The formal development of non-trivial programs in construdive type theory

Silvio Valentini
Dipartimento di Matematica Pura ed Applicata
Universita di Padova
via G. Belzoni n.7, 1-35131 Padova, Italy
silvio@brouwer.math.unipd.it

Abstract of avoidinglogical errors.
The paper is organized as follows. We first recall some
This paper is intended to show how non-trivial problems basic facts on type theory which can be useful to the reader
can be specified and solved in Martin-Lof’s Type Theory. A which is not familiar with the topics. Many introduction on
particular class of problems is considered which contains the theory can today be found in the literature (see for in-

some game problems. stance [8, 10, 12]) but we think that this introduction isfisuf
cientto make the paper self contained. In section 7, we begin
Mathematics Subject Classification:03B15, 03B20. the description of the types which allow to express the prob-
Keywords: Intuitionistic type theory, Program correct- |ems we are interested in within type theory. First the type
ness, Software engineering. Seq(A), of finite sequences of elements.n and the type
Tree(A), of trees labeled with elements. are presented.
1. Introduction ThenGraph(A), the type of finitary directed graphs, is in-

troduced and it is shown how its elements can be viewed
Since the 70s Martin-Lof has developed, in a number of @S laws for building up finite trees. In section 8 the prob-
successive variants, an Intuitionistic Theory of Typess|7, lems we deal with are defined and their solutions developed.
10] (ITT for short in the following). The initial aim was to 1 hey are problems on “games” and clearly their specifica-
provide a formal system for constructive mathematics but tion strongly depends on how we describe a game. The re-
the relevance of the theory also in computer science wasSults in sections 7 and 8 can be found also in [2] which con-
soon recognized. In fact, from an intuitionistic perspesti tains detailed proofs of the theorems we only state here and
to define a constructive set theory is equivalent to define athe construction of some of the most basic programs.
logical calculus [5] or a language for problem specification
[6]. H_e_nce the tqpic is of immediate rele_/anqe both to math- 2. Judgments and Propositions
ematicians, logicians and computer scientists. Moreover,
since an element of a set can also be seen as a proof of the
corresponding proposition or as a program which solves the In a classical approach to the development of a formal
corresponding problem, ITT is also a functional program- theory one usually takes care to define a formal language
ming language with a very rich type structure and an inte- only to specify the syntax (s)he wants to use while as re-
grated system to derive correct programs from their spec-gard to the intended semantics agriori tie on the used
ification [9, 11]. These pleasant properties of the theory language is required. Here the situation is quite differient
have certainly contributed to the interest for it ariserhiat ~ fact we want to develop eonstructiveset theory and hence
computer science community, especially among those peowe can assume nexternalknowledge on sets; then we do
ple who believe that program correctness is a major concerrnot merely develop a suitable syntax to describe something
in the programming activity [1]. which existssomewhereHence we have “to put our cards
Many are the peculiarities of the theory which justify this 0n the table” at the very beginning of the game and to de-
wide concern. As regards computing science, through veryclare the kind of judgments on sets we are going to express.
powerful type-definitions facilities and the embedded prin Let us show the form of the judgments we are going to
ciple of “propositions as types” it primarily supplies mean use to develop our constructive set theory. The first is
to support the development of proved-correct programs. In-
deed here type checking achieves its very aim, namely that type-ness: A type

which states thatl is a type. The second form of judgment us, by means of some calculations, with a natural number in

is canonical form, i.e3 + 2 = succ(2 + 2); this is the rea-
equal-types: A = B type son why, besides the belong-ness judgment, we also need the
which, provided that! and B are types, states that they are equal-elements judgment. For the type of the natural num-
) : bers we put
equal types. The next form of judgment is
a=beN
belong-ness: a € A 0=0eN

succ(a) = suce(b) € N

which states that is an element of the type and finally Let us consider another example. Suppose thaindB are

types, then we can construct the typex B, which corre-
sponds to the cartesian product of the se&dB, since we

which, provided that andb are elements of the typ4, know what are its canonical elements:
states that andb are equal elements of the type acA beB a=ccA b=decB

(a,b) € Ax B (a,b) = (c,d) e Ax B

equal-elements:a =b € A

3. Different readings of the judgments _ . .
So we explained the meaning of the judgmehtset

but meanwhile we also explained the meaning of two other
forms of judgment.

What is an element of a sef®n element of a setl is a
method which, when executed, yields a canonical element
A type ac A of A as result.

When are two elements equdl®o elements;, b of a set
A are equal if, when executed, they yield equal canonical
elements ofd as results.

A peculiar aspect of a constructive set theory is that we
can give many different readings of the same judgment. Let
us show some of them

Ais a set a is an element ofA
A'is a proposition a is a proof ofA
Alisaproblem «isamethod which solved

The first reading conforms to the definition of a constructive 3.2. On the judgment A prop

set theory. The second one, which links type theory with in-
tuitionistic logic, is due to Heyting [4, 5]: it is based oreth
identification of a proposition with the set of its proofs: Fi
nally the third reading, due to Kolmogorov [6], consists on
the identification of a problem with the set of its solutions.

We can now immediately answer to the questighat is
a proposition?

Since a proposition is identified with the set of its proofs,
in order to answer to this question we have only to repeat for
propositions what we said for sets: a proposition is defined
by laying down what counts as a proof of the proposition.
Thus in the constructive approach to state that an expressio
is a proposition one has to state what (s)he is willing to ac-
cept as one of its proofs. Consider for instance the proposi-
tion A& B: supposingd andB are propositions, theA& B
is a proposition since we can state what is one of its proofs: a
proof of A& B consists of a proof ofl together with a proof
of B, and so we put

3.1. On the judgment A set

Let us explain the meaning of the various forms of judg-
ment; it is convenient to commit to an epistemological ap-
proach.

What is a setA set is defined by prescribing how its el-
ements are formed.

Let us work out an example: the s&f of natural num-

bers. We state that natural numbers form a set since we know acA beB
how to construct its elements. (a,b) € A&B
venN €N and thenA&B = A x B.
succ(a) € N

i.e. 0 is a natural number and the successor of any naturai4. Hypothetical judgments
number is a natural number.

Of course in this way we only construct tbenonicalel- So far we have explained the basic ideas of ITT; now we
ements of the set of the natural numbers and we say nothingvant to introduce a formal system to treat with types. To
on elements lik& + 2. We can recognize also this element this aim we need the notion bi/pothetical judgment hy-
as a natural number if we understand that the operatien pothetical judgment is a judgment expressed under assump-
justamethod such that, given two natural numbers, providestions. Let us explain what an assumption is; here we only

give some basic ideas while a formal approach can be foundwhich state that the canonical elements of the cartesiai: pro
in [3]. Let A be a type; then the assumption: A means uct A x B are the couples whose first element isdirand
both that the variable has typeA and thatz is a hypothet- second element is ifs.

ical proof of A. Elimination How to define functions on the elements of
The previous is just the simplest form of assumption, but the type defined by the introduction rules.

we will also usey : (x : A) B which means thay is a Example:

function which maps an elemeat € A into the element

y(a) € B. ce Ax B d(x,y) € C({z,y)) [x: Ay : B]
Now supposéd type; then the fact thaB is a proposi- split(c,d) € C(c)

tional function on elements oA can be stated by asserting

the hypothetical judgmerit (z) prop [x : A] provided that Equality. How to compute the function defined by the

we know what it counts as a proof &(a) for any element glimination rule.

a € A. Forinstancer # 0 — (2 x z = 3) prop [z : N]is Example:

a hypothetical judgment whose meaning is straightforward.
The previous is just the simplest form of hypothetical a€A beB dxy) €Clx,y))|r:Ay: B

judgment. In general, supposing split({a, b),d) = d(a,b) € C((a, b))
Ay type which states that to evaluate the functigiit(c, d), defined
Az (1) type [21: Ai] by the elimination rule, one has first to evaluata order to
: obtain a canonical elemeft, b) € A x B and then to use
Ap(x1, ..o Tpe) type [w1 2 A1, oo Tp1 : Ap—a) the method! : (z : A)(y : B) C({(z,y)), provided by the
second premise of the elimination rule, to obtain the value
we obtain the hypothetical judgment d(a,b) € C((a,b)).
The same approach can be used to obtain the rules for a
Jley s Ay oo Ap(wn, oo 20 1)] type which is not dogical proposition. Let us consider the
case of the typgV..
where J is any one of the four forms of judgment we have Formation
considered. N set
5. The logic of types Introduction
aeN
We can now describe the full set of rules needed to de- 0eN W
scribe one type. We will consider four kinds of rules: the
first rule states the conditions requiredidom the type, the Elimination

second onéntroducesthe canonical elements of the type,
the third rule explains how to use, and heertieninate the ceN deC(0) e(z,y) e C(succ(z))z : N,y : C(z)]
elements of the type and the last one howamputeusing Nyee(e,d,e) € C(c)
the elements of the type. For each kind of rules we will first
give an abstract explanation and then we will show the ac- Equality.
tual rules for the cartesian product of two types.
Formation How to form a new type and when two types deC(0) e(x,y) e C(succ(x)) [x: N,y : C(z)]
constructed in this way are equal. Nyee(0,d,e) = d € C(0)
Example: aeN deC(0) e(z y) € C(succ(z))[z : N,y : C(x))
Nyee(suce(a),d, e) = e(a, Nyec(a, d, e)) € C(succ(a))

Atype Bilype A=C B=D
A x B type AxB=CxD

We can also consider a new kind of rules which makes ex-

Introduction What are the canonical elements of the type plicit the computation process which is only implicit in the

and when two canonical elements are equal. equality rule.-
. Computation
Example:
wed beB a—ceA b—deB c=0 d=yg ez succla) o Nolo,de)) = g

(a,b) e AxB (a,b)=(c,d) e Ax B Nrec(c,d,e) = g Nrec(c,d,e) = g

5.1. A very simple program: the sum the trees whose nodes are labeled with elemenfsype A
and whose branching width is determinedBiu).
We can develop programs on natural numbers. For in- Formation
stance, letr, y € N, then the sum of andy is defined by

means of the following deduction: Atype B(z) type [v: 4]

W (A, B) type
[v: N1 .
2N yeN m Introduction
T+ Y = Npee(,y, (u,v) succ(v)) e N 1 a€A bly) e W(A,B) [y: B(a)]

o : . sup(a,b) € W(A, B)
This simple example suggests that ITT is a functional

programming language with a strong typing system. The justification of the introduction rule is that the elermen
In general, the recursive equations with unknagfwvn sup(a,b) € W(A, B) is a node which has the labele A
and a branch which arrives at the tigg) € W (A4, B) in
{ f0)=keA correspondence with each element B(a).
f(succ(x)) = g(z, f(x)) € A As above, the elimination rule is completely determined

is solved in ITT byf(x) = Nyee(z, k, (u,v) g(u,v)) and, by the introduction rule.

supposing: : N, k : Aandg : (u: N)(v : A) 4, itis Elimination
possible to prove thaVe.(n, k, (u, v) g(u, v)) € 4. [w: Aw: (y: B)W(A,B), = : (y: B@)Clwy))
6. Other basic types ceW(A,B) e(z,w,z2) € :c(sup(xjw))

Trec(c,e) € C(e)
Following the pattern we used in the previous section we
can define many other types. For instance, consider the type; New types for new problems
A — B of the functions fromA to B. Its formation rules

are: : . -
Atype B type A=—C B=0D In this section we will introduce some general types we

A = B type A-B=C—=D will use in the next of the paper. Let us recall that, given

) . a € N, the typeN (a) is the type of all the natural numbers
The canonical elements of the tyde— B are the functions |oss tharu such that\'- (0) = 0.

A(b) such thab(z) € B [z : A]; thus we put
b(z) € Bz : A b(z) =d(z) € B[z : A] 7.1. The set Seq(A)
Ab)e A—B Ab)=Xd)e A—B

Instead of introducing the type of the lists dndirectly

The elimination rule is now determined; it states that the We will implement them as pairs since this approach makes

troduction rule(s). Thus, besides the premise 4 — lengthn € A/ of the list and the second a function mapping
B, we have to consider only another premise, iléy) € an element € N (n) to thei-th element of the list. Thus,
C(A\(y)) [y : (z : A) B] which shows how to obtain a proof ~We put

of C(A\(y)) starting from a generic assumptions for the in- Seq(A) = (Fzr e N) N (z) — A

troduction rule. and, supposing € A ands € Seq(A), we make the fol-

ceA—-B dy)eC\y)[y: (z:A) B] lowing definitions:
funsplit(c,d) € C(c)

nil = (0,empty)
In the following it will be handy t lso the derived @ ®5 = (succ(fst(s)),
ru|en e following it will be handy to use also the derive Ne.if 2 <X fst(s) thensnd(s)[z] elsea)
ceA—-B a€eA) _
cla] = apply(c,a) € B which suggest that, suppositoz) prop [z : Seq(A)],d €
o . C(nil) ande(z,y,z) € C(z oy) [x : Ay : Seq(A4),z :
to mean the application of the functierno the element C(y)),

whereapply(c, a) = funsplit(c, (y) y(a)).
In an analogous way we can introduce a new type which 1, (s, d,e) =

will play a main role in the following: the typ#/ (A, B) of split(s, (n, f) Nyee(n, d, (u,v) e(f[u], (u, f),v)))

is a correct proof-method to find a proof©f’s).
We will use the abbreviations

fs fst(s)
s{i} snd(s)]i]

If a € Aands € Seq(A) then the proposition InSeq s
holds if and only ifa is an element of the sequenceThen
the following equations have to hold

for the length ofs and
for thei-th element ofs

1
(a=2b)Vv

a InSeq nil
aInSeqbet

(a InSeqt)
and their solution is
aInSeqs = Lye(s, L, (z,y,2) (a="2) V 2)

To filter out, from a given sequence all the elements
which do not satisfy a given conditiof(x) € Bool [z : A]
we define the function

filter(f,s) € Seq(A) [f : (z

the recursive equations for the functigiiter are

{ filter(f,nil) = nil

: A) Bool, s : Seq(A)];

filter(f,aes) =
if f(a)thena e filter(f,s) elsefilter(f,s)

and they can be solved by making the explicit definition

filter(f,s) =
Lyec(s,nil, (z,y,2) If f(x)thenz e 2 elsez)

Theorem7.11fa € A, s € Seq(A), f(z) € Bool [z : 4],
then the proposition InSeq filter(f, s) is true if and only
if (f(a) =B true) and(a InSeq s).

7.2. The set Tree(A)

The setT'ree(A) is the set of all finite trees whose nodes

are labeled with elements in the sét As we already said,

the well-ordering type has labeled trees of finite depth-as e
ements, so to obtain finite trees we have only to add the con-
strain that any node has afinite set of predecessors. We mak

the following definition
Tree(A) = W(A X N, (x) N<(snd(z)))

and thusT'ree(A) is the set of finitely branched trees with
nodes of the fornja, n) wherea is an element ird andn is

Lett € Tree(A); then the root of the treeand itsi-th
subtree are defined by

root(t)

Tree(t, (z,y, 2) x)
subtree(t,1) t

Trec(t: (z,y,2) y(i))

A useful function on trees is the function

travel(t) € Seq(A) [t : Tree(A)]

which associates to a given trethe sequence of all the la-
bels present in. It follows the recursive equations

travel(sup({a,n), f)) = a e append(n, (i) travel(f(3)))
where the function
append(n, f) € Seq(A) [n: N, f: (i : N<(n)) Seq(A)]

associates te sequences orl the sequence obtained by
appending them. Hence, supposiagpend2(si, s2) €
Seq(A) [s1,s2 : Seq(A)] is the standard function to append
two sequences, we put

append(n, f) = Nyee(n, nil, (z,y) append2(f(z),y))
travel(w) =

Trec(w, (x,y,2) fst(z) e append(snd(x), z))

Supposinge € A andt € Tree(A), we can use the
propositionu InSeq s to define the proposition InTree t
that holds if and only if: is the label of a node in

a InTreet = a InSeq travel(t)

Suppose now that(z) € Bool [z : A] is a boolean func-
tion, and that we are interested to know if in the finite tree
there is a node, whose labekissuch thab(a) =5°! true.
The recursive equation for a solution of this problem is

(find(sup((a,n), h a)) v \/(n, (4),0))

where the value of the functiofi(n, f) € Bool [n: N, f :
(i : N<(n)) Bool] is the disjunction of» elements. The

i) find(h

| solution of the previous equation is

b(fst(x \/\/ (snd(x

Theorem 7.21If t € Tree(A) andb(x) € Bool [z : Al
then the propositiotifind(t, b) =5°° true) is true if and
only if 3z € A) (f(x) =8 true) & (z InTreet).

a(ah Y,z

rec(

Lind(w,b) =

7.3. Expanding a finite tree

the number of immediate successors. For instance, the sin-

gleton tree with only one node labeled by € A, can be
defined as

leaf(ao) = sup({ao, 0), empty).

Let preds € A — Seq(A) andt € Tree(A). We
want to define a functioazpand(preds, t) whose value is
the treet expanded in all leavegsa f (a), such that the sub-
trees ofu are all singleton trees with nodes whose labels are

taken from the sequengeeds|a]. For instance, ipreds €
N — Seq(N) maps) to the sequencke 2 enil, 1 to the se-
quencé)enil and2 to the sequenceil, and ift € Tree(N)
is the tree

sup({0, 3), Az. leaf(x))

thenexpand(preds, t) will be the tree

-

0
/N I
1 2 0

0
|
1

\2

The following recursive equations holds for the function
expand

expand(preds, sup({(a,0), f)) =
sup({a, fpredsal), (i) leaf(preds[al{i}))
expand(preds, sup({a, succ(n)), f)) =
sup({a, succ(n)), (i) expand(preds, f(i)))

This equations can be solved in type theory by

expand(preds,t) =
Treelt, (z,y,2) if snd(z) ~N 0

thensup({fst(x), fpreds[fst(x)]),
(i) leaf (preds(fst(z)|{i}))

elsesup(x, z))
7.4. Finitary Graphs

We will identify a finitary graph ond with a function

which maps an element to its neighbors:
Graph(A) = A — Seq(A)

Atreet is expanded with respect to a grapif the chil-
dren of any node in the tree are exactly the neighbors of
the node in the graph, i.e. the following equality holds for
the predicat&xpanded:

Expanded(g, sup({a,n), f)) = (tgla] =V n) &
(Vi <n) ((glal{i} =" root(f(i))) & Expanded(g, f(i)))

This equation can be solved by transfinite recursion. The
following set will be useful:

ExpandedTree(A, g,a) =
{t € Tree(A)| Expanded(g,t) & root(t) =4 a}
i.e. the set of all the expanded trees with labelliand root
a. The first observation is that there is at most one element
in ExpandedTree(A, g, a).

Theorem 7.3 If Ais a set,g € Graph(A), a € Athen
there is at most one elementiwpandedTree(A, g,a) .

Note that if for somen € N

(expand(g))™ (leaf(a)) = (expand(g))"*" (leaf(a))

then (expand(g))™(leaf(a))
ExpandedTree(A, g, a).

Indeed, itis possible to show that the existence of such an
mis also a necessary condition Bt:pandedTree(A, g, a)
being inhabited.

is the *“only” tree in

Theorem 7.4 If Aisaseta € A, g € Graph(A) then

(Vt € ExpandedTree(A, g,a))(3k € N)
t =Tl (expand(g))* (leaf(root(t))))

8. Games and Games trees

8.1. Game description

When we want to explain a game to somebody we often
start by describing the states of the game. Then we describe
the moves of the game, i.e. we describe all the different
ways a game can continue from one state to the next. Finally
we describe the initial state and how to recognize a winning
state. If there is only one player that is all, if there are two
or more players let us think that the information about who
is the player in turn is part of the state of the game and that,
for each player, we can explain if a state is winning for him
or not. We will consider games which are characterized by
the following entities:

numPlayers, State, sg, §, next
y))) 3
playerInTurn, winning)

where

the number of players;
the set of states of

numPlayers € N

State set)
the game;
so € State the initial state;
i(s) e N the number of alternati-
[s: State] ve moves in the state
next(s,i) € State the state after making
[s : State, thei-th alternative
it Ne(8(s))] move in the state;
winning(s, k) € Bool iS.true i.f th.e state
[s : State, s is a winning state

k : N<(numPlayers)]

for the k-th player,
false otherwise;

playerInTurn(s) the number of the next
€ N<(numPlayers) player to make a move
[s : State] in the states.

The course of a game starts in an initial stagelt pro- It should be clear that all these questions can be formal-
ceeds by moving from one state to the next according to theized by using the séfzpandedTree(State, go, o).
rules of the game. The state of the game is an instantaneous As afirst example, let us consider the question: “Is it pos-
description of the game. In choosing this way of character- sible for thek-th player to win the game?” We have to find
izing a game, we have made the following restrictions: a boolean function which associates to thth playertrue
if and only if there exists the game tree and it has a node la-
beled with a state which is winning for tiieth player. The
problem can be expressed by the following type:

1. The number of alternative moves in a certain stdte
always finite and it can be computed from

2. All possible next states can be computed from the cur-

rent state. (Vk < numPlayers) {x € Bool| (x = true) <

(39 € ExpandedTree(State, go, s0))
3. ltis decidable if a state is winning for a player or not. HasWinning(g, k)}

The reasons for choosing the first two restrictions is that where
we want to have a general algorithm which decides if it is
possible to reach a winning position or not. The third re-
striction is not a severe restriction; it is just a concretgyw
of expressing that there should be no doubt if a game is won
or not.

HasWinning(g, k) =
(Ja € State) (a InTree g) & (winning(a, k) = true).

To solve the second problem we have to find a boolean
function which associates to theth playertrue if and only
if there exists the game tree and it is winning for #hh

8.2. The set of game trees. player. A game tree is winning for the playeif:

Let Game be the game 1. kisinturn
(numPlayers, State, so, i, next, e and the situation of the game is winning foor
playerInTurn, winning) o there exists a move fdrto a tree that is winning
for k

Then the function$ andnext define a graph, namely

2. kisnotin turn
go = As. (#(s), Ai. next(s, 7))

e and the situation of the game is winning foor

This is the graph which defines the rules of the game in
the sense that the neighbors of any nede the graph are
exactly all possible states immediately followingn the
game. In section 7.4 we saw how to associate a tree with
a graph: the seExpandedTree(State, go, sg) contains at
most one element, i.e. the game tree associatedWithe.
This is a tree with a game state in each node and the ini-7 s\ inningTree(t, k) [t : Tree(State), k < numPlayers]
tial statesq in the root. Furthermore, for each nogln the
tree, thei-th child of s is the resulting state after choosing is:
the i-th alternative move from. We saw also (cfr. the-
orem 7.4) that if there is a game tree, it can be written as {sWinningTree(sup((a,n), f), k) =
(expand(go))™(leaf(so)) for somem € N. it (playerInTurn(a) = k)
then(winning(a, k) = true) Vv

(Fi < n) IsWinningTree(f (i), k))
else(winning(a, k) = true) vV

((n #£0) & (Vi < n) IsWinningTree(f(i),k))

o the situation is not terminal and every move that
the player in turn can do turns out in a game tree
that is winning fork.

Then the recursive equation defining the proposition

8.3. Some general game problems

Given a game there are many different questions we

could ask. For instance, let us consider the following ones: 1is recursive equation can be solved in type theory by
1. Is it possible for thé-th player to win the game? a standard technique; then the second problem can be ex-
pressed as:

2. Is there a winning strategy for tlketh player?
(Vk < numPlayers) {x € Bool| (z = true) <
3. Lets be a situation. Give me the list of all the winning (3t € ExpandedTree(State, go, so))

moves for the:-th player. IsWinningTree(t, k)}

To solve the problem “Give me the list of all the winning
moves for thek-th player in a situatios” we have to find
a function which associates to a playeand a state the
sequence of the winning moves for theh player from the
states. Thisis an element of Seq(N< (fs)) which satisfies
the condition:

(3t € ExpandedT'ree(State, go, s))(Vi < £s)
(i InSeq w) « IsWinningTree(subtree(t,i), k)

Thus the problem is expressed by the type:

(Vk < numPlayers)(Vs € State) {w € Seq(N<(#s))]
(3t € ExpandedTree(State, go, s)) (Vi < ts)
(i InSeq w) « IsWinningTree(subtree(t,i),k)}

8.4. Some general solutions

satisfying the condition:

(winningTree(t, k) =B true) «
IsWinningTree(t, k).

Its recursive definition mimics the definition of the type
1sWinningTree and can be solvedin a similar way. Hence

M. winningTree((expand(go))™ (leaf (s0)), k)

is a general solution of the problem (2).
Finally, a general solution for the problem (3) is

k), (fa, Ax. x))

whose correctness follows from Theorem 7.1.

k. filter((i) winningTree(subtree(t,),

References

We can observe thatin the types expressing the three con-

sidered problems there is always a construction of the form:

(3t € ExpandedT'ree(State, go, o)) Q(t)

for a suitable propositio)(t).
A consequence of theorem 7.4 is that

(3t € ExpandedT'ree(State, go, so)) Q(t) <

(Im e N)

(el’pand(go))m“(leaf(So)) = (expand(go))™ (leaf(so))
& Q((expand(go))™(leaf(so)))

Hence whenevet (expand(go))™(leaf(so)) we can
give equivalent formalizations of the problems in the previ
ous section.

(Vk < numPlayers)

L {z € Bool| (x = true) < HasWinning(t, k)}
5 (Vk < numPlayers)
" {xz € Bool| (z = true) « [sWinningTree(t, k)}
(Vk < numPlayers)(Vs € State)
3. {w e Seq(Nc<(ts))| (Vi < ts) (i InSeqw) «

IsWinningTree(subtree(t, 1), k)}

A general solution of problem (1) is then given by the
function

M. find((expand(go))™ (leaf(so)), (s) winning(s, k))
since we proved (see theorem 7.2) that

find(t,p) € {x € Bool| (x = true) <
(Ja € State) (a InTree g) & (p(a) = true)}
For problem (2) we can easily find a function

winningTree(t, k) € Bool
[t : Tree(State), k < numPlayers]

[1] R.Backhouse, P.Chisholm, G. Malcom, and E. Saaman. Do-
it-yourself type theoryFormal Aspect of Computing.:19—
84, 1989.

[2] A.Bossi, B. Nordstrom, and S. Valentini. General pragra
specifications in Martin-Ldf’s type theory. Technical Re-
port 7, Dip. Matematica Pura e Applicata, 1988.

[3] A. Bossiand S. Valentini. An intuitionistic theory ofpes
with assumptions of high-arity variable&nnals of Pure and
Applied Logic¢ 57:93-149, 1992.

[4] A. Heyting. Intuitionism, an introduction North-Holland,

Amsterdam, 1956.

W. Howard. The formula-as-types notion of constructitm

R. Hindley and J. Seldin, editor§p H.B. Curry: Essays on

combinatory Logic, Lambda Calculus and Formaljgrages

479-490. Academic Press, London, 1980.

A. Kolmogorov. Zur deutung der intuitionistischen l&gi

Mathematische Zeitschrjf85:58—65, 1932.

P. Martin-Lof. Constructive mathematics and compuyoer-

gramming. InLogic, Methodology and Philosophy of Sci-

ence, IV pages 153-175, Amsterdam, 1982. 6th Interna-
tional Congress, North-Holland.

P. Martin-Lof. Intuitionistic Type Theory, notes by G. Sambin

of a series of lectures given in Padu8ibliopolis, Naples,

1984.

B. Nordstrom. Programming in constructive set theory:

some examples. IACM Conference on Functional Pro-

gramming Languages and Computer Architectupages

141-153, 1981.

B. Nordstrom, K. Peterson, and J. SmitRrogramming in

Martin-Lof's Type Theory, An introductioi€larendon Press,

Oxford, 1990.

K. Peterson and J. Smith. Program derivation in typejre

a partitioning problem.Comput. Languagedl (3/4):161—

172, 1986.

S. Valentini. Another introduction to Martin-Lof'situition-

istic type theory. InNWorkshop on new Trands in Theoretical

Informatics pages 107-126. Innsbruck University Publica-

tion, 1996.

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

