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1. Introduction

Since the 70's Per Martin-Lof has developed, in anumber of successive variants, an Intuitionistic
Theory of Types [Mar75, Mar82, Mar84, Nor89]. The initial aim was that of providing a formal
system for Constructive Mathematics but the relevance of the theory also in Computer Science was
soon recognized. In fact, Martin-Lof's type theory can equally well be viewed as a programming
language with a very rich type structure, as a specification language and as an integrated system to
derive correct programs from their specifications [NoP83, NoS84, PeS386]. These pleasant properties
of the theory have certainly contributed to the interest for it arisen in the computer science community,
especidly among those people who believe that program correctness is a major concern in the
programming activity [Bac89]. Actually the theory which is quite well known is the one presented in
[Mar82, Mar84]. Thisisthe theory we shall consider in this paper and refer to as Martin-L6f's
Intuitionistic Type Theory (ITT), even if successive variations have been developed. Sometime, ITT is
referred to as the polymorphic theory opposite to the last version [Nor89] which is monomorphic, i.e.
each element can be uniquely typed, and decidable.

In this paper we shall present a small extension of ITT whose principal characteristic consistsin
the possibility of assuming variables denoting higher order functions. Our main motivation in
developing this higher order version (HITT) has been the wish to complete the way first opened by
Per Martin-L6f. Indeed in the preface of [Mar84], while referring to a series of lectures given in
Munich (October 1980), he writes: "The main improvement of the Munich lectures, compared with
those given in Padova, was the adoption of a systematic higher level notation ....". This notation is
caled expressions with arity and yields a more uniform and compact writing of the rules of the
theory. An expression with arity is built up starting from primitive constants and variables with arity,
by means of abstractions and applications. The arity associated to an expression specifies its
functionality and constrains the applications, analogously to what the type does for typed lambda-
calculus. In our opinion, in order to fully exploit this approach and be able to establish formal
properties of the system, it is necessary to extend the formalization of the contexts as given in [Mar84]
to assumptions of variables of higher arity. Therefore we have defined this extension that, even if
conservative, suppliesincreased expressivity, advantageous especially when the theory isviewed as a
programming and a specification language. In fact, assuming a variable of higher arity corresponds to

1 Dipartimento di Matematica Puraed Applicata, via Belzoni 7, 1-35131 Padova (ITALY)
2 Dipartimento di Scienze dell’ Informazione, viaMoretto da Brescia 9, 1-20133 Milano (ITALY)



assuming the possibility of putting together pieces of programs, thus supporting a modular approach
in program devel opment [BoV 87].

Some properties of HITT are also proved, the principal ones are the consistency of HITT, which
also implies the consistency of ITT, and the computability of any judgement derived within HITT.
Besides we proved a canonica form theorem: to any derivable judgement we can associate a canonical
one whose derivation ends with an introductory rule. Thisresult, even if weaker than a standard
normalization theorem [Pra65], suffices to obtain all the useful consequencestypical of anormal form
theorem, mainly the consistency of the theory. Moreover, by using the computational interpretation of
types (i.e. types as problem descriptions and their elements as programs to solve those problems) it
immediately follows that the execution of any proved correct program terminates.

We assume the reader is familiar with the Intuitionistic Theory of Types as presented in [Mar82,
Mar84] and with typed lambda calculus [Bar81], or enjoyably, with the theory of expressions with
arity [BoVv 85, Nor89].

The following is the outline of the paper. In section 2. our characterization of assumptions of
variables of any arity is presented and some consequences of this are briefly sketched. We are
extremely grateful to Prof. Aczel for his suggestions on the notation to be used for the new kind of
assumptions. Further comments on the properties of our system are given in section 3. Section 4.
deals with computability. The definition of computable judgement, which is the basis for the
computability theorem, isfirst given. The rest of the section is devoted to prove that each rule of the
theory preserves this property. The computability theorem, aswell as some significative corollaries, is
presented in the concluding section 5. All therulesof HITT are listed in the appendix. Compared with
ITT, besides the changes concerning the assumptions of higher level variables, there are also changes
in the notation and in the fact that we explicitly added to the premises of arule al the requirements that
were only informally expressed in ITT.

2. A formulation of Intuitionistic Type Theory with assumptions of high

level arity variables.

We assume the theory of expressions with arity [Bee85, BoV 85, Nor89] developed by Martin
Lof in order to give an uniform and compact presentation of his theory of types. The theory has many
smilarities with typed lamba-calculus [Bar81] and some familiarity with this system should be
sufficient to understand what follows. An expression with arity is built up starting from primitive
constants and variables with arity, by means of abstractions and applications. The arity associated to
an expression fully specifies its functiondlity, i.e. it indicates the number and the arity of the
expressions to which it can be applied, analogously to what the type does for typed lambda-cal culus.

The Intuitionistic Theory of Types[Mar82] consists of alanguage of constant symbols, each of
some arity, a system of computation rules and a system of rules of inference for deriving judgements.
Each instance of arule of inference has the form

Jl Jn

J



where J1,...,JnJ are judgements. A derivation is atree of judgements built up in the usual way using
instances of the rules of inference. Judgements have the form

FIC]
where Cisa"context", and F has one of the forms
Atype
A=B
al A
a=bl A
Here A, B, a, b are expressions of arity 0. A contextisalist Ay, ..., Ay of assumptions where, for
j=1,...n, A is an assumption over the context Ay,...,Ai-1. We will call "order between assumptions
condition" this requirement on the assumptions of a context3. When the context is empty we write
only Finstead of F[ ], and call Ja"closed" judgement as opposed to "hypothetical" judgement, i.e.
with non-empty context. In the following we will say that the context C' extends the context Cif C'is
obtained from C by adding some assumptions satisfying the "order between assumptions' condition.
Each assumption has the form

xA[C]
where x isavariable of some arity, Aisan expression of arity 0 and C isacontext. We call xthe
variable of the assumption and its arity isthe arity of the assumption. The variables of the assumptions
of acontext are also called the variables of the context. They must be pairwise distinct. We will say
that the assumption of avariable x depends on all the assumptions of the context. The conditions for
forming an assumption over a context involve the notion of derivation, so that the contexts and
derivations have to be defined by simultaneous inductive definition. The smple case of an assumption

y:-B[C]
of arity O over acontext C isthe familiar one defined by Martin L6f in the original theory [Mar84].
The conditions are that the judgement

Btype[C]
should be derivable and that y should not be avariable of C. It is easy to convince ourselves that these
conditions are just aformalization of those usually asked for making an assumption in a natura
deduction system. The variable y keeps the place of a generic object of type B.
To deal with assumptions with arities of higher level we add to the language, for each arity
a=(ay,...,an), aconstant T2 of arity

(0,@1),@1(@2).--(a1)-(an-1.@1)-(an),
and if Aq,...,.An, A(Xq,..Xn) are expressions of arity 0 and Xxa,....Xy are distinct variables of aritiesay, ...,
an respectively then we write

3 Asin [Bru91] contexts are inserted like ‘telescopes' .



for the expression of arity O

Ta(Ag, X)A2, ..., (X1, oy Xn-DAn, (X1, .vy Xn) AX1,.. Xn))-

If
(*)  B° (x1:A1,, Xn'An) A(XL,- Xn)
wewrite

:B[C]
for the judgement
(**) AlX,..%n) type [C, x:Aq,.., Xn:An].
When C isempty wewriteonly :B instead of : B[ ].

We can now state the conditions for forming the assumption y:B[C] of arity a=(a1,....an).
These conditions are that
. (*) holds for some choice of variables xy, ..., Xy not freein B and in C and some expressions
A1,..., An, A(X,...Xn) Of arity O.
(**) isderivable.
. yisavariable of arity a that is not avariable of the context C, X1:Aq,.., Xn:An.

As an example suppose

xA[C]

y:TO(V(x),(v) B(x))[C, xA]
are correct assumptions. The variable x keeps the place of a generic object of type A, whilethe variable
y keeps the place of afunction from a generic object v of type V(X) to objects of type B(x,v). Now the
assumption of avariable z, which keeps the place of afunction mapping objects x and functions y to
objects of type C(xy)

z. TO.0) (A, ¥ TO) (V(X), V) B(x, V), (x,¥) C(x,Y)) [C]
or, using the abbreviation,

z (xAY: (v: V(X)) B(xv)) C(xy) [C]
iscorrect if the judgement

C(x,y) type[C, x A y: (v: V(X)) B(x, V)]
isderivable and z does not occur in [C, x: A, y: (V: V(X)) B(X, V)]

In writing the inference rules we will adopt Martin L6f's convention to present explicitly only
those assumptions that do not occur in both premises and conclusion. Hence all the assumptions
appearing in the premises are to be considered discharged by the application of the rule. Clearly, as
usual, the remaining assumptions of the context should not depend on the discharged ones, i.e. they
must be an initial segment in the ordered list of assumptions of the context. Moreover we mean that
the context of the conclusion of arule is obtained by merging, without duplication, the contexts (not
explicitly present) of the assumptions and (possibly) the assumptions explicitly present in the context
of the conclusion.



The assumption rules introduce a new assumption in the context of the conclusion. In order to
formulate these rules it is convenient to introduce some abbreviations. When there is a derivation of :B
[C] then we use

b: B[C]
to abbreviate the judgement

b(X1, ooy X)T AXX1,%0) [C, XUAL, <o XA,
where the variables x,....xn, Of aritiesa,...,.an respectively, are chosen not freein B and C, so that (*)
holds, and b is an expression of arity (a1, ..., an) in which they may appear only variables of the
context C.
Similarly we use

b=b": B[C]
to abbreviate the judgement

B(X1, ey X1)=D' (X1, ooy X)T A(XL,-Xn) [Cy XLAL, ooy XA
Now, if y:B[C] is an assumption, then we have the following assumption rules:
arAr...aqnAy B ar=a1'’A1 ... ap=an’An B
y(@i, -, an)l Al@,..an)[y:Bl y(@i, - an)=y(a1’, .-, an)l A@s,.an)[y-Bl
where, for j=1, ..., n, A ° ((X1, ... X-DA) (@, ..., §-1)
Note that, in both cases, in the conclusion appears the new assumption y:.B while in the premises
there may appear assumptions which are discharged by the rule.

As an example consider again the assumption
Z (X AY. (v: V(X)) B(x, V) C(x,y) [C]
and suppose that the judgements:
1) (XA VY.(v:V(X) B(xVv) C(xy) [C],i.e. C(xy) type[C, xA, y:(V:V(X)) B(xV)]
2)  aA[Cq],thatisal A[Cq]
3)  bi(s:V(a))B(as) [Cy], that isb(s)] B(as)[Cp, s:V(a)]
are al derivablejudgements, then
al A b(s)l B(as)[s:V(a)] C(xy) type[xA, y:(v:V(X)) B(xV)]
z(ab)l C(ab)[z(xA, y:(v: V(X)) B(xVv)) C(xy)]
Is an instance of the assumption rule. The context of the conclusion is the merge, without duplication,
of the four context C, Cq, Co, [Z(XA, V:(V:V(X)) B(x\V)) C(xy)]. The assumptions of the variables s, x

and y are discharged by the rule while the assumption of z is possibly introduced.

The given abbreviations for the hypothetica judgements have the nice consequence of alowing a
notation quite close to that used by P. Martin-L6f [Mar84] for variable's substitution, also in the case
of high-arity variables. To express the fact that a sequence of variables can be substituted by a given
sequence of expressions, we introduce the following concept of fitting substitutions.



Definition: (fitting substitution)
The sequences of judgements b1:B1[C].,...,bn:Bn[C] and b1=b'1:B1[C]....,bn=b'n:Bn[C], where
Bi=((y1,...Yi-1)Bi)(b1,...,bn), ae substitutions that fit with any context [C, y1:Ba,..., Yn:Bn].

Note that asimilar concept of "fitting" isaready used in [Bru91] where only variables of arity
0 are considered.

2.1 Modifications dueto the new assumptions.

Clearly, the new form of assumptions compel usto extend the substitution rules. They are listed
in the appendix among all the other rules but let us analyze an example. The following substitution
rule of the previous version

bl B diy)I D()yB]
d(b) I D(b)
which involvesavariabley of arity O, is extended to the new rule

bl: Bl bn3 _Bn d(Yl,--, Yn)T D(y]_,.., yn)[yl: Bly--,Yn: Bn]
d(By,.., by DBy, b

where Bi° (Y1, Yi-1)Bi)(b1,.., bj-1), i.e., b1:B1 ... bn:Bnis a substitution that fits with the context
[V1:B1,..¥n:Bn]. (If no confusion can arise we will use the abbreviation b: or b=c. to denote a
substitution that fits with a given context). The pattern is rather similar but now the variables yj,...,.yn

may have any arity.
The changes that can be made on other rules are more fundamental. For example, let us analyze
the W-elimination rule. In the previous version the W-elimination rule was (adopting our notation)

cd W(AB) d(xy2)l C(sup (xy)[xA, y:O(B(X),t)W (AB)), zO (B(X),(u)C(AP(y)))]
T(cd)l C(o)

whilethe new oneis
cd W(AB) d(xy2)l C(sup(x y))[xA, y:(t:B(X))W (AB), z:(u:B(x)) C(y(u))]
T(cd) 1 C(o)
which is conceptually more straight. In fact while in the previous version y and z stands for functions
(i.e. elements of a O_type), here they are functional expressions: this avoid the vicious application-
abstraction circle, asin (U)C(Ap(y,u)), which can now be simply expressed by the application of
expressions C(y(u)) since it is possible to assume the variable y of arity (0)0.

3. Someobservations on typetheory
In the next section we will frequently use some concepts and propertiesof HITT that we will
briefly describe here.

3.1 Associate judgements
Our rules differ from the onesintroduced in [Mar84] both for the use of assumptions of
variables of higher arity and because when atype A appears in the conclusion of arule the premisses



of the rule are augmented with those of the formation rule for the judgement A type. This requirement
allows usto easily prove the following theorem 3.2 which shows a strong property on the structure of
the derivable judgements of HITT. We introduce first the notion of associate judgements.

Definition 3.1: (associate judgements)
The associate judgement(s) of
al A[X¢Ag,.... %n:An] is Atype[x1:Aq,..., Xn:An);
A=B [X1:A1,..., Xn:An] are  Atype[x1:A4,..., Xn:An] and
Btype [x1:Aq,..., Xn:Anl;
a=bl A[x¢:Aq,..., Xn:An] ae al A[x¢AL..., %A and
bl A[X¢:Aq,.... Xn:An].

Theorem 3.2: (derivability of associate judgements)

The associate judgements of aderivable judgement are derivable
Proof: The three cases should be proved simultaneously and the proof follows almost immediately by
induction on the length of the derivation of the considered judgement. Only in some cases structural
rules or substitution rules should be carefully used.

Actually, to obtain the previous result it would not be necessary to add in each rule the premises
of the formation rule of the judgement A type, for instance they are superfluousin the P_introduction
rule. We inserted this redundancies for sake of uniformity in view of proving general properties of the
theory at amore abstract level.

3.2 Substituted judgements
Substitution is a central operation on judgements. Many concepts we shall introduce in the next
section will be based on the two kinds of substitutions we define now.

Definition 3.3: (tail substituted judgements)

LetD © [C, X1 A1,....Xn: An] beacontext, ai: A1[C]....,an: An[C] and a;=a'1: A1[C]....,an=a'n:
An[C] be substitutions that fit with the last n assumption in the context D,J° F[D ] then
1. Jxq:=ay,..., Xn:=an] isan abbreviation for the tail substituted judgement of J:

1.1 ((Xg,..., X)A)(ag,..., an) type C] if F° Atype

1.2 ((Xq,-.., XA (@1,..., an)=((X,..., X0)B)(@...., an)[C] if F° A=B
1.3 ((X1,..., %)@ @1,..., an) ((X1,..., X)A)(@1,..., an)[C] if Fo al A
L4 ((X1,--+» X0)@)(@L- -, 3n) =((XL:---» X)D) (@1, BT (X, Xn)A) (@1, @n)[C]

if F° a=bl A
2. J[x1<- a1=a'1,..., Xn<- an=a'n] isan abbreviation for the tail substituted judgement of J:
2.1 ((x1,..., Xn)A)(ag,..., an)=((X1,..., Xn)A)(@'1,..., @' n)[C] if F° Atype
2.2 ((X1,..., Xn)A)(ag,..., an)=((X1,..., Xn)B)(a'1,..., @'n)[C] if F°© A=B

2.3 ((XLs---» X)@)(@,-., 3n)=((X1,- -, X0)A) @ 1., W) (XLr---» X)A)(@L- -, AR) [C]
if Fo al A



2.4 ((X1,..., X)a)(@,..., an)=((X1,..., X)b)(@1,..., @) ((X1,..., XA (@1,..., an)[C]
if Fo a=hl A

In generd, the substitutions rules of HITT are sufficient to prove the following theorem.

Theorem 3.4:
Thetail substituted judgements of a derivable judgement are derivable.

Proof: Just apply the suitable substitution rule except for the cases 2.2 and 2.4. For these cases first
notethat if a;=a'1:A1[C] ,... , ap=a'n:An[C] is a substitution that fits with the tail of D, then also
a1:A1[C] ,... , an:An[C], whose derivability is showed by theorem 3.2, is a subgtitution that fits with the
tail of D. Then apply the suitable substitution rule (:=) to A=B[D] (case 2.2) or to a=bl A[D] (case
2.4) and the suitable substitution rule (<- ) to B type[D] (case 2.2) or tobl A[D] (case 2.4), which are
the associate of A=B[D] and a=bl A[D] respectively. The result follows by transitivity.

The substitution of the second kind does not rely directly on the substitutions rules. It
substitutes the first part of a context and consequentially it modifies not only the form part of the
judgement but also the tail of the context.

Definition 3.5: (head substituted judgements)
LetD © [x1: A1,.... % An] beacontext, a;: A1,....a: Ay and a1=a'1: A1...,g=a’j: Ai,1 £n, be
substitutions that fit with the first i assumptionsof D,J° F[D ]. LetA’j ° ((X1,..., X)A)(@1,..., &), i+1

£j £n, then
1. Jxq:=ay,..., %:=g;] isan abbreviation for the head substituted judgement of J:
11 ((X1,...,%)A)(ay,..., &) type[Xi+1:A'i+1,..., Xn:A'n] if F° Atype
1.2 ((X1,...,%)A)(ay,..., &)=((X1,...,%)B)(a1,..., &) [X+1:A'j+1,..., Xn:A'n]
if F°© A=B
1.3 ((X1,..., %)) @1,..., a) ((X1,.... X)A) @1, ., )X+ 1A 41, o XA
if Fo al A
1.4 ((0.- . -%)a) @1, .84 - X))@ .. AN (6. XA @1, - AP+ 1A +1,- . XA
if F° a=bl A

2. J[x1<- ag=a'1,..., X<- gj=a'j] isan abbreviation for the head substituted judgement of J:
2.1 (X X)A)(@1,- -, &)=((X2,- -, XA (@ 150y @D [XG+1 A 42,00 X0 A

if F° Atype
2.2 ((x1,..,%)A)(ag,..., &)=((X1,...,%)B)(@1,..., & D[ X+1:A'1+1,. -, Xn:A'n)

if F°© A=B
2.3 (1. 0 @1, .-A) =00 - X))@, .- AN (6. XA @1, .3 D+ 1A 1, XA

if Fo al A

2.4 (6. - X))@, .3)=((0- . XD @1 AN (6 - XA @ .. B) K+ 1A 1, . XA
if FO a=bl A



Theorem 3.6:
The head substituted judgements of a derivable judgement are derivable.

Proof: For case 1. notethat if a1: Aq,..., @: A isasubstitution that fits with [x1:Aq,..., X:Aj] then a1:
Al,..., & A, X+1:Ai+1,..., X0:/An  Isasubstitution that fits with [X1:Aq,..., Xn:An]. Hence the result
follows by using the suitable substitution rule. For case 2., if aj=a'1: Aq,..., 8j=a'j: A isasubstitution
that fits with [x1:Aq,..., X:Ai] then a;=a'1: Aq,..., @=ai: A, X+1=%+1.A+1,..., Xn=Xn:An IS a
substitution that fits with [X1:Aq,..., Xn:An]. Hence the result follows by using directly the suitable
substitution rule except for the subcases 2.2 and 2.4 where the associate judgements must be
considered (see theorem 3.4).

Note that we use the same notation for the head and the tail substitutions since the names of the
variables and their positions in the context are sufficient to determine the kind of substitution we want
to perform.

3.3 Theevaluation tree

InHITT, aset of computation rulesis associated to each defined type such as P, S, etc. They
specify a process for evaluating expressions denoting elements or types. They apply to variable-free
and saturated expressions, i.e. expressions of arity 0 in which no variable occurs free. The "normal
form" theorem for expressions [BoV 85], assures usthat a variable-free, saturated expression is always
definitionally equivalent to an expression of theform c(as,..., an) where cis a constant. Hence, to
evaluate an expression, we first consider its normal form and then detect the suitable computation rule.
This can be done by looking at the outermost constant of the expression in normal form and, only in
some cases, at the value of its first argument. Then each premise of the selected rule indicate how
recursively to continue the process. Clearly, the process of evauating an expression denoting an
element or atype using the computation rules naturally givesriseto afinitary tree: wewill refer to it as
the evaluation tree. Of course an expression evaluates if and only if its evaluation tree isfinite. Hence
if we know that an expression can be evaluated an induction on the depth of its evaluation treeisa
correct proof-method. It can be used to prove the following:

Theorem 3.7:
Let c and C be variable-free and saturated expressions. Then

1) If cb gthengisacanonical expression for an element, i.e. exactly one of the following holds:
o°l (b), o°&(ab), g°i(a), g°j(b), g°r, g°my, g°0, g° s(a), g° sup(ab), g° @(ab), g°s(ab),
g° +(ab),g%i(abd), g nn g°n, g° w(ab).

2) If C»Gthen G isacanonical expression for atype, i.e. exactly one of the following holds:
G° O (AB), G° S(AB), G° +(AB), G° I(Abd), G°N,,, G° N, G° W(AB), G° U.

Note that the objects in the conclusion of aformation rule or an introduction rule are always
denoted by canonical expressions. We will cal them canonical elements or canonica types
respectively. However a canonical expression does not necessarily denote a canonical element or a
canonical type. The successve normalization theorem will certify this whenever we consider



judgements derived within the theory. More precisaly, if the judgement al A (or A type) is derived
within the theory, then the canonical expression resulting from the evaluation of the expression a (or
A) denotes a canonical element (or a canonical type). Moreover, under the same hypothesis, the
evaluation process of the expression a (or A) aways terminates.

Finally let us also observe that, since the computation rules do not "add" variables, it is obvious
that if no variable appearsin a (respectively A) and ab g (resp. A»G), then no variable appearsin g

(resp. G).

4. Computability
In this section we introduce the main notions of the paper: the definitions of computation tree

and computable judgement.

To prove a canonical-form theorem for the system we are considering, and whose complete set
of rulesisreported in the Appendix, we will follow a proof style smilar to the one used by Martin-L 6f
[Mar71] based on the method of Tait [Tai67] to prove normalization theorems. Therefore we will
introduce the notion of computable judgement. This notion applies both to closed judgements and to
hypothetical ones. Essentially, to express the computability of ajudgement is equivalent to express
what it is necessary to know in order to be allowed to formulate that judgement. Hence the definition
formally summarizes the meaning of all the forms of judgements which can be obtained by a
derivation in type theory. Of course, it isdirectly inspired by the informal explanation of the rules
givenin [Mar84], but the needs of formalization make it avery long definition. We will base it on the
concept of computation tree which represents the full process needed to recognize the computability of
a given judgement. The nodes of a computation tree are labelled by derivable judgementsand if Jis
the label of anode then the labels of its sons are all the judgements whose computability isrequired in
order to establish the computability of J.

Asregards hypothetical judgements, their computability is referred to the computability of any
closed judgement that can be obtained by substituting, in any possible way, computable judgements to
the open assumptions.

As regards closed judgements, the definition obviously differs when considering one form of
judgement or another. Still there are some basic common points:

. any term appearing in the judgement must be (syntactically) valuable (evaluation) to a canonical
term. This requirement is directly expressed for the two forms A type and al A and indirectly,
by requiring the computability of the associate judgements (associate), for the forms A=B and
a=bl A.

. the equality between aterm and its corresponding evaluated form must be a provable judgement
(correct evaluation)

. the computability of ajudgement isrecursively referred to the computability of the components
(parts) of the judgement built up with the evaluated canonical terms.




4.1 The main definitions
Definition 4.1: ( Computable judgement )
Thejudgement J° F[C] iscomputableif it is derivable and
Case 1: Thereisno assumption, i.e. the context C is empty
Subcase 1.1: F° Atype then

1.1.1) (evaluation) A» Gy
1.1.2) (correct evaluation) thejudgement A=Gp isprovable
1.1.3) (parts) the parts of G are computable type(s), i.e.

+if GA°O (A1 AY) then the judgements A type and Ay(X) type[x:Aq] are computable
*if GA° S(A1AY) then the judgements A type and Ax(X) type[x:A] are computable
if GA° T (ALAY) then the judgements A type and A, type are computable
*if GA® (A ,bd) then the judgements A, type, bl A; anddi A, are computable
*if GA° N, no condition
*if GA°N no condition
*if GA° W(A1A))  thenthejudgements Aq type and Ax(X) type[x:A¢] are computable
*if GpA°U (i.e. A° U) no condition

Subcase 1.2: F° A=B then

1.2.1) (associate judgements) the associate judgements A type and B type are computable
(and hence A»G, and B»Gp).

1.2.2) (parts) Gp and Gg areequal computable types, i.e.
+GA°O (AL A) iff  Gg®O(B1,B,) and the judgements

A1=B1 and Ay(X)=By(X)[x:Aq] are computable
* GA°S(A1AY) iff GgP S(B1,B,) and the judgements

A1=B1 and Ay(X)=By(X)[x:Aq] are computable
* Gp° H(ALA) iff  Gg° 1+(By,By) and the judgements

A1=B; and Ay=B, are computable
* Gp° (A 20)iff Gg° 1(B1,b,d) and the judgements
A=By,a=bl A; andc=dl A; are computable

*Gp°Np, iff Gg° N,
*Gp°N iff Gg°N
* GA°W(ALAY) iff Gg® W(B4,By) and the judgements
A1=Bq and Ay(X)=By(X)[x:A{] are computable
*GpoU iff Gg® U

Subcase 1.3: F° ¢l Athen
1.3.1) (associate judgements) The associate judgement Atypeiscomputable
(and hence A»Gp)
1.3.2) (evaluation) cb g
1.3.3) (correct evaluation) c=gi A isprovable
1.3.4) (parts) the parts of g are computable element(s) in Gy, i.e.
+Gp° O(ALA) iff  g°l (b) and the judgement b(X)1 Ay(X)[x:A{] iscomputable



* Gp® S(A1A)

*Gp° H(ALAY)
i GAO |(A1,b,d)

*Gp® Ny,

i GAO N

*Gp°® W(ALA)

*Gp°U

Subcase 1.4: F° a=hi Athen

iff

iff

iff

iff

iff

iff

iff

g° & (ab) and the judgements
al Aj and bl Ay(a) are computable
either g°i(a) and the judgement al A iscomputable
or ¢° j(b) and the judgement bl A, iscomputable
g° r and the judgement b=dl A; iscomputable
g° my, for some OEmEn-1
either g°0
or g° s(a) and the judgement al N iscomputable
g° sup (a,b) and the judgements
al Aj and b(X)T W(A1,A)[xAx(a)] are computable
either g° @(ab) and the judgements
al U and b(X)1 U[x<a>] are computable
or g° s (ab) and the judgements
al U andb(X)1 U[x<a>] arecomputable
or ° +(ab)
and the judgementsal U and bl U are computable
or g°i(abd) and the judgements
al U,bl <a>anddi <a> are computable
or g°np,
or g°n
or g° w(ab) and the judgements
al U andb(X)1 U[x<a>] arecomputable

1.4.1) (associate judgements) the associate judgementsal A and bl A are computable
(henceab g, bP gy and A»Gp).
the parts of g, and gy, are computable equal elementsin Gp, i.e.

1.4.2) (parts)
* Ga® O(A1A)

* Gp° S(A1A)

*Ga® T(ALA)

L GAO |(A1,C,d)
*Ga% Np
hd GAO N

* Gp°® W(ALA)

iff

iff

iff

iff
iff
iff

iff

g2 | (@) and gy°l (b') and the judgement
a'(¥)=b' ()1 Ay(X)[xAq] iscomputable
02 &(a'a") and gy° & (b'b") and the judgements
a=bT Ay anda'=b"T Ay(a') are computable
either gi(a) andgy’i(b')

and the judgement a'=b'l A is computable
o gLj(@)andgyj(b")

and the judgement a"=b"l A, iscomputable
gLr and g r andthejudgement c=di A iscomputable
02 M, and g,° my, for some OEmEn-1
either g0 and g,°0
or g2 s(a') and gp,° s(b')

and the judgement a'=b'T N is computable
g sup(a ") and gy sup(b'b")



and the judgements a'=b'T A;
and a"(x)=b"(x)1 W (A A))[xAx(a")] are computable
*Gp° U iff gther g, ®(a'a") and g’ @(b'b") and thejudgements
a'=bT U anda"(x)=b"(X) U[x<a'>] are computable
or gXs(@a") and gy°s(b'b") and thejudgements
a=bT U and a"(x)=b"(x)] U[x<a'>] are computable
or g2 +(@a') and gp?+(b'b") andthejudgements
a=bT U and a"=b"T U are computable
or gi(acd) and gyli(b'ef) andthejudgements
a=bl U,c=d <a'> andd=fl <a'> are computable
or g2 n, and gy’ np
or g22n and gy’n
or g w(a'a') and gn°w(b'b")andthe judgements
a'=b'T U anda"(x)=b"(x)1 U[x<a'>] are computable
Case 2: There are assumptions, i.e. C °© xq:Aq,..., Xn:An, N>0. The judgement J is computableif for
any computable closed substitution (c.c.s) ai:Ag,....anAn (i.e. &:A, 1EiEn, are computable
judgements), and for any computable closed substitution (c.c.s.) a1=C1:A1,....,an=Cn:An (i.€. &§=G:A,
1£i£n, are computable judgements) that fit with C:
Subcase 2.1: F © B(xy,..., X)) type
2.1.1) (substitution :=) the judgement B(ay,...,an) type iscomputable
2.1.2) (substitution <-) thejudgement B(ay,..., an)=B(cy,..., cn) iscomputable
Subcase 2.2: F° B(xg,..., X7)=D(X1,...,Xn) then
2.2.1) (associate) the judgement B(xg,..., Xn) type [C] is computable
2.2.2) (substitution :=) thejudgement B(ay,..., an)=D(a,..., an) iscomputable
2.2.3) (substitution <-) the judgement B(ay,...,an)=D(cy,...,Cn) iScomputable
Subcase 2.3: F° b(x1,..., Xn)I B(X1,...,Xn) then
2.3.1) (associate) the judgement B(Xg,..., Xn) type[C] is computable
2.3.2) (substitution :=) the judgement b(ay,..., an)l B(as,...,an) iscomputable
2.3.3) (substitution <-)  thejudgement b(ay,...,an)=b(cy,....cn)] B(ay,....an)

is computable
Subcase 2.4: F °© b(x1,..., Xn)=d(X1,..., X)I B(X1,...,Xn) then
2.4.1) (associate) the judgement b(xq,..., Xn)T B(Xq,..., %n)[C] is computable
2.4.2) (substitution :=) thejudgement b(ay,..., an)=d(ay,..., an)l B(ay,..., an)
is computable
2.4.3) (substitution <-) the judgement b(ay,..., an)=d(cy,..., c)i B(ay,..., an)
is computable

Note that the asymmetry in the conditions on associate judgements (point 2.2.1 and 2.4.1)
reflects the asymmetry in the rules of the theory. Actually we will prove that also the other associate
judgement is computable but the reduced requirement ssimplifies the following inductive proofs.



By looking at the above definition as a "generalized process" to search for computability of a
judgement, a search tree is naturally associate to any derivable judgement. It is clear that whenever Jis
recognized to be a computable judgement its search tree is well founded. In such a case we give the
definition of computation tree .

Definition 4.2: ( Computation tree)

The computation tree of the computable judgement J is atree whose root is J and whose
principal sub-trees are the computation trees of all the judgements whose computability is asked to
prove that Jis computable.

For instance, the computable judgement | (s)i P (N,(X)N) has the following computation tree:

Ntype O N
N type N type N type Ol N Ntype sO)I N
N type N type[xN] N type[x:N] s(0)I N s(s(0)T N

P(N,XN) type s(x)T N[xN]

| ()1 P(N,)N)

In general the computation tree of ajudgement Jis an infinitary tree: a node has a finite number
of branches when we deal with closed judgements, and this number is related to the parts, and a
possibly infinite one when we deal with hypothetical judgements.

Note that if we know that ajudgement is computable the use of induction on the complexity of
itswell founded computation tree is a correct proof-method.

Definition 4.3: ( Computational complexity )
L et J be acomputable judgement. We will call computational complexity of J the ordinal which
measures the complexity of its computation tree T, in the following way:

0 if Tisaleaf.
Ui @ +1) if T has principal sub-trees Tj of computational complexity aj, (il 1).

We will use both the notation "comp(J)=b" and the notation "J comp b" to mean that Jisa
computable judgement of computational complexity b.



4.2 Thelemmas.

We are now going to prove that any judgement derivablein the theory is computable. The proof
will consist in proving that any rule preserves computability, that is, if the judgements in the premisses
of arule are computable then also the judgement in the conclusion of the rule is computable. Of
course, thisis the inductive step in a proof by induction on the depth of the derivation of the
considered judgement.

Note that the computability of the judgementsin the base casesis given by definition. Generally,
the inductive step for a particular rule will be carried on by subordinate induction on the computational
complexity of one of the judgements appearing in the premisses of the rule, usually thefirst one which
has no assumption discharged.

We will consider only "full-context” derivations, i.e. derivations build up by applying arule only
if the assumptions which are not discharged by the rule are equal in all the premises, with the only
exception of the assumption rules. Note that thisis not restrictive since every derivable judgement can
be derived by afull-context derivation.

Before starting this analysis of the rules we state some results which follow rather directly from
the definition of computable judgement and which are useful in simplifying the subsequent lemmas.

Fact 4.4: (Ng isempty )
The closed judgement cf Ng is not computable.

It is stated by the definition of computable judgement since there are no canonical elementsin Ng.

Fact 4.4 (a):
Every hypothetical judgement with open assumption x: Ng is computable.

Fact 4.5: (Evaluation-free)
1. If Atype comp b and A»Ga then Ga typecomp b.
2.1f A=C compb and A»Gp and C»G¢ then Ga=G¢c comp b.

3.1f al Acompb andab gg and A»Gp thenggl Ga compb.
4.1f a=bl Acompb andab gg, bb gy and A»Ga thenga=gpl Ga compb.

We will conclude this subsection with the analysis of the simplest rules; we establish also some
direct consequences of the definition of computable judgement.

Lemma 4.6: (Weakening rules)

If F[C] is computable then, for any context C' extending C, F[C'] is computable.
Proof: When considering associate judgements, if any, the clam follows by induction on the
computational complexity of F[C]. When considering substitutions just observe that any c.c.s. that fits
with C' fits also with C, with redundancies, and we yet know that the resulting substituted judgement is
computable.



The next lemma on the reflexivity rule states not only that the rule preserves computability but
gives us aso arelation between the computational complexities of the judgements in the premise and
in the conclusion of the rule. This kind of information, on the dependencies among the computational
complexities of computable judgements, has a crucial role in the successive proofs when we proceed
by induction on the computational complexity of ajudgement. The dependencies are often easy to
determine simply by looking at the computation tree of one of the considered judgements.

Lemma4.7: (Reflexivity on elements)

Thereflexivity_on_eement rule preserves computability, i.e. if al A{/C] comp a then a=al A[C]
compa'=a+1.
Proof: By induction on the computational complexity of the computable judgement al A[C].
Subcase C = A&

The associate judgements are computable by hypothesis. To prove the computability of the parts
we should analyze each possible form of the values of a and A. Let us consider only the case ab | (b)
and A»P (A1, Ao). Fig.laillustrates a piece of the computation tree for this case.
Thereisonly one part judgement b(X)=b(X) Ax(X)[x:Aq]. Its computability follows, by inductive
hypothesis, from the computability of the judgement b(x)T Ax(X)[x:A1]. Thus, a=al Aiscomputable.
It remainsto prove the stated relations on complexities.
Let a, a'bp' be the computationa complexities of the computable judgements al A, a=al A,
b(X)T Ax(X)[x:A1], b(X)=b(X)T Ax(X)[x:A1]. The computability of al A depends on the computability of
b(x)1 Ax(X)[x:A1], then we have a3 b+1. By applying the inductive hypothesis we have b'=b+1, and
hencea':U(a+1, b'+1)=a+1.
For al the other cases the proof is analogous.

Atype bl Ax(X)[xAd] -b
al A-asb+l a A-a b(X)=b()1 Ax(X)[xAq]-b'=b+1£a
a=al A-a=U@+1b+1)=a+1

Fig. 1a

SubcaseC! A

The computability of the associate judgement of a=al A[C] is given by hypothesis, while that of
its substituted judgements directly follows by inductive hypothesis.
Moreover, if comp(alx: =€]=a[x:=€]l Alx:=€])=b and comp(a[x:=€]l Alx:=€])=a; then, by inductive
hypothesis, b = aj+1, hence b +1£ a +1sincea ? aj+1,and a'= U(a+1, b +1) = a+1. Seethe

Fig. 1b.



AtypelC]  alx=g]l Alx=¢] -a a[x=€l=a[x=f]l Alx=g]-ax

al A[C]-a

al NC] -a ax=gl=a[x=€]l Alx=¢] -b=aj+lfa  alx=gl=a[x=f]l Alx=¢ -akx+lfa

a=al A[C] -a'=a+1

Fig.1b

Lemma 4.8: ( Reflexivity_on type)

The reflexivity_on type rule preserves computability, i.e. if A typeC] compa then
A=A[C] compa'=a+1.
Proof: The proof, by induction on the computational complexity of the computable judgement
Atyp€e[C], is analogous to the one of the previous lemma 4.7 except when the value of Ais I(Arab)
where the use of thereflexivity_on _elements lemmais needed.

The next corollary isapurely technical result we will use in the following lemmas to abbreviate
the proofs.

Corollary 4.9:
i) Letal Aandcl A becomputable closed judgements and g be the value both of a and c.

If a=cl Aisderivablethenit isalso computable.
ii) LetAtypeand C type be computable closed judgements and G be the value both of Aand C.

If A=C isderivablethenit isaso computable.
iii) Letal Abeacomputable closed judgement and g the value of a, then a=gi A is computable.
iv)  Let Atype be acomputable closed judgement and G the value of A, then A=G is computable.
Proof:
i) The associate judgements are computable by hypothesis, then we must only prove that the parts are
computable. Sinceal Aiscomputable and ab g, if A»G then that the judgement gl G is computable,
by fact 4.5 (point 3). Hence, by the reflexivity-on-element lemma, aso the judgement g=gl G is
computable and hence the parts of g and g are equal computable eementsin G.
ii) The proof is analogous to point i) except for the use of point 1 of fact 4.5, instead of point 3, and
the use of the reflexivity-on-type lemma, instead of the reflexivity-on-element lemma.
iii) The proof follows by point i) if we provethat gi A iscomputable. By correct evaluation, the
judgement a=gl A is derivable and hence also its associate judgement gi A is derivable. Its



computability then follows by reflexivity and the fact that the parts of gi A are exactly those of al A
which is computable by hypothesis.
iv) The proof isanalogousto point iii) except for the use of point ii) instead of i).

The following lemma 4.10 does not concern one of the rules of the theory but states some
properties of computable judgements which will be very often referred to in the following subsections.

Lemma4.10: (Head substitution)

Let C °[x1:Aq,..., Xn:An] be a context, J° F[C] be a computable judgement, a;:As,...,.a:A and
a;=a'1:A1,...,a=a'j:A (i<n)* bec.c.sthat fit with the context [x1:Aq,..., Xi:Ai]. Then
i) Jxg:=ay,..., X:=a;] isacomputable judgement.
i)  Jx<- ap=a'y,..., <- g=a'j] isacomputable judgement.
Proof: The proof is by induction on the computational complexity of J.
LetD ©[X+1:A+1,..., Xn:A'n] where A'j° ((X1,..., %) A)(@z,..., &), i+1£ ] £n, and let
aj+1:A'j+1,..., an:A'n be ac.c.s. that fits with the context D. To prove the computability of the head
substituted judgements we will show that for any c.c.s. saurating J[xi:=aj,...X:=a] or
Jxi1<- a1=a'1,...x<- g=ajj] it is possible to find out a c.c.s. saturating J and yielding the same
judgement. First of all note that for i+1£ j £ n,

A ° (X1, %-1) A)@1,-- -, &-1)

° (G255 %-1) (X1, %) A)(@Ls-- -5 &) (@415 -+ 8-1)

o] A'J .
casel)
(associate judgements) The computability of the associate judgements, if any, follows by inductive
hypothesis.

(substitution :=) For any c.c.s. @+1:A'j+1,..., anA'n we havethat a;:A1,..., an/An isac.c.s. that fits
with C; hence (J[x1:=a1,....X:=aj])[X+1:=a@i+1,...Xn:=an] © J[X1:=a1,....Xn:=an] iS computable.
(substitution <-) For any c.c.s. gj+1=a'j+1:A'j+1,..., an=a n:A'n that fits with the context D, we have
that a;=a1:A1 ,..., 8i=ai:A1, §+1=a'i+1.A+1,..., ap=a'n:An isac.c.s. that fitswith C. (Note that the
reflexivity_on_elementslemmais used).
Hence

(Ixe:=ag,.. X =) [%+1<- @j+1=a'j+1,-.- X<~ an=a'n]

© JX1<- ag=ag,. .. X<~ =g Xi+1<- gj+1=j+1,---, Xn<- Ap=a'y)
is computable.
caseii)
(associate judgements) The computability of the associate judgements follows from case i) since if
a;=a'1:A1,...a4=ajA (i<n) are computable then also ai:A1,...8:A7 ae computable and
Jx1:=a1,....%:=a] isthe associate judgement of J[x1<- a;=a'y,..., %<- @=a'i] whose computability is
required.

4 Note that for i=n the claim is true by definition of computable judgement.



(substitution :=) For any c.c.s. &+1:A+1,...8n:A'n  that fits with the context D, we have that
ar;=a'1:A1,...,8=ai:A1, 3+1=8j+1.Ai+1,. . -.an=anAn isac.c.s. that fitswith C; hence dso

(Ix1<- ag=a'y,..., X <- @=ai] )[%+1:=8j+1,-- - Xn'=an]

© Jx1<- ag=a',... %<- &=a'j, X+1<- 8+1=8i+1,...Xn<- @8n=an]
is computable.
(substitution <-) For any c.c.s. gj+1=a'j+1:Aj+1 ,...,an=a n:A'n that fits with the context D, we have
thataj=a'1:A1 ,...,a=a'i:A1,8j+1=a'i+1:Ai+1...., ap=a'n:An isac.c.s. that fitswith C; hence

(Ix1<- ag=a'y,..., X <- @=a'i] )[%+1<- @j+1=a'i+1,.., Xn<- an=a'n]

© Jx1<- ag=a'y,..., %<~ g=a'j, Xi+1<- 8j+1=&'j+1,..., Xn<- an=a'n]
is computable.

Remark 4.11.
Let C° [x1:A1,..., Xn:An] beacontext, a:As,...,an:An and a;=a'1:As,...,aq=a'n:An be c.c.s.s that fit
with C, and B® (s1:S,..., Sm:Sm)A(S1,. .., Sm), then from the head substitution lemma we have that

if :B[C] iscomputable then :B[C] [x1:=ay,..., Xr:=an] and

:B[C] [x1<- a1=a'1,..., Xn<- ap=a'p] are computable;
if b:B[C] is computable then b:B[C] [x1:=a1,..., Xr:=an] and

b:B[C] [x1<- a1=a'1,..., Xn<- an=a'p] are computable;
if b=b'":B[C] is computable then b=b'":B[C] [x1:=a3,..., Xn:=an] and

b=b":B[C] [x1<- a1=a'1,... Xn<- an=a'p] are computable.

We continue by proving that each rule listed in the appendix preserves computability, i.e. any
judgement in the conclusion of that rule is computable whenever all the judgementsin the premises are
computable. The ordering of the lemmas has been suitably chosen to allow usto deal separately with
each rule thus mastering the complexity of the computability proof.

4.2.1. The substitution rules

The definition of computable judgement directly states that the substitution rules preserve
computability in the special case of saturating substitutions. In the next lemma we will prove that
computability is preserved by substitution rules also in the general case of tail substitution.

Since the different forms of judgement of the six substitution rules are not essential to prove the
result we will compact the sentence as much as possible.

Lemma4.12: (Substitution lemma)

Let D °[C, x¢:Aq,...Xn:An], where C is a context, J° F[D] be a computable judgement,
a1:B1[C]...., an:By[C] and a;=a'1:B1[C]...., an=a'n:Bp[C] be substitutions that fit with the context
[X1:A2,... %0:An], (1.8 By © ((X1,...%-1) A) (@1,..., j-1), IEJEN). Then
i) Jxg:=ay,..., Xn:=an] isacomputable judgement.

i)  Jx<- a1=a'y,..., Xn<- ap=a'n] is acomputable judgement.
Proof: If C =/Athen the claim holds by definition. Let C °[s1:S,...,Sm:Sn], m>0. The proof is by
induction on the computational complexity of J.



caseli)
(associate judgements) The computability of the associate judgements follows by inductive
hypothesis.
(substitution :=) For any c.c.s. €1:Sy,..., Cm:Sn fitting with the context C, we define
di ° ((s1,...,Sm) &)(ca,..., Cm), IEIEN.
By remark 4.11
di : ((S1,--.,Sm) Bi)(C1,..., Cm) © &:Bi[C] [s1:=Cy,..., Sm!=Cm]
is computable.
Moreover we have
((s1--+»Sm) Bi)(C1,- -+, Cm) ° ((s1,---» sm)((Xa,- -, %i-1) A)(@d,- -, &-1))(CL,- -, Cm)
° ((s1,--+» Sm, X,- -+, %i-1) A)(CL,-., Cm, 1., di-1)
(0] A|
Therefore c1.S,. .., CmiSm, d1:As,...,dn:An isac.c.s. fitting with the context D. Hence
(J[x1:=aq,..., Xn:=an])[S1:=C1,..., Sm:=Cm] © J[S1:=C1,..., Sm:=Cm, X1:=d1,..., Xn:=0n]
is computable.
(substitution <-) For any c.c.s. c1=C'1:$y,..., Cm=C'm:Sm that fits with the context C, we define

di ° ((s1,-.-»Sm) &)(C1,.--,Cm)

and

di®° ((s1,...,Sm) &)(C'1,...,C'm), IEIEN.
By remark 4.11

di=d'; : ((S1,---, Sm) Bi)(C1,---,Cm) © &:B; [C] [s1<- €1=C'1,..., Sm<- Cm=C'm]
is computable.

Moreover we have, see previous point, ((S1,..., Sm) Bi)(C1,-..,Cm) © Aj. Then, c1=C'1:S1,....Cm=C'm:Sn,
di=d'1:A1,....dn=d'n:An isac.c.s. that fits with the context D. Hence

(JI[x1:=a1,..., Xn:=an))[s1<- €1=C'1,..., SM<- Cm=C'm]

0 J[s1<- €1=C'1,..., SMm<- CM=C'm, X1<- d1=d'1,..., Xn<- dn=d')
is computable.
caseii)
(associate judgements) The computability of the associate judgements follows from case (i).
(substitution :=) For any c.c.s. €1.Sy,..., Cm:Sn fitting with the context C , we define

di ° ((s1,-.-»Sm) &)(C1,.--,Cm)

and

di® ((st.-..,Sm) @)(CL..-, Cm)-
By remark 4.11

di=d'i : ((S1,---, Sm) Bi)(CL,..., Cm) ® &=ali:B; [C] [S1:=Cy.... Smi=Cm]
is computable.

Then, since ((S1,..., Sm) Bi)(C1,...,Cm) ° Aj,C1=C1:S1,..., Cm=Cm:Sm, d1=d'1:As,...,dn=d'n:An isac.c.s.
fitting with the context D. Hence

(J[x1<- a1=a'1,..., ¥n<- @p=a'n])[S1:=C1,- -, Sm:=Cm]

0 J[s1<- C1=Cy,..., Sm<- Cm=Cm, X1<- d1=d'1,..., Xn<- dn=d'p]



is computable.
(substitution <- ) For any c.c.s. c1=C'1:$1,. .., Cm=C'm:Sm fitting with the context C , we define

di ° ((s1,-.-»Sm) &)(C1,.--,Cm)

and

di° ((st,...,Sm) @)(C'1,..., C'm).
By remark 4.11

di=d’j : ((S1---, Sm) Bi)(C1,.... Cm) © &=&i:B; [C] [s1<- C1=C'y,..., Sm<- Cm=C'm]
is computable.

Then, since ((S1,.-., Sm) Bi)(C1,-.-,Cm) © Aj,C1=C'1:S1,...Cm=C'm:Sm, d1=d'1:Aq1,....dn=d'n:Anisac.c.s.
fitting with the context D. Hence

(Ix1<- ag=a',..., Xn<- an=a'n] )[s1<- €1=C'1,..., Sm<- Cm=C'm]

0 J[s1<- €1=C'1,..., SMm<- CM=C'm, X1<- d1=d'1,..., Xn<- dn=d')]
is computable.

4.2.2. U-elimination rules

Lemma 4.13 deas with U-eimination rules. We need to know that they preserve both
computability and computational complexity to establish the next lemma 4.14 about computability of
the remaining structural rules. For this reason their analysis precede so much that of all the other
logical rules.

Lemma4.13: ( U-elimination )
The U-elimination rules preserve computability and do not increase computational complexity, i.e.
1) If al U[C] compb then<a> type[C] comp b'Eb
2) If a=bl U[C] compb then<a> = <b>[C] comp b'Eb
Proof: by induction on the computational complexity b.
Case 1
SubcaseC = A&
(evaluation) <a>»G<g> immediately follows from the computability of the judgement al U by using
the suitable computation rule.
(correct evaluation) the required derivation can be obtained by applying the suitable U-equality rule to
premises whose existence is guarantied by the computability of the judgement al U. For instance, if
ab p(a'a"):
a=p(@a)l U al u a'()1 U[x<a'>]
<a>=<p(a'a’)> <p(a’a’)>=0O(<a>,(x)<a"(x)>)
<a> = 0(<a>,K<a (%)>)
(parts) the parts of G«g> are computable type(s) with computational complexity less or equal of that
of the corresponding parts of the computable judgement al U. For instance if Gegs °©

O(<a'>,(x)<a"(x)>), by ind. hyp., we obtain that a'T U comp b' implies <a'> type comp g£b' and
a'()1 U[x<a'>] compb" implies<a"(x)> type[x:<a'>] comp g'£b". The other cases are completely
smilar.

SubcaseC * A



(substitution :=) immediately follows by ind. hyp. (1)
(substitution <- ) immediately follows by ind. hyp. (2)
Case 2.
SubcaseC = A
(associate) from a=bl U comp b we obtain al U comp by<b and bl U comp b<b. Hence by ind.
hyp., point 1, <a> type comp b1'Eb1 and <b> type comp bo'Eb.
(parts) if <a>»G<«g> and <b>»G«p> then the parts of Geg> and G<«p> are equal computable types
witrlthe same computational compl exity~ of the corresponding parts of the computable judgement
a=bl U. Let usanayzethe case G«g> ° O(<a'>,(x)<a"(x)>):
Geg>© O(<a>,(<a'(¥>) iff  app(aa")

iff bb p(b'b")

iff  Gep>© O(<b'>,x)<b"(X)>)
and, by ind. hyp., we obtain that a'=b'T U comp b3z implies <a'>=<b'>compbs£bs and
a"(x):b"(x)j U[x:<a'>] comp b4 implies <a’(X)>=<b"(x)> [x:<a'>] comp b4£EDb.
Henceb'=U(b1'+1, bo'+1, bg+1, ba+1)E U(b1+1, bo+1, ba+l, ba+1)=b.
The other cases are completely smilar.
SubcaseC * A
(associate) immediately follows by ind. hyp., point 1.
(substitution :=) immediately follows by ind. hyp., point 2.
(substitution <- ) immediately follows by ind. hyp., point 2.

Note that the computational complexity of the judgements in the premise and in the conclusion
are usually equal, but we may aso have different complexities. For instance, the complexity of abasic
judgement, like N type, is 0 while the complexity of the corresponding judgement, <n>1 U, is 1 due
to the requirement that the associate judgement U type is computable.

4.2.3. Thestructural rules

All the other structural rules, i.e. the trangtivity-on-element, the trangtivity-on-type, the
symmetry-on-element, the symmetry-on-type, the equal eement and the equal type rules, are
considered in the next lemma4.14 . Thislemmais akey point in the proof of computability sinceit
establishes, besides the fact that structural rules preserve computability, other basic and important
relationships among the computational complexities of related judgements. As we aready pointed out,
these information are essential in the subsequent proof since they guarantee the applicability of the
inductive hypothesis when we proceed by induction on the computational complexity of ajudgement.

Lemma4.14: (Structural rules)
Letb be acomputational complexity.
1. Ifa=cl AIC] compa,<b,b=dl A[C] compa,<b,a=bl AC] compa
then (i)a;=a»,=a and (ii) c=di A/C] compa
1.1 (trangitivity on elements)
If a=bl AJC] compa;<b,b=cl A[C] compa,<b thena=cl A[C] compa=a=a,



2. If A=C[C] compa<b, B=D[C] compaj,<b,A=B[C] compa
then (i) a1=a»=a and (ii) C=D[C] comp a
2.1 (trangitivity on types)
If A=B[C] compai<b, B=C[C] compa,<b then A=C[C] compa=aj=aj
3. If A=C[C] compb then
I. (associate judgements)

Atype[C] compa iff Ctype[C] compa
ii. (symmetry on types)

C=A|[C] compb
iii. (element in equal types and equal elementsin equal types)
ii.a al AJC] compa iff  al C[C]compa
il a=cl AIClcompa iff a=cl C[C] compa
iv. (assumption in equal types)
JC,xA] compa iff JIC,xC] compa
4. If a=cl AJC] compb then
I. (associate judgements)

al AIC] compa iff  c A[C] compa
ii. (Symmetry on elements)

c=al A[C] compb
Proof: By principal induction on b. The base cases are obvious.

Point 1. The proof follows by subordinate induction on a. Asregards Point 1.ii, a derivation for the
judgement c=di A[C] can easily be found by using symmetry and transitivity rules and the derivations
for a=cl A[C], b=di A[C],a=bl AC].

Point 1. Subcase C= &

Let G be the canonical value of A. The proof varies according to the outermost constant of Ga, but
there is acommon pattern. First we prove that the three considered judgements have corresponding
part judgements with the same computational complexity. Then, asimilar result follows also for the
corresponding associate judgements. Here we analyse only three main cases; the other cases are
smilar.

. Ga° O(A1,A2) and ab | (a'),bb | (b"),cb | (c),dP | (d)



Atype a () Ap(¥)[xAq]

al A-gg d A-gq a'(®=c' ()l Ap([xAq] -a;'
a=cd A-aq<b
Atype b' ()T Ap(¥)[x:Aq]
bl A-gp d A-go b'(x)=d' (X1 Ax(X)[xAq]-a2'
b=di A-ar<b
al A-gg bl A-gp a'(¥)=b' ()1 Ax(X)[xAq] -a'<b
a=bl A-a

Fig. 2. Computation trees (Point 1.i. P-case)

(Point 1.i P-case) We know that (seefig. 2)

a'(X)=c' ()1 Ax(x)[xAq] compa4'<a;<b and

b'(¥)=d' ()T Ax(X)[xA{] compajy'<ar<b and

a'(X)=b' (¥ Ax(X)[x:A] compa'<a
hence, by subordinate ind. hyp., a;'=az'=a'. Hence the parts have the same computationa
complexity. Note that a'<b.

Asregards the associate judgements, we obtain by ind. hyp. 4.i
gr=comp(al A)=comp(cl A)=dg; from a=cl A comp-a<b
g=comp(bl A)=comp(di A)=g> from b=dl A comp-ar<b
comp(a' (91 Ap(X)[x:Aq])=comp(b' ()T Ap(x)[xAq])
froma' (x)=b' ()1 Ax(X)[x:A{] compa'<b
which guarantees gy=comp(al A)=comp(bl A)=gp. Hence g1=g;=g>=g>.
(Point 1.ii P-case) We yet proved that comp(cl A)=comp(di A), hence c=di A comp a follows by
applying ind. hyp. (point 1.ii) to the part judgements of the four considered judgements.

. GA° S(A, Ap) andab & (a'a"),bb & (b'p"),ck &(c'c"),dP & (d'd")
(Point 1.i S-case) We know that (seefig. 3)



a=cT A; compaj'<a;<b and
b'=dT Aq compay'<ay<b and
(*) a=bT A;compa'<a
hence, by subordinate ind. hyp., a;'=a'=a'b
Moreover
a'=c"T Ax(a') compaq"<a;<b and
b'=d"T Ax(b') compasy'<ar<b and
a'=b"T Ax(a') compa"<as
By using (*), we obtain
comp(Ax(a’)=Ax(b"))<comp(Ax(X) type[x:Aq])<comp(A type)<comp(al A)<comp(a=cl A)<b
then, by ind. hyp. (point 3.iii.b), we have: comp(b"=d"T Ax(a'))=a2"<b and hence, by subordinate ind.
hyp.,a;"=az"=a"<b.

...... Ao(a')=Ay(b')-d . Ax(a')=Ay(c)-g
Aq type Ao(x) type[x:Aq]

Atype

al A-g d A-g; a=cl A -a,'<b a'=c'l Ax(@)-a,"<b
a=cl A-ai<b

bl A-g di A-g> b'=dT A;-a,'<b b'=d"T Ax(b') -a2"<b
b=dl A-ay<b

al A-g bl A-g a=bT A;-a'<b a'=b"l Ax(a) -a"<a
a=bl A-a
Fig. 3. Computation trees (Point 1.i. S-case)

The proof proceeds analogously to the P- case. Simply note that to prove that the three

considered judgements have corresponding associate judgements with the same computationd
complexity we need the ind. hyp. (point 3.iii.a) to obtain that comp(b"T Ax(a')) = comp(b"T Ax(b")).



(Point 1.ii S-case) Since Ay(a')=Ao(b') comp d<b, from b"=d"T Ax(b') comp a>", by ind. hyp. points
3.i and 3.iii.b we obtain b"=d"T Ap(a’) compay". Then froma"'=c"l Ax(a') compa4", b"=d"T Ax(a')
compay" anda'=b"T Ax(a’) compa", by ind. hyp. point L.ii, we obtain:

c'=d"T Ax(@)compa".
From this, since Ax(a')=Ay(c") comp g<b, by ind. hyp. point 3.iii.b, we obtain:

c'=d"T Ax(c) compa".
We can easily prove aso that ¢l Acompg;, di Acomp g, ¢'=d'T Acomp a', and hence that c=di A

compa.

. Ga2 U.

We develop in adetailed way only thecaseab p(a'a*)bb p(b'b").cb p(c'c")dp p(dd").
(Point 1.i U-case) We know that

a'=c'l U compa'<a;<b and

b'=d'T U compas'<as<b and

a'=bT U compa'<a
hence, by subordinateind. hyp., a{'=az'=a'<b.
Moreover we know that

a'(x)=c"(¥)1 U [x<a'>] compaj"<ai<b and

b"(x)=d"(x)1 U [x<b'>] comp a>"<a»<b and

a'(¥)=b"(¥)1 U [x<a'>] compa"<a.
Since a'=b'T U comp a'<b, by lenma4.13, we obtain <a'>=<b'> comp g£a'<b and then, by ind.
hyp. (point 3.iv), b"(x)=d"(x)] U[x<a'>] compay", hence, by subordinateind. hyp., a;"=a"=a"<b.
Anaogously to the previous cases, it isnow easy to prove that the three considered judgements have
corresponding associate judgements with the same computational complexity .
(Point 1.ii U-case) The proof proceeds analogously to the previous cases. It is worth to describe only
the proof that ¢"(x)=d"(X)I U [x:<c'>] comp a". By subordinate inductive hypothesis we know that
c'(x)=d"(X)1 U [x<a'>] compa". Sincea'=cT U compa'<h, by lemma4.13, we obtain <a'>=<c'>
comp g;'Ea ;'<b and then, by ind. hyp. (point 3.iv), we obtain:

c"(X)=d"(¥)1 U [x:<c>] compa".

Point 1. SubcaseC* @

(Point 1.i) We prove that the three considered judgements have the corresponding associate
judgements and substituted judgements of the same computational complexity.

(substitution :=) Immediate by subordinate ind. hyp., (seefig. 4).



a[x=€l=a[x=¢€]l Alx=€l-a;*
al AICl-ay’ a[x=el=c[x=¢]l Alx:=¢]-a;" a[x=el=c[x=f]l Alx=¢]-a;"

a=cl A[C]-ai<b

blx:=e]=b[x:=f]l Alx:=¢]-a*
bl A[C]-a2 blx:=e]=d[x.=¢]l Alx:=¢]-a?" blx:=el=d[x:=f]l Alx=€]-ax"

b=di A[C]-a<b

al AlCJ-a'=a; a[x=€l=b[x=€]l Alx=g]-a" a[x=€]=b[x=f]l Alx=¢-a"

a=bl A/C]-a<b

Fig. 4. Point 1.i (substitution :=)

(substitution <- ) First observe that, by subordinateind. hyp. (1.i) a" = a; =a2". Moreover, if e=f:
isac.c.s. fitting with C this holds also for &; hence a1*<b and a*<b and, by subordinate ind. hyp.
(points L.i and Lii),a" =aq*=az* =a".Hencea" =a; =az .

(associate judgements) Since a'=a;, a"=a;" and a"=a4 then a=a;<b and, by ind. hyp. 4i,
comp(bl A[C])=az'=comp(al A[C])=a".

(Point 1.ii) By ind. hyp. (point 4.i) comp(cl A[C])=comp(al A[C])=a', by subordinate ind. hyp. on
substituted judgements, for any c.c.s. e, comp(c[x:=€]=d[x:=€]l Alx:=€])=a" holds and for any c.c.s.
e=f:, comp(c[x:=€]=d[x:=f]] Alx:=€])=a" holds hence comp(c=di A[C] )=a.

Point 1.1
By ind. hyp. (point 4.ii) from comp(a=bl A[C])=a<b we obtain comp(b=al A[C])=a<b.

Hencebl A[C] iscomputable and, by the reflexivity lemma, b=bl A[C] is computable. Then the result
follows from the previous point L.ii.

Point 2.
The proof follows by subordinate induction on a.



The proof of this case is analogous to the one of point 1. Just substitute the judgement 'equal € ements
in atype with the judgement 'equal types and pay attention in analyzing the case GaP° [(Aq.ef) where

an obvious application of point 1. isrequired.

Point 2.1

By ind. hyp. point 3.ii, from comp(A=B[C])=a 1<b we obtain comp(B=A[C])=a 1<b. Hence B
type[C] is computable and, by the reflexivity lemma, B=B[C] is computable. Then the result follows
from the previous point 2.ii.

Point 3.i

Point 3.i SubcaseC = @.
Let A»Gp and C»G¢c we must prove that the parts of G and G¢ have the same computational

complexity. The proof varies according to the outermost constant of Ga. We andyze only two
significant cases; the other cases are similar.
. Ga° O(A1,A2) hence, since A=C is acomputable judgement, Gc® O(C4,Cp) and we know that
(*) comp(A=Cq) <b,
hence, by ind. hyp. point 3.i, comp(A; type)=comp(C, type);
(**) comp(A2(x)=C2(x) [x:Aq]) <b,
hence, by ind. hyp. point 3.i, comp(Ax(X) type [x:A1]) = comp(Ca(X) type[x:A¢]) and finally
comp(Ax(X) type [x:Aq]) = comp(C2(X) type [x.C4]),
by using ind. hyp. point 3.iv.
. Ga I(Ara@' a") and G 1(Cq.c'€") and we know that
(*) comp(A&=Cy) <b,
then, by ind. hyp. point 3.i, comp(A; type) = comp(C4 type)
(**) comp(a=cT A;) <b,
hence, by ind. hyp. point 4.i, comp(a’l A;) = comp(cT A7) and then, by ind. hyp. point 3iii.a,
comp(@l A;) = comp(cT Cy);
(***) comp(a'=c'T Ay) <b,
hence, by ind. hyp. point 4.i, comp(a'l A;) = comp(c'T A;) and then, by ind. hyp. point 3iii.a,
comp(@'T Aq) = comp(c'T Cy).
Point 3.i SubcaseC?! @
For any c.c.s. g, since comp(A[x:=€]=C[x.=€])<b, by ind. hyp. 3., it immediaely follows:
comp(Alx:=g] type)=comp(C[x:=¢€] type).
For any c.c.s. e=f: we know that e and, by reflexivity, e=e: are c.c.sfitting with C. Hence,
comp(ALx:=€]=Ax:=¢g])=comp(Alx:=€|=A[x:=f]),
by ind. hyp. 2.i, and
comp(AlLx:=€]=Alx:=g])=comp(C[x:=€]=C[x:=f]),
by ind. hyp. 2.ii. Hence
comp(ALx:=€e]=A[x:=f])=comp(C[x:=g]=C[x:=f])
and thus comp(A type[C]) = comp(C type[C])



Point 3.ii
(associate judgements) We must prove that the associate judgements of the derivable judgement
C=AlC] are computable and their computational complexities are equal to the computationd
complexities of the corresponding associate of the judgement A=C[C]. Thisresult is obvious by the
previous point 3.i.
Point 3.ii SubcaseC=@.
We must prove that the parts of C=A have the same computational complexity of the parts of
A=C. Let us consider two cases )
. Ga° O(Aq,A2) and hence Gc° O(Cq, C).
The partsof A=C are A=C; compa; and Ax(X)=Co(X)[x:A1] comp a2 and the parts of C=Aare
Cy=A compay’ and Ca(X)=Ax(X)[x.Cy] compay
Now a;=a;', by inductive hypothesis point 3.ii, because ai<b and, since, by ind. hyp.
point 3.v, comp(Co(X)=Ax(X)[x:Aq])=a2', it follows that ao=a ', again by using theind. hyp. point 3.ii,
becauseas< b.
. Gpa° I(Ar@'a") and hence G¢° I(Cy.c'C).
The partsof A=C are A;=C, compaq,a'=cT A;compasand a'=c'lT A; comp a3 and the parts
of C=A areC,=A; compa,,c'=a'l C; compay and ¢'=a"l C; comp a3. Now aq=aj' byind.
hyp. point 3.ii because ai<b and, since, by ind. hyp. point 4ii, comp(c'=a'l Aj)=a, and
comp(c'=a"lT Aj)=a3z, weobtain comp(c'=a'l C;)=a and comp(c'=a"l C;)=a3 by usingind. hyp.
point 3.iv.
Point 3.ii SubcaseC* @.
We have to prove that the two considered judgements have substituted judgements with the same
computational complexity.
(substitution :=) Immediate by ind. hyp. 3.ii.
(substitution <- ) For any c.c.s. e=f: fittingwith C also € isac.c.s. fitting with C, hence by ind. hyp.
(2. and 2.ii)
comp(A[x:=€]=C[x:=€])= comp(A[x:=€]=A[x:=f])
= comp(A[x:=g]=A[x=€])
= comp(C[x:=¢g]=A[x:=f])
comp(Alx:=€]=C[x:=€])= comp(A[x:=€]=C[x:=f])
= comp(A[x:=g]=A[x=€])
= comp(C[x:=¢g]=C[x:=f]).
Hence comp(C[x:=g]=A{x:=f]) = comp(Alx:=€]=C[x:=f]).

Point 3.iii.a.

Let us prove the if-part (the proof of the only-if part is completely smilar) by subordinate
induction on the complexity a.
Note that, by point 3.i, the associate judgementsof al A[C] and al C[C] are computable judgements
with the same complexity.



Point 3.iii.a Subcase C =d.
(evaluation) ab gg, by hypothesis

(correct evaluation) a=ggl Cisprovable, immediate
(parts) Let us analyze three cases according to the form of G¢.
. G® S(C1,C2) and hence GaP S(A1,A2) and gg° & (a', a") and we know that
A=C; compaq<b,
Ao(X)=C2(x) [x:A1] comp a»<b,
al A compa'<a anda'l Ax(a@') compa"<a
and hence comp(a'l C;)=a', by ind. hyp. point 3.iii.a, and, since
comp(Ax(a')=Co(a'))<comp(A2(X)=Co(X)[x:Aq])<comp(A=C)<b,
weobtaina'l Cy(a') compa", by usingind. hyp. point 3.iii.a.
. Gl I(Cqc'c") and hence Ga° I(A@'a") and g° r and we know that
a'=cT A; compa<b,
a'=c"l A; compag<b
a=a'l A compa'<a
and, by point 1., we obtain ¢'=c'T A; compa'
then, since Aq=C; comp a ;<b, by using ind. hyp. paint 3.iii.b, comp(c'=c'T C;)=a".
. Gc® W(C1,Cp) and hence Ga° W(A1,A2) and g3° sup(a',a") and we know that
Aq=C; compa<b,
al Ajcompa'<a and
then, by ind. hyp. 3.iii.a, aT C, compa’.
Moreover we know that
a" ()1 W(ALA9)ly:Ax(a)] compa“<a
A2(X)=C2(X) [x:Aq] comp a><b
and, since comp(Az(a')=Co(a'))<comp(A2(X)=C2(X)[x:A¢])<b, by ind. hyp. point 3.iv,
a'(y)l W (A A9)[y:Co(@')] compa“<a.
Now to prove a”(y)l W(C1,Co)[y:Co(a’)] compa™ we must consider
(associate judgements) Since
comp(W (A, A2) type)=comp(W (Cy,C2) type)
and
comp(W (A A2)=W (A Az))=comp(W (C1,C2)=W(C1,C2))
then
comp(W (A A2) typefy:Co(a)])=comp(W(C1,Co) typefy:Co(a)])
(substitutions) By subordinate ind. hyp. 3.iii.aand 3.iii.b, for any c.c.s. € Cx(a') and e=fl Cp(a') we
have
comp(a’(e)l W (A1 Ag))=comp(a’ (&) W(Cy.C2))
comp(a"(e)=a"(f)l W (A Az))=comp(a’(g)=a" ()1 W(C1.C2))
Point 3.iii.aSubcase Ct @.
(substitution :=) the result immediately follows by using the ind. hyp. point 3.iii.a
(substitution <- ) the result immediately follows by using the ind. hyp. point 3.iii.b.



Point 3.iii.b.
The proof of this caseis similar to the previous point 3.iii.a. Just note that, by point 3.iii.a, the
associate judgements of a=cl A[C] and c=al C[C] are computable with the same complexity.

Point 3.iv.

The proof is by subordinate induction on the computational complexity a. Let us prove the if-
part (the proof of the only if-part is completely similar) .
(associate judgements) By subordinate ind. hyp. the associate judgements of J[C, x:C] are computable

with the same complexity of those of JJC, xAl.
(substitutions) For anayzing the substituted judgements, let C be [y1:Bq,...yn:Bn]. Since

A=C[C] comp b then for any c.c.s. a;:By,...,an:Bn, €C (or 8;=a'1:By....,.an=a'n:Bn, e=€":C) fitting with
[C, xC], we have comp(Aly:=a]=C[y.=a])<b hence, by point 3.iii.a (or 3.iii.b), eA (or e=€"A) isa
computable judgement and thus the same substitution fits a'so with [C, x:A]. Hence the substituted
judgements are computabl e with the same complexity.

Point 4.i.

Let us provetheif-part (the proof of the only if-part is completely similar).
(associate judgements) The associate judgement of both judgementsis Atype.
Point 4.i SubcaseC = @.

We must prove only that the parts of ¢ A havethe same computational complexity of the
corresponding parts of al A. According to the values of A and a we consider here only three cases:
. A»S(A1,A2) and ab & (a'a"). Then we know that

ch & (c'c"), and that

comp(@'=cT A;) <b and

comp@'=c"l Ax(a)) <b;
therefore:

comp(@ Aq)=comp(cT A), by ind. hyp. 4.i; and, since

comp(Ax(a’)=A2(c)) < comp(Ax(X) type[x:Aq])

< comp(A type)<comp(al A)

< comp(a=cl A)=b,
we obtain comp(a"T Ax(a'))= comp(c'T Ax(c")), by usingind. hyp. point 4.i and point 3.iii.a
. A»W (A,A2) and ab sup(a',a"). Then we know that

cb sup(c'c"), and that

comp(a'=cT A7)<b
therefore

comp(@T Aj)=comp(cT A;), by using ind. hyp. point 4.i.

We know also that

comp(@"(x)=c"(x)1 W(A Ao)[xAp(@)])<b

and



comp(Ao(a’)=A2(c))  <comp(Ao(X)=Ax(X)[x:Aq])
<comp(Ax(X)type[x:Aq]<b,
by ind. hyp. point 4.i and point 3.iv, then we obtain
comp(@”" ()1 W (A A)[x:Ax(@)])
= comp(c" ()1 W(A¢ A)[x:Ax(@)])
= comp(c" ()1 W(A A2)[x:A(c)])
. A»U and ab p(a'a"), and therefore cb p(c',c"). We know that
comp(@=c'l U)<b and
comp(a" (X)=c"(x)1 U [x<a'>])<b,
therefore, by ind. hyp. (4.i),
comp(@1 U)=comp(cT U) and
comp(@" (X1 U [x<a'>]) = comp(c"(¥)] U [x<a'>]).
Moreover,
comp(@=c'l U)<b
then we know, by lemma 4.13, that
comp(<a'>=<c'>)<b,
and we obtain, by using ind. hyp. (3.iv),
comp(c' ()1 U [x<a'>])=comp(c' ()1 U [x<c'>]).
Point 4.i SubcaseC?! @.
(substitution :=) the result immediately follows by ind. hyp.4.i.
(substitution <- ) the result follows by ind. hyp. point 1 using the fact that if e=f: isac.c.sfitting with
Csoisge .

Point 4.ii.
Point 4.ii Subcase C=d.
Since the associate judgement of a=cl A are exactly those of c=al A, we must prove only that
the parts of c=al A have the same computational complexity of the corresponding parts of a=cl A.
The proof issimilar to that of the previous point 4.i; let us analyze just one case:
. A»S(A1,A2) and ab & (a'a"). Then we know that
ch &(c'c),
and that
comp(@=cT A;)<b and
comp(@'=c"T Ax(a) )<b;
therefore:
comp@=cT A;)=comp(c=aTl A),
by ind. hyp. 4.ii; and, since
comp(Ao(a')=A2(C))  <comp(Ax(X) type[x:Aq])
< comp(Atype)
<comp(al A)
<comp(a=cl A) = b,



we obtain comp(a'=c"T Ay(a'))=comp(c'=a"l Ax(c), by usingind. hyp. point 4.ii and point 3.iii.b.

Point 4.ii SubcaseC! @.
Asfor the previous case the result follows by ind. hyp. (4.i. and 4.ii) by using ind. hyp. (point
1.1) and thefact that if e=f: isac.c.sfittingwithC soisg.

It is worth noting that, the computability of the associate judgements which were left out from
the definition 4.1 of computable judgement (points 2.2.1 and 2.4.1) is now established by the
symmetry rules.

4.2.4. The assumption rules

In section 2 we presented the assumption rules of our system; they introduce variables of any
arity. The new assumption appears in the context of the conclusion of the rule and for this reason only
thecase C! @ hasto be considered in order to prove that assumption rules preserve computability.

Lemma4.15: (First assumption_rule)

Let a:A[Ci] (1£iEn) and :B[C] ° A(X1....Xn) typelC, x1:Al,...XnAn], be computable
judgements then the judgement y(ai,...an)l A(@i,...an)[C], where C' is the merge without
duplication of the contexts Cy,...,Cp, C, [y:B], is computable;

Proof: Let C' ° $1:5,..., k&, VB, 21:Cy,..., Zm:Cm, k3 0, m2 0, where z1.Cy,..., Zm:Cyy drictly
depend on y: B. First note that, since the context C' extends the contexts C and C;, 1£i£n, by the
weskening lemma, we have that A(X1,...Xn) typelC', X1:Al,...Xn:An] and ai:Ai[C'] (1£iEn) are
computable judgements.

(associate judgement) The computability of the judgement A(ai,...,an) type[C'] follows by the
substitution lemma.

(substitution :=) Consider any c.c.s. fitting with C': d1.S;,..., dk:Sk, biB, ¢1:Ca,....cm:Cm. Note that, if
A'i° ((s1,---,5k) A)(dy,...,dk) then

b:B
abbreviates:

b:B[s1:=d1,...,5:=0k] © b(X1,...X)T ((S1,-...Sk) A)(d1,...,dk) [XLA'L,... Xn:A'R].

Moreover gj:Aj[C'] (1£i£n) are computable judgements then, by the head substitution lemma,

8:A[C] [s1:=da,..., Sk:=dk, y:=b, z1:=Cy,..., Zm:=Cm] (1£IiEN)
are aso computable, and

((s1y.--,SkYZ1,- - Zm)A)(d1,...,.dk b C1,....Cm) @ ((S1,-.-,5k)A)(d1,...,dk) © A'j, (IEIEN).

Let

g ° ((s1,...,5kYZ1:- - Zm) &)(d1,...,dkbc1,....Cm), (AEIEN),
then aso the judgement

b:B[x1:=€y,..., Xn:=€n] is computable.

But y:B, 21:Cy,..., Zm:Cm, cannot appear in [C, X1:A1,...Xn:An] then

((s1,---,SkY:Z1,- - -Zm) A)(dy,...,dkbC1,....m) © ((S1,---Sk) A)(d1,...,0k)

and therefore



b:B[x1:=€1,....Xn:=€n] ° y(al,...,an)T A(ay,....an)[C1[s1:=ds,...,.sc:=dky:=b, z1:=C1,..., Zm:=Cm])
(substitution <-) Consider any c.c.s. fitting with C': d1=d'1:$,...,dk=d'k:Sk,b=b":B, c1=c'1:Cs,...,
Cm=C'm:Cm. The proof proceeds as before by noting that the judgements

8j:Ai[C'][s1<- d1=d'q,...,5k<- dx=d'ky<- b=b'z1<- c1=C'1,...,Zm<- Cm=C'm] (1£I£N)
are computable and can be substituted for x; in b=b'":B obtaining a computable judgement which is

exactly
y(al,...,an)T A@l,....an)[C1[s1<- di=d'y,...,5k<- dx=d'k, y<- b=b', z1<- c1=C'1,..., Zm<- Cm=C'm]

Lemma4.16 (Second assumption_rule)

Let g=a'i:A[Ci] (1£i£n) and :B[C] ° A(X1,....X,) type[C, X1:A1,...Xn:An], be computable
judgements then the judgement y(ay,....a.)=y(@'1,....8'»)! A@s,....a,)[C'], where C' is the merge
without duplication of the contexts Cy,...,Cn, C, [y:B], is computable.

Proof: LetC'° $1:S,..., kS, V:B, 21:C1,..., Zm:Cm .,k O, m? 0, where z;:Cy,..., Zm:Cn strictly depend

ony:B.

(associate judgement) By hypothesis, a=a'i:Aj[Ci] (1£i£n) are computable judgements then also

their associate judgements aj:Aj[Ci] (1£i£n) are computable. Hence, by the previous lemma, the

judgement y(ay,....an)l A(ay,...,an)[C'] is computable.

(substitution :=) Consider any c.c.s. fitting with C': d1:Sy,..., dk:Sk, b:B, ¢1:C1,..., ¢m:Cm. The proof

proceeds as before by noting that b=b:B is computable (reflexivity lemma) and that
gj=a'j:Ai[C'][s1:=d1,...,Sk:=dk.y:=Db, z1:=Cy,..., Zm:=Cm], (IEIEN)

are computable judgements which can be substituted for X in b=b:B obtaining a computable

judgement which is exactly

y(@g,....an)=y(@1,...a'n)l A@i,...an)[C1Isy:=d1,....sk:=0k, y:=b, z1:=C1,..., Zm:=Cr]
(substitution <-) Consider any c.c.s. fitting with C': di=d'1:S;,...,dk=d'k:S,b=b":B, c1=c'1:Cs,...,
Cm=C'm:Cm. The proof proceeds as before by noting that

ai=aj:A[C][s1<- di=d'y,..., sk<- dx=d'y, y<- b=b', z1<- c1=C'1,..., Zn<- cm=C'm] (1£i£nN)
are computable judgements which can be substituted for x in b=Db":B obtaining a computable

judgement which is exactly
Y@, . .An)M@1,.--ap)l A@l...an)[Clsi<- th=d'.. . .8<- d=dy<- b=b'z1<- =C',. . .Zm<- Gn—=Chm]

4.2.5. Thelogical rules

We have now to analyse the rules that we call "logical" since they can be used to interpret a
logical intuitionistic first order calculus or alogical theory of natural numbers. An informal discussion
on the computability of these rulesis usually depicted in many of the descriptions of ITT and we
follow the same ideas. Nevertheless, we should like to note that in our experience a complete formal
proof of computability for these rules cannot be carried on without a substantial use of lemma4.14
on structural rules.



Lemma4.17: (O-formation rules)

The O-formation rules preserve computability. That is:

1. LetJ;® Atype[C] and J,° B(X) type[C, x:A] be computable judgements then the judgement
O(AB) type[C] iscomputable

2.  LetJ;° A=C[C] and J,° B(X)=D(X)[C, x:A] be computable judgements then the judgement
O(AB)=0(CD)[C] is computable.

Proof: By induction on the computational complexity a of J;.

Case 1 (O-formation rules)

Subcase C =@.

(evaluation) O(AB) » O(AB)

(correct evaluation) O(AB) = O(AB) isderivable (use formation rule and reflexivity).

(parts) They are J; and J,.

SubcaseC! @.

(substitution :=) Consider any c.c.s. a1:Aq,..., an:An fitting with C © [X1:Aq,... Xn:An], then
Atype[C][x1:=ay,..., Xn:=an]

is computable with complexity lower then a;
B(X) type[C, xAl[x1:=ay,..., Xn:=an]

is computable, by head substitution lemma, hence the result follows by inductive hypothesis (case 1).

(substitution <- ) Consider any c.c.s.a;=a'1:A1,..., ap=a'n:An fitting with C © [x1:Aq,... Xn:An], then
AtypeC][x1<- a1=a'1,..., %<- an=a'n]

is computable with complexity lower then a;
B(X) type[C, xA][x1<- a1=a'1,..., X<- ap=a'p]

is computable, by head substitution lemma, hence the result follows by inductive hypothesis (case 2).

Case 2 (O-formation rules)

Subcase C = .

(associate judgements) The judgements A type and B(X) type[x:A], associate of J; and J,, are
computable by definition, and, by lemma 4.14 (3.i) dso C typeand D(X) type[xA] are computable
with the same computational complexity. By lemma4.14 (case 3.iv), we know that aso D(X) type[x:C]
is computable and hence the result follows by inductive hypothesis (case 1).

(parts) They are J; and Jo.

SubcaseC?t @.

(associate judgement) The associate judgements A type[C] of J; and B(X) type[C, xA] of J, are
computable judgements. Hence the result follows by ind. hyp. (case 1) since the computationa
complexity of the judgement A type[C] islower than that of J;.

(substitution :=) and (substitution <- ) Similar to the previous case 1 by using ind. hyp. (case 2).

Lemma4.18: (O-introduction rules)

The O-introduction rules preserve computability. That is:
1. LetJ; b1 B(X[C,xA] and J,° Atype[C] and J3° B(X) type[C, x:A] be computable



judgementsthen | (b)T O (AB)[C] is computable.
2. LetJ°b(x)=d(X) B(x) [C,xA] and J,° Atype[C] and J3° B(X) type[C, x:A] be
computable judgements then the judgement | (b)=I (d)i O (AB)[C] is computable.
Proof: By induction on the computational complexity a of J,.
Case 1 (O-introduction rules)
(associate judgement) Immediate by the previous lemmaon O-formation rules.
Subcase C = .
(evaluation) | (b)p | (b)
(correct evaluation) | (b)=I (b)i O(AB) isderivable (useintroduction rule and reflexivity).
(parts) ItisJy
SubcaseC?! O.
(substitution :=) Consider any c.c.s. a1:Aq,..., an:An fitting with C ° [X1:Aq,... Xn:An], then
Atype[C][x1:=ay,..., Xn:=an]
is computable with complexity lower then a;
B(X) type[C, xA][X1:=ay,..., Xn:=an]
Is computable, by head substitution lemma,
b1 B(X) [C, xAl[X1:=a4,..., Xn:=an]
Is computable, by head substitution lemma, hence the result follows by inductive hypothesis (case 1).
(substitution <- ) Consider any c.c.s. aj=a'1:A1,..., an=a'n:An fitting with C °[x1:A1,....Xn:An], then
asoai:A1,...,anAnisac.cs. fitting with C, and so
Atype[C][x1:=ay,..., Xn:=an]
is computable with complexity lower then a;
B(X) type[C, xA][X1:=ay,..., Xn:=an]
Is computable, by head substitution lemma,
b(X)1 B(X) [C,xAl[x1<- a1=a'1,..., X<- an=a'n]
Is computable, by head substitution lemma, hence the result follows by inductive hypothesis (case 2).

Case 2 (O-introduction rules)

Subcase C = .

(associate judgements) The judgement b(x)I B(X)[x:A], associate of J; is computable by definition
and, by lemma4.14 (4.i) also d(x)1 B(X)[x:A] is computable. Hence the result follows by case 1.
(parts) ItisJ,.

SubcaseC! @.

(associate judgements) The judgement b(x)I B(X)[x:A], associate of J; is computable by definition,
hence the result follows by case 1.

(substitutions) Similar to the previous case 1 using inductive hypothesis (case 2).

Lemma4.19: (O-eimination rules)

The O-elimination rules preserve computability. That is:
1. LetJ;°d OAB)[C], 2 diyi C( (y) [C,y:(xABX)],



J3° C(t) type [C,t:O(AB)] be computable judgements then the judgement

F(cd)l C(c)[C] iscomputable.
2. LetJ;° c=cT O(AB)[C],J° diy)=d'(W)i C( (¥)) [C,y:(xA)B(X)],

J3° C(t) type [C,t:O(AB)] be computable judgements then the judgement

F(cd)=F(c' d)I C(c)[C] is computable.
Proof: By induction on the computational complexity a of J;.
Case 1 (O-eimination rules)
(associate judgements) The computability of the associated judgement C(c) type [C] follows by
substitution lemma.
SubcaseC=@.
(evaluation) J; is computable and O (AB)»O (AB), then cb | (b) and that the judgement b:(xA)B(X) is
computable and it isac.c.s. fitting with y:(x:A)B(X); therefore Jo[y:=h], whichis d(b)i C(I (b)), isa
computable judgement. Hence d(b)P g and the result follows by using the computation rule.
(correct evaluation) Since J; is computable, we know that there exists a derivation of the judgement
O(AB) type hence xi O(AB) isacorrect assumption, and c=I (b)i O(AB) isderivable. Let P4 be
the following derivation

o xi O(AB)X O(AB)] Jo Jg
=l ()l O(AB) —Fxd)l CIIX OABB)] =l (b)l O(AB) 5
F(cd)=F(I (b)d)I C(c) C(o)=C(I (b))
F(cd)=F( (b),d)I C( (b))

Since J; is computable, sois b(x)I B(X)[x:A] and then J,[y:=b] is computable. Thus the judgements
d(b)=gl C(I (b)) and b(X)I B(X)[x:A] are derivable. Let P, be the following derivation

b(X)T B([xA] O(AB)type Jo J; A
Pp F{T (b),d)=d(b)l C(I (b)) d(b)=gl C(I (b))
F(cd)=F( (b)d)i C(l (b)) FT (0),d=gl C( (D)
Flcd)=gl C(T (b))

Hence

P2 C(c)=C(l (b))
F(cd)=gl C(l (b))  C( (b)=C(c)
F(cd)=gl C(c)
(parts) Since J, is computable we know that cb | (b) and, by fact 4.5 (point 3), that the judgement

| (b)i O(AB) is computable. Hence, by lemma 4.9 (point i ), we can deduce that the judgement
c=I (b)l O(AB) is computable. Therefore, since J; is computable, we obtain that the judgement
C(l (b))=C(c) isacomputable. Then, since d(b)l C(I (b)) is acomputable judgement, sois d(b)i C(c),
by lemma4.14 point 3.iii. Hence, since d(b)b g, the parts of g, which isaso the value of F(cd), are
computable element(s) in the value of C(c).

SubcaseC?! @

(substitution :=) immediate by ind.hyp. (case 1).

(substitution <- ) immediate by ind. hyp. (case 2)

Case 2 (O-elimination rules)



(associate judgements) The computability of the associate judgement F(cd)i C(c)[C] follows by case
1. If Cisempty, also the computability of F(c',d')] C(c'") follows by case 1. since from the fact that J;
and J, are computable by lemma 4.14 point 4.i we obtain tha cTP(AB) and
d' (W C( (Y)[y:(<A)B(X)] are computable judgements. Then, since the judgement C(c)=C(c) is
computable, by lemma4.14 point 3.iii.a, F(c',d)I C(c') is computable.

SubcaseC = (.

(parts) J; is computable, then cb | (b), c'P | (b') and the judgement b(x)=b'(X)| B(X)[xA] is
computable. Moreover b=b":(x:A)B(X) isac.c.s. for y:(x A)B(X) in J,, and then Jo[y<- b=Db'], that isthe
judgement d(b)=d'(b")I C(I (b)) iscomputable. Then, by lemma4.14 point 3.iii.b, d(b)=d'(b')] C(c) is
a computable judgement, since, as in the previous point, we can prove that C(l (b))=C(c) is a
computable judgement. So, if d(b)P gg and d'(b")P gq', the parts of gg and gy are computable equal
elementsin the value of C(c).

SubcaseC?! O.

(substitution :=) and (substitution <- ) Immediately follows by ind. hyp. (case 2.).

Lemma4.20: (O-equality rule)
The O-equality rule preserves computability. That is, let

J1° b(x)I B(x) [C, xA],

J,° O(AB) type[C],

J3° dy)T C(I (v)) [C,y:(xA)BX],

Jp° C(t) type[C,t:O(AB)]
be computable judgements then the judgement F(I (b),d)=d(b)i C(I (b)) [C] iscomputable.
Proof: by induction on the computational complexity a of J,.
(associated judgements) J; and J, are computable, thus, by the O-introduction lemma, we obtain that
| (b)i O(AB)[C] isacomputable judgement, and hence F(I (b),d)i C(I (b)) [C] is computable, by the
previous lemmaon P -elimination rules. Moreover, if Cisempty, since J; and J3 are computable, we
obtain that Jg[y:=h], i.e. the second associate judgement d(b)i C(I (b)), is computable.
Subcase C = .

Since F(I (b)d) and d(b) evduate into the same canonicad dement, the computability of
F(I (b),d)=d(b)I C(I (b)) follows from the computability of the associated judgements by lemma 4.8.
SubcaseC! @.
(substitution :=) It immediately follows by inductive hypothesis.
(substitution <- ) Consider any c.c.s. aj=a'1:A1,..., an=a'n:An fitting with C °[x1:A1,... Xn:An], then
asoa:Ai,....an:Anisac.c.s. fitting with C, and, by ind. hyp. we obtain that

F(I (b)d)=d(b)i C(l (b))[C][x1:=ar,...Xn:=an]
is computable. Moreover, since Jg[y:=b] is computable so is J3[y:=b][x1<- a;=a'y,... %<- an=a'n]
whichisd(b)l C(I (b))[C][x1<- a;=a'1,...X<- an=a'n] and then the result follows by transitivity.

For all the other cases, with afew exceptions, the proof goes on analogously to the P case. In
the following we will stress the essentia points.



We proceed always by induction on the computational complexity of the first premise such that
none of its assumptionsis discharged.

For each type we must consider the rulesin the following association and ordering:

- the two formation rules

- the two introduction rules

- the two elimination rules (with the exception of | and U )

- the equality rule.

The ordering is important since, in some cases, to carry on the proof we need to apply arule

which precedes the considered one in the given ordering and therefore we must have already proved
that such arule preserves computability. For instance, when the first introduction rule is considered,
the computability of the associate judgement follows by applying the formation rule to some suitable
judgements which are among the premises.

The association is important since, when the first of the two associated rulesis considered, to

prove the computability of the substituted judgements (substitution <- ) we apply the second rule

while, when the second rule is considered, the computability of the associate judgements follows by
applying thefirst rule.

(associate judgements)

For thefirst introduction rule, the computability of the associate judgementsfollows, as already
noted, by applying the formation rule to suitable judgements which are among the premises.

For thefirst elimination rule, the computability of the associate judgements follows by applying
a suitable substitution to one of the premise. U-elimination rules are unlike and had been treated
inLemma4.13.

For the second formation, introduction or elimination rule, the computability of the associate
judgementsfollows, by inductive hypothesis, by applying the first rule to the associate of the
premises or to their variants whose computability is assured by definition or by lemma4.14 and
also 4.13 when U-introductions are considered. These lemmas are needed in order to prove the
computability of the second associate judgement or to allow switching the assumptions from
one type to acomputationally equal one . For instance, inthe P case from the computability of
the judgements B(X)=D(x) [xA] and A=C, we deduced, by lemma 4.14 (3.i and 3.iv) the
computability of D(X) type[x:C] which is a variant of the computationaly equal judgement
B(X) type [x:A]. Only for the elimination rules, in the case C * @, the application of the first rule
does not immediately produce the wanted associate: a changing of typeisrequired and allowed
by lemma 4.14 since C(c)=C(c') is a computable judgement. Clearly I-dimination is an
exception (thereisonly one elimination rule). In this case, when a substitution e=f: is considered
in order to prove the computability of a hypothetical judgement a=bl A[C] derived from the
computable premises cl 1(Aab)[C], Atype[C], al A[C]bl A[C], the computability of the
saturated judgement can be proved as follows. The substitution e isfirst applied to the premises
in order to obtain, by inductive hypothesis, that the judgement a=bl A[C][..:=€] is computable;



then the substitution e=f: is applied to the judgement bl A[C]; the result follows by transitivity
(lemma4.14 point 1.1).

. For the equality rule, the computability of the first associate is obtained by using an instance of
the introduction rule and an instance of the elimination rule of the considered type. In the case
C =@, the computability of the other associate judgement is obtained by a suitable use of the
substitution rules, that is easy, even if not immediate, also in the case of the inductive types N
and W. The only exception is the type U where suitable formation rules, that preserves
computability (see Lemma4.13), must be applied to the judgements of kind type that one obtain
by using the first U-elimination rule.

(evaluation), (correct evaluation), (parts)

. When formation or introduction rules are considered, the points (evaluation), (correct
evaluation), (parts), are dwaysimmediate.

. Asregards elimination rule, the points (evaluation), (correct evaluation), (parts), in the case

C =@, must bealittle more detailed.

Case 1: first elimination rule.

Let non-can-ell C(c) be the conclusion of the rule (in the P -case we have F(cd)l C(c)). First of
al, notethat there is always a premise of the form cl Tp where the outermost constant of the
expression Tp characterizes the type to which the elimination refers (in the P -casewe have ¢l P (AB)),
ahypothetical type-judgement depending on Tp (in the P-case we have C(t) type[t:P (AB)]) and one
or more other minor premises (in the P-case we have d(y)i C(I (Y))[y:(xA)B(X)] ). Then the proof gets
on in thefollowing way.

(evaluation) The canonical value g of ¢ (I (b) in the P-case), which exists since the major premise
c Tp iscomputable, alows one to choose which minor premises to analyze (in the P-case thereis
only one minor premise: d(y)i C(I (y))[y:(xA)B(x)]). When thisis a hypothetical judgement it must be
saturated and the part judgements of the major premise gives us some of the substitutions needed to
saturate it (in the P-case we obtained d(b)i C(I (b)). This saturated judgement, sat-ell C(go) is
computable and its evaluation is exactly what we are looking for. Usually the parts of the major
premise together with the other premises provides all the needed substitutions; exceptions are the
cases U, which had been considered in Lemma4.13, N and W where an induction on the complexity
of the magjor premise is necessary to build the suitable substitution. Let us develop these two casesin
detail.

N-elimination

The premisesare cl N, di C(0), e(xy)l C(s(X))[xN, y:C(x)] and C(t) type[t:N]. c N is computable
thus either cb 0 or cb s(a). If cb 0 thenwe choose di C(0) among the minor premises and the value
of d, which existssincedi C(0) is computable, isjust the value of R(cd,g). Otherwise, if cb s(a), we
choose e(xy)l C(s(X)[xN, y:C(X)]. al N is computable then a:N is a c.c.s. fitting with xN.
comp(@l N)<comp(cl N) thus, by ind. hyp., R(a,d,e)i C(a) is computable and a:N, R(a,d):C(a) is a
c.c.s. fitting with xN, y:C(X). Hence eaR(adge)l C(s(a)) is computable and the vaue of
eaR(ade) isjust thevaueof R(cde).




W-elimination
c W(AB) is computable, then cb sup(ab), al Aand b(x)T W(AB)[xB(a)] © b:(xB(a))W(AB) are
computable judgements. Hence a:Ab: (x:B(a))W(AB) isac.c.s. fitting with zA, y:(xB(z))W (AB) and
since comp(b(X)T W(AB)[xB(@)]) < comp(c W(AB)), by applying again the same rule with
b(x)T W(AB)[xB(a)] instead of ¢l W(AB) we obtain, by inductive hypothesis, that T(b(x),
d)i C(b(¥) [xB@)] °© (XT(b(x),d):(xB(@)C(b(x) is computable and is a c.c.s. fitting with
t:(x:B(a))C(b(x)). Then, by substituting, we obtain that d(ab,X) T (b(x), d))I C(sup(ab)) is computable
and the vaue of d(ab,(X) T (b(X), d)) is exactly the value of T(c,d) we are looking for.
(correct evaluation) For each canonical value of the major premise a derivation can be constructed
analogously to the P-case. It is sufficient to substitute any application of P-dimination and P-
equality rules by the corresponding one for the considered type.
(parts) The computability of the major premise ¢l Tp guarantees, by lemmas 4.5 and 4.9., the
computability of the judgement c=gd Tp (in the P-case we have c=I (b)l P (AB)). This allows usto
obtain the computability of the type equality: C(c)=C(gc) (C(c)=C(l (b) intheP-case). At this point if
we consider the computable judgement built up to prove the previous evaluation point, satell C(go) (in
the P-case we have d(b)i C(I (b)) ), by lemma 4.14 point 3iii, we obtain that sat-ell C(c) is
computable (in the P-case we have d(b)l C(c) ). Henceif sat-el b can-el and C(c)b can-C, then also
non-can-el P can-el and the parts of can-el are computable eementsin can-C.
Case 2: second éimination rule.

L et non-can-el; = non-can-elol C(c) be the conclusion of the rule.
(parts) First of all, note that the computability of the first associate of the major premise, c=c Tp,
guarantees the computability of the judgement C(c) = C(g¢). Then, analogously to the case 1 of the
first elimination rule, we can choose the suitable minor premise and saturate it by using <- instead of
:=. By the computability of the resulting judgement sat-el1=sat-elol C(go) together with that of C(c) =
C(go), we will obtain the computability of sat-el=sat-elol C(c). From thisthe result isimmediate.

. For the equality rule, the point (parts), follow easily since, by lemma4.9.i (or 4.9.ii. for U), the
computability of the associate judgements together with the definition of b , guarantees the

computability of the judgement in the conclusion.

(subgtitution :=)

. The point (substitution :=) aways follows, by induction, by first applying the same substitution
to the premises and next applying again the same rule to the resulting judgements. Note that
when a rule which discharges assumptions is considered, we must apply a head substitution
which preserves computability.

(substitution <- )
. For the first formation, introduction or elimination rule, the point (substitution <- ) follows, by

inductive hypothesis, by applying the second rule in the association to judgements obtained by
properly substituting the given premises. In some cases, when a rule which discharges



assumptionsis considered, the computability of the suitably substituted premisesis stated by the
head substitution lemma

. For the second formation, introduction or elimination rule, the proof of the point (substitution
<- ) follows by applying the same rule to judgements obtained by wisely applying the same
substitution e=f: or its associate € to the given premises.

. For the equality rule, when the substitution e=f: is considered in proving the point (substitution
<- ), wewill proceed asfollows. On one side we apply the same rule to judgements obtained by
applying the associate substitution € to the premises. On the other sde, we apply the
substitution e=f: to ajudgement built up by applying a suitable head substitution to the minor
premise analogously to what done for the (evaluation) point. The result then follows by
trangitivity (consider again the P -case as atypical example). For the U case we must build up a
first judgement by applying the same rule to judgements obtained by applying the substitution
€ to the given premises, and a second one by applying aformation rule to the result of applying
the U-elimination to the premises. The result then follows by transitivity. Note that all the rules
used in the construction preserve computability.

5.  Thecomputability theorem.

Now we can state our main theorem: it shows that any derivable judgement is computable and
hence that al the properties we ask for a judgement to be computable hold for any derivable
judgement.

Theorem 5.1: (Computability theorem)
Any derivablejudgement iscomputable.

From a proof-theoretical point of view the main meta-theoretical result on a deductive systemin
natural deduction style as ours, isanormal form theorem, i.e. atheorem that states that any proof can
be transformed in a new one with the same conclusion but enjoying stronger structure properties.
These properties generally allow in turn to deduce important properties on the considered deduction
system such as its consistency. Our computability theorem does not regard derivations but still is
strongly related to normal form theorems as the following definitions will clarify.

Definition 5.2: (Canonical proof)

(1) A proof of thejudgement Atype or A=Bis canonical when itslast inference step is obtained
by aformation rule.

(2) A proof of thejudgement al A or a=bl A iscanonical when itslast inference step is obtained
by an introduction rule.

A canonica proof might be aso called "normal at the end". Clearly not every closed judgement
can be derived by a canonical proof. This holds only for the judgements which, according to the
following definition, are in canonical form.



Definition 5.3: (Canonical form)
L et J be aclosed judgement,
if J° Atypeand A»Ga then the canonical form of Jis Ga type;
if J° A=Band A»Gp and B»Gpg then the canonical form of Jis GAo=Gp;
if J° al AandaP gq and A»Gp then the canonical form of Jisgd Ga;
if J° a=bl Aandab gy and bb gy and A»Gp then the canonical form of Jis g=gnl GAa.

Corallary 5.4. (Canonical-form theorem)

Let J be aderivable closed judgement then there exists a canonical proof of the canonical form
of J.
Proof. Since Jisderivable then it is computable and hence there exist a derivation of its parts
judgements since they also are computable. By putting them together with a formation or an
introduction rule we obtain a canonical proof of the canonical form of J.

It iseasy to seethat if Jisaderivable closed judgement then its computability implies that its

canonical form isajudgement equivalent to J, in fact:

. if J° Atype and A»Gp then the canonical form of Jis Ga type and the computability of J
assures that A=Gp isderivable.

. iIf J° A=B and A»Ga and B»Gpg then the canonical form of Jis Gao=Gp and the computability
of Jassuresthat A=Ga and B=Gp are derivable judgements.

« ifJo al A andaP gaand A»Gp then the canonical form of Jis gd Ga and the computability
of J assures that A=Ga and a=g4 A are derivable judgements.

« ifJ° a=bl A andab g bP gpand A»Ga then the canonical form of Jis gs=gpl Ga and the
computability of J assures that A=Ga, a=g4 A and b=gpl A are derivable judgements.

Then the previous canonical form theorem is, in our system, the counterpart of a standard
normal form theorem since it guaranteesthat if Jis aclosed derivable judgement then we can construct
acanonical proof for ajudgement equivalent to J. Moreover it alows us to deduce most of the results
usually obtained by a normal form theorem such as, for instance, consistency.

Corollary 5.5: (Consistency of HITT)

The Higher order Intuitionistic Theory of Type is consistent.
Proof: Since the judgement ¢l N isnot computable, see Fact 4.4, then it cannot be derivable.

Note that this result establishes also the consistency of the origina ITT. Aswe could expect, the
minima properties, which are usually asked for a logical system to be considered constructive,
immediately follow just by reading the definition of computable judgement.



Corallary 5.6: (Digunction property)
If the judgement I +(AB) is derivable then either there exists an element a such that al Ais

derivable or there exists an element b such that bl B isderivable.
Proof: If ¢l +(AB) isderivable then it is computable and hence either cb i(a) and al Aisderivable or
cb j(b) and bl Bisderivable.

Corollary 5.7: (Existentia property)

If the judgement I S(AB) is derivable then there exists an element b such that the judgement
bl B(a) isderivable for someal A
Proof: If I S(AB) isderivable then it is computable and hence cb &(a, b) and al Aand bl B(a) are

derivable judgements.

Other consequences of the computability theorem can be stated when the Intuitionistic Theory
of Typeisviewed as aformal system to derive programs, that iswhen atypeisinterpreted as the
specification of a problem and an element in this type as the program which meets this specification.
In this environment an expression denoting an element in atype is thought as a program written in a
functional language whose operational semanticsis given by the computation rules and hence to
execute a program corresponds to evaluating it. The computability theorem shows that whenever we
prove that program a is partialy correct with respect to its specification A, i.e. we derive the judgement
al A thenweknow aso that it istotally correct, i.e. its evaluation terminates.

Corallary 5.8: (Evaluation theorem)
(1) Let Atypebeaprovablejudgement, then A hasacanonica value.
(2) Letal Abeaprovablejudgement,thena hasacanonica value.

Thus any program whose evaluation does not terminate, such as the famous Church's non-
terminating function, cannot be typed inHITT.

Related works

We should like to thank the referee for his comments and suggestions and for pointing out to us
related works, in particular [AlI86] and [All187] where similar results are proved by arealizability-like
semantics.
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Forms of judgement

Atype[C] A=C[C] al A[C] a=cl A[C]

Weakening

J[q]
J[C]

where C' isa context extending C

Assumptions

arA . andy B(wy,..W,) type [w1:A1,..Wn:An]
X(@1,-,an)l B(ay,-an) [X:(W1:Aq1,..Wn:An) B(W1,.,.Wn)]
where a;:A1 ... apA, fitswithwi:Ag,..,.Wn:An

a1=CH#A ... a=C A, B(wy,..W,) type [W1:Aq,...Wn:An]
X(81,-,8pn)=X(Cq,..Cy)l B(ag,..an) [X:(W1:A1,..Wn:An) B(Wy,...Wn)]
where a;=Ci¥Aq ... an=CytA, fitswith wi:Aq,..Wn:An

Equality rules

al A Atype
Ref =al A A=A
. a=cl A A=C
Sim c=al A C=A

a=el A ecl A A=E E=C
Tran a=cl A A=C
Equal typesrules

al A A=C a=cl A A=C

al C a=cl C



Substitution rules
Lete;E;... e Ey and e=f1E; ... e=f E, fit withy :Eg, ... YyEn.

erEr...enEn  AlYr-Yn) typelyiiEd, ... YniEnl
Aer.-&) type

e=f1E1 ... e=fTEn  AY1,-Yn) tyPElY1:EL, ... Yn'En]
Aley,.en) = At

e+E; ... ey¥E, AY1-Yn)=C(Y1,-- YY1 EL, - Yn'Enl
AeL,-8)=Cler,-&)

ek ... ey a(Ylv-aYn)T AY1,Yn)Y1:ELs - Yn'Enl
aey,-en)l Aler,--€n)

e=f1 By ... &7 En  aypY)l ALY [Y1:EL - YniEnl
a(ey,..en)=a(fy,..fn)l Aley,..en)

e Er .. evEn a1 =Cy1 Yl AYL-Yn)Y1:EL - YniEnl

a(ey,-&)=cley,-&)l Aler,en)



O-rules
Note that in the following rules we suppose that x-0 var , y-(0)0 var, t-0 var.

Formation

Atype B(X) type [xA] A=C B(X)=D(X)[xA]
O(AB) type O(AB) =0(CD)

Introduction

b()T B[xA] Atype B(X) type[xA]  b()=d(X)I B(X)[xA] Atype B(X) type[xA]
(O O (AB) ()=T () O(AB)

Elimination

d O(AB)  dy)I Cl My:(xABX]  C(t) type[tO(AB)]
Flcd)l C0

c=cT O(AB)  diy)=d Wi Cl MIy:xABK]  C(t) type[t:O(AB)]
F(cd=F(C d) CO

Equality

b B[xA] O(AB) type dyI C(I \)Iy:(xABX]  C(t) type[tO(AB)]
(I (b)d)=d(b)l C(I (b))

Computation

O(AB) » O(AB)

b 1(b) db)p
| (b) P 1 (b) - F((C?d) p(é .




a-rules
Note that in the following rules x-Ovar, y-Ovar, t-Ovar.

Formation

Atype B(X) type[xA] A=C B(X)=D(X)[xA]
S(AB) type S(AB) = S(CD)

Introduction

al A bl B(a) Atype B(X) type[xA] a=cl A b=di B(a) Atype B(X) type[xA]
& (ab)l S(AP) Z(@b)=& (cd) S(AD)

Elimination

d S(AB)  d(xy)l C(& (xy)[xA y:B(X)] C(t) type[t:S(AB)]
Ecd)l CO

c=cT S(AB) d(xy)=d'(xy)l C(& (xy))[xA y:B(X)] C(t) type[t:S(AB)]
ECA=E({c ) CO

Equality

al A bl Bla) S(AB)type d(xy)l C(&(xy)[xA y:BX)] C(t) type[t:S(AB)]
E(@ (@b) d=d@b)l C& @n))

Computation

S(AB) » S(AB)

b &(ab) d@p)p
&(ab) P &(ah) = (Eaéc,)d) D(Z) 2




+ -rules
Note that in the following rules x-Ovar, y-Ovar, t-Ovar.

Formation
Atype Btype A=C B=D
+(AB) type +(AB)=*+(CD)
Introduction
al A Atype Btype bl B Atype Btype
i@l +(AB) j(DI +(AB)
a=cl A Atype Btype b=di B Atype Btype
i(@)=i(ol +(AB) j(D)=i () +(AB)

Elimination

d +(AB) dXT Ci())[xA] ey CGONIY:Bl  C) typelt-+(AB)]
D(cde)l C(c

c=cT +(AB) d(x)=d'()1 C(i (x)[xAl ey)=e¢ M C({())[y:B] C(t) typeft:+(AB)]
D(cde)=D(c' d €e)l C(c

Equality

al A T(AB type d(¥)I C(()xAl eml CGOIY-Bl  C(t) type[t:+(AB)]
D(i1(a)de=d(a)l C(i(a))

bl B +(AB) type d(XT Cli(x)IxAl eI CGYNIy:B] C(t) typet-+(AB)]
D(j(b)de)=e(b)I C(j (b))

Computation

+(AB) » T(AB)

b i d b b jl b) b
@p i@ 0P O e e o beg




l-rules

Formation
Atype al A Dbl A A=C  a=cd A bDb=d A
[(Aab) type I(Aab)=I(Ccd)
Introduction
a=bl A a=bl A
rl 1(Aab) r=rl I(Aab)

Elimination

d I(Aab) Atype al A bl A
a=bl A

Equality

a=bl A d I(Aab)
c=rl 1(Aab)

Computation
[(Aab) » I(Aab)

rpr



Np-rules

Note that in the following rules t-0 var.

Formation

Np type Np =Np

Introduction

~

Onl Nn,..., mnT Nn,..., n'lnT Nn OnZOnT Nn,..., mn:mnT Nn,...,n'ln:n'ln,l\ Nn

Elimination
d N, dgl COp) ... dyql C(n-1,)  C(t) type[t:N,]
Rn(cdg,....dr.1) I C(0)
note that if n=0 thisis the usual " -rule

=cT N, dg=d'gl C(O,) ... dyy=d'nql C(N-1,)  C(t) typetN,]
R (cdo0n0) =Ry (C T 00D T CO

Equality
dol C(O,) ... dyql C(n-1,) C(t) type[t:Np]
Rn(Mp do,....dp-1)=dm I C(Mp)
notethat N, has n equality-rules. N has no equality-rule.

Computation

Nn » Nn
mn D mn Rn(C,dO,.-,dn-]_) p g

note that N, has n computation rules for canonical elements and n computation rules for non

canonical elements.
Ng has no computation rule.



N-rules
Note that in the following rules x-Ovar, y-Ovar, t-0 var.

Formation

N type N=N

Introduction

of N s(@)l N 0=0T N s(a)=s(b)l N

Elimination

d N dco exyl C(sX)[xN,y:CX] C(t) type[t:N]
R(cde)l C(c)

c=cT N d=dT C(0) e(xy)=e(xy)I C(s(®))[xN,y:C(x)] C(t) type[t:N]
R(cde)=R(c d e)l C(c

Equality

di C(0)  exy)l C(s(X)[xN,y:C(X)] C(t) type[t:N]
R(0de=dl C(0)

cd N di C0) exyl C(s(X)[xN,y.C(X)] C(t) type[t:N]
R(s(c)d,e)=e(cR(cde)l C(s(c))

Computation

N » N

ch 0 db g ch s(a e@aR(ade)b g
Ob 0 s(@b s R(cde P g R(cde b g




W-rules
Note that in the following rules x-0 var, u-0, y-(0)0 var, z-(0)0 var, t-O var.

Formation

Atype B(X) type[xA] A=C B(X)=D(X)[x-A]
W (AB) type W(AB) = W(CD)

I ntroduction

al A b(x)] W(AB)[xB(a)] Atype B(X) type[xA]
sup(ab)l W(AB)

a=c A b(X)=dX)] W(AB)[xB(a)] Atype B(X) type[xA]
sup(ab)=sup(cd)l W(AB)

Elimination

R C(t) type[t: W(AB)]
cl W(AB) d(xy2)l C(sup (xy))[xA, y(t B(x)) W(AB), z:(u:B(x)) C(y(u))]
T(cd) 1 C(o)

- C(t) type[t: W(AB)]
c=cT W(AB) d(xy2)=d'(xy2) C(sup(xy)[XA,y:(t:B(X)) W(AB)z:(u:B(x)) C(y(u))]
Tcd=T(cd)T C

Equality

W(AB)type C(t) type[t: W(AB)]
al Ab(X)T W(AB)[xB(@)] d(xy2)l C(sup(xy)[xA, Y(t B(X) W(AB), z:(u:B(x)) C(y(u))]
T(sup(ab)d)=d(ab,X)T(b(x)d)) I C(sup(ab))

Computation

W(AB) » W(AB)

sup(ab) b sup(ab) cb sup(ab) T(?:,(;’blé(xg(b(x)’d» b g




U-rules
Note that in the following rules x-0 var.

Formation

U type

Introduction

al U b1 U[x<a>]
p(ab)l U

al U bXI U[x<a>]
s(ab)l U

al U bl <a> di <a>
(@bd)i U

nyl U
ni U

al U b0 U[x<a>]
w(ab)l U

Elimination

al U
<a> type

a=cl U b(x)=d(X)I U[x<a>]
p(ab)=p(cd)l U

a=d U b(X)=d()! U[x<a>]
s(ab)=s(cd)l U

a=ci U b=dl U

+(@b)=+(cdT U

a=cl U b=d <a> d=fl <a>
@bd)=i (ceni U

np=n,l U
n=nl U

a=cl U b(X)=d(X)] U[x<a>]
w(ab)=w(cd)l U

a=bl U
<a>=<b>



Equality

al U

b(x)1 U[x<a>]

<p(ah)>=0(<a>,(x)<b(x)>)

al U

b(x)| U[x<a>]

<s(ah)>=5(<a>,(x)<b(x)>)

al U

bl U

<+(ab)>=*(<a><b>)

al U bl <a>

d <a>

<i(abd)>=I(<a>bd)

al U

<n>=N

<nn>:Nn

b(X)1 U[x<a>]

<w(abp)>= W (<a>,()<b(x)>)

Computation

p(ab) P p(ab)
s(ab) P s(ab)

+(ab) P +(ab)

i(abd) P i(abd)

nnp Nn

nb n

w(ab) P w(ab)

U»U

ch @p(ab)
<c> » O(<a>,(¥)<b(x)>)

cb s(ab)
<c> » S(<a>,(X)<b(X)>)

cb +(ab)
<c> » +(<a><b>)

cb i(abd)
<c> » l(<a>bd)

ch np
<c>»Np,

cbhb n
<c»N

cb w(ab)

<c> » W(<a>,(x)<b(x)>)



