
Decidability in Intuitionistic Type Theory is

functionally decidable

Silvio Valentini

Dipartimento di Matematica Pura ed Applicata

Università di Padova

via G. Belzoni n.7, I–35131 Padova, Italy

e-mail: valentini@pdmat1.math.unipad.it

September 24, 1996

Abstract

In this paper we show that the usual intuitionistic characterization of
the decidability of the propositional function B(x) prop [x : A], i.e. to
require that the predicate (∀x ∈ A) B(x)∨¬B(x) is provable, is equivalent,
when working within the framework of Martin-Löf’s Intuitionistic Type
Theory, to require that there exists a decision function φ : A → Boole such
that (∀x ∈ A) (φ(x) =Boole true) ↔ B(x). Since we will also show that
the proposition x =Boole true [x : Boole] is decidable, we can alternatively
say that the main result of this paper is a proof that the decidability of the
predicate B(x) prop [x : A] can be effectively reduced by a function φ ∈

A → Boole to the decidability of the predicate φ(x) =Boole true [x : A].
All the proofs are carried out within the Intuitionistic Type Theory and
hence the decision function φ, together with a proof of its correctness, is
effectively constructed as a function of the proof of (∀x ∈ A) B(x)∨¬B(x).

1 The basic lemmas

The aim of this paper is to show that the usual intuitionistic characterization of
the decidability of the propositional function B(x) prop [x : A], i.e. to require
that the predicate (∀x ∈ A) B(x) ∨ ¬B(x) is provable, is equivalent, when
working within Martin-Löf’s Intuitionistic Type Theory (ITT in the following),
to require that there exists a decision function φ : A → Boole such that (∀x ∈

A) (φ(x) =Boole true) ↔ B(x).
This result may not be completely new (for instance in a personal commu-

nication Martin-Löf said that he already knew it) but since, to my knowledge,
there is no published material on this topic this note may be useful to a wider
audience. In fact, apart from its intrinsical relevance, this result is also a good
exercise in ITT since in order to be able to obtain its proof one has to use some
of the most interesting properties of ITT. In this paragraph we will recall these

1

properties, and their proofs, to the reader who is not familiar with ITT, but to
avoid to bore the reader who is familiar with ITT we will not recall all the basic
definitions which can be found in [ML84] or [NPS90].

Since in most of the results the type Boole plays a central role, let us begin
by recalling some of its properties. First of all recall that the canonical elements
of the type Boole are true and false and that, supposing C(x) prop [x : Boole],
the Boole-elimination rule allows you to obtain if c then d else e ∈ C(c)
provided that c ∈ Boole, d ∈ C(true) and e ∈ C(false).

Lemma 1.1 Let P (x) prop [x : Boole] and c ∈ Boole; then

P (c) → P (true) ∨ P (false)

Proof. The proof is just an application of the Boole-elimination rule. In fact if
c ∈ Boole then if c then λx.inl(x) else λy.inr(y) ∈ P (c) → P (true)∨P (false)
since λx.inl(x) ∈ P (true) → P (true) ∨ P (false) and λy.inr(y) ∈ P (false) →
P (true) ∨ P (false).

Let us recall that, supposing c, d ∈ Boole, by c =Boole d we mean the
Equality proposition for elements of Boole whose main properties are that

• if c = d ∈ Boole then c =Boole d is true,

• if c =Boole d is true and A(x) prop [x : Boole] is a proposition on elements
of Boole such that a ∈ A(c) then move(c, a) ∈ A(d),

• if c =Boole d is true, a(x) ∈ A [x : Boole] and y =A z prop [y, z : A] is
the Equality proposition for elements of the type A then a(c) =A a(d) is
true.

Hence the following corollary is immediate.

Corollary 1.2 Let c ∈ Boole; then (c =Boole true) ∨ (c =Boole false).

Proof. Suppose P (x) ≡ c =Boole x [x : Boole], then the previous lemma shows
that (c =Boole c) → (c =Boole true) ∨ (c =Boole false). Now the statement is
obvious since c =Boole c is straightforward.

We have then proved that in Boole there are at most two elements; by means
of the universe of the small types U0, whose elements are (the codes of) the basic
types, we can show that in Boole there are exactly two elements. To obtain this
result it is convenient to use the Equality proposition A =U0

B prop [A, B : U0]
for elements of the type U0. Besides the properties analogous to those above for
the Equality proposition for the elements of the type Boole, in this case one
can also prove that if A =U0

B is true and a ∈ A then shift(a) ∈ B.

Lemma 1.3 ¬(true =Boole false)

2

Proof. Assume that y : Boole. Then a Boole-elimination can be used to shows
that if y then ⊤ else ⊥ ∈ U0, where ⊤ is the one-element type and ⊥ is the
empty type. Let us now assume that x : true =Boole false, i.e. let us assume
that true =Boole false is true. Then we obtain that if true then ⊤ else ⊥ =U0

if false then ⊤ else ⊥ and hence ⊤ =U0
⊥ since the Equality proposition is

transitive and ⊤ =U0
if true then ⊤ else ⊥ and if false then ⊤ else ⊥ =U0

⊥

hold; hence, supposing ∗ is the only element of the type ⊤, shift(∗) ∈ ⊥, i.e.
we have found an element in the empty type; so, by discharging the assumption
x : true =Boole false, we finally obtain λx. shift(∗) ∈ ¬(true =Boole false).

We showed a full detailed proof of this lemma to stress the fact that it is
completely carried out within ITT with the universe U0 of the small types.

Using lemma 1.3 and a little of intuitionistic logic one can prove the following
not very surprising result.

Lemma 1.4 (c =Boole false) if and only if ¬(c =Boole true).

Even if the previous lemma is straightforward when we combine it with
1.2 we obtain an interesting result: the predicate x =Boole true [x : Boole] is
decidable.

Corollary 1.5 For all c ∈ Boole, (c =Boole true) ∨ ¬(c =Boole true).

There is another property that we need to recall because of its relevance in
the following: thanks to the constructive meaning of the logical connectives a
sort of Axiom of Choice holds in ITT (here we show a statement which is not
the strongest one that can be proved but it is sufficient for us).

Lemma 1.6 Let A, B be two types and C(x, y) prop [x : A, y : B]; then

((∀x ∈ A)(∃y ∈ B) C(x, y)) → ((∃f ∈ A → B)(∀x ∈ A) C(x, f(x)))

Proof. A complete proof can be found in [ML84] where a choice function
f ∈ A → B is constructed together with a formal proof that for any x ∈ A,
C(x, f(x)) holds; anyhow the basic intuition to obtain the proof is rather simple:
suppose h is (the code for) a proof of (∀x ∈ A)(∃y ∈ B) C(x, y) then, for any
x ∈ A, (the value of) h(x) is a couple whose first element p(h(x)) belongs to B

while the second element is a proof of C(x, p(h(x))); the choice function is then
λx.p(h(x)) ∈ A → B.

Also in this case we want to observe that the proof explicitly shows how
to construct a choice function in A → B provided that we have a proof of
(∀x ∈ A)(∃y ∈ B) C(x, y).

2 The main result

This paragraph is completely devoted to the proof of the following theorem.

3

Theorem 2.1 Let B(x) prop [x : A]; then the following statements are equiva-
lent:

(1) There exists a decision function φ : A → Boole such that, for all x ∈ A,
φ(x) =Boole true if and only if B(x) is true.

(2) for all x ∈ A, B(x) ∨ ¬B(x).

We can straight away prove that (1) implies (2). In fact, let us suppose
that φ : A → Boole is a decision function for the proposition B(x) prop [x :
A] and let us assume that x ∈ A. Then, because of corollary 1.5, we know
that (φ(x) =Boole true) ∨ ¬(φ(x) =Boole true) and hence we can conclude
B(x) ∨ ¬B(x) by ∨-elimination. In fact φ(x) =Boole true immediately implies
that B(x) is true, and hence that B(x) ∨ ¬B(x) is true, since φ is a decision
function. On the other hand the same conclusion can be obtained from the
assumption ¬(φ(x) =Boole true) by using the following derivation which again
makes use of the fact that φ is a decision function:

[B(x)]1

φ(x) =Boole true ¬(φ(x) =Boole true)

⊥

¬B(x)
1

B(x) ∨ ¬B(x)

Let us now show that (2) implies (1); we do not only have to provide a
function φ : A → Boole, which would be easy, but we have also to show that it
is a decision function. This is the reason why we need some preliminary lemmas.

Lemma 2.2 Let B(x) prop [x : A]; then

(∀x ∈ A) B(x) ∨ ¬B(x) →
(∀x ∈ A)(∃y ∈ Boole)
(y =Boole true → B(x)) & (y =Boole false → ¬B(x))

Proof. The proof is just an application of ∨-elimination. In fact let us suppose
that (∀x ∈ A) B(x) ∨ ¬B(x) and assume that x ∈ A, then we have to show
(∃y ∈ Boole) (y =Boole true → B(x)) & (y =Boole false → ¬B(x)) from
B(x) ∨ ¬B(x) and hence all we need are the following deductions:

B(x)

true =Boole true → B(x)

¬(true =Boole false)

true =Boole false → ¬B(x)

(true =Boole true → B(x)) & (true =Boole false → ¬B(x))

(∃y ∈ Boole) (y =Boole true → B(x)) & (y =Boole false → ¬B(x))

and

¬(false =Boole true)

false =Boole true → B(x)

¬B(x)

false =Boole false → ¬B(x)

(false =Boole true → B(x)) & (false =Boole false → ¬B(x))

(∃y ∈ Boole) (y =Boole true → B(x)) & (y =Boole false → ¬B(x))

4

Thanks to lemma 2.2, we are in the position to take advantage of the axiom
of choice in order to obtain the following corollary.

Corollary 2.3 Let B(x) prop [x : A]; then

(∀x ∈ A) B(x) ∨ ¬B(x) →
(∃φ ∈ A → Boole)(∀x ∈ A)
(φ(x) =Boole true → B(x))&(φ(x) =Boole false → ¬B(x))

Hence we have obtained the proof of the main theorem; in fact this corollary
shows that if we have a proof of (∀x ∈ A) B(x) ∨ ¬B(x) then both

(†) there exists a function φ : A → Boole, and since all the proofs were
developed within ITT we can effectively construct it, and

(‡) such a function is a decision function for B(x); in fact if φ(x) =Boole true

then B(x) is true and, on the other hand, if B(x) is true we can use the following
derivation to show that φ(x) =Boole true:

φ(x) =Boole true ∨ φ(x) =Boole false

[φ(x) =Boole false]1 φ(x) =Boole false → ¬B(x)

¬B(x) B(x)

⊥

¬(φ(x) =Boole false)
1

φ(x) =Boole true

We can save a curious reader the trouble of doing some work if we say that,
supposing h ∈ (∀x ∈ A) B(x) ∨ ¬B(x), the decision function which we obtain
(after some unessential simplification) is

φ ≡ λx. p(D(h(x),
(z) < true, < λw. z, λu. R0(shift(∗)) >>,

(z) < false, < λu. R0(shift(∗)), λw. z >>)).

We can simplify it by far if we disregard all the parts which do not have
a computational content and which appear in φ only because of the way we
obtained it; in fact the function

φ′ ≡ λx.D(h(x), (z) true, (z) false)

has obviously the same computational behavior as φ; the drawback is that
we lack a formal proof that φ′ is a decision function for B(x). Of course we
can obtain such a proof by using the fact that φ is a decision function for
B(x). In fact we can prove that (∀x ∈ A) φ(x) =Boole φ′(x) is true, because
in general, supposing A, B, C, D are types, c ∈ A + B, d(z) ∈ C × D [z : A],
e(z) ∈ C × D [z : B], the Equality proposition p(D(c, (z) d(z), (z) e(z)) =C

D(c, (z) p(d(z)), (z) p(e(z))) holds.

5

References

[ML84] P. Martin-Löf, Intuitionistic Type Theory, Notes by G. Sambin of a
series of lectures given in Padua, Bibliopolis, 1984

[NPS90] B. Nordström, K. Peterson, J. Smith, Programming in Martin-Löf ’s
Type Theory, An introduction, Clarendon Press, Oxford, 1990

6

