
The formal development of non-trivial programs in constructive type theory

Silvio Valentini
Dipartimento di Matematica Pura ed Applicata

Universit̀a di Padova
via G. Belzoni n.7, I–35131 Padova, Italy

silvio@brouwer.math.unipd.it

Abstract

This paper is intended to show how non-trivial problems
can be specified and solved in Martin-Löf ’s Type Theory. A
particular class of problems is considered which contains
some game problems.

Mathematics Subject Classification:03B15, 03B20.
Keywords: Intuitionistic type theory, Program correct-

ness, Software engineering.

1. Introduction

Since the 70s Martin-Löf has developed, in a number of
successive variants, an Intuitionistic Theory of Types [7,8,
10] (ITT for short in the following). The initial aim was to
provide a formal system for constructive mathematics but
the relevance of the theory also in computer science was
soon recognized. In fact, from an intuitionistic perspective,
to define a constructive set theory is equivalent to define a
logical calculus [5] or a language for problem specification
[6]. Hence the topic is of immediate relevance both to math-
ematicians, logicians and computer scientists. Moreover,
since an element of a set can also be seen as a proof of the
corresponding proposition or as a program which solves the
corresponding problem, ITT is also a functional program-
ming language with a very rich type structure and an inte-
grated system to derive correct programs from their spec-
ification [9, 11]. These pleasant properties of the theory
have certainly contributed to the interest for it arisen in the
computer science community, especially among those peo-
ple who believe that program correctness is a major concern
in the programming activity [1].

Many are the peculiarities of the theory which justify this
wide concern. As regards computing science, through very
powerful type-definitions facilities and the embedded prin-
ciple of “propositions as types” it primarily supplies means
to support the development of proved-correct programs. In-
deed here type checking achieves its very aim, namely that

of avoidinglogical errors.
The paper is organized as follows. We first recall some

basic facts on type theory which can be useful to the reader
which is not familiar with the topics. Many introduction on
the theory can today be found in the literature (see for in-
stance [8, 10, 12]) but we think that this introduction is suffi-
cient to make the paper self contained. In section 7, we begin
the description of the types which allow to express the prob-
lems we are interested in within type theory. First the type
Seq(A), of finite sequences of elements inA, and the type
Tree(A), of trees labeled with elements inA, are presented.
ThenGraph(A), the type of finitary directed graphs, is in-
troduced and it is shown how its elements can be viewed
as laws for building up finite trees. In section 8 the prob-
lems we deal with are defined and their solutions developed.
They are problems on “games” and clearly their specifica-
tion strongly depends on how we describe a game. The re-
sults in sections 7 and 8 can be found also in [2] which con-
tains detailed proofs of the theorems we only state here and
the construction of some of the most basic programs.

2. Judgments and Propositions

In a classical approach to the development of a formal
theory one usually takes care to define a formal language
only to specify the syntax (s)he wants to use while as re-
gard to the intended semantics noa priori tie on the used
language is required. Here the situation is quite different; in
fact we want to develop aconstructiveset theory and hence
we can assume noexternalknowledge on sets; then we do
not merely develop a suitable syntax to describe something
which existssomewhere. Hence we have “to put our cards
on the table” at the very beginning of the game and to de-
clare the kind of judgments on sets we are going to express.

Let us show the form of the judgments we are going to
use to develop our constructive set theory. The first is

type-ness: A type

1

which states thatA is a type. The second form of judgment
is

equal-types: A = B type

which, provided thatA andB are types, states that they are
equal types. The next form of judgment is

belong-ness: a ∈ A

which states thata is an element of the typeA and finally

equal-elements: a = b ∈ A

which, provided thata and b are elements of the typeA,
states thata andb are equal elements of the typeA.

3. Different readings of the judgments

A peculiar aspect of a constructive set theory is that we
can give many different readings of the same judgment. Let
us show some of them

A type a ∈ A

A is a set a is an element ofA

A is a proposition a is a proof ofA

A is a problem a is a method which solvesA

The first reading conforms to the definition of a constructive
set theory. The second one, which links type theory with in-
tuitionistic logic, is due to Heyting [4, 5]: it is based on the
identification of a proposition with the set of its proofs. Fi-
nally the third reading, due to Kolmogorov [6], consists on
the identification of a problem with the set of its solutions.

3.1. On the judgment A set

Let us explain the meaning of the various forms of judg-
ment; it is convenient to commit to an epistemological ap-
proach.

What is a set?A set is defined by prescribing how its el-
ements are formed.

Let us work out an example: the setN of natural num-
bers. We state that natural numbers form a set since we know
how to construct its elements.

0 ∈ N
a ∈ N

succ(a) ∈ N

i.e. 0 is a natural number and the successor of any natural
number is a natural number.

Of course in this way we only construct thecanonicalel-
ements of the set of the natural numbers and we say nothing
on elements like3 + 2. We can recognize also this element
as a natural number if we understand that the operation+ is
just a method such that, given two natural numbers, provides

us, by means of some calculations, with a natural number in
canonical form, i.e.3 + 2 = succ(2 + 2); this is the rea-
son why, besides the belong-ness judgment, we also need the
equal-elements judgment. For the type of the natural num-
bers we put

0 = 0 ∈ N
a = b ∈ N

succ(a) = succ(b) ∈ N

Let us consider another example. Suppose thatA andB are
types, then we can construct the typeA × B, which corre-
sponds to the cartesian product of the setsA andB, since we
know what are its canonical elements:

a ∈ A b ∈ B

〈a, b〉 ∈ A × B

a = c ∈ A b = d ∈ B

〈a, b〉 = 〈c, d〉 ∈ A × B

So we explained the meaning of the judgmentA set

but meanwhile we also explained the meaning of two other
forms of judgment.

What is an element of a set?An element of a setA is a
method which, when executed, yields a canonical element
of A as result.

When are two elements equal?Two elementsa, b of a set
A are equal if, when executed, they yield equal canonical
elements ofA as results.

3.2. On the judgment A prop

We can now immediately answer to the question:What is
a proposition?

Since a proposition is identified with the set of its proofs,
in order to answer to this question we have only to repeat for
propositions what we said for sets: a proposition is defined
by laying down what counts as a proof of the proposition.
Thus in the constructive approach to state that an expression
is a proposition one has to state what (s)he is willing to ac-
cept as one of its proofs. Consider for instance the proposi-
tion A&B: supposingA andB are propositions, thenA&B

is a proposition since we can state what is one of its proofs: a
proof ofA&B consists of a proof ofA together with a proof
of B, and so we put

a ∈ A b ∈ B

〈a, b〉 ∈ A&B

and thenA&B ≡ A × B.

4. Hypothetical judgments

So far we have explained the basic ideas of ITT; now we
want to introduce a formal system to treat with types. To
this aim we need the notion ofhypothetical judgment: a hy-
pothetical judgment is a judgment expressed under assump-
tions. Let us explain what an assumption is; here we only

give some basic ideas while a formal approach can be found
in [3]. Let A be a type; then the assumptionx : A means
both that the variablex has typeA and thatx is a hypothet-
ical proof ofA.

The previous is just the simplest form of assumption, but
we will also usey : (x : A) B which means thaty is a
function which maps an elementa ∈ A into the element
y(a) ∈ B.

Now supposeA type; then the fact thatB is a proposi-
tional function on elements ofA can be stated by asserting
the hypothetical judgmentB(x) prop [x : A] provided that
we know what it counts as a proof ofB(a) for any element
a ∈ A. For instancex 6= 0 → (3

x
∗ x = 3) prop [x : N] is

a hypothetical judgment whose meaning is straightforward.
The previous is just the simplest form of hypothetical

judgment. In general, supposing

A1 type

A2(x1) type [x1 : A1]
...

An(x1, . . . , xn−1) type [x1 : A1, . . . , xn−1 : An−1]

we obtain the hypothetical judgment

J [x1 : A1, . . . , xn : An(x1, . . . , xn−1)]

whereJ is any one of the four forms of judgment we have
considered.

5. The logic of types

We can now describe the full set of rules needed to de-
scribe one type. We will consider four kinds of rules: the
first rule states the conditions required toform the type, the
second oneintroducesthe canonical elements of the type,
the third rule explains how to use, and henceeliminate, the
elements of the type and the last one how tocomputeusing
the elements of the type. For each kind of rules we will first
give an abstract explanation and then we will show the ac-
tual rules for the cartesian product of two types.

Formation. How to form a new type and when two types
constructed in this way are equal.

Example:

A type B type

A × B type
A = C B = D
A × B = C × D

Introduction. What are the canonical elements of the type
and when two canonical elements are equal.

Example:

a ∈ A b ∈ B

〈a, b〉 ∈ A × B

a = c ∈ A b = d ∈ B

〈a, b〉 = 〈c, d〉 ∈ A × B

which state that the canonical elements of the cartesian prod-
uct A × B are the couples whose first element is inA and
second element is inB.

Elimination. How to define functions on the elements of
the type defined by the introduction rules.

Example:

c ∈ A × B d(x, y) ∈ C(〈x, y〉) [x : A, y : B]

split(c, d) ∈ C(c)

Equality. How to compute the function defined by the
elimination rule.

Example:

a ∈ A b ∈ B d(x, y) ∈ C(〈x, y〉) [x : A, y : B]

split(〈a, b〉, d) = d(a, b) ∈ C(〈a, b〉)

which states that to evaluate the functionsplit(c, d), defined
by the elimination rule, one has first to evaluatec in order to
obtain a canonical element〈a, b〉 ∈ A × B and then to use
the methodd : (x : A)(y : B) C(〈x, y〉), provided by the
second premise of the elimination rule, to obtain the value
d(a, b) ∈ C(〈a, b〉).

The same approach can be used to obtain the rules for a
type which is not alogical proposition. Let us consider the
case of the typeN .

Formation:

N set

Introduction:

0 ∈ N
a ∈ N

succ(a) ∈ N

Elimination:

c ∈ N d ∈ C(0) e(x, y) ∈ C(succ(x))[x : N , y : C(x)]

Nrec(c, d, e) ∈ C(c)

Equality:

d ∈ C(0) e(x, y) ∈ C(succ(x)) [x : N , y : C(x)]

Nrec(0, d, e) = d ∈ C(0)
a ∈ N d ∈ C(0) e(x, y) ∈ C(succ(x))[x : N , y : C(x)]

Nrec(succ(a), d, e) = e(a, Nrec(a, d, e)) ∈ C(succ(a))

We can also consider a new kind of rules which makes ex-
plicit the computation process which is only implicit in the
equality rule.

Computation:

c ⇒ 0 d ⇒ g

Nrec(c, d, e) ⇒ g

c ⇒ succ(a) e(a, Nrec(a, d, e)) ⇒ g

Nrec(c, d, e) ⇒ g

5.1. A very simple program: the sum

We can develop programs on natural numbers. For in-
stance, letx, y ∈ N , then the sum ofx andy is defined by
means of the following deduction:

x ∈ N y ∈ N

[v : N]1

succ(v) ∈ N

x + y ≡ Nrec(x, y, (u, v) succ(v)) ∈ N
1

This simple example suggests that ITT is a functional
programming language with a strong typing system.

In general, the recursive equations with unknownf :
{

f(0) = k ∈ A

f(succ(x)) = g(x, f(x)) ∈ A

is solved in ITT byf(x) ≡ Nrec(x, k, (u, v) g(u, v)) and,
supposingn : N , k : A andg : (u : N)(v : A) A, it is
possible to prove thatNrec(n, k, (u, v) g(u, v)) ∈ A.

6. Other basic types

Following the pattern we used in the previous section we
can define many other types. For instance, consider the type
A → B of the functions fromA to B. Its formation rules
are:

A type B type

A → B type
A = C B = D

A → B = C → D

The canonical elements of the typeA → B are the functions
λ(b) such thatb(x) ∈ B [x : A]; thus we put

b(x) ∈ B [x : A]

λ(b) ∈ A → B

b(x) = d(x) ∈ B [x : A]

λ(b) = λ(d) ∈ A → B

The elimination rule is now determined; it states that the
only elements of the type are those introduced by the in-
troduction rule(s). Thus, besides the premisec ∈ A →
B, we have to consider only another premise, i.e.d(y) ∈
C(λ(y)) [y : (x : A) B] which shows how to obtain a proof
of C(λ(y)) starting from a generic assumptions for the in-
troduction rule.

c ∈ A → B d(y) ∈ C(λ(y)) [y : (x : A) B]

funsplit(c, d) ∈ C(c)

In the following it will be handy to use also the derived
rule

c ∈ A → B a ∈ A

c[a] ≡ apply(c, a) ∈ B

to mean the application of the functionc to the elementa
whereapply(c, a) ≡ funsplit(c, (y) y(a)).

In an analogous way we can introduce a new type which
will play a main role in the following: the typeW (A, B) of

the trees whose nodes are labeled with elementsa of typeA

and whose branching width is determined byB(a).
Formation:

A type B(x) type [x : A]

W (A, B) type

Introduction:

a ∈ A b(y) ∈ W (A, B) [y : B(a)]

sup(a, b) ∈ W (A, B)

The justification of the introduction rule is that the element
sup(a, b) ∈ W (A, B) is a node which has the labela ∈ A

and a branch which arrives at the treeb(y) ∈ W (A, B) in
correspondence with each elementy ∈ B(a).

As above, the elimination rule is completely determined
by the introduction rule.

Elimination:

c ∈ W (A, B)

[x : A, w : (y : B(x))W (A, B), z : (y : B(x))C(w(y))]1....
e(x, w, z) ∈ C(sup(x, w))

Trec(c, e) ∈ C(c)
1

7. New types for new problems

In this section we will introduce some general types we
will use in the next of the paper. Let us recall that, given
a ∈ N , the typeN<(a) is the type of all the natural numbers
less thana such thatN<(0) = ∅.

7.1. The set Seq(A)

Instead of introducing the type of the lists onA directly
we will implement them as pairs since this approach makes
the following easier. The first component of a pair is the
lengthn ∈ N of the list and the second a function mapping
an elementi ∈ N<(n) to thei-th element of the list. Thus,
we put

Seq(A) ≡ (∃x ∈ N) N<(x) → A

and, supposinga ∈ A ands ∈ Seq(A), we make the fol-
lowing definitions:

nil ≡ 〈0, empty〉
a • s ≡ 〈succ(fst(s)),

λx. if x <N fst(s) thensnd(s)[x] elsea〉

which suggest that, supposingC(x) prop [x : Seq(A)], d ∈
C(nil) ande(x, y, z) ∈ C(x • y) [x : A, y : Seq(A), z :
C(y)],

Lrec(s, d, e) ≡
split(s, (n, f) Nrec(n, d, (u, v) e(f [u], 〈u, f〉, v)))

is a correct proof-method to find a proof ofC(s).
We will use the abbreviations

♯s ≡ fst(s) for the length ofs and
s{i} ≡ snd(s)[i] for thei-th element ofs

If a ∈ A ands ∈ Seq(A) then the propositiona InSeq s

holds if and only ifa is an element of the sequences. Then
the following equations have to hold

{

a InSeq nil = ⊥
a InSeq b • t = (a =A b) ∨ (a InSeq t)

and their solution is

a InSeq s ≡ Lrec(s,⊥, (x, y, z) (a =A x) ∨ z)

To filter out, from a given sequences, all the elements
which do not satisfy a given conditionf(x) ∈ Bool [x : A]
we define the function

filter(f, s) ∈ Seq(A) [f : (x : A) Bool, s : Seq(A)];

the recursive equations for the functionfilter are






filter(f, nil) = nil

filter(f, a • s) =
if f(a) thena • filter(f, s) elsefilter(f, s)

and they can be solved by making the explicit definition

filter(f, s) ≡
Lrec(s, nil, (x, y, z) if f(x) thenx • z elsez)

Theorem 7.1 If a ∈ A , s ∈ Seq(A), f(x) ∈ Bool [x : A],
then the propositiona InSeq filter(f, s) is true if and only
if (f(a) =Bool true) and(a InSeq s).

7.2. The set Tree(A)

The setTree(A) is the set of all finite trees whose nodes
are labeled with elements in the setA. As we already said,
the well-ordering type has labeled trees of finite depth as el-
ements, so to obtain finite trees we have only to add the con-
strain that any node has a finite set of predecessors. We make
the following definition

Tree(A) ≡ W (A ×N , (x) N<(snd(x)))

and thusTree(A) is the set of finitely branched trees with
nodes of the form〈a, n〉 wherea is an element inA andn is
the number of immediate successors. For instance, the sin-
gleton tree with only one node labeled bya0 ∈ A, can be
defined as

leaf(a0) ≡ sup(〈a0, 0〉, empty).

Let t ∈ Tree(A); then the root of the treet and itsi-th
subtree are defined by

root(t) ≡ Trec(t, (x, y, z) x)
subtree(t, i) ≡ Trec(t, (x, y, z) y(i))

A useful function on trees is the function

travel(t) ∈ Seq(A) [t : Tree(A)]

which associates to a given treet the sequence of all the la-
bels present int. It follows the recursive equations

travel(sup(〈a, n〉, f)) = a • append(n, (i) travel(f(i)))

where the function

append(n, f) ∈ Seq(A) [n : N , f : (i : N<(n)) Seq(A)]

associates ton sequences onA the sequence obtained by
appending them. Hence, supposingappend2(s1, s2) ∈
Seq(A) [s1, s2 : Seq(A)] is the standard function to append
two sequences, we put

append(n, f) ≡ Nrec(n, nil, (x, y) append2(f(x), y))
travel(w) ≡

Trec(w, (x, y, z) fst(x) • append(snd(x), z))

Supposinga ∈ A and t ∈ Tree(A), we can use the
propositiona InSeq s to define the propositiona InTree t

that holds if and only ifa is the label of a node int.

a InTree t ≡ a InSeq travel(t)

Suppose now thatb(x) ∈ Bool [x : A] is a boolean func-
tion, and that we are interested to know if in the finite treet

there is a node, whose label isa, such thatb(a) =Bool true.
The recursive equation for a solution of this problem is

(find(sup(〈a, n〉, h), b) = b(a))∨
∨

(n, (i) find(h(i), b))

where the value of the function
∨

(n, f) ∈ Bool [n : N , f :
(i : N<(n)) Bool] is the disjunction ofn elements. The
solution of the previous equation is

find(w, b) ≡ Trec(w, (x, y, z) b(fst(x))∨
∨

(snd(x), z)).

Theorem 7.2 If t ∈ Tree(A) andb(x) ∈ Bool [x : A],
then the proposition(find(t, b) =Bool true) is true if and
only if (∃x ∈ A) (f(x) =Bool true) & (x InTree t).

7.3. Expanding a finite tree

Let preds ∈ A → Seq(A) and t ∈ Tree(A). We
want to define a functionexpand(preds, t) whose value is
the treet expanded in all leaves,leaf(a), such that the sub-
trees ofa are all singleton trees with nodes whose labels are

taken from the sequencepreds[a]. For instance, ifpreds ∈
N → Seq(N) maps0 to the sequence1•2•nil, 1 to the se-
quence0•nil and2 to the sequencenil, and ift ∈ Tree(N)
is the tree

sup(〈0, 3〉, λx. leaf(x))
0

0
��
1 2

==

thenexpand(preds, t) will be the tree

0

0

pppppp
1 2

KKKKK

1
��

2

==

0

The following recursive equations holds for the function
expand















expand(preds, sup(〈a, 0〉, f)) =
sup(〈a, ♯preds[a]〉, (i) leaf(preds[a]{i}))

expand(preds, sup(〈a, succ(n)〉, f)) =
sup(〈a, succ(n)〉, (i) expand(preds, f(i)))

This equations can be solved in type theory by

expand(preds, t) ≡
Trec(t, (x, y, z) if snd(x) ≃N 0

thensup(〈fst(x), ♯preds[fst(x)]〉,
(i) leaf(preds[fst(x)]{i}))

elsesup(x, z))

7.4. Finitary Graphs

We will identify a finitary graph onA with a function
which maps an element to its neighbors:

Graph(A) ≡ A → Seq(A)

A treet is expanded with respect to a graphg if the chil-
dren of any nodea in the tree are exactly the neighbors of
the nodea in the graph, i.e. the following equality holds for
the predicateExpanded:

Expanded(g, sup(〈a, n〉, f)) = (♯g[a] =N n) &
(∀i < n) ((g[a]{i} =A root(f(i))) & Expanded(g, f(i)))

This equation can be solved by transfinite recursion. The
following set will be useful:

ExpandedT ree(A, g, a) ≡
{t ∈ Tree(A)| Expanded(g, t) & root(t) =A a}

i.e. the set of all the expanded trees with label inA and root
a. The first observation is that there is at most one element
in ExpandedT ree(A, g, a).

Theorem 7.3 If A is a set,g ∈ Graph(A), a ∈ A then
there is at most one element inExpandedT ree(A, g, a) .

Note that if for somem ∈ N

(expand(g))m(leaf(a)) = (expand(g))m+1(leaf(a))

then (expand(g))m(leaf(a)) is the “only” tree in
ExpandedT ree(A, g, a).

Indeed, it is possible to show that the existence of such an
m is also a necessary condition forExpandedT ree(A, g, a)
being inhabited.

Theorem 7.4 If A is a set,a ∈ A, g ∈ Graph(A) then

(∀t ∈ ExpandedT ree(A, g, a))(∃k ∈ N)

t =Tree(A) (expand(g))k(leaf(root(t))))

8. Games and Games trees

8.1. Game description

When we want to explain a game to somebody we often
start by describing the states of the game. Then we describe
the moves of the game, i.e. we describe all the different
ways a game can continue from one state to the next. Finally
we describe the initial state and how to recognize a winning
state. If there is only one player that is all, if there are two
or more players let us think that the information about who
is the player in turn is part of the state of the game and that,
for each player, we can explain if a state is winning for him
or not. We will consider games which are characterized by
the following entities:

〈numPlayers, State, s0, ♯, next,

playerInTurn, winning〉

where

numPlayers ∈ N the number of players;

State set
the set of states of
the game;

s0 ∈ State the initial state;
♯(s) ∈ N

[s : State]
the number of alternati-
ve moves in the states;

next(s, i) ∈ State

[s : State,

i : N<(♯(s))]

the state after making
thei-th alternative
move in the states;

winning(s, k) ∈ Bool

[s : State,

k : N<(numPlayers)]

is true if the state
s is a winning state
for thek-th player,
false otherwise;

playerInTurn(s)
∈ N<(numPlayers)
[s : State]

the number of the next
player to make a move
in the states.

The course of a game starts in an initial states0. It pro-
ceeds by moving from one state to the next according to the
rules of the game. The state of the game is an instantaneous
description of the game. In choosing this way of character-
izing a game, we have made the following restrictions:

1. The number of alternative moves in a certain states is
always finite and it can be computed froms.

2. All possible next states can be computed from the cur-
rent state.

3. It is decidable if a state is winning for a player or not.

The reasons for choosing the first two restrictions is that
we want to have a general algorithm which decides if it is
possible to reach a winning position or not. The third re-
striction is not a severe restriction; it is just a concrete way
of expressing that there should be no doubt if a game is won
or not.

8.2. The set of game trees.

Let Game be the game

〈numPlayers, State, s0, ♯, next,

playerInTurn, winning〉

Then the functions♯ andnext define a graph, namely

g0 ≡ λs. 〈♯(s), λi. next(s, i)〉

This is the graph which defines the rules of the game in
the sense that the neighbors of any nodes in the graph are
exactly all possible states immediately followings in the
game. In section 7.4 we saw how to associate a tree with
a graph: the setExpandedT ree(State, g0, s0) contains at
most one element, i.e. the game tree associated withGame.
This is a tree with a game state in each node and the ini-
tial states0 in the root. Furthermore, for each nodes in the
tree, thei-th child of s is the resulting state after choosing
the i-th alternative move froms. We saw also (cfr. the-
orem 7.4) that if there is a game tree, it can be written as
(expand(g0))

m(leaf(s0)) for somem ∈ N .

8.3. Some general game problems

Given a game there are many different questions we
could ask. For instance, let us consider the following ones:

1. Is it possible for thek-th player to win the game?

2. Is there a winning strategy for thek-th player?

3. Lets be a situation. Give me the list of all the winning
moves for thek-th player.

It should be clear that all these questions can be formal-
ized by using the setExpandedT ree(State, g0, s0).

As a first example, let us consider the question: “Is it pos-
sible for thek-th player to win the game?” We have to find
a boolean function which associates to thek-th playertrue

if and only if there exists the game tree and it has a node la-
beled with a state which is winning for thek-th player. The
problem can be expressed by the following type:

(∀k < numPlayers) {x ∈ Bool| (x = true) ↔
(∃g ∈ ExpandedT ree(State, g0, s0))

HasWinning(g, k)}

where

HasWinning(g, k) ≡
(∃a ∈ State) (a InTree g) & (winning(a, k) = true).

To solve the second problem we have to find a boolean
function which associates to thek-th playertrue if and only
if there exists the game tree and it is winning for thek-th
player. A game tree is winning for the playerk if:

1. k is in turn

• and the situation of the game is winning fork or

• there exists a move fork to a tree that is winning
for k

2. k is not in turn

• and the situation of the game is winning fork or

• the situation is not terminal and every move that
the player in turn can do turns out in a game tree
that is winning fork.

Then the recursive equation defining the proposition

IsWinningT ree(t, k) [t : Tree(State), k < numPlayers]

is:

IsWinningT ree(sup(〈a, n〉, f), k) =
if (playerInTurn(a) = k)
then(winning(a, k) = true) ∨

(∃i < n) IsWinningT ree(f(i), k))
else(winning(a, k) = true) ∨

((n 6= 0) & (∀i < n) IsWinningT ree(f(i), k))

This recursive equation can be solved in type theory by
a standard technique; then the second problem can be ex-
pressed as:

(∀k < numPlayers) {x ∈ Bool| (x = true) ↔
(∃t ∈ ExpandedT ree(State, g0, s0))

IsWinningT ree(t, k)}

To solve the problem “Give me the list of all the winning
moves for thek-th player in a situations” we have to find
a function which associates to a playerk and a states the
sequence of the winning moves for thek-th player from the
states. This is an elementw of Seq(N<(♯s)) which satisfies
the condition:

(∃t ∈ ExpandedT ree(State, g0, s))(∀i < ♯s)
(i InSeq w) ↔ IsWinningT ree(subtree(t, i), k)

Thus the problem is expressed by the type:

(∀k < numPlayers)(∀s ∈ State) {w ∈ Seq(N<(♯s))|
(∃t ∈ ExpandedT ree(State, g0, s)) (∀i < ♯s)
(i InSeq w) ↔ IsWinningT ree(subtree(t, i), k)}

8.4. Some general solutions

We can observe that in the types expressing the three con-
sidered problems there is always a construction of the form:

(∃t ∈ ExpandedT ree(State, g0, s0)) Q(t)

for a suitable propositionQ(t).
A consequence of theorem 7.4 is that

(∃t ∈ ExpandedT ree(State, g0, s0)) Q(t) ↔
(∃m ∈ N)
(expand(g0))

m+1(leaf(s0)) = (expand(g0))
m(leaf(s0))

& Q((expand(g0))
m(leaf(s0)))

Hence whenevert ≡ (expand(g0))
m(leaf(s0)) we can

give equivalent formalizations of the problems in the previ-
ous section.

1.
(∀k < numPlayers)
{x ∈ Bool| (x = true) ↔ HasWinning(t, k)}

2.
(∀k < numPlayers)
{x ∈ Bool| (x = true) ↔ IsWinningT ree(t, k)}

3.
(∀k < numPlayers)(∀s ∈ State)
{w ∈ Seq(N<(♯s))| (∀i < ♯s) (i InSeq w) ↔

IsWinningT ree(subtree(t, i), k)}

A general solution of problem (1) is then given by the
function

λk. find((expand(g0))
m(leaf(s0)), (s) winning(s, k))

since we proved (see theorem 7.2) that

find(t, p) ∈ {x ∈ Bool| (x = true) ↔
(∃a ∈ State) (a InTree g) & (p(a) = true)}

For problem (2) we can easily find a function

winningT ree(t, k) ∈ Bool

[t : Tree(State), k < numPlayers]

satisfying the condition:

(winningT ree(t, k) =Bool true) ↔
IsWinningT ree(t, k).

Its recursive definition mimics the definition of the type
IsWinningT reeand can be solved in a similar way. Hence

λk. winningT ree((expand(g0))
m(leaf(s0)), k)

is a general solution of the problem (2).
Finally, a general solution for the problem (3) is

λk. filter((i)winningT ree(subtree(t, i), k), 〈♯a, λx. x〉)

whose correctness follows from Theorem 7.1.

References

[1] R. Backhouse, P. Chisholm, G. Malcom, and E. Saaman. Do-
it-yourself type theory.Formal Aspect of Computing, 1:19–
84, 1989.

[2] A. Bossi, B. Nordstrom, and S. Valentini. General program
specifications in Martin-Löf’s type theory. Technical Re-
port 7, Dip. Matematica Pura e Applicata, 1988.

[3] A. Bossi and S. Valentini. An intuitionistic theory of types
with assumptions of high-arity variables.Annals of Pure and
Applied Logic, 57:93–149, 1992.

[4] A. Heyting. Intuitionism, an introduction. North-Holland,
Amsterdam, 1956.

[5] W. Howard. The formula-as-types notion of construction. In
R. Hindley and J. Seldin, editors,To H.B. Curry: Essays on
combinatory Logic, Lambda Calculus and Formalism, pages
479–490. Academic Press, London, 1980.

[6] A. Kolmogorov. Zur deutung der intuitionistischen logik.
Mathematische Zeitschrift, 35:58–65, 1932.

[7] P. Martin-Löf. Constructive mathematics and computerpro-
gramming. InLogic, Methodology and Philosophy of Sci-
ence, IV, pages 153–175, Amsterdam, 1982. 6th Interna-
tional Congress, North-Holland.

[8] P. Martin-Löf. Intuitionistic Type Theory, notes by G. Sambin
of a series of lectures given in Padua. Bibliopolis, Naples,
1984.

[9] B. Nordström. Programming in constructive set theory:
some examples. InACM Conference on Functional Pro-
gramming Languages and Computer Architecture, pages
141–153, 1981.

[10] B. Nordström, K. Peterson, and J. Smith.Programming in
Martin-Löf’s Type Theory, An introduction. Clarendon Press,
Oxford, 1990.

[11] K. Peterson and J. Smith. Program derivation in type theory:
a partitioning problem.Comput. Languages, 11 (3/4):161–
172, 1986.

[12] S. Valentini. Another introduction to Martin-Löf’s intuition-
istic type theory. InWorkshop on new Trands in Theoretical
Informatics, pages 107–126. Innsbruck University Publica-
tion, 1996.

