to our framework an analogous result stating that any topos satisfying the axiom of
choice is boolean. Among the various proofs of this result (see for instance [LS86] and [Bel88]),
which goes back to Diaconescu’s work showing that one obtains ZF by adding the axiom of choice
to IZF (see [Dia75]), we choose to translate the proof of Bell [Bel88], because it is very well suited
to work in iTTP since it is almost completely developed within local set theory instead of topos
theory, except for the use of a choice rule.

7.5. ITTP
IS CLASSICAL 117

In iTTP the result is a consequence of the strong elimination rule for disjoint union which allows
to prove the so called intuitionistic axiom of choice, i.e.

((∀x ∈ A)(∃y ∈ B) C(x, y))→ ((∃f ∈ A→ B)(∀x ∈ A) C(x, f(x))) true

Let us recall the proof [Mar84]. Assume that h ∈ (∀x ∈ A)(∃y ∈ B) C(x, y) and that x ∈ A. Then
h(x) ∈ (∃y ∈ B) C(x, y). Let fst(−) and snd(−) be the first and the second projection respectively;
then the elimination rule for the set of the disjoint union allows to prove that

fst(h(x)) ∈ B

and
snd(h(x)) ∈ C(x, fst(h(x)))

Hence, by putting f ≡ λx.fst(h(x)) we obtain both

f ∈ A→ B

and
snd(h(x)) ∈ C(x, f(x))

since, by β-equality, f(x) ≡ (λx.fst(h(x)))(x) = fst(h(x)). Finally, we conclude by using the
true-introduction rule.

Now, in the sequel, we will first show the structure of the proof skipping the formalization
details and then we will formalize it inside Martin-Löf’s type theory.

First note that for any U, V ∈ P(⊤), if decode(U)∨decode(V) holds then there exists an element
x ∈ Boole such that

(x =Boole true→ decode(U)) ∧ (x =Boole false→ decode(V))

because ¬(true =Boole false) is provable in Martin-Löf’s type theory with one universe. Then,
by the axiom of choice, there exists a function f such that, for any U, V ∈ P(⊤) such that
decode(U) ∨ decode(V) holds,

(f(〈U, V 〉) =Boole true→ decode(U)) ∧ (f(〈U, V 〉) =Boole false→ decode(V))

Now, let A be any proposition. Then 〈code(A), code(⊤)〉 and 〈code(⊤), code(A)〉 are two couples
such that

decode(code(A)) ∨ decode(code(⊤))

and
decode(code(⊤)) ∨ decode(code(A))

hold because decode(code(⊤))↔ ⊤. Then, with a bit of intuitionistic logic, we can obtain both

f(〈code(A), code(⊤)〉) =Boole true→ decode(code(A))

and
f(〈code(⊤), code(A)〉) =Boole false→ decode(code(A))

and hence
f(〈code(A), code(⊤)〉) =Boole true→ A

and
f(〈code(⊤), code(A)〉) =Boole false→ A

because decode(code(A))↔ A.
But we know that the set Boole is decidable (see [NPS90]) and hence

f(〈code(A), code(⊤)〉) =Boole true ∨ f(〈code(A), code(⊤)〉) =Boole false

holds. Thus we can argue by ∨-elimination as follows. If

f(〈code(A), code(⊤)〉) =Boole true

118 CHAPTER 7. WHAT SHOULD BE AVOIDED

then f(〈code(A), code(⊤)〉) =Boole true→ A yields A and hence

A ∨ f(〈code(A), code(⊤)〉) =Boole false

holds. On the other hand f(〈code(A), code(⊤)〉) =Boole false yields directly

A ∨ f(〈code(A), code(⊤)〉) =Boole false

Similarly we can obtain
A ∨ f(〈code(⊤), code(A)〉) =Boole true

Hence, by distributivity, we have

A ∨ (f(〈code(A), code(⊤)〉) =Boole false ∧ f(〈code(⊤), code(A)〉) =Boole true)

and we can argue by ∨-elimination to prove that A ∨ ¬A holds.
In fact, assuming that A holds yields directly that A ∨ ¬A holds.
On the other hand, let us suppose that

f(〈code(A), code(⊤)〉) =Boole false

and
f(〈code(⊤), code(A)〉) =Boole true

and assume that A is true. Then A ↔ ⊤ holds, and hence code(A) =P(⊤) code(⊤) by equality
introduction. Thus

〈code(A), code(⊤)〉 =P(⊤)×P(⊤) 〈code(⊤), code(A)〉

and hence

false =Boole f(〈code(A), code(⊤)〉) =Boole f(〈code(⊤), code(A)〉) =Boole true

So we are arrived to a contradiction starting from the assumption that A holds, and thus ¬A holds
which gives also in this case that A ∨ ¬A holds.

Thus we proved that classical logic is yielded by our two conditions. Of course we did not
furnish a proof element for A ∨ ¬A since we only required that for any a ∈ S and U ⊆ S,
aε{x ∈ S| U(x)} ↔ U(a) holds but we could not furnish a proof element for this judgement, that
is we destroyed the correspondence between the judgements A true and the fact that there exists
a proof-term a such that a ∈ A (see [Val98]).

Let us now show how the previous argument can be completely formalized inside Martin-Löf’s
type theory.

Since in the following we will mainly use the power-set P(⊤), we introduce some abbreviations
besides of Ω ≡ P(⊤) and ⊤⊤ ≡ {(w : ⊤) w =⊤ w} already used in section 7.4; let us suppose
that U is any proposition and w : ⊤ is a variable which does not appear free in U , then we put
[U] ≡ {(w : ⊤) U} and, supposing p ∈ Ω, we put p ≡ ∗εp. Moreover, following a standard practice,
supposing A is a proposition, sometimes we will simply write A to assert the judgement A true.

It is convenient to state here all the properties of the intensional equality proposition Id that
we need in the following. First, we recall two well known results: Id is an equivalence relation, and
if A and B are sets and a =A c and f =A→B g then f(a) =B g(c) (for a proof see [NPS90], page
64).

Moreover, the following properties of Id are specific of the new set Ω. They are similar to the
properties that the set Id enjoys when it is used on elements of the set U, i.e. the universe of the
small sets, which we will not use at all. In fact, Ω resembles this set, but it also differs because of
the considered equality and because a code for each set is present in Ω whereas only the codes for
the small sets can be found in U.

Lemma 7.5.1 If p =Ω q then p↔ q.

Proof. Let x ∈ Ω; then x↔ x and hence p↔ q is a consequence of p =Ω q by Id-elimination. 2

7.5. ITTP
IS CLASSICAL 119

Lemma 7.5.2 ¬(true =Boole false).

Proof. Let x ∈ Boole; then if x then [⊤] else [⊥] ∈ Ω. Now, suppose that true =Boole false, then
if true then [⊤] else [⊥] =Ω if false then [⊤] else [⊥] which yields [⊤] =Ω [⊥] by boole-equality and
transitivity. Thus, by the previous lemma [⊤] ↔ [⊥], but [⊤] ↔ ⊤ and [⊥] ↔ ⊥ by the equality
condition; hence ⊥ true and thus, by discharging the assumption true =Boole false, we obtain the
result. 2

Now, we will start the proof of the main result of this section. The trick to internalize the proof
in [Bel88] within iTTP is stated in the following lemma.

Lemma 7.5.3 For any proposition A, if A true then

c((w : ⊤) A, (w : ⊤) w =⊤ w) ∈ [A] =Ω ⊤⊤

and hence [A] =Ω ⊤⊤ true; moreover, if [A] =Ω ⊤⊤ true then A true.

Proof. If A true then A ↔ (w =⊤ w) true [w : ⊤]; hence, by the equality introduction condition,
c((w : ⊤) A, (w : ⊤) w =⊤ w) ∈ [A] =Ω ⊤⊤, and thus [A] =Ω ⊤⊤ true by true-introduction; on the
other hand, if [A] =Ω ⊤⊤ true then [A] ↔ ⊤⊤ by lemma 7.5.1, but [A] ↔ A and ∗ =⊤ ∗ ↔ ⊤⊤

by the equality condition, and hence A true since ∗ =⊤ ∗ true. 2

After this lemma, for any proposition A it is possible to obtain a logically equivalent proposition,
i.e. [A] =Ω ⊤⊤, such that, if A true, the proof element c((w : ⊤) A, (w : ⊤) w =⊤ w) of
[A] =Ω ⊤⊤ has no memory of the proof element which testifies the truth of A. We will see
that this property is crucial to get the main result. We will use the above lemma immediately
in the next one where, instead of the proposition fst(w) ∨ snd(w) set [w : Ω × Ω], we write
[fst(w) ∨ snd(w)] =Ω ⊤⊤ set [w : Ω × Ω] in order to avoid that the proof-term in the main
statement depends on the truth of the first or of the second disjunct.

Proposition 7.5.4 In iTTP the following proposition

(∀z ∈ Σ(Ω× Ω, (w) [fst(w) ∨ snd(w)] =Ω ⊤⊤))

(∃x ∈ Boole) (x =Boole true → fst(fst(z))) ∧

(x =Boole false → snd(fst(z)))

is true.

Proof. Suppose z ∈ Σ(Ω× Ω, (w) [fst(w) ∨ snd(w)] =Ω ⊤⊤) then fst(z) ∈ Ω× Ω and snd(z) is a
proof of [fst(fst(z)) ∨ snd(fst(z))] =Ω ⊤⊤. Thus, by lemma 7.5.3, fst(fst(z)) ∨ snd(fst(z)). Now,
the result can be proved by ∨-elimination. In fact, if

fst(fst(z)) true

then

true =Boole true→ fst(fst(z))

Moreover, ¬(true =Boole false) by lemma 7.5.2 and hence

true =Boole false→ snd(fst(z))

Thus we obtain that

(∃x ∈ Boole) (x =Boole true→ fst(fst(z))) ∧ (x =Boole false→ snd(fst(z)))

On the other hand, by a similar proof we reach the same conclusion starting from the assumption
snd(fst(z)) true. 2

Thus, we can use the intuitionistic axiom of choice to obtain:

120 CHAPTER 7. WHAT SHOULD BE AVOIDED

Proposition 7.5.5 In iTTP the following proposition

(∃f ∈ Σ(Ω× Ω, (w) [fst(w) ∨ snd(w)] =Ω ⊤⊤)→ Boole)

(∀z ∈ Σ(Ω× Ω, (w) [fst(w) ∨ snd(w)] =Ω ⊤⊤))

(f(z) =Boole true → fst(fst(z))) ∧ (f(z) =Boole false → snd(fst(z)))

is true.

Now, suppose that A is any proposition; then

〈〈[A],⊤⊤〉, k([A],⊤⊤)〉 ∈ Σ(Ω× Ω, (w) [fst(w) ∨ snd(w)] =Ω ⊤⊤)

where k(x, y) is short for c((w : ⊤) fst(〈x, y〉) ∨ snd(〈x, y〉), (w : ⊤) w =⊤ w).
In fact, 〈[A],⊤⊤〉 ∈ Ω× Ω and ⊤⊤ true, hence fst(〈[A],⊤⊤〉) ∨ snd(〈[A],⊤⊤〉); thus the result

follows by lemma 7.5.3.
Now, let f be the choice function in the proposition 7.5.5; then

f(〈〈[A],⊤⊤〉, k([A],⊤⊤)〉) =Boole true → [A]

But
(f(〈〈[A],⊤⊤〉, k([A],⊤⊤)〉) =Boole true) ∨ (f(〈〈[A],⊤⊤〉, k([A],⊤⊤)〉) =Boole false)

since the set Boole is decidable (for a proof see [NPS90], page 177), and hence, by ∨-elimination
and a little of intuitionistic logic, one obtains that

(1) [A] ∨ (f(〈〈[A],⊤⊤〉, k([A],⊤⊤)〉) =Boole false)

Analogously one can prove that

(2) [A] ∨ (f(〈〈⊤⊤, [A]〉, k(⊤⊤, [A])〉) =Boole true)

Thus, by using distributivity on the conjunction of (1) and (2), one finally obtains

Proposition 7.5.6 For any proposition A in iTTP the following proposition

(∃f ∈ Σ(Ω× Ω, (w) [fst(w) ∨ snd(w)] =Ω ⊤⊤)→ Boole)

[A] ∨ ((f(〈〈[A],⊤⊤〉, k([A],⊤⊤)〉) =Boole false)∧
(f(〈〈⊤⊤, [A]〉, k(⊤⊤, [A])〉) =Boole true))

is true.

Now, let us assume [A] true; then [A] =Ω ⊤⊤ true by lemma 7.5.3 and hence

〈〈[A],⊤⊤〉, k([A],⊤⊤)〉 =Σ(Ω×Ω,...) 〈〈⊤⊤,⊤⊤〉, k(⊤⊤,⊤⊤)〉

since
λx.〈〈x,⊤⊤〉, k(x,⊤⊤)〉 ∈ Ω→ Σ(Ω× Ω, (w) [fst(w) ∨ snd(w)] =Ω ⊤⊤)

Thus
f(〈〈[A],⊤⊤〉, k([A],⊤⊤)〉) =Boole f(〈〈⊤⊤,⊤⊤〉, k(⊤⊤,⊤⊤)〉)

where f is the function whose existence is stated by the proposition 7.5.6.
With the same assumption, also

f(〈〈⊤⊤, [A]〉, k(⊤⊤, [A])〉) =Boole f(〈〈⊤⊤,⊤⊤〉, k(⊤⊤,⊤⊤)〉)

can be proved in a similar way; hence, by transitivity of the equality proposition,

f(〈〈[A],⊤⊤〉, k([A],⊤⊤)〉) =Boole f(〈〈⊤⊤, [A]〉, k(⊤⊤, [A])〉)

It is worth noting that this result depends mainly on lemma 7.5.3, and hence on the equality
introduction condition whose premise is a “true judgement”. Indeed, λx.〈〈x,⊤⊤〉, k(x,⊤⊤)〉 and

7.6. SOME REMARKS ON THE PROOF 121

λx.〈〈⊤⊤, x〉, k(⊤⊤, x)〉 yield equal results when applied to ⊤⊤ since they do not depend on the
proof-terms used to derive the two judgements

(x ∨⊤⊤)↔ (w =⊤ w) true [x : Ω, w : ⊤]

and
(⊤⊤ ∨ x)↔ (w =⊤ w) true [x : Ω, w : ⊤]

In the case we admit dependency on the proof-terms in the equality introduction condition we can
redo the whole proof if we assume that uniqueness of equality proofs (see the rules in [HS95] or
[Hof95]) holds and we replace a with a =Ω ⊤⊤, where a ∈ Ω, everywhere in the proof in order to
get an actual proof-term at this point.

Now, by assuming both [A] true and

(f(〈〈[A],⊤⊤〉, k([A],⊤⊤)〉) =Boole false) ∧ (f(〈〈⊤⊤, [A]〉, k(⊤⊤, [A])〉) =Boole true)

one can conclude true =Boole false.
On the other hand, we know that ¬(true =Boole false) holds by lemma 7.5.2. Hence ⊥ follows

and so we obtain that the judgement ¬[A] true holds by discharging the assumption [A] true. Then,
by using proposition 7.5.6 and a little of intuitionistic logic, we can conclude ([A] ∨ ¬[A]) true

which, by the equality condition, yields (A ∨ ¬A) true. Thus, if we could give suitable rules for
the power-sets that allow our conditions to hold and follow the usual meaning for the judgement
C true, i.e. C true holds if and only if there exists a proof element for the proposition C, then we
would have a proof element for the proposition A ∨ ¬A, which is expected to fail.

7.6 Some remarks on the proof

To help the reader who knows the proof in [Bel88], it may be useful to explain the differences
between the original proof and that presented in the previous section. Our proof is not the plain
application of Bell’s result to iTTP since iTTP is not a topos. It is possible to build a topos out of
the extensional theory eTTP obtained by adding a power-set constructor to eTT, if one adds to it
also the rule of η-equality for power-sets, like in the end of section 7.3. However, we showed that it
is not necessary to be within a topos to reconstruct Diaconescu’s result and that a weaker theory
is sufficient.

This fact suggests that it is not possible to extend Martin-Löf’s set theory, where sets and
propositions are identified and proof-elements can be provided for any provable proposition, to
an intuitionistic theory of sets fully equipped with power-sets satisfying the conditions discussed
in section 7.3, provided that we want to preserve the constructive meaning of the connectives.
However, observe that the requirement of uniformity in the extensional equality condition is crucial
to carry on our proof. Therefore, it seems that there is still some hope to get power-sets in
constructive type theory by dropping uniformity. But, it is worth recalling that an analogous
proof of excluded middle can be performed also without uniformity if the uniqueness of equality
proofs holds. Thus, no constructive power-set can be added if type theory is endowed with pattern
matching, which is usually used in most of its actual implementations.

7.7 Other dangerous set constructions

In the previous sections we proved that by adding an extensional set constructor to Martin-Löf’s
type theory, which satisfies some vary natural conditions, classical logic is obtained. In the next
sections we will show that the problem is not due to the power set constructor but mainly to the
required extesionality.

The need for the addition of extensional set constructors to Martin-Löf’s type theory appears
immediately as soon as one tries to develop within such a framework a piece of actual mathematics,
as we did with constructive topology (see the introductory sections in [CSSV]). In fact, if one
works on constructive topology, and hence within the set theoretical framework of Martin-Löf’s
constructive type theory, it is very likely that he is going to wonder on the reason way one wants to

122 CHAPTER 7. WHAT SHOULD BE AVOIDED

develop topology within a framework which is so difficult to deal with. In particular, many useful
set-constructors are not present there, while it is clear that they would be very useful in order to
work with topological concepts. For instance, one would like to be able to work with power-sets, in
order to quantify on the elements of the collection of the subsets of a set, or with quotient-sets, in
order to be able to construct in a straightforward way some well known sets, or, at least, with the
collection of the finite subsets of a set, in order, for instance, to be able to express easily statements
like Tychonoff’s theorem on the compactness of the product of compact spaces. Of course, the
main point is to be able to deal with such constructions and still work in a set-theory with such a
clear semantics as Martin-Löf’s type theory has. The bad news is that there is no possibility to be
sure that this is possible at all, as we will see in this paper.

7.7.1 The collection of the finite subsets

It is interesting to observe that all of the proof in the previous section can be redone also if we
assume a set-constructor which seems to be much more safe than the power-set constructor, namely
the set Pω(S) of the finite subsets of the set S.

In order to define Pω(S) we have first to state what a finite subset is. The first idea is probably
to identify a finite subset of S with a list of elements of S, but if extensionality is required we have
to force two lists to be equal if they are formed with the same elements, that is, we have to force a
quotient over the set of the lists on S and this quotient is going to be based on an equivalence relation
which will be defined in terms of the equality over S which can be non-decidable. And we will see
that also quotient sets over non decidable equivalence relations are not safe set-constructions.

The good news is that we have a possible way out. In fact, we can find a suitable condition which
allows to state which ones are finite among the standard subsets. To this aim, let N(k) prop [k : N]
be the family of sets defined over the natural numbers by using the following inductive definition

{
N(0) = ⊥
N(k + 1) = S(N(k))

where the type S(A) is the set-constructor which, given any set A, allows to obtain a new set with
one element more than A. Its formation and introduction rules are the following:

A set

S(A) set

0S(A) ∈ S(A)
a ∈ A

sS(A)(a) ∈ S(A)

So, for any k ∈ N, the set N(k) contains exactly k elements.
Now, given any subset U of S, that is any propositional function over S, we can put

Fin(U) ≡ (∃k ∈ N)(∃f ∈ N(k)→ S) U ⊆ Im(f)

where Im(f) ≡ {x ∈ S| (∃n ∈ N(k)) x =S f [n]}. The previous definition states that a subset U is
finite whenever it is a subsets of a surely finite subset, namely the image of a finite set.

This is a good definition of “finite subset” because it follows our intuition about what a finite
subset should be and meanwhile it does not force us to know how many elements the subset should
contains but it only require that there is a finite upper bound to the number of elements that it can
contain. This fact allows to prove some expected result on finite subsets which were not provable
with the approach in [SV98]. For instance, here not only the union of two finite subsets is finite
but also the intersection of a finite subset with any other subset is finite and this fact would have
been difficult to prove if the notion of finite subset would have required to know the number of its
elements.

A consequence of the previous definition is that we can state the introduction rule for the set
Pfin(S) by putting

U(x) prop [x : S] Fin(U) true

{x ∈ S| U(x)} ∈ Pfin(S)

But then we obtain that all of the subsets of the one-element set are finite and hence Pfin(⊤) and
P(⊤) are (almost) the same set and hence all of the proof in the previous section can be redone
using the set Pfin(⊤).

7.7. OTHER DANGEROUS SET CONSTRUCTIONS 123

7.7.2 The quotient set constructor

We observed above that it would have been possible to define the set of the finite subsets of a
given set S also considering the set of the list over S and then forcing a quotient over it in order
to obtain the wished extensionality. But it is possible to prove that also a quotient set constructor
is not safe from a constructive point of view.

Indeed, the quotient set-constructor can be defined by using the following formation and intro-
duction rules

A set R(x, y) prop [x, y : A] EqRel(R) true

AR set
a ∈ A R(x, y) prop [x, y : A] EqRel(R) true

[a]R ∈ AR

where EqRel(R) is any proposition which formalizes the standard conditions requiring that R is an
equivalence relation.

Now, in order to obtain a quotient set, we should require a suitable equality rule, but it is
possible to show that this is not possible if we want to avoid to obtain classical logic and still
obtain a set which is a real quotient set. In fact, if we require that, whatever equality rule one can
use, the following condition is satisfied, for any a, b ∈ A,

R(a, b) true if and only if [a]R =AR
[b]R true

then we can construct a proof of A ∨ ¬A, for any small set A, by arguing as in section 7.5 but
using, instead that P(⊤), the quotient set V obtained by using first universe U0, which contains
the codes of all the small sets, and the equivalence relation of equi-provability between small types
(for a detailed proof see [Mai99]).

7.7.3 The two-subset set

In the previous sections we proved that by adding extensional set-constructors to Martin-Löf’s
type theory one can obtain classical logic. The obvious question is: where is the problem? Here we
will prove that even a very weak form of extensionality seems not to fit well with constructive type
theory. Indeed, it is possible to obtain classical logic even considering like a set just the collection
of two subsets, if an exstensional equality is required on the elements of this set. In fact, let us
suppose to add to Martin-Löf’s type theory the following formation rule

U(x) prop [x : S] V (x) prop [x : S]

{U, V } set

and then suitable introduction and elimination rules in such a way that the following very natural
conditions are satisfied

1. (pair axiom) If W ⊆ S then

W ∈ {U, V } if and only if (W =S U) ∨ (W =S V) true

2. (extensionality) If W1, W2 ∈ {U, V } then

if W1 =S W2 true then W1 ={U,V } W2 true

Then, we can formalize within this extended theory a proof by J. Bell in [Bel88] which allows to
prove A ∨ ¬A for any proposition A. In fact, let

V0 ≡ {x ∈ Boole| (x =Boole false) ∨ A}
V1 ≡ {x ∈ Boole| (x =Boole true) ∨ A}

Then we can prove that

(∀W ∈ {V0, V1})(∃y ∈ Boole) yεW

124 CHAPTER 7. WHAT SHOULD BE AVOIDED

In fact, by the pair axiom, W ∈ {V0, V1} yields (W =S V0) ∨ (W =S V1) and hence we can argue
by ∨-elimination. Now, supposing W =S V0, the fact that falseεV0 yields that falseεW and then
(∃y ∈ Boole) yεW and, similarly, supposing W =S V1, the fact that trueεV1 yields that trueεW
and then also in this case we obtain (∃y ∈ Boole) yεW .

Then, by the axiom of choice, we obtain

(∃f ∈ {V0, V1} → Boole) (∀W ∈ {V0, V1}) f(W)εW

and hence
(f(V0)εV0) ∧ (f(V1)εV1)

Note now that f(V0)εV0 holds if and only if (f(V0) =Boole false) ∨ A and f(V1)εV1 holds if and
only if (f(V1) =Boole true) ∨ A; hence we using a bit of intuitionistic logic we obtain that

(f(V0) =Boole false ∧ f(V1) =Boole true) ∨ A

and thus we can argue by ∨-elimination. If A holds then we obtain directly that A ∨ ¬A holds.
On the other hand, if we assume that A holds, then V0 =S V1, and hence, by extensionality, we
obtain that V0 ={V0,V1} V1. Thus, by one of the property of the intensional equality proposition,
we obtain that f(V0) =Boole f(V1) which together with (f(V0) =Boole false) ∧ (f(V1) =Boole true)
gives false =Boole true that leads to a contradiction when we work within a theory with the universe
of the small types. Thus we can conclude that the assumption that A holds lead to a contradiction,
that is ¬A holds and hence also in this case A ∨ ¬A holds by ∨-introduction.

Appendix A

Expressions theory

A.1 The Expressions with arity

A.1.1 Introduction

Martin Löf’s type theory [Mar84, NPS90] has been exposed by giving, besides the conceptual
motivations, also a set of formal rules where types and their elements are denoted by expressions
build up from variables and constants by means of application (notation: b(a)) and abstraction
(notation: ((x) b)). Moreover, the operational semantics of type theory is given by expression
manipulations.

Since, in order to verify the correctness of the application of a rule we need, almost always, both
to recognize definitional equality between textual different expressions (that is, different denotations
of the same type) and to reduce expressions into equivalent ones (e.g a ⇒ ((x) a)(x)), we need a
formal theory for expressions which deals with these problems at a level underlying type theory.
Clearly pure lambda-calculus cannot be considered because of the undecidability of definitional
equality due to the possibility of self-application [Chu36]. Historically, to solve this problem, typed
lambda-calculus [Bar84, CF74] has been introduced.

A similar approach has been followed by Martin-Löf [Mar83, NPS90] where an arity is asso-
ciated to any expression in order to specify its functionality. The main difference with respect
to standard typed lambda-calculus is in the use of abbreviating definitions which extend the lin-
guistic expressiveness of expressions instead of lambda-abstraction. Definitions seem necessary to
introduce derived rules in type theory and their power is manifested by the ability to emulate
abstraction.

Our approach is strongly related to Martin Löf’s one, but we give a different treatment of
definitions both to make them suitable for a mechanical treatment and to be able to analyze the
conditions under which it is possible to develop a provable correct parsing algorithm for expressions.
As a consequence other changes were needed and, for this reason, Martin-Löf has no responsibility
for the following.

The chapter is organized as follows. In section A.2 you can find the definition of arity, the
characterization of abbreviating definitions, the definition of the rules to form expressions with
arity and the rules to prove that two expressions are definitionally equal.

In section A.3 some properties of the expression system previously defined are proved. In this
system is easy to deal with both normal form and decidability of expressions: the notion of normal
form is introduced very naturally and an algorithm to reduce any expression into an equivalent
one in normal form is easy to develop and to prove correct.

In section A.4 we introduce new rules to form expressions and we prove that they are sufficient
to form all of the expressions without introducing new ones. The new rules are introduced to meet
the requirements to obtain decidability of the predicate ‘to be an expression’.

Then, in section A.5, abstraction is introduced as a schema of abbreviating definitions and the
concepts of normal form and its principal properties are given.

Finally the relationships between the expression theory and the standard typed lambda-calculus
with α, β, η and ξ reductions is dealt with in section A.6.

125

126 APPENDIX A. EXPRESSIONS THEORY

A.2 Basic definitions

The formal definition of arity is the following.

Definition A.2.1 (Arity) An arity α is defined by induction as follows:

1. 0 is an arity

2. If α and β are two arities then (α)β is an arity.

0 will be the arity of expressions which cannot be applied, that is the saturated expressions. We
shall subsequently usually omit the rightmost 0 of an arity since this will not lead to ambiguity.

Arities are naturally ordered by the usual ordering on construction complexity and two arities
are equal if and only if they are textually identical.

In the following we assume to have a set (possibly empty) of primitive constants with arity
c− α and, for any arity α, an enumerable set of variables x1 − α, x2 − α, . . . Since we want that
any variable and any constant is recognizable with its unique arity we assume the decidability of
the two predicates x − α var and c − α const whose reading is “x is a variable of arity α” and “c
is a primitive constant of arity α” respectively. Moreover we assume the ability to recognize the
occurrences of a variable and of a primitive constant within a string.

We shall use the notation d{x1, . . . , xn} to stress that x1, . . . , xn are all the variables occurring
within the string d.

A.2.1 Abbreviating definitions

The notion of abbreviating definition plays a central role in what follows. An abbreviating definition
is a binary relation on strings:

definiendum =def definiens

where the first element is called definiendum (what we are defining on) and the second one is called
definiens (what we assume to already have). We can think of the definiendum as a new denotation
for the object denoted by the definiens. The general form of a definiendum is

d{x1, . . . , xn}(y1) . . . (ym) n, m ≥ 0

where distinguishable, and declared, occurrences of the variables x1, . . . , xn (the name parameters)
of arity α1, . . . , αn may appear inside the string d (the parametric name) and y1, . . . , ym (the
arguments) are variables of arity β1, . . . , βm respectively.

We shall call definition skeleton the result of the substitution, within a parametric name, of
the name-parameters by place-holders with arity; note that no variable appears inside a definition
skeleton.

Definitions must obey the following conditions:

1. (variables condition) The variables x1, . . . , xn, y1, . . . , ym are distinct from one another and
comprise all of the variables appearing in the definiens; moreover each xi occurs only once in
d.

2. (non overlapping clause) If

d{x1, . . . , xn}(y1) . . . (ym) =def e1

where xi − αi var and yj − βj var, for i = 1, . . . , n and j = 1, . . . , m, and

d{z1, . . . , zn}(w1) . . . (ws) =def e2

where zi − αi var and wj − γj var, for i = 1, . . . , n and j = 1, . . . , s, are two definitions with
the same definition skeleton then

• s = m

• βj = γj for any j = 1, . . . , m

A.2. BASIC DEFINITIONS 127

• e2 is e1[z1, . . . , zn, w1, . . . , ws/x1, . . . , xn, y1, . . . , ym] where e[s1, . . . , sk/t1, . . . , tk] is the
result of the simultaneous textual substitution of the variables t1, . . . , tk of arities δ1,
. . . , δk respectively, by the variables s1, . . . , sk of correspondent arities.

3. (recognizability) The occurrence of a definition skeleton within a string is recognizable.

Remarks

• Condition 2 does not avoid having “duplicate definitions” provided no ambiguity may arise.

• Condition 3 implies the ability to single out within a string all the sub-strings which have
been substituted for the place-holders inside the definition skeleton.

• Since in a definition skeleton no variable appears a textual substitution of variables does not
modify it.

Examples:

1. Let x− 0 var, f − (0) 0 var, g − (0) 0 var then

[f] ◦ [g](x) =def f(g(x))

is a definition: [f]◦ [g] is the parametric name, f and g are the name-parameters, [.]◦ [.] is the
definition skeleton and x the argument. The intention is to define the function “composition
of f and g”.

2. Let t− 0 var, x− 0 var, y − 0 var then

exchange[t](x)(y) =def begin t := x; x := y; y := t end

is the definition for a procedure performing the exchange between x and y.

Now we can formally define what an expression of arity α is by giving the rules to form ex-
pressions. In the definition we will introduce the predicate a − α exp whose reading is “a is an
expression of arity α”. A fixed set D of abbreviating definition is assumed; to stress the dependency
on D the notation a− α expD may as well be used.

Definition A.2.2 (Expression of arity α)

1.
x− (α1) . . . (αn)0 var a1 − α1 exp . . . an − αn exp

x(a1) . . . (an)− 0 exp
n ≥ 0

2.
c− (α1) . . . (αn) 0 const a1 − α1 exp . . . an − αn exp

c(a1) . . . (an)− 0 exp
n ≥ 0

3.

d{x1, . . . , xn}(y1) . . . (ym) =def e e− 0 exp e[a, b/x, y]− 0 exp

xi − αi var yj − βj var ai − αi exp bj − βj exp

d[a1, . . . , an](b1) . . . (bm)− 0 exp
n ≥ 0, i = 1, . . . , n, m ≥ 0, j = 1, . . . , m

4.
b(x)− β exp x− α var

b− (α) β exp
where the only occurrence of x in b(x) is the manifested one

Notations

• a abbreviates a1, . . . , an.

• e[a/x] is the result of the simultaneous textual substitution of the variables x by the expres-
sions a within the expression e.

• d[a1, . . . , an] is a notation to denote the result of the simultaneous textual substitution of
the variables x by the expressions a within the parametric name d{x1, . . . , xn}. We use this
notation to stress that the expressions a must be recognizable inside the parametric name.

128 APPENDIX A. EXPRESSIONS THEORY

• d[a1, . . . , an] and d[a1, . . . , an](b1) . . . (bm) will be referred to as instance of a parametric name
and instance of a definiendum, respectively.

The notions of derivation and theorem are standard. We shall call depth of a derivation the
length of the longest branch in the derivation tree.

Remarks

• Rule 4. in the definition A.2.2 requires the ability to recognize where a variable occurs within
a string b: we have always supposed to have it. Note that we can inductively define the set
of variables that appears inside an expression following the formation rules:

V(x(a1) . . . (an)) = {x} ∪ V(a1) ∪ . . . ∪ V(an)

V(c(a1) . . . (an)) = V(a1) ∪ . . . ∪ V(an)

V(d[a1, . . . , an](b1) . . . (bm)) = V(a1) ∪ . . . ∪ V(an) ∪ V(b1) ∪ . . . ∪ V(bm)

V(b) = V(b(x))/{x}

In our approach we never introduce the notion of free and bound variables but we always
deal with variables.

• An expression has one of the following shape

x(a1) . . . (ak) k ≥ 0

c(a1) . . . (ak) k ≥ 0

d[a1, . . . , an](b1) . . . (bk) k ≥ 0

• The derivation of an expression according to definition A.2.2 is uniquely determinable except
for the name of the variable (if rule 4. is applied) and the choice among duplicate definitions.
This derives because of the demand to distinguish the occurrences of variables, primitive
constants and definition skeletons within a string and, if rule 3. applies, the non overlapping
clause assures that an instance of a parametric name always uniquely determines its definition.

• It is easy to see that rules 1. and 2. produce expressions, from old ones, by the use of appli-
cation under the constrain of correct arity; rule 3. allows the use of abbreviating definition,
under the condition that the definiens is an expression; rule 4. is the way to obtain a true
abstraction: here this system is different from a typed lambda-calculus where the abstraction
is indicated; anyhow in section A.5 we will introduce a set of abbreviating definitions that
allow to indicated abstraction.

Expressions are just a syntactic vehicle to denote objects. A definiendum and its definiens must
clearly denote the same object and in this sense they have to be considered ‘equal’. To achieve this
result we extend the textual identity on strings to an equality on expressions of the same arity.

Definition A.2.3 (Definitional equality)

1= x− (α1) . . . (αn)0 var a1 = b1 − α1 . . . an = bn − αn

x(a1) . . . (an) = x(b1) . . . (bn)− 0
n ≥ 0

2= c− (α1) . . . (αn)0 const a1 = b1 − α1 . . . an = bn − αn

c(a1) . . . (an) = c(b1) . . . (bn)− 0
n ≥ 0

3=
i

d{x1, . . . , xn}(y1) . . . (ym) =def e e− 0 exp e[a, b/x, y] = c− 0
xi − αi var yj − βj var ai − αi exp bj − βj exp

d[a1, . . . , an](b1) . . . (bm) = c− 0
n ≥ 0, i = 1, . . . , n, m ≥ 0, j = 1, . . . , m

3=
ii

d{x1, . . . , xn}(y1) . . . (ym) =def e e− 0 exp e[a, b/x, y] = c− 0
x1 − αi var yj − βj var ai − αi exp bj − βj exp

c = d[a1, . . . , an](b1) . . . (bm)− 0
n ≥ 0, i = 1, . . . , n, m ≥ 0, j = 1, . . . , m

4= b(x) = d(x) − β x− α var

b = d− (α) β
where the only occurrence of x in b(x) and d(x) is the manifested one

A.3. SOME PROPERTIES OF THE EXPRESSIONS SYSTEM 129

Remarks

• If we have a derivation of a = b− α then it is possible to prove that a− α exp and b− α exp

(the proof is by induction on the depth of the derivation of a = b− α)

• It is meaningless to ask for equality between two strings unless they are known to be expres-
sions of the same arity.

• The derivation of definitional equality between two expressions a and b is unique, but for the
choice of the name of the variable if rule 4= applies and for the choice of (i) or (ii) in rule
3= if two instances of a definiendum are considered. This fact can be proved by induction on
the ‘sum’ of the depths of the derivations of a and b.

• It is easy to prove by induction on the depth of the derivation that = is an equivalence
relation. Now, by 3=

i , from a =def b it immediately follows a = b− 0.

Theorem A.2.4 (Decidability of the definitional equality) Let a and b be two expressions
of arity α, then the predicate a = b− α is decidable.

Proof. The proof readily follows by induction on the ‘sum’ of the depth of the derivations of
a− α exp and b− α exp.

Note that the same result could indirectly derive from the existence and unicity of normal form
for expressions (see section A.5).

A.3 Some properties of the expressions system

In this section some properties of the system of rules introduced in section A.2 are proved. The
main result is theorem A.3.4 which states its closure under substitution.

Theorem A.3.1 The following property holds for expressions with arity:

1. If x− α var then x− α exp.

2. If c− α const then c− α exp.

Proof. The proof of the first point is obtained by induction on the arity of the variable x. After
the first point has been proved, the proof of the second point is immediate.

Now we can prove that the system to form expressions is closed under textual substitution.
First we will prove a stronger result in the case of substitution of a variable by a variable.

Lemma A.3.2 If c−γ exp, z−α var and y−α var then c[z/y]−γ exp is provable with a derivation
of the same depth than the derivation of c− γ exp.

Proof. The proof can be obtained by induction on the depth of the derivation of c−γ exp. Anyhow,
this lemma only states that we can obtain a derivation of c[z/y]−γ exp just by substituting all the
occurrences of y in the derivation of c− γ exp by z: the only condition required is that y and z are
variables of the same arity. Attention is required if c is of higher arity (γ1)γ2, that is it is obtained,
by using rule 4., from c(x) − γ2 exp and x− γ1 var under the condition that x does not appear in
c, and c indeed contains y. In this case it is necessary to avoid x being z: for this reason a rename
of x in the derivation of c(x)− γ2 exp may be required (allowed by inductive hypothesis).

To obtain the proof of next theorem we need a new definition:

Definition A.3.3 (Arity of a substitution) Let b − β exp, ai − αi exp and xi − αi var, for
i = 1, . . . , n. Then b[a/x] is obtained from b by a substitution of arity (α1) . . . (αn).

Now the main theorem on substitution follows.

130 APPENDIX A. EXPRESSIONS THEORY

Theorem A.3.4 (Closure under substitution) Let b − β exp, ai − αi exp, xi − αi var, for
i = 1, . . . , n. Then b[a/x]− β exp.

Proof. The proof is obtained by double induction: a principal induction on the arity of the
performed substitution and a secondary induction on the depth of the derivation of b. Here we
deal only with the three most interesting cases.

1. Suppose that

• b ≡ y(c1) . . . (ck)− 0 exp, where y − (γ1) . . . (γk) var and cj − γj exp, for j = 1, . . . , k,

• the substitution [a1, . . . , an/x1, . . . , xn] of arity (α1) . . . (αn) is performed on b

• y is xi for some index i

Then cj [a/x] − γj exp by secondary inductive hypothesis and, for any i = 1 . . . n, ai −
(γ1) . . . (γk)0 exp by hypothesis. But ai − (γ1) . . . (γk)0 exp must have been derived from
ai(t1) . . . (tk) − 0 exp, where t1, . . . , tk are distinct variables of arity γ1, . . . , γk which do
not appear in ai. Then ai(t1) . . . (tk)[c[a/x]/t] − 0 exp follows by principal induction. But
ai(t1) . . . (tk)[c[a/x]/t] is ai(c1[a/x]) . . . (ck[a/x]), since t1, . . . , tk do not appear in ai, that is
b[a/x]− 0 exp.

2. Suppose b ≡ d[e1, . . . , ek](c1) . . . (ch)− 0 exp then

• d{v1, . . . , vk}(t1) . . . (th) =def g is an explicit definition where, for any i = 1 . . . k, vi −
ηi var and, for any j = 1 . . . h, tj − γj var and all the variables appearing in g are among
v1, . . . , vk, t1, . . . , th.

• g − 0 exp

• e1 − η1 exp, for i = 1, . . . , k

• cj − γj exp, for j = 1, . . . , h

• g[e, c/v, t]− 0 exp

Now the substitution [a1, . . . , an/x1, . . . , xn] of arity (a1) . . . (an) is performed on b. Then:

• ei[a/x]− ηi exp by secondary inductive hypothesis

• cj [a/x]− γj exp by secondary inductive hypothesis

• g[e, c/v, t][a/x]− 0 exp by secondary inductive hypothesis

But g[e, c/v, t][a/x] is g[e[a/x], c[a/x]/v, t] because of the given hypothesis on the variables
that appear in g. Then we can deduce, by using the same definition,

d[e1[a/x], . . . , ek[a/x]](c1[a/x]) . . . (ch[a/x])− 0 exp

that is b[a/x]− 0 exp.

3. Suppose b is an expression of higher arity (α)β obtained by application of rule 4 from b(y)−
β exp and y−α var that does not appear in b, and the substitution [a1, . . . , an/x1, . . . , xn] of
arity (α1) . . . (αn) is performed on b. Now let z be a variable of arity α, different from each
xi, appearing neither in any ai nor in b. By lemma A.3.2, b(z) − β exp can be obtained by
using a derivation of the same depth than the one of b(y)− β exp; then b(z)[a/x]− β exp by
secondary induction hypothesis on b(z)− β exp but b(z)[a/x] is b[a/x](z) by the choice of z
and hence b[a/x]− (α)β exp by rule 4.

By an analogous proof we obtain the following:

Theorem A.3.5 (Substitution of equal expressions) Let a and b be two expressions of arity
α such that a = b − α; moreover, let xi − αi var and ci = di − αi, for any i = 1, . . . , n. Then
a[c/x] = b[d/x]− α.

Note that this theorem justifies the term “equality” used in definition A.2.3.

A.4. DECIDABILITY OF “TO BE AN EXPRESSION” 131

A.4 Decidability of “to be an expression”

A.4.1 New rules to form expressions

In the system so far developed almost every proof proceeds by induction on the depth of the
derivation of an expression e, that is when the predicate e − ǫ exp has a proof. Let us now turn
our attention to the decidability of this predicate.

The most natural approach to develop an algorithm to solve this problem is “divide-and-
conquer”: to decide on a string ‘a’ first decide on suitable sub-strings of ‘a’. Since sub-string
property does not hold for rules 3. and 4. in definition A.2.2, the correct development of such an
algorithm is not immediate. Point 3 in the remark after definition A.2.2 gives us the right hint:
it is convenient to distinguish between “applications”, that is the case k > 0, and all the other
expressions, namely x, c, d[a1, . . . , an], for k = 0. But, this does not suffice because among the
premises of rule 3. the “instance” of the definiens is clearly and unavoidably a new string. We
can minimize this problem by using a premise which does not depend on the specific instance, as
the theorem on closure under substitution suggests to us. This choice will suggest to relate the
decidability of expressions to the structure of the set of abbreviating definitions. Hence we begin
by showing that the system to form expressions is close under the following rules.

(1∗)
x− (α1) . . . (αn)0 var

x− (α1) . . . (αn)0 exp

(2∗)
c− (α1) . . . (αn)0 const

c− (α1) . . . (αn)0 exp

(3∗)

d{x1, . . . , xn}(y1) . . . (ym) =def e e− 0 exp

xi − αi var yj − βj var ai − αi exp

d[a1, . . . , an]− (β1) . . . (βn)0 exp
n ≥ 0, i = 1 . . . n, m ≥ 0, j = 1 . . .m

(4∗)
b− (α)β exp a− α exp

b(a)− β exp

As regard to rules 1∗ and 2∗ the result is already stated in theorem A.3.1. For rule 3∗ we have
to prove that d[a1, . . . , an]− (β1) . . . (βm) exp under the assumptions that

1. d{x1, . . . , xn}(y1) . . . (ym) =def e, where xi − αi var and yj − βj var, is a definition

2. e− 0 exp

3. ai − αi exp

Let z1, . . . , zm be variables of arities β1, . . . , βm respectively which do not appear in any ai,
for i = 1 . . . n. By theorem A.3.1 we know that zi− βi exp and hence, by theorem A.3.4 on closure
under substitution, e[a, z/x, y]−0 exp. Thus, by rule 3, d[a1, . . . , an](z1) . . . (zm)−0 exp and hence,
by repeated applications of rule 4, d[a1, . . . , an]− (β1) . . . (βm) exp.

For rule 4∗ we have to prove that c1(c2) − β exp if c1 − (α)β exp and c2 − α exp. But c1 has
higher arity and it must have been derived from c1(x)− β exp, where x−α var is a variable which
does not appear in c1. Now, by closure under substitution and the hypothesis on x, we obtain
c1(c2)− β exp.

Our interest in rules 1∗, 2∗, 3∗, 4∗ is in that they suffice to derive any expression. In fact we
can prove the following theorem.

Theorem A.4.1 Let D be a set of abbreviating definitions. Then, if b − β exp then it can be
derived by using only rules 1∗, 2∗, 3∗, 4∗.

Proof. The proof is by induction on the depth of the derivation of b − β exp. The result readily
follows if b is derived by rule 1. or 2.

If rule 3. is the last rule applied we have that

1. b is d[a1, . . . , an](c1) . . . (cm)− 0 exp

132 APPENDIX A. EXPRESSIONS THEORY

2. d{x1, . . . , xn}(y1) . . . (ym) =def e, where xi − αi var, for i = 1 . . . n, and yj − βj var, for
j = 1 . . .m, is a definition

3. e− 0 exp

4. e[a, c/x, y]− 0 exp

5. ai − αi exp for i = 1 . . . n

6. cj − βj exp for j = 1 . . .m

Then, by inductive hypothesis, the following expressions can be derived by using only rules 1∗,
2∗, 3∗, 4∗

1. e− 0 exp

2. ai − αi exp for i = 1 . . . n

3. cj − βj exp for i = 1 . . .m

Then d[a1, . . . , an]− (β1) . . . (bm) exp follows by rule 3∗ and hence b− 0 exp by rule 4∗.
Finally, if rule 4. is the last rule applied then b is an expression with higher arity, that is

β ≡ (β1)β2. Therefore it has to be b(x)− β2 exp with x− β1 var which does not appear in b. Now,
by inductive hypothesis, b(x)−β2 exp can be derived using only rules 1∗, 2∗, 3∗, 4∗ and so the last
rule applied must have been 4∗ and hence it must hold that b − (β1)β2 exp is derived using only
rules 1∗, 2∗, 3∗, 4∗.

A.4.2 A hierarchy of definitions

The main motivation in pointing out the rules presented in the previous section has been that
using only them the decidability of the predicate a− α exp can be readily related to the structure
of the set of abbreviating definitions. For this reason from now on we suppose to use only rules 1∗,
2∗, 3∗, 4∗ to form expressions. Let us begin by giving the definition of the function lev, that is the
level of an expression formed using rules 1∗, 2∗, 3∗, 4∗.

Definition A.4.2 (lev : Exps→ N) The level of the expression e− α exp is inductively defined as
follows:

• if e ≡ x, where x− α var, then lev(e) = 0

• if e ≡ c, where c− α const, then lev(c) = 0

• if e ≡ d[a1, . . . , an] and α ≡ (β1) . . . (βm), where

– d{x1, . . . , xn}(y1) . . . (ym) =def c,

– xi − αi var, for i = 1 . . . n,

– yj − βj var, for j = 1 . . .m,

is an abbreviating definition, and ai − αi exp, for i = 1 . . . n and c− 0 exp then

lev(e) = max(lev(a1), . . . , lev(an), lev(c) + 1)

• if e ≡ b(a)− β exp where

– b− (α)β exp and

– a− α exp

then lev(e) = max(lev(b), lev(a))

A.4. DECIDABILITY OF “TO BE AN EXPRESSION” 133

Now we can associate a level to any expression since we have considered all the forms of
expressions that can be formed by using rules 1∗, 2∗, 3∗, 4∗. Here, we are particularly interested
in those expressions which have the shape of a definiendum, that is d[x1, . . . , xn](y1) . . . (ym). In
this case the above definition yields

lev{d[x1, . . . , xn](y1) . . . (ym)} = lev{c}+ 1

if c is the definiens. Therefore the notion of level induces an analogous notion on the subset D′

of abbreviating definitions that can be used to derive expressions (we will call them the useful
definitions)

levD′(d[x1, . . . , xn](y1) . . . (ym) =def c) = lev(c) + 1

On the other hand a natural way to try to define an ordering on definitions is to think that
a definition must be greater than all the definitions whose skeleton occurs within its definiens.
Of course this will not always provide us with an ordering. In the case in which we obtain a
well-founded order we call the set D of abbreviating definitions well-defined and we can define the
function depth on it:

Definition A.4.3 (Depth : Defs→ N) The depth of a definition is inductively defined as follows

1. depth(d[x1, . . . , xn](y1) . . . (ym) =def c) = 1 if no definition skeleton appears in c

2. depth(d[x1, . . . , xn](y1) . . . (ym) =def c) = i + 1 if i is the maximum depth of the definitions
whose skeleton appears in c

Remarks

• D′, i.e. the subset of useful definitions, is well-defined;

• If d is a useful definition, that is if levD(d) is defined, then levD(d) is equal to depth(d).
Indeed, we can prove by induction on the depth of the derivation of an expression e that
lev(e) is equal to the maximum of the depths of the definitions whose skeleton appears in e;

• If the set D of abbreviating definitions is well-founded and recursively enumerable then there
exists a procedure to build up a chain of sets of expressions, such that each one is obtained
by adding a new useful definition to the previous one and whose union is the set of all the
expressions that can be formed by using D.

The notion of depth can now be extended to strings on an alphabet Σ.

Definition A.4.4 (depth : String(Σ)→ N) Let D be a well-defined set of abbreviating definitions
and ω be a string on an alphabet Σ which comprises all of the symbols so far used, then put

depth(ω) = 0 if no skeleton occurs in ω
depth(ω) = i if i is the maximum among depths of the

definitions whose skeleton appears in ω

A.4.3 The algorithm

The decidability of the predicate expD(e) which states that e is an expression, obtained by using
only definitions in the a well-defined set of abbreviating definitions D, will be based on the following
effective procedure. Let ω be any string on the alphabet Σ.

134 APPENDIX A. EXPRESSIONS THEORY

Algorithm (Decision procedure);

{
input : ω ∈ String(Σ),
output : ω − α exp if ω is an expression of arity α, error otherwise
}
case shape(ω) of
1) a single symbol:

if ω − α var (the symbol is a variable)
then ω − α exp

else if ω − α const (the symbol is a constant)
then ω − α exp

else if ω(y1) . . . (ym) =def c,
where yi − βi var, for i = 1, . . . , n,
and c− 0 exp (the symbol is a parametric name with no parameter)

then ω − (β1) . . . (βm) exp

else error;
2) b(a): (a possible application)

if b− (α)β exp and a− α exp then ω − β exp

else error;
3) d[a1, . . . , an]: (a possible instance of definiendum)

if ai − αi exp for i = 1, . . . , n
and there exists in D the abbreviating definition
d{x1, . . . , xn}(y1) . . . (ym) =def c,

where x1 − αi var for i = 1, . . . , n, yj − βj var for j = 1, . . . , m,
and c− 0 exp

then ω − (β1) . . . (βm) exp

else error;
otherwise error

end;

Let us recall that we assumed that any occurrence of a variable or a constant or a definition
skeleton within a string is distinguishable. This is clearly a necessary condition to develop any
decision procedure.

The above algorithm decides whether a string ω is an expression or not, that is, we can prove
the following theorem.

Theorem A.4.5 (Decidability of a− α exp) Let D be a well-defined set of abbreviating defini-
tions. Then, given any string ω ∈ String(Σ), the predicate ω − α exp is decidable.

Proof. The proof is based on the previous algorithm and consists in showing its total correctness,
that is it always terminates and answers ω − α exp with the correct arity α if ω is an expression,
error otherwise. The proof is obtained by principal induction on the depth of ω and subordinate
induction on the length of ω.

• Basis (principal induction): depth(ω) = 0

1. length(w) = 1. (Basis subordinate induction) ω consists on a single symbol which cannot
be a parametric name, thus three possibilities can arise

– ω is a variable x;

– ω is a primitive constant c;

– ω is neither a variable nor a primitive constant.

In any case the algorithm terminates correctly.

2. length(w) = k + 1 (Induction step on subordinate induction) If ω is b(a) then the algo-
rithm is recursively applied to both b and a and, by subordinate induction hypothesis,
it answers correctly. Clearly we have ω− β exp if and only if b− (α)β exp and a−α exp

for some arity α. If the shape of ω is not b(a) then error is the correct answer.

A.5. ABSTRACTION AND NORMAL FORM 135

• Inductive step principal induction: depth(w) = j + 1

1. length(w) = 1 (Basis subordinate induction)

The only positive possibility is that ω is a parametric name d. Then ω−(β1) . . . (βm) exp,
for m ≥ 0 if and only if ω(y1) . . . (ym) =def c, where yi − βi var for i = 1, . . . , m, and
c− 0 exp. Since depth(c) ≤ j the algorithm correctly terminates. Otherwise error is the
correct answer.

2. length(w) = k + 1 (Induction step subordinate induction)

There are only three possibilities:

– ω is b(a). Since the inductive hypothesis holds both for b and a the case is analogous
to the above step (2).

– ω is d[a1, . . . , an]. In this case

ω − (β1) . . . (βm) exp

for some m ≥ 0 if and only if
ai − αi exp

for i = 1 . . . n and
d{x1, . . . , xn}(y1) . . . (ym) =def c

where xi−αi var for i = 1, . . . , n and yh−βh var for h = 1, . . . , m, is an abbreviating
definition in D and c− 0 exp.
Now, depth(c) ≤ j, depth(ai) ≤ j + 1 and length(ai) < k + 1 for all i = 1, . . . , n.
Then the recursive calls on c and ai, by inductive hypothesis, must terminate in a
correct way and hence the answer will be correct

– the shape of ω is neither b(a) nor d[a1, . . . , an] and therefore error is the correct
answer.

A.5 Abstraction and normal form

It is easy to convince ourselves that by using the rules of definition A.2.2, in order to obtain non
saturated expressions we can either start from variables or constants of higher arity or use some
abbreviating definition. In standard lambda-calculus, non saturated expressions are built up by
λ-abstraction. We can show how a suitable set of abbreviating definitions can play the role of
λ-abstraction. To this aim we will introduce all the abbreviating definitions represented by the
following abbreviating definition schema:

Definition A.5.1 (Abstraction schema)

((x) cx)(x)(y1) . . . (ym) =def c(y1) . . . (ym)

where c stands for any expression of arity (β1) . . . (βm) such that no variable, except x, occurs in
c more than once, x is a new symbol (not a variable!) used to recall the variable x (we will call x
the ghost of x) and cx is the string obtained from c by substituting each occurrence of x by x and
each occurrence of a variable w by [w].

Any instance of this schema, obtained by choosing a variable x of arity α, an expression c
of arity (β1) . . . (βm) such that no variable, except x, occurs in c more than once and the two
by two distinct variables y1, . . . , ym, for m ≥ 0 of arities β1, . . . , βm which do not appear in
c, turns out to be a definition. The parametric name is ((x) cx), the name-parameters are all
the variables appearing in the expression c except x, which will be called the abstracted variable.
In fact, condition 1. on abbreviating definitions is satisfied because of the choice of y1, . . . , ym,
the fact that all the variables occurring in c occur also in cx, except x that appears explicitly in
the definiendum and the requirements on the occurrences of the variables in c. The validity of
condition 2. follows from the fact that the function {}x is injective on the set of the expressions,
i.e., whenever c and e are expressions, if cx and ex are equal strings then also c and e are equal

136 APPENDIX A. EXPRESSIONS THEORY

strings. Concerning condition 3., let us note that the skeleton of an abstraction always starts
with “((y)” and ends with “)”, hence to find out the first outermost occurrence of an abstraction
skeleton within a string we can use the following procedure. Scan the string until “((y)” is found
for some y. It is the beginning of a possible skeleton. From now on continue the scanning and
count both the number of non completed abstractions (i.e. “((x)” for some x met but the matching
“)” not yet met) and the number of pending open square brackets. When these two quantities
become equal skip the subsequent sub-string till the next matching closed square bracket. The
skipped sub-string is not part of the abstraction skeleton but it is one of the possible parameters.
The skeleton ends when the “)” matching with “((y)” is found.

Example:
Let ((y)((x)f(x)([y]))([+([x])(y)])) be the string to be tested, then

((y) ((x) f(x) ([y])) ([+ ([x]) (y)]))

| | | | |

ast=1 ast=2 ast=2 ast=2 ast=2

#[=0 #[=0 #[=1 #[=1 #[=2

and hence the skeleton is ((y)((x)f(x)([y]))([+([])(y)]))

Let us give you another example of an instance of the abstraction schema.

Example:
Let x− 0 var, y − 0 var, +− (0)(0)0 const, then the expression +(x)(y)− 0 can be formed and

hence

1. ((x) + (x)([y]))(x) =def +(x)(y)

is an instance of the abstraction schemata. The parametric name is

((x) + (x)([y]))

and y is the only name parameter. This definition can be used to derive by rule 3

2. ((x) + (x)([a(x)])) − 0 exp

provided a(x)− 0 exp.

Note that in (2) we can single out the sub-string a(x), i.e. the parameter, and that the variable
x which occurs in the expression a(x) occurs also in the expression ((x) + (x)([a(x)])).

It is easy to see that the main difference between our approach and the one of typed lambda-
calculus, about the way to treat abstraction, is in that there one keeps track of the abstracted
variables while here one keeps track of the variables that remain (free) inside an expression: in
this way we have no need to introduce the notion of free and bound variables and to operate any
α-conversion when abstracting or substituting.

Note that the requirement on the occurrences of variables inside the expression c is not severe
since, at the expression’s level, we loose nothing. In fact, suppose c is any expression, y a variable
and x1, . . . , xn is the list of (possibly) non-distinct variables formed by taking all the variables
occurring in c, except y, in the left-to-right order (possibly) with multi-occurrences. It easy to
convince ourselves that there always exists another expression c′, where no variable, except y,
occurs more than once, such that c′[x1, . . . , xn/w1, . . . , wn] is c if w1, . . . , wn is the ordered list
of variables occurring in c′. Then even if in c some variable occurs more than once (so that
the definition ((y) cy)(y)(z1) . . . (zk) =def c(z1) . . . (zk) is not allowed) there is always another
expression c′ such that

((y) c′y)(y)(z1) . . . (zk) =def c′(z1) . . . (zk)

is allowed. Then the expression ((y) cy), which is ((y) c′y)[x1, . . . , xn], can be formed.

Example:

((x) x([y])([y]))

A.5. ABSTRACTION AND NORMAL FORM 137

is an expression obtained by using the definition

((x) x([y1])([y2]))(x) =def x(y1)(y2)

by substituting the name parameters y1, y2 with the arguments y and y.

Moreover we can prove that, supposing c− (γ1) . . . (γk) exp,

((y)cy)(y) = c− (γ1) . . . (γk)

holds. In fact, let zj − γj var, for j = 1 . . . k, be new variables; then, since the expression
c′(z1) . . . (zk)[x1, . . . , xn/w1, . . . , wn] is c(z1) . . . (zk), by applying rule 3= and theorem A.3.5 on
substitution of equal expressions, we obtain

((y) c′y)(y)(z1) . . . (zk)[x1, . . . , xn/w1, . . . , wn] = c(z1) . . . (zk)− 0

but the left side member of this equality is exactly

((y)cy)(y)(z1) . . . (zk)

Hence, by iterated applications of rule 4=, we obtain

((y) cy)(y) = c− (γ1) . . . (γk)

Summarizing, we have the following:

Lemma A.5.2 Let c− (γ1) . . . (γk) exp and y − α var, then

1. ((y) cy)− (α)(γ1) . . . (γk) exp in which y does not appear

2. ((y) cy)(y) = c− (γ1) . . . (gk)

Another consequence of the above consideration is that, if

((y) cy)[a1, . . . , an]− (β1) . . . (βk)

is an expression which is an instance of an abstraction definition, then

((y) c[a1[t/y], . . . , an[t/y]/w1, . . . , wn]y)− (β1) . . . (βk)

where t is a new variable and w1, . . . , wn are all the variables occurring in c, except y, is an
expression. Moreover, since an instance of a definition is always definitionally equal to its definiens
correctly substituted we have also that

((y) cy)[a1, .., an] = ((y) c[a1[t/y], .., an[t/y]/w1, .., wn]y)[y/t]− (β1)..(βk)

Example:
((x) x([x(z)])) − (α)0 exp

is an expression obtained by means of the definition

((x) x([y]))(x) =def x(y)

Hence
((x) x(y)[x(z)[t/x]/y]x)− (α)0,

which coincides with
((x) x([t]([z]))) − (α)0,

is an expression, that can be formed by means of the definition

((x) x([w1]([w2])))(x) =def x(w1(w2))

138 APPENDIX A. EXPRESSIONS THEORY

Then

((x) x([t(z)])) = ((x) x([t]([z])))− (α)0

since

x(y)[x(z), s/y, x] ≡ x(w1(w2))[x, z, s/w1, w2, x]

where s− (α)0 var is a new variable.

From now on, we assume to derive expressions within a system on a set D of definitions which
comprises all of the instances of the abstraction schema, unless otherwise stated.

Remark
The use of the above schema of abbreviating definition does not affect the decidability of the

predicate a − α exp. In fact, the only problem can derive from the fact that at point 3 of the
decision algorithm we require the ability to recognize an instance of a definiendum. So, let us
suppose that ((x) b) is the string which must be analyzed. We already showed how to single out
the definition skeleton. The possible parameter a1, . . . , an are just the sub-strings skipped in that
process. They must be first substituted inside the skeleton by new variables x1, . . . , xn whose
arity is determined by the arity of the expressions a1, . . . , an. Then, to single out the definition
(indeed we will find out one definition among a set of duplicate definitions) we have first to invert
the function {}x. This can be done by cutting off the square brackets immediately around the new
variables and by substituting x, that is the ghost of x, by x unless it occurs within the skeleton
of an inner abstraction with the same ghost. Secondly we have to decide on the resulting string
which is “simpler” than the initial one. If it is an expression a of arity (β1) . . . (βm) the definition
we were looking for is ((x) b)(x)(y1) . . . (ym) =def a(y1) . . . (ym).

Example:
Suppose that x − 0 var, f − (0)((0)) const, + − (0)(0) const and that we want to analyze the

string

((x) ((x) f(x)([((x) + (x)([x]))]))).

First we look for the skeleton of the outermost abstraction “((x) . . .)”: it is the entire string

((x) ((x) f(x)([((x) + (x)([x]))])))

Now, we must invert the function { }x on

((x) f(x)([((x) + (x)([x]))]))

and we obtain the string
((x) f(x)([((x) + (x)([x]))]))

Then we recursively continue by analyzing this resulting string and finally we obtain

((x) f(x)([((x) + (x)([x]))])) − (0) exp

Therefore the definition we are looking for is

((x) ((x) f(x)([((x) + (x)([x]))])))(x)(s) =def ((x) f(x)([((x) + (x)([x]))]))(s)

A.5.1 α, β, η and ξ conversion

When all the instances of the abstraction schema had been introduced, we can prove the validity
of equality analogous to those introduced by α, β, η, ξ reductions of lambda-calculus. In fact,
after lemma A.5.2, we know that, for any expression c of arity γ and any variable x of arity α,
((x) cx)(x) = c− γ. Hence

Theorem A.5.3 (α-equality) Suppose c−γ exp and y−α var is a variable which does not appear
in c. Then

(α-equality) ((x) cx) = ((y) c[y/x]y)− (α)γ

A.5. ABSTRACTION AND NORMAL FORM 139

Proof. By lemma A.5.2

((y) c[y/x]y)(y) = c[y/x]− γ

Then by the theorem on substitution of equal expressions

((y) c[y/x]y)(y)[x/y] = c[y/x][x/y]− γ

which yields

((y) c[y/x]y)(x) = c− γ

since y appears neither in ((y) c[y/x]y) nor in c.

But c = ((x) cx)(x)− γ and hence ((y) c[y/x]y)(x) = ((x) cx)(x)− γ by transitivity. Thus we
finally obtain

((y) c[y/x]y) = ((x) cx)− (α)γ

by rule 4=, since x appears neither in ((x) cx) nor in ((y) c[y/x]y).

Theorem A.5.4 (β-equality) Suppose c− γ exp and a− α exp. Then

(β-equality) ((x) cx)(a) = c[a/x]− γ

Proof. The result follows directly from lemma A.5.2 and theorem A.3.5.

Theorem A.5.5 (η-equality) Let c− (α)γ exp and x− α var which does not appear in c. Then

(η-equality) ((x) c(x)x) = c− (α)γ

Proof. By lemma A.5.2 we obtain that

((x) c(x)x)(x) = c(x) − γ

Hence by rule 4=

((x) c(x)x) = c− (α)γ

since x appears neither in c nor in ((x) c(x)x).

Theorem A.5.6 (ξ-equality) Suppose that b − γ exp, d − γ exp, x − α var and that b = d − γ.
Then

(ξ-equality) ((x) bx) = ((x) dx)− (α)γ

Proof. By lemma A.5.2

((x) bx)(x) = b − γ

and

((x) dx)(x) = d− γ

Thus, by transitivity,

((x) bx)(x) = ((x) dx)(x) − γ

and finally

((x) bx) = ((x) dx)− (α)γ

by rule 4= since x appears neither in ((x) bx) nor in ((x) dx).

140 APPENDIX A. EXPRESSIONS THEORY

A.5.2 Normal form

Let us introduce the concept of normal form for an expression. The definition will be given by
induction on the construction of the expression.

Definition A.5.7 (Normal form) Let a be an expression. Then

1. If a has arity 0 then it is in normal form if its shape is

f(b1) . . . (bm)

where f is a variable or a primitive constant of arity (β1) . . . (βm)0 and, for any j = 1 . . .m,
bj is an expression in normal form of arity βj.

2. If a has arity (α)β then it is in normal form if its shape is

((x) cx)

where x− α var and c is an expression of arity β in normal form.

Note that, given any expression e, there always exists at least an expression nf(e) in normal
form which is definitional equivalent to e. The following algorithm can be used to find it out.

Algorithm (Normalization algorithm)

1. Suppose that the arity of e is (α)β. Then it has been obtained by an application of rule 4.
Now, let x be a variable of arity α which does not appear in e. Then

nf(e) ≡ ((x) nf(e(x))x)

2. Suppose that the arity of e is 0 and that it has been obtained by using rule 3, that is

e ≡ d[a1, . . . , an](b1) . . . (bm)

for some abbreviating definition d{x1, . . . , xn}(y1) . . . (ym) =def c. Then

nf(e) ≡ nf(c[a, b/x, y])

3. Suppose that the arity of e is 0 and that it has been obtained by using the rule 1 or 2, that
is, e ≡ f(b1) . . . (bm), where f is a variable or a primitive constant of arity (β1) . . . (βm) and
bj − βj exp, for j = 1 . . .m. Then

nf(e) ≡ f(nf(b1)) . . . (nf(bm))

The proof that this algorithm preserves definitional equality is obtained by induction on the
depth of the derivation of the expression e. A sketch of the proof is the following:

Case 1. By theorem A.5.2
((x) nf(e(x))x)(x) = nf(e(x)) − β

But, by inductive hypothesis, nf(e(x)) = e(x)− β and so, by transitivity and rule 4,

((x) nf(e(x))x) = e− (α)β

Case 2. By inductive hypothesis
nf(c[a, b/x, y]) = c[a, b/x, y]− 0

but, by rule 3=
i ,

c[a, b/x, y] = d[a1, . . . , an](b1) . . . (bm)− 0

Case 3. Immediate by inductive hypothesis.

A.6. RELATION WITH TYPED λ-CALCULUS 141

Moreover the algorithm always terminates because at each step a ‘simpler’ (with respect to
derivation) expression is considered. Finally it is straightforward to check that the final shape is
the required one.

It is easy to see that an expression in normal form contain no definition, a part abstraction,
hence we can state the following theorem about definition elimination.

Theorem A.5.8 (Definition elimination) Let a be any expression. Then, there exists an ex-
pression nf(a), equivalent to a, in which no definition appears, except abstraction.

We can also prove that the normal form is a good representative for the class of definitional
equivalent expressions. Let us first prove the following lemma.

Lemma A.5.9 If Π is the proof of ((x) cx) = ((y) ey) − (α)β then there is a proof Π∗ of
c[t/x] = e[t/y]− β, whose depth is less that the depth of Π.

The proof consist just in constructing Π∗, by analyzing the proof Π.

Theorem A.5.10 (Unicity of normal form) Let a and b be two expressions in normal form.
Then a = b − α implies that a and b have the same pattern, that is, they differ only for the name
of the abstracted variables.

Proof. The proof proceeds by induction on the depth of the derivation of a = b − α, using the
previous lemma in the case two abstractions are considered. Now the following corollary easily
follows.

Corollary A.5.11 Two expressions are definitionally equivalent if and only if they have the same
normal form (except for the name of abstracted variables).

A.6 Relation with typed λ-calculus

In this section we examine the relationship between our expressions and standard typed lambda-
calculus. We will consider expressions on a set of abbreviating definitions which comprise only all
the instances of the abstraction schema. We will not give complete proofs of the stated theorems
since they are standard or can easily be reconstructed.

Since a lot of slightly different formulations of typed lambda-calculus can be found in the
literature, here we expose the one that we will use and some of its properties we are interested in.

Definition A.6.1 (Systemλ) We will call Systemλ the set of strings which we obtain by the fol-
lowing inductive definition:

1λ

x− (α1) . . . (αn) var

x− (α1) . . . (αn) expλ
FV(x) = {x}

2λ

c− (α1) . . . (αn) const

c− (α1) . . . (αn) expλ
FV(c) = ∅

3λ

b− (α)β expλ a− α expλ

b(a)− α expλ
FV(b(a)) = FV(b) ∪ FV(a)

4λ

b− β expλ x− α var

((x) b)− (α)β expλ
FV(((x)b)) = FV(b)− {x}

We will use the convention to use different names for different variables: by this convention we
will avoid to say “let x− α var and y − α var and x 6= y . . .”.

The substitution of a variable with a λ-expression within a λ-expression is defined in the usual
way.

142 APPENDIX A. EXPRESSIONS THEORY

Definition A.6.2 (Substitution :=) Let x− α var and e− α expλ. Then

x[x := e] ≡ e

y[x := e] ≡ y,where y − β var

c[x := e] ≡ c,where c− β const

b(a)[x := e] ≡ b[x := e](a[x := e])

((x) b)[x := e] ≡ ((x) b)

((y) b)[x := e] ≡ ((t) b[y := t][x := e]),
where t is a new variable of the same arity of y

Remarks

• Let Π be the derivation of b− β expλ. Then the proof Σ of b[x := t]− β expλ, where x and t
are two variables of the same arity, has the same complexity than Π. Note that this remark
justify the above definition A.6.2.

• Let Π be the derivation of ((x) b)−(α)β expλ. Then the proof Σ of ((t) b[x := t])−(α)β expλ,
where x and t are two variables of the same arity, has the same complexity than Π.

We recall the predicate of equality between two lambda-expressions induced by βη-conversion.

Definition A.6.3 (λ-equality) The equality between two λ-expressions is the minimal relation
between two λ-expressions which satisfies the following conditions:

1=
λ

x− (α1) . . . (αn) var

x =λ x− (α1) . . . (αn)

2=
λ

c− (α1) . . . (αn) const

c =λ c− (α1) . . . (αn)

3=
λ

b1 =λ b2 − (α)β a1 =λ a2 − α

b1(a1) =λ b2(a2)− α

α=
λ

b− β expλ x− α var y − α var

((x)b) =λ ((y)b[x := y])− (α)β
provided y does not appear in b

β=
λ

b− β expλ x− α var a− α expλ

((x)b)(a) =λ b[x := a]− β

ξ=
λ

b =λ d− β expλ x− α var

((x)b) =λ ((x)d) − (α)β

η=
λ

b− (α)β expλ x− α var

((x)b(x)) =λ b− (α)β
provided x does not appear in b

(refλ)
b− β expλ

b =λ b− β

(simmλ)
a =λ b− β

b =λ a− β

(transλ)
a =λ b− β b =λ c− β

a =λ c− β

Some well-known properties of the substitution := are the following.

Lemma A.6.4 The following properties hold

A.6. RELATION WITH TYPED λ-CALCULUS 143

1. If b − β expλ, x− α var,
then b[x := x] =λ b− β;

2. If a =λ b− β expλ, x− α var and c− α expλ,
then a[x := c] =λ b[x := c]− β;

3. If x− α var does not appear in b − β expλ and c− α expλ,
then b[x := c] =λ b− β;

4. (Substitution lemma) If y − γ var does not appear in a− α expλ and b − β expλ, c− γ expλ

and x− α var,
then b[y := c][x := a] =λ b[x := a][y := c[x := a]]− β;

5. If y − β var does not appear in a− α expλ and x− α var,
then ((y) d)[x := a] ≡ ((y) d[x := a])
(remember the convention on the variable names!);

6. If, for any i = 1 . . . n, wi− γi var does not appear in a−α expλ, b− β expλ, ci− γi expλ, for
any i = 1 . . . n, and x− α var

then
b[w1 := c1] . . . [wn := cn][x := a] =λ

b[x := a][w1 := c1[x := a]] . . . [wn := cn[x := a]]− β

Our aim is now to map every expression into a λ-expression and vice-verse by using maps that
preserve equality. Let us begin with the following definition.

Definition A.6.5 (F : Systemλ → Exp) The map F between Systemλ and Exp is inductively defined
as follows:

F(x) ≡ x,where x− α var

F(c) ≡ c,where c− α const

F(b(a)) ≡ F(b)(F(a))

F(((x) b)) ≡ ((x) F(b)x)

Theorem A.6.6 If b− β expλ then F(b)− β exp.

Proof. The proof is by induction on the construction of b in the Systemλ.

Moreover, it is easy to see that supposing b− β expλ, FV(b) = V(F(b)) can be proved.

The next theorem states the fundamental result that the map F respects equality. Its proof
needs, beside the result on α, β, η and ξ equalities that we showed in the previous section, also
the following lemma.

Lemma A.6.7 If a−β expλ, x−α var and c−α expλ then the map F preserves substitution, that
is, F(a[x := c]) = F(a)[F(c)/x] − β.

Proof. The proof is by induction on the derivation of a− β expλ.

Theorem A.6.8 If a =λ b− β then F(a) = F(b)− β

Proof. The proof is by induction on the derivation of a =λ b − β.

The map in the opposite direction, that is from Exp into Systemλ, is defined on expressions
constructed by the rules 1∗, 2∗, 3∗ and 4∗ the we introduced in section A.3.

144 APPENDIX A. EXPRESSIONS THEORY

Definition A.6.9 (G : Exp→ Systemλ) The map G between Exp and Systemλ is inductively de-
fined as follows:

G(x) ≡ x,where x− α var

G(c) ≡ c,where c− α const

G(b(a)) ≡ G(b)(G(a))

G(((x) bx)[a1, . . . , an]) ≡ ((x) G(b))[w1 := G(a1)] . . . [wn := G(an)]

where a1, . . . , an are the actual parameters which substitute the name parameters w1, . . . , wn.

Theorem A.6.10 If b− β exp then G(b)− β expλ

Proof. The proof is by induction on the construction of the expression b by using rules 1∗, 2∗, 3∗

and 4∗.

The next lemma is analogous to the previous lemma A.6.7.

Lemma A.6.11 Let e−β exp, x1−αi var and ai−αi exp, for i = 1 . . . n, such that no xi appears
in any aj. Then

G(e[a/x]) =λ G(e)[x1 := G(a1)] . . . [xn := G(an)]− β

Proof. The proof is by induction on the construction of the expression e by using 1∗, 2∗, 3∗ and
4∗.

It is now possible to prove that the map G preserves equality.

Theorem A.6.12 If a = b− β then G(a) =λ G(b)− β

Proof. The proof is by induction on the derivation of a = b− β.

The next theorems will prove that expressions and typed lambda-calculus are indeed very
similar. Let us begin with

Theorem A.6.13 Let a− α expλ and c− γ exp. Then a =λ G(F(a)) − α and c = F(G(c)) − γ.

Proof. In both cases the proof is by induction on the construction of the considered expression.

We can now conclude

Corollary A.6.14 The Systemλ and Exp are isomorphic, that is

1. a =λ b− α if and only if F(a) = F(b)− α

2. a = b− α if and only if G(a) =λ G(b)− α

Proof. To prove point (1), one direction is just theorem A.6.8. The other one is an immediate
consequence of the previous theorems. In fact, from

F(a) = F(b)− α

it follows
a =λ G(F(a))

=λ G(F(b))
=λ b

The proof of point (2) is completely analogous.

It easy to extend the above results to the case of a typed Systemλ where also abbreviating
definition, in the style of our expression theory, are introduced. In this case we can eliminate these
definitions just by translating the λ-term that contains them into an expression. Then we can
normalize the expression so obtained and hence obtain again a λ-term, equivalent to the starting
one, without definitions.

Appendix B

The complete rule system

B.1 The forms of judgements

A type [Γ]

A = C [Γ]

a ∈ A [Γ]

a = c ∈ A [Γ]

B.2 The structural rules

B.2.1 Weakening

Let Γ′ be a context extending Γ. Then the following rule is valid

F [Γ]

F [Γ′]

145

146 APPENDIX B. THE COMPLETE RULE SYSTEM

B.2.2 Assumptions rules

Let a1 : A1, . . . , an : An fit with w1 : A1, . . . , wn : An and a1 = c1 : A1 . . . an = cn : An fit with
w1 : A1, . . . , wn : An. Then

a1 : A1 . . . an : An

[w1 : A1, . . . , wn : An]
...

B(w1, . . . , wn) type

x(a1, .., an) ∈ B(a1, .., an) [x : (w1 : A1, .., wn : An)B(w1, .., wn)]

a1 = c1 : A1 . . . an = cn : An

[w1 : A1, . . . , wn : An]
...

B(w1, . . . , wn) type

x(a1, .., an) = x(c1, .., cn) ∈ B(a1, .., an)[x : (w1 : A1, .., wn : An)B(w1, .., wn)]

B.2.3 Equality rules

(Reflexivity)
a ∈ A

a = a ∈ A

A type

A = A

(Simmetry)
a = c ∈ A

c = a ∈ A

A = C

C = A

(Transitivity)
a = e ∈ A e = c ∈ A

a = c ∈ A

A = E E = C

A = C

B.2.4 Equal types rules

a ∈ A A = C

a ∈ C

a = c ∈ A A = C

a = c ∈ C

B.2. THE STRUCTURAL RULES 147

B.2.5 Substitution rules

Let e1 : E1, . . . , en : En and e1 = f1 : E1, . . . , en = fn : En fit with y1 : E1, . . . , yn : En. Then

e1 : E1 . . . en : En

[y1 : E1, . . . , yn : En]
...

A(y1, . . . , yn) type

A(e1, . . . , en) type

e1 = f1 : E1 . . . en = fn : En

[y1 : E1, . . . , yn : En]
...

A(y1, . . . , yn) type

A(e1, . . . , en) = A(f1, . . . , fn)

e1 : E1 . . . en : En

[y1 : E1, . . . , yn : En]
...

A(y1, . . . , yn) = C(y1, . . . , yn)

A(e1, . . . , en) = C(e1, . . . , en)

e1 : E1 . . . en : En

[y1 : E1, . . . , yn : En]
...

a(y1, . . . , yn) ∈ A(y1, . . . , yn)

a(e1, . . . , en) ∈ A(e1, . . . , en)

e1 = f1 : E1 . . . en = fn : En

[y1 : E1, .., yn : En]
...

a(y1, .., yn) ∈ A(y1, .., yn)

a(e1, . . . , en) = a(f1, . . . , fn) ∈ A(e1, . . . , en)

e1 : E1 . . . en : En

[y1 : E1, .., yn : En]
...

a(y1, .., yn) = c(y1, .., yn) ∈ A(y1, .., yn)

a(e1, . . . , en) = c(e1, . . . , en) ∈ A(e1, . . . , en)

148 APPENDIX B. THE COMPLETE RULE SYSTEM

B.3 The logical rules

B.3.1 Π-rules

In the following rules we suppose that x− 0 var, y − (0)0 var and t− 0 var.

Formation

A type

[x : A]
...

B(x) type

Π(A, B) type

A = C

[x : A]
...

B(x) = D(x)

Π(A, B) = Π(C, D)

Introduction
[x : A]

...
b(x) ∈ B(x) A type

[x : A]
...

B(x) type

λ(b) ∈ Π(A, B)

[x : A]
...

b(x) = d(x) ∈ B(x) A type

[x : A]
...

B(x) type

λ(b) = λ(d) ∈ Π(A, B)

Elimination

c ∈ Π(A, B)

[y : (x : A) B(x)]
...

d(y) ∈ C(λ(y))

[t : Π(A, B)]
...

C(t) type

F(c, d) ∈ C(c)

c = c′ ∈ Π(A, B)

[y : (x : A) B(x)]
...

d(y) = d′(y) ∈ C(λ(y))

[t : Π(A, B)]
...

C(t) type

F(c, d) = F(c′, d′) ∈ C(c)

Equality
[x : A]

...
b(x) ∈ B(x) Π(A, B) type

[y : (x : A) B(x)]
...

d(y) ∈ C(λ(y))

[t : Π(A, B)]
...

C(t) type

F(λ(b), d) = d(b) ∈ C(λ(b))

Computation
Π(A, B) ⇛ Π(A, B)

λ(b)⇒ λ(b)
c⇒ λ(b) d(b)⇒ g

F(c, d)⇒ g

B.3. THE LOGICAL RULES 149

B.3.2 Σ-rules

In the following rules x− 0 var, y − 0 var, t− 0 var.

Formation

A type

[x : A]
...

B(x) type

Σ(A, B) type

A = C

[x : A]
...

B(x) = D(x)

Σ(A, B) = Σ(C, D)

Introduction

a ∈ A b ∈ B(a) A type

[x : A]
...

B(x) type

〈a, b〉 ∈ Σ(A, B)

a = c ∈ A b = d ∈ B(a) A type

[x : A]
...

B(x) type

〈a, b〉 = 〈c, d〉 ∈ Σ(A, B)

Elimination

c ∈ Σ(A, B)

[x : A, y : B(x)]
...

d(x, y) ∈ C(〈x, y〉)

[t : Σ(A, B)]
...

C(t) type

E(c, d) ∈ C(c)

c = c′ ∈ Σ(A, B)

[x : A, y : B(x)]
...

d(x, y) = d′(x, y) ∈ C(〈x, y〉)

[t : Σ(A, B)]
...

C(t) type

E(c, d) = E(c′, d′) ∈ C(c)

Equality

a ∈ A b ∈ B(a) Σ(A, B)type

[x : A, y : B(x)]
...

d(x, y) ∈ C(〈x, y〉)

[t : S(A, B)]
...

C(t) type

E(〈a, b〉, d) = d(a, b) ∈ C(〈a, b〉)

Computation
Σ(A, B) ⇛ Σ(A, B)

〈a, b〉 ⇒ 〈a, b〉
c⇒ 〈a, b〉 d(a, b)⇒ g

E(c, d)⇒ g

150 APPENDIX B. THE COMPLETE RULE SYSTEM

B.3.3 +-rules

In the following rules x− 0 var, y − 0 var, t− 0 var.

Formation
A type B type

+(A, B) type

A = C B = D
+(A, B) = +(C, D)

Introduction

a ∈ A A type B type

inl(a) ∈ +(A, B)

b ∈ B A type B type

inr(b) ∈ +(A, B)

a = c ∈ A A type B type

inl(a) = inl(c) ∈ +(A, B)

b = d ∈ B A type B type

inr(b) = inr(d) ∈ +(A, B)

Elimination

c ∈ +(A, B)

[x : A]
...

d(x) ∈ C(inl(x))

[y : B]
...

e(y) ∈ C(inr(y))

[t : +(A, B)]
...

C(t) type

D(c, d, e) ∈ C(c)

c = c′ ∈ +(A, B)

[x : A]
...

d(x) = d′(x) ∈ C(inl(x))

[y : B]
...

e(y) = e′(y) ∈ C(inr(y))

[t : +(A, B)]
...

C(t) type

D(c, d, e) = D(c′, d′, e′) ∈ C(c)

Equality

a ∈ A +(A, B) type

[x : A]
...

d(x) ∈ C(inl(x))

[y : B]
...

e(y) ∈ C(inr(y))

[t : +(A, B)]
...

C(t) type

D(inl(a), d, e) = d(a) ∈ C(inl(a))

b ∈ B +(A, B) type

[x : A]
...

d(x) ∈ C(inl(x))

[y : B]
...

e(y) ∈ C(inr(y))

[t : +(A, B)]
...

C(t) type

D(inr(b), d, e) = e(b) ∈ C(inr(b))

Computation
+(A, B) ⇛ +(A, B)

inl(a)⇒ inl(a)
c⇒ inl(a) d(a)⇒ g

D(c, d, e)⇒ g

inr(b)⇒ inr(b)
c⇒ inr(b) e(b)⇒ g

D(c, d, e)⇒ g

B.3. THE LOGICAL RULES 151

B.3.4 Eq-rules

Formation
A type a ∈ A b ∈ A

Eq(A, a, b) type

A = C a = c ∈ A b = d ∈ A
Eq(A, a, b) = Eq(C, c, d)

Introduction
a = b ∈ A

e ∈ Eq(A, a, b)
a = b ∈ A

e = e ∈ Eq(A, a, b)

Elimination
c ∈ Eq(A, a, b) A type a ∈ A b ∈ A

a = b ∈ A

Equality
a = b ∈ A c ∈ Eq(A, a, b)

c = e ∈ Eq(A, a, b)

Computation
Eq(A, a, b) ⇛ Eq(A, a, b)

e⇒ e

152 APPENDIX B. THE COMPLETE RULE SYSTEM

B.3.5 Id-rules

In the following rules x− 0 var, y − 0 var and z − 0 var.

Formation
A type a ∈ A b ∈ A

Id(A, a, b) type

A = C a = c ∈ A b = d ∈ A
Id(A, a, b) = Id(C, c, d)

Introduction
a ∈ A

r(a) ∈ Id(A, a, a)
a = c ∈ A

r(a) = r(c) ∈ Id(A, a, a)

Elimination

c ∈ Id(A, a, b)

[x : A]
...

d(x) ∈ C(x, x, r(x))

[x : A, y : A, z : Id(A, x, y)]
...

C(x, y, z) type

K(c, d) ∈ C(a, b, c)

c = c′ ∈ Id(A, a, b)

[x : A]
...

d(x) = d′(x) ∈ C(x, x, r(x))

[x : A, y : A, z : Id(A, x, y)]
...

C(x, y, z) type

K(c, d) = K(c′, d′) ∈ C(a, b, c)

Equality

a ∈ A

[x : A]
...

d(x) ∈ C(x, x, r(x))

[x : A, y : A, z : Id(A, x, y)]
...

C(x, y, z) type

K(r(a), d) = d(a) ∈ C(a, a, r(a))

Computation
Id(A, a, b) ⇛ Id(A, a, b)

r(a)⇒ r(a)
c⇒ r(a) d(a)⇒ g

K(c, d)⇒ g

B.3. THE LOGICAL RULES 153

B.3.6 S(A)-rules

In the following rules x− 0 var and t− 0 var.

Formation
Atype

S(A) type

A = B
S(A) = S(B)

Introduction

0S(A) ∈ S(A)
a ∈ A

sS(A)(a) ∈ S(A)

0S(A) = 0S(A) ∈ S(A)
a = b ∈ A

sS(A)(a) = sS(A)(b) ∈ S(A)

Elimination

c ∈ S(A) d ∈ C(0S(A))

[x : A]
...

e(x) ∈ C(sS(A)(x))

[t : S(A)]
...

C(t) type

Srec(c, d, e) ∈ C(c)

c = c′ ∈ S(A) d = d′ ∈ C(0S(A))

[x : A]
...

e(x) = e′(x) ∈ C(sS(A)(x))

[t : S(A)]
...

C(t) type

Srec(c, d, e) = Srec(c
′, d′, e′) ∈ C(c)

Equality

d ∈ C(0S(A))

[x : A]
...

e(x) ∈ C(sS(A)(x))

[t : S(A)]
...

C(t) type

Srec(0S(A), d, e) = d ∈ C(0S(A))

a ∈ A d ∈ C(0S(A))

[x : A]
...

e(x) ∈ C(sS(A)(x))

[t : S(A)]
...

C(t) type

Srec(sS(A)(a), d, e) = e(a) ∈ C(sS(A)(a))

Computation
S(A) ⇛ S(A)

0S(A) ⇒ 0S(A)

c⇒ 0S(A) d⇒ g

Srec(c, d, e)⇒ g

sS(A)(a)⇒ sS(A)(a)
c⇒ sS(A)(a) e(a)⇒ g

Srec(c, d, e)⇒ g

154 APPENDIX B. THE COMPLETE RULE SYSTEM

B.3.7 Nn-rules

In the following rules t− 0 var.

Formation
Nn type Nn = Nn

Introduction

0n ∈ Nn, . . . , mn ∈ Nn, . . . , n− 1n ∈ Nn

0n = 0n ∈ Nn, . . . , mn = mn ∈ Nn, . . . , n− 1n = n− 1n ∈ Nn

Elimination

c ∈ Nn d0 ∈ C(0n) . . . dn−1 ∈ C(n− 1n)

[t : Nn]
...

C(t) type

Recn(c, d0, . . . , dn−1) ∈ C(c)

c = c′ ∈ Nn d0 = d′0 ∈ C(0n) . . . dn−1 = d′n−1 ∈ C(n− 11)

[t : Nn]
...

C(t) type

Recn(c, d0, . . . , dn−1) = Recn(c′, d′0, . . . , d
′
n−1) ∈ C(c)

Note that if n = 0 this is the usual ⊥-rule.
Equality

d0 ∈ C(0n) . . . dn−1 ∈ C(n− 1n)

[t : Nn]
...

C(t) type

Recn(mn, d0, . . . , dn−1) = dm ∈ C(mn)

Note that Nn has n equality rules and hence N0 has no equality rule.
Computation

Nn ⇛ Nn

mn ⇒ mn

c⇒ mn dm ⇒ g

Recn(c, d0, . . . , dn−1)⇒ g

Note that Nn has n computation rules for canonical elements and n computation rules for non
canonical elements. In particular, N0 has no computation rule.

B.3. THE LOGICAL RULES 155

B.3.8 N-rules

In the following rules x− 0 var, y − 0 var, t− 0 var.

Formation
N type N = N

Introduction

0 ∈ N

a ∈ N

s(a) ∈ N

0 = 0 ∈ N

a = b ∈ N

s(a) = s(b) ∈ N

Elimination

c ∈ N d ∈ C(0)

[x : N, y : C(x)]
...

e(x, y) ∈ C(s(x))

[t : N]
...

C(t) type

Nrec(c, d, e) ∈ C(c)

c = c′ ∈ N d = d′ ∈ C(0)

[x : N, y : C(x)]
...

e(x, y) = e′(x, y) ∈ C(s(x))

[t : N]
...

C(t) type

Nrec(c, d, e) = Nrec(c
′, d′, e′) ∈ C(c)

Equality

d ∈ C(0)

[x : N, y : C(x)]
...

e(x, y) ∈ C(s(x))

[t : N]
...

C(t) type

Nrec(0, d, e) = d ∈ C(0)

c ∈ N d ∈ C(0)

[x : N, y : C(x)]
...

e(x, y) ∈ C(s(x))

[t : N]
...

C(t) type

Nrec(s(c), d, e) = e(c, Nrec(c, d, e)) ∈ C(s(c))

Computation
N ⇛ N

0⇒ 0
c⇒ 0 d⇒ g

Nrec(c, d, e)⇒ g

s(a)⇒ s(a)
c⇒ s(a) e(a, Nrec(a, d, e))⇒ g

Nrec(c, d, e)⇒ g

156 APPENDIX B. THE COMPLETE RULE SYSTEM

B.3.9 W-rules

In the following rules x− 0 var, u− 0 var, y − (0)0 var, z − (0)0 var and t− 0 var.

Formation

A type

[x : A]
...

B(x) type

W(A, B) type

A = C

[x : A]
...

B(x) = D(x)

W(A, B) = W(C, D)

Introduction

a ∈ A

[x : B(a)]
...

b(x) ∈W(A, B) A type

[x : A]
...

B(x) type

sup(a, b) ∈ W(A, B)

a = c ∈ A

[x : B(a)]
...

b(x) = d(x) ∈W(A, B) A type

[x : A]
...

B(x) type

sup(a, b) = sup(c, d) ∈W(A, B)

Elimination

c ∈ W(A, B)

[x : A, y : (t : B(x))W(A, B), z : (u : B(x))C(y(u))]
...

d(x, y, z) ∈ C(sup(x, y))

[t : W(A, B)]
...

C(t) type

Trec(c, d) ∈ C(c)

c = c′ ∈W(A, B)

[x : A, y : (t : B(x))W(A, B), z : (u : B(x))C(y(u))]
...

d(x, y, z) = d′(x, y, z) ∈ C(sup(x, y))

[t : W(A, B)]
...

C(t) type

Trec(c, d) = Trec(c
′, d′) ∈ C(c)

Equality

a ∈ A
[x : B(a)]

b(x) ∈W(A, B)

[x : A, y : (t : B(x))W(A, B), z : (u : B(x))C(y(u))]
...

d(x, y, z) ∈ C(sup(x, y))
[t : W(A, B)]

C(t) type

Trec(sup(a, b), d) = d(a, b, (x) Trec(b(x), d)) ∈ C(sup(a, b))

Computation

W(A, B) ⇛ W(A, B)

sup(a, b)⇒ sup(a, b)
c⇒ sup(a, b) d(a, b, (x) Trec(b(x), d))⇒ g

Trec(c, d)⇒ g

B.3. THE LOGICAL RULES 157

B.3.10 U-rules

In the following rules x− 0 var.

Formation
U type U = U

Introduction

a ∈ U

[x :< a >]
...

b(x) ∈ U

π(a, b) ∈ U

a = c ∈ U

[x :< a >]
...

b(x) = d(x) ∈ U

π(a, b) = π(c, d) ∈ U

a ∈ U

[x :< a >]
...

b(x) ∈ U

σ(a, b) ∈ U

a = c ∈ U

[x :< a >]
...

b(x) = d(x) ∈ U

σ(a, b) = σ(c, d) ∈ U

a ∈ U b ∈ U

+(a, b) ∈ U

a = c ∈ U b = d ∈ U

+(a, b) = +(c, d) ∈ U

a ∈ U b ∈< a > d ∈< a >
eq(a, b, d) ∈ U

a = c ∈ U b = e ∈< a > d = f ∈< a >

eq(a, b, d) = eq(c, e, f) ∈ U

a ∈ U b ∈< a > d ∈< a >
id(a, b, d) ∈ U

a = c ∈ U b = e ∈< a > d = f ∈< a >

id(a, b, d) = id(c, e, f) ∈ U

a ∈ U

s(a) ∈ U

a = c ∈ U

s(a) = s(c) ∈ U

nn ∈ U nn = nn ∈ U

n ∈ U n = n ∈ U

a ∈ U

[x :< a >]
...

b(x) ∈ U

w(a, b) ∈ U

a = c ∈ U

[x :< a >]
...

b(x) = d(x) ∈ U

w(a, b) = w(c, d) ∈ U

Elimination
a ∈ U

< a > type

a = b ∈ U

< a >=< b >

158 APPENDIX B. THE COMPLETE RULE SYSTEM

Equality

a ∈ U

[x :< a >]
...

b(x) ∈ U

< π(a, b) >= Π(< a >, (x) < b(x) >)

a ∈ U

[x :< a >]
...

b(x) ∈ U]

< σ(a, b) >= Σ(< a >, (x) < b(x) >)

a ∈ U b ∈ U

< +(a, b) >= +(< a >, < b >)

a ∈ U

[x :< a >]
...

b(x) ∈ U

< w(a, b) >= W(< a >, (x) < b(x) >)

a ∈ U b ∈< a > d ∈< a >
< eq(a, b, d) >= Eq(< a >, b, d)

a ∈ U b ∈< a > d ∈< a >
< id(a, b, d) >= Id(< a >, b, d)

a ∈ U

< s(a) >= S(< a >)

< nn >= Nn < n >= N

Computation

U ⇛ U

π(a, b)⇒ π(a, b)
c⇒ π(a, b)

< c >⇛ Π(< a >, (x) < b(x) >)

σ(a, b)⇒ σ(a, b)
c⇒ σ(a, b)

< c >⇛ Σ(< a >, (x) < b(x) >)

+(a, b)⇒ +(a, b)
c⇒ +(a, b)

< c >⇛ +(< a >, < b >)

eq(a, b, d)⇒ eq(a, b, d)
c⇒ eq(a, b, d)

< c >⇛ Eq(< a >, b, d)

id(a, b, d)⇒ id(a, b, d)
c⇒ id(a, b, d)

< c >⇛ Id(< a >, b, d)

s(a)⇒ s(a)
c⇒ s(a)

< c >⇛ S(< a >)

nn ⇒ nn

c⇒ nn

< c >⇛ Nn

n⇒ n
c⇒ n

< c >⇛ N

w(a, b)⇒ w(a, b)
c⇒ w(a, b)

< c >⇛ W(< a >, (x) < b(x) >)

Bibliography

[Acz78] Aczel, P., The type theoretic interpretation of constructive set theory, in “Logic Colloquium
’77”, MacIntyre, A., Pacholski, L., Paris, J. eds., North Holland, Amsterdam, 1978.

[Acz82] Aczel, P., The type theoretic interpretation of constructive set theory: choice principles, in
“The L.E.J. Brouwer Centenary Symposium”, Troelstra, S.S., van Dalen, D. eds., North Holland,
Amsterdam, 1982.

[Acz86] Aczel, P., The type theoretic interpretation of constructive set theory; inductive definitions,
in “Logic, Metodology and Philosophy of Science VII”, Marcus, R.B. et al. (eds.), North Holland,
Amsterdam, 1986.

[All86] Allen, S.F., A non-type-theoretic definition of Martin-Löf ’s types, Proceedings of “The 1st
Annual Symposium on Logic in Computer Science”, IEEE, 1986, pp. 215-221.

[All87] Allen, S.F., A non-type-theoretic semantics for a type-theoretic language, PhD Thesis, Cor-
nell University, 1987.

[BCMS89] Backhouse, R., Chisholm, P., Malcom, G. and Saaman, E., Do-it-yourself type theory,
Formal Aspects of Computing 1, 1989, pp.19-84.

[BC85] Bates, J.L. and Constable, R.L., Proofs as Programs, ACM Transactions on Programming
Languages and Systems 7, N.1, 1985, pp. 94-117.

[Bar84] Barendregt, H.P., The Lambda Calculus, its Syntax and Semantics, North–Holland, Ams-
terdam, 1984.

[Bar92] Barendregt, H.P., Lambda-calculi with types, in “Handbook of logic and computer science”,
vol. 2, S. Abramski, D.M. Gabbay and T.S. Maibaum eds., Oxford University Press, 1992, pp.
118-309.

[Bee85] Beeson, M.J., Foundation of Constructive Mathematics, Lecture Notes in Computer Sci-
ence, Springer-Verlag, 1985.

[Bel88] Bell, J.L., Toposes and local set theory: an introduction. Clarendon Press, Oxford, 1988.

[Ber90] Berardi, S., Type dependence and constructive mathematics, PhD thesis, Dipartimento di
Matematica, Università di Torino, 1990.

[BV87] Bossi, A. and Valentini, S., Assunzioni di arietà superiore nella teoria intuizionistica dei
tipi, in Italian, in “Atti secondo convegno nazionale sulla Programmazione Logica”, Torino 1987,
B. Demo ed., pp. 81-92.

[BV89] Bossi, A. and Valentini, S., The expressions with arity, internal report of “Dipartimento di
Scienze dell’Informazione”, University of Milan, 1989, 61/89.

[BV92] Bossi, A. and Valentini, S., An intuitionistic theory of types with assumptions of high-arity
variables, Annals of Pure and Applied Logic 57, North Holland, 1992, pp. 93-149.

[Coq90] Coquand, T., Metamathematical investigations of a calculus of constructions, in “Logic
and Computer Science”, P. Odifreddi ed., Academic Press, London, 1990, pp. 91-122.

159

160 BIBLIOGRAPHY

[Coq96] Coquand, T., An Algorithm for Type-Checking Dependent Types, Science of Computer
Programming 26 (1–3), 1996, pp. 167-177.

[CCo98] Coquand, C., A realizability interpretation of Martin-Löf ’s type theory, In “Twenty five
years of Constructive Type Theory”, J. Smith and G. Sambin eds., Oxford Logic Guides (36),
Clarendon Press, Oxford, 1998, pp. 73-82.

[CSSV] Coquand, T., G. Sambin, J. Smith and S. Valentini, Inductive generation of formal topolo-
gies, to appear.

[CV98] Capretta, V. and Valentini, S., A general method to prove the normalization theorem for
first and second order typed λ-calculi Mathematical Structures in Computer Science, 1998, pp.
719-739.

[Chu36] Church, A. An unsolvable problem of elementary number theory, American Journal of
Mathematics, 58 (1936), pp. 345-363.

[CF74] Curry, H.B., Feys, R., Combinatory Logic, North-Holland, Amsterdam, 1974.

[Bru80] de Bruijn, N.G., A survey of the project Automath, in “To H. B. Curry: Essays on Combi-
natory Logic, Lambda Calculus and Formalism”, J.P. Seldin and J.R. Hyndley eds., Academic
Press, London, 1980, pp. 589-606.

[Bru91] de Bruijn, N.G., Telescopic mappings in typed lambda calculus, Information and Compu-
tation, 91(2), April 1991, pp. 189-204.

[Dia75] Diaconescu, R., Axiom of choice and complementation, Proc. American Mathematical
Society, 51, 1975, pp. 176-178.

[Fre1892] Frege, G., Über Sinn und Bedeutung, Zeitschrift für Philosophie und philosophische Kri-
tik, 1892, pp. 25-50.

[Gal90] Gallier, J.H., On Girard’s “Candidats de Reductibilité”, in “Logic and Computer Science”,
P. Odifreddi ed., Academic Press, London, 1990, pp. 123-203.

[Gan80] Gandy, R.O., An early proof of normalization by A. M. Turing, in “To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism”, S. P. Seldin and J. R. Hindley eds.,
Academic Press, London, 1980, pp. 453-455.

[Geu93] Geuvers, H., Logics and type systems, PhD thesis, Katholieke Universiteit Nijmegen, The
Netherlands, 1993.

[Gir71] Girard, J.Y., Une extension de l’interpretation de Gödel à l’analyse, et son application à
l’élimination des coupures dans l’analyse et la théorie des types, in “Proceedings of 2nd Scandi-
navian Logic Symposium”, J. E. Fenstad ed., North–Holland, Amsterdam, 1971, pp. 63-92.

[Gir86] Girard, J.Y., The system F of variable types, fifteen years later, Theoretical Computer
Science 45, North–Holland, Amsterdam, 1986, pp 159-192.

[GLT89] Girard, J.Y., Lafont, Y. and Taylor, P., Proofs and Types, Cambridge University Press,
1989.

[GR94] Griffor, E. and Rathjen, M., The strength of some Martin-Löf ’s type theories, Archive
Mathematical Logic, 33, 1994, pp. 347-385.

[Hey56] Heyting, A., Intuitionism, an introduction, North-Holland, Amsterdam, 1956.

[Hof94] Hofmann, M., Elimination of extensionality and quotient types in Martin-Löf type theory.
in “Proceedings of the International Workshop on Types for Proofs and Programs, Nijmegen,
The Netherlands”, H. Barendregt and T. Nipkow eds., Lecture Notes in Computer Science (806),
Springer Verlag, Berlin and New York, 1994, pp. 166-190.

BIBLIOGRAPHY 161

[Hof95] Hofmann, M., Extensional concepts in intensional type theory. PhD Thesis, University of
Edinburgh, 1995.

[Hof97] Hofmann, M., A simple model for quotient types. in “Typed lambda calculi and applica-
tions”, Lecture Notes in Computer Science, Springer Verlag, Berlin and New York, 1997, pp.
216–234.

[HS95] Hofmann, M. and Streicher, T., The groupoid interpretation of type theory, In “Twenty five
years of Constructive Type Theory”, J. Smith and G. Sambin eds., Oxford Logic Guides (36),
Clarendon Press, Oxford, 1998, pp. 83-111.

[How80] Howard, W.A., The formula-as-types notion of construction, To “H.B. Curry: Essays on
combinatory Logic, Lambda Calculus and Formalism” R. Hindley and J.P. Seldin eds., Academic
Press, London, 1980, pp. 479-490.

[HP90] Huwig, H. and Poigné, A., A note on inconsistencies caused by fixpoints in a cartesian
closed category, Theoretical Computer Scince, 75, 1990, pp. 101-112.

[Jac89] Jacobs, B., The inconsistency of higher order extensions of Martin-Löf ’s type theory, Jour-
nal of Philosophical Logic, 18, 1989, pp. 399-422.

[Kol32] Kolmogorov, A.N., Zur Deutung der intuitionistischen Logik, Mathematische Zeitschrift,
vol. 35, 1932, pp. 58-65.

[Kri93] Krivine, J. L., Lambda-Calculus, Types and Models Masson, Paris, Ellis Horwood, Hemel
Hempstead, 1993.

[LS86] Lambek, J. and Scott, P.J., An introduction to higher order categorical logic., volume 7 of
“Studies in Advanced Mathematics”, Cambridge University Press, 1986.

[Law69] Lawvere, F.W., Diagonal arguments and cartesian closed categories, in “Category Theory,
Homology Theory and their Applications II”, Lecture Notes in Mathematics, n.92, Springer 1969,
pp. 134-145.

[Luo90] Luo, Z. An extended calculus of constructions. PhD Thesis, University of Edinburgh, 1990.

[MV96] Maguolo, D. and Valentini, S., An intuitionistic version of Cantor’s theorem, Mathematical
Logic Quarterly 42, 1996, pp. 446-448.

[MV99] Maietti, M.E. and Valentini, S., Can you add power-set to Martin-Löf intuitionistic set
theory? Mathematical Logic Quarterly 45, 1999, pp. 521-532.

[Mai99] Maietti, M.E., About effective quotients in constructive type theory, in “Types for Proofs
and Programs”, International Workshop “Types’98”, Altenkirch T., Naraschewski W. and Reus
B. eds., Lecture Notes in Computer Science 1657, Springer Verlag, 1999, pp. 164-178.

[Mag92] Magnusson, L., The new implementation of ALF, in proceedings of the “1992 Workshop
on Types for Proofs and Programs”, Nordstrom B., Petersson K. and Plotkin G. eds.

[Mat98] Matthes, R., Extensions of SystemF by Iteration and Primitive Recursion on Monotone
Inductive Types, PhD thesis, Department of Mathematics and Informatics, University of Munich,
1998.

[MJ98] Matthes, R. and Joachimski, F. Short proofs of normalization for the simply-typed lambda-
calculus, permutative conversions and Gödel’s T, submitted to the Archive for Mathematical
Logic.

[Mar71] Martin-Löf, P. Hauptsatz for the intuitionistic theory of iterated inductive definitions, in
“Proceedings of the second Scandinavian logic symposium”, J.E. Fenstad ed., North-Holland,
Amsterdam, 1971, pp. 179-216.

[Mar75] Martin-Löf, P. An Intuitionistic Theory of Types: Predicative Part, in “Logic Colloquium
1973”, H. E. Rose and J. C. Shepherdson eds., North-Holland, Amsterdam, 1975, pp. 73-118.

162 BIBLIOGRAPHY

[Mar82] Martin-Löf, P. Constructive Mathematics and Computer Programming, in “Proceedings of
the 6th International Congress for Logic, Methodology and Philosophy of Science”, Cohen, L.J.
Los, J. Pfeiffer, H. and Podewski, K. P. eds., IV, Hannover 1979, North-Holland, Amsterdam
(1982), pp.153-175.

[Mar83] Martin-Löf, P. Siena Lectures, handwritten notes of a series of lectures given in Siena,
April 1983.

[Mar84] P. Martin-Löf, Intuitionistic type theory, notes by Giovanni Sambin of a series of lectures
given in Padua, June 1980, Bibliopolis, Napoli, 1984.

[MNPS91] Miller, D., Nadathur, G., Pfenning, F. and Scedrov, A., Uniform proofs as a foundation
for logic programming, Annals of Pure and Applied Logic, 51, 1991, pp. 125-157.

[MR86] Mayer, A. R. and Reinhold, M. B. ‘Type’ is not a type: preliminary report, ACM, 1986,
pp. 287–295.

[Nor81] Nordström, B., Programming in Constructive Set Theory: some examples, in proceeding of
“ACM Conference on Functional Programming Languages and Computer Architecture”, 1981,
pp. 141-153.

[NP83] Nordstrom, B. and Petersson, K, Types and Specifications, in “Proceedings IFIP ’83”,
R.E.A. Mason ed., Paris, Elsevier Science Publishers (North-Holland), Amsterdam 1983.

[NPS90] Nordstrom, B., Petersson, K. and Smith, J.M., Programming in Martin-Löf ’s Type The-
ory, an introduction, Oxford Univ. Press, Oxford, 1990.

[NS84] Nordstrom, B. and Smith, J.M., Propositions, Types and Specifications of Programs in
Martin-Löf ’s Type Theory, BIT, 24, N.3 (October 1984), pp. 288-301.

[PV93] Paulus Venetus (1993) (alias Sambin, G. and Valentini, S.). Propositum Cameriniense, sive
etiam itinera certaminis . . . (in italian), in “Atti degli Incontri di Logica Matematica vol. viii
(XV Incontro)”, G. Gerla, C. Toffalori and S. Tulipani eds., Camerino, pp. 115-143.

[PS86] Petersson, K. and Smith, J.M., Program derivation in type theory: a partitioning problem,
Comput. Languages 11 (3/4), 1986, pp.161-172.

[Pot80] Pottinger, G., A type assignment for strongly normalizable λ-terms, in “To H.B. Curry,
Essay on Combinatory Logic, Lambda Calculus and Formalism”, Academic Press, New York,
1980, pp. 561-577.

[Pra65] Prawitz, D., Natural Deduction: A Proof-Theoretical Study, Almquist and Wiksell, Stock-
olm, 1965.

[Sam87] Sambin, G.. Intuitionistic formal spaces - a first communication, in “Mathematical Logic
and its Applications”, D. Skordev ed., Plenum, New York, 1987, pp. 187-204.

[Sam91] Sambin, G., Per una dinamica nei fondamenti (in italian), in “Atti del Congresso: Nuovi
problemi della logica e della filosofia della scienza”, vol. II, G. Corsi and G. Sambin eds., CLUEB,
Bologna, 1991, pp. 163-210.

[Sam97] Sambin, G., Developing topology in a type theoretic setting, to appear.

[SV93] Sambin, G. and Valentini, S., Building up a tool-box for Martin-Löf ’s type theory (abstract),
in “Computational Logic and Proof Theory. Proceedings of the Third Kurt Gödel Colloquium,
KGC’93”, G. Gottlob, A. Leitsch and D. Mundici eds., Lecture Notes in Computer Science,
Springer, Berlin-Heidelberg-New York, 1993, pp. 69-70.

[SV98] Sambin, G. and Valentini, S., Building up a tool-box for Martin-Löf intuitionistic type
theory, in “Twenty five years of Constructive Type Theory”, J. Smith and G. Sambin eds.,
Oxford Logic Guides (36), Clarendon Press, Oxford, 1998, pp. 221-244.

BIBLIOGRAPHY 163

[SVV96] Sambin, G., Valentini, S. and Virgili, P., Constructive Domain Theory as a branch of
Intuitionistic Pointfree Topology, Theoretical Computer Science, 159, 1996, pp. 319-341.

[Tai67] Tait, W.W., Intensional interpretation of functionals of finite type I, Journal of Symbolic
Logic, 32, 1967, pp. 198-212.

[Tro87] Troelstra, A. S., On the Syntax of Martin Löf ’s Type Theories Theoretical Computer
Science, 51, 1987, pp. 1-26.

[Tur97] Turner, R., Reading between the lines in constructive type theory, Journal Logic Compu-
tation, 7-2, 1997, pp. 229-250.

[Val94] Valentini, S., A note on a straightforward proof of normal form theorem for simply typed
λ-calculi, Bollettino dell’Unione Matematica Italiana, 8-A, 1994, pp. 207-213.

[Val95] Valentini, S., On the decidability of the equality theory of simply typed lambda-calculi,
Bollettino dell’Unione Matematica Italiana, 9-A, 1995, pp. 83-93.

[Val95a] Valentini, S., The multi-level typed λ-calculus, in preparation.

[Val96] Valentini, S., Decidability in Intuitionistic Type Theory is functionally decidable, Mathe-
matical Logic Quarterly, 42, 1996, pp. 300-304.

[Val96a] Valentini, S., Another introduction to Martin-Löf ’s Type Theory, in “Trends in Theoret-
ical Informatics”, R. Albrecht and H. Herre eds., Schriftenreihe der Österreichischen Computer
Gesellscaft, Bd. 89, München, 1996.

[Val96b] Valentini, S., The formal development of non-trivial programs in constructive type the-
ory, in “Proceedings of the Second International Conference on Massively Parellel Computing
Systems”, Ischia, maggio 1996, pp. 570-577

[Val98] Valentini, S., The forget-restore principle: a paradigmatic example, in “Twenty five years of
Constructive Type Theory”, J. Smith and G. Sambin eds., Oxford Logic Guide (36), Clarendon
Press, Oxford, 1998, pp. 275-283.

[Val00] Valentini, S., Extensionality versus constructivity, to appear.

