
An intuitionistic theory of types
 with assumptions of high-arity variables

 A. Bossi1 and S. Valentini2

1. Introduction
Since the 70's Per Martin-Löf has developed, in a number of successive variants, an Intuitionistic

Theory of Types [Mar75, Mar82, Mar84, Nor89]. The initial aim was that of providing a formal

system for Constructive Mathematics but the relevance of the theory also in Computer Science was

soon recognized. In fact, Martin-Löf's type theory can equally well be viewed as a programming

language with a very rich type structure, as a specification language and as an integrated system to

derive correct programs from their specifications [NoP83, NoS84, PeS86]. These pleasant properties

of the theory have certainly contributed to the interest for it arisen in the computer science community,

especially among those people who believe that program correctness is a major concern in the

programming activity [Bac89]. Actually the theory which is quite well known is the one presented in

[Mar82, Mar84]. This is the theory we shall consider in this paper and refer to as Martin-Löf's

Intuitionistic Type Theory (ITT), even if successive variations have been developed. Sometime, ITT is

referred to as the polymorphic theory opposite to the last version [Nor89] which is monomorphic, i.e.

each element can be uniquely typed, and decidable.

In this paper we shall present a small extension of ITT whose principal characteristic consists in

the possibility of assuming variables denoting higher order functions. Our main motivation in

developing this higher order version (HITT) has been the wish to complete the way first opened by

Per Martin-Löf. Indeed in the preface of [Mar84], while referring to a series of lectures given in

Munich (October 1980), he writes: "The main improvement of the Munich lectures, compared with

those given in Padova, was the adoption of a systematic higher level notation ....". This notation is

called expressions with arity and yields a more uniform and compact writing of the rules of the

theory. An expression with arity is built up starting from primitive constants and variables with arity,

by means of abstractions and applications. The arity associated to an expression specifies its

functionality and constrains the applications, analogously to what the type does for typed lambda-

calculus. In our opinion, in order to fully exploit this approach and be able to establish  formal

properties of the system, it is necessary to extend the formalization of the contexts as given in [Mar84]

to assumptions of variables of higher arity. Therefore we have defined this extension that, even if

conservative, supplies increased expressivity, advantageous especially when the theory is viewed as a

programming and a specification language. In fact, assuming a variable of higher arity corresponds to
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assuming the possibility of putting together pieces of programs, thus supporting a modular approach

in program development [BoV87].

Some properties of HITT are also proved, the principal ones are the consistency of HITT, which

also implies the consistency of  ITT, and the computability of any judgement derived within HITT.

Besides we proved a canonical form theorem: to any derivable judgement we can associate a canonical

one whose derivation ends with an introductory rule. This result, even if weaker than a standard

normalization theorem [Pra65], suffices to obtain all the useful consequences typical of a normal form

theorem, mainly the consistency of the theory. Moreover, by using the computational interpretation of

types (i.e. types as problem descriptions and their elements as programs to solve those problems) it

immediately follows that the execution of any proved correct program terminates.

We assume the reader is familiar with the Intuitionistic Theory of Types as presented in [Mar82,

Mar84] and with typed lambda calculus [Bar81], or enjoyably, with the theory of expressions with

arity [BoV85, Nor89].

The following is the outline of the paper. In section 2. our characterization of assumptions of

variables of any arity is presented and some consequences of this are briefly sketched. We are

extremely grateful to Prof. Aczel for his suggestions on the notation to be used for the new kind of

assumptions. Further comments on the properties of our system are given in section 3. Section 4.

deals with computability. The definition of computable judgement, which is the basis for the

computability theorem, is first given. The rest of the section is devoted to prove that each rule of the

theory preserves this property. The computability theorem, as well as some significative corollaries, is

presented in the concluding section 5. All the rules of HITT are listed in the appendix. Compared with

ITT, besides the changes concerning the assumptions of higher level variables, there are also changes

in the notation and in the fact that we explicitly added to the premises of a rule all the requirements that

were only informally expressed in ITT.

2. A formulation of Intuitionistic Type Theory with assumptions of high
level arity variables.
We assume the theory of expressions with arity [Bee85, BoV85, Nor89] developed by Martin

Löf in order to give an uniform and compact presentation of his theory of types. The theory has many

similarities with typed lamba-calculus [Bar81] and some familiarity with this system should be

sufficient to understand what follows. An expression with arity is built up starting from primitive

constants and variables with arity, by means of abstractions and applications. The arity associated to

an expression fully specifies its functionality, i.e. it indicates the number and the arity of the

expressions to which it can be applied, analogously to what the type does for typed lambda-calculus.

The Intuitionistic Theory of Types [Mar82] consists of a language of constant symbols, each of

some arity, a system of computation rules and a system of rules of inference for deriving judgements.

Each instance of a rule of inference has the form

J1 ... Jn
J  



where J1,...,Jn,J are judgements. A derivation is a tree of judgements built up in the usual way using

instances of the rules of inference. Judgements have the form

F[C]

where C is a "context", and F has one of the forms

A type

A=B

a∈A

a=b∈A

Here A, B, a, b are expressions of arity 0. A context is a list A1, ..., An of assumptions where, for

j=1,...,n, Aj is an assumption over the context  A1,...,Aj-1. We will call "order between assumptions

condition" this requirement on the assumptions of a context3. When the context is empty we write

only F instead of F[ ], and call J a "closed" judgement as opposed to "hypothetical" judgement, i.e.

with non-empty context. In the following we will say that the context C' extends the context C if C' is

obtained from C by adding some assumptions satisfying the "order between assumptions" condition.

Each assumption has the form

x:A [C]

where x is a variable of some arity, A is an expression of arity 0 and C  is a context. We call x the

variable of the assumption and its arity is the arity of the assumption. The variables of the assumptions

of a context are also called the variables of the context. They must be pairwise distinct. We will say

that the assumption of a variable x depends on all the assumptions of the context. The conditions for

forming an assumption over a context involve the notion of derivation, so that the contexts and

derivations have to be defined by simultaneous inductive definition. The simple case of an assumption

y:B [C]

of arity 0 over a context C  is the familiar one defined by Martin Löf in the original theory [Mar84].

The conditions are that the judgement

B type [C]

should be derivable and that y should not be a variable of C. It is easy to convince ourselves that these

conditions are just a formalization of those usually asked for making an assumption in a natural

deduction system. The variable y keeps the place of a generic object of type B.

To deal with assumptions with arities of higher level we add to the language, for each arity

α=(α1, …, αn), a constant Tα of arity

(0,(α1),(α1)(α2),..,(α1)..(αn-1),(α1)..(αn)),

and if A1,...,An, A(x1,..,xn) are expressions of arity 0 and x1,...,xn are distinct variables of arities α1, ...,

αn respectively  then we write
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(x1:A1, .., xn:An) A(x1, .., xn)

for the expression of arity 0

Tα(A1, (x1)A2, ..., (x1, ..., xn-1)An, (x1, ..., xn) A(x1,.., xn)).

If

(*)  B ≡ (x1:A1,.., xn:An) A(x1,.., xn)

we write

:B [C]

for the judgement

(**) A(x1,..,xn) type [C, x1:A1,.., xn:An].

When C  is empty we write only :B instead of :B[ ].

We can now state the conditions for forming the assumption y:B[C] of arity α=(α1,...,αn).

These conditions are that

• (*) holds for some choice of variables x1, ..., xn not free in B and in C and some expressions

A1,..., An, A(x1,..,xn) of arity 0.

• (**) is derivable.

• y is a variable of arity α that is not a variable of the context C, x1:A1,.., xn:An.

As an example suppose

x:A [C]

y:T(0)(V(x),(v) B(x,v))[C, x:A]

are correct assumptions. The variable x keeps the place of a generic object of type A, while the variable

y keeps the place of a function from a generic object v of type V(x) to objects of type B(x,v). Now the

assumption of a variable z, which keeps the place of a function mapping objects x and functions y to

objects of type C(x,y)

z: T(0,(0)) (A, (x) T(0) (V(x), (v) B(x, v)), (x, y) C(x, y)) [C]

or, using the abbreviation,

z: (x:A, y: (v: V(x)) B(x,v)) C(x,y) [C]

is correct if the judgement

C(x, y) type [C,  x: A, y: (v: V(x)) B(x, v)]

is derivable and z does not occur in [C, x: A, y: (v: V(x)) B(x, v)]

In writing the inference rules we will adopt Martin Löf's convention to present explicitly only

those assumptions that do not occur in both premises and conclusion. Hence all the assumptions

appearing in the premises are to be considered discharged by the application of the rule. Clearly, as

usual, the remaining assumptions of the context should not depend on the discharged ones, i.e. they

must be an initial segment in the ordered list of assumptions of the context. Moreover we mean that

the context of the conclusion of a rule is obtained by merging, without duplication, the contexts (not

explicitly present) of the assumptions and (possibly) the assumptions explicitly present in the context

of the conclusion.



The assumption rules introduce a new assumption in the context of the conclusion. In order to

formulate these rules it is convenient to introduce some abbreviations. When there is a derivation of :B

[C] then we use

b: B [C]

to abbreviate the judgement

b(x1, ..., xn)∈A(x1,..,xn) [C, x1:A1, ..., xn:An],

where the variables x1,...,xn, of arities α1,...,αn respectively, are chosen not free in B and C, so that (*)

holds, and b is an expression of arity (α1, ..., αn) in which they may appear only variables of the

context C.

Similarly we use

b=b': B[C]

to abbreviate the judgement

b(x1, ..., xn)=b'(x1, ..., xn)∈A(x1,..,xn) [C, x1:A1, ..., xn:An]

Now, if y:B[C] is an assumption, then we have the following assumption rules:

a1:A1 ... an:An    :B
y(a1, ..., an)∈A(a1,..,an)[y:B] 

a1=a1':A1    ...    an=an':An      :B
y(a1, ..., an)=y(a1', ..., an')∈A(a1,..,an)[y:B] 

where, for j=1, ..., n, Aj ≡ ((x1, ..., xj-1)Aj)(a1, ..., aj-1)

Note that, in both cases, in the conclusion appears the new assumption y:B while in the premises

there may appear assumptions which are discharged by the rule.

As an example consider again the assumption

z: (x: A, y: (v: V(x)) B(x, v)) C(x, y) [C]

and suppose that the judgements:

1) :(x:A, y:(v:V(x)) B(x,v)) C(x,y) [C], i.e. C(x,y) type [C, x:A, y:(v:V(x)) B(x,v)]

2) a:A [C1], that is a∈A [C1]

3) b:(s:V(a))B(a,s) [C2], that is b(s)∈B(a,s)[C2, s:V(a)]

are all derivable judgements, then

a∈A  b(s)∈B(a,s)[s:V(a)]  C(x,y) type [x:A, y:(v:V(x)) B(x,v)]
z(a,b)∈C(a,b)[z:(x:A, y:(v:V(x)) B(x,v)) C(x,y)]  

is an instance of the assumption rule. The context of the conclusion is the merge, without duplication,

of the four context C, C1, C2, [z:(x:A, y:(v:V(x)) B(x,v)) C(x,y)]. The assumptions of the variables s, x

and y are discharged by the rule while the assumption of z is possibly introduced.

The given abbreviations for the hypothetical judgements have the nice consequence of allowing a

notation quite close to that used by P. Martin-Löf [Mar84] for variable's substitution, also in the case

of high-arity variables. To express the fact that a sequence of variables can be substituted by a given

sequence of expressions, we introduce the following concept of fitting  substitutions.



Definition: (fitting substitution)

The sequences of judgements b1:B1[C],…,bn:Bn[C] and b1=b'1:B1[C],…,bn=b'n:Bn[C], where

Bi=((y1,…,yi-1)Bi)(b1,…,bn), are substitutions that fit with any context [C, y1:B1,…, yn:Bn].

Note that a similar concept of "fitting" is already used in  [Bru91] where only variables of arity

0 are considered.

2.1 Modifications due to the new assumptions.

Clearly, the new form of assumptions compel us to extend the substitution rules. They are listed

in the appendix among all the other rules but let us analyze an example. The following substitution

rule of the previous version

b∈B        d(y) ∈ D(y)[y:B]
d(b) ∈ D(b)  

which involves a variable y of arity 0, is extended to the new rule

b1: B1 ... bn: Bn           d(y1,.., yn)∈D(y1,.., yn)[y1: B1,..,yn: Bn]
d(b1,.., bn)∈D(b1,.., bn)  

where Bi≡((y1,.., yi-1)Bi)(b1,.., bi-1), i.e., b1:B1 ... bn:Bn is a substitution that fits with the context

[y1:B1,..,yn:Bn]. (If no confusion can arise we will use the abbreviation b: or b=c: to denote a

substitution that fits with a given context). The pattern is rather similar but now the variables y1,...,yn

may have any arity.

The changes that can be made on other rules are more fundamental. For example, let us analyze

the W-elimination rule. In the previous version the W-elimination rule was (adopting our notation)

c∈W(A,B)     d(x,y,z)∈C(sup(x,y))[x:A, y:∏(B(x),(t)W(A,B)), z:∏(B(x),(u)C(Ap(y,u)))]
T(c,d) ∈ C(c)  

while the new one is

c∈W(A,B)   d(x,y,z)∈C(sup(x, y))[x:A, y:(t:B(x))W(A,B), z:(u:B(x))C(y(u))]
T(c,d) ∈ C(c)  

which is conceptually more straight. In fact while in the previous version y and z stands for functions

(i.e. elements of a ∏_type), here they are functional expressions: this avoid the vicious application-

abstraction circle, as in (u)C(Ap(y,u)), which can now be simply expressed by the application of

expressions C(y(u)) since it is possible to assume the variable y of arity (0)0.

3. Some observations on type theory
In the next section we will frequently use some concepts and properties of HITT that we will

briefly describe here.

3.1 Associate judgements

Our rules differ from the ones introduced in [Mar84] both for the use of assumptions of

variables of higher arity and because when a type A appears in the conclusion of a rule the premisses



of the rule are augmented with those of the formation rule for the judgement A type. This requirement

allows us to easily prove the following theorem 3.2 which shows a strong property on the structure of

the derivable judgements of HITT. We introduce first the notion of associate judgements.

Definition 3.1: (associate judgements)

The associate judgement(s) of

a∈A [x1:A1,…, xn:An] is A type [x1:A1,…, xn:An];

A=B [x1:A1,…, xn:An] are A type [x1:A1,…, xn:An] and

B type [x1:A1,…, xn:An];

a=b∈A [x1:A1,…, xn:An] are a∈A [x1:A1,…, xn:An] and

b∈A [x1:A1,…, xn:An].

Theorem 3.2: (derivability of associate judgements)

The associate judgements of a derivable judgement are derivable

Proof: The three cases should be proved simultaneously and the proof follows almost immediately by

induction on the length of the derivation of the considered judgement. Only in some cases structural

rules or substitution rules should be carefully used.

Actually, to obtain the previous result it would not be necessary to add in each rule the premises

of the formation rule of the judgement A type, for instance they are superfluous in the Π_introduction

rule. We inserted this redundancies for sake of uniformity in view of proving general properties of the

theory at a more abstract level.

3.2 Substituted judgements

Substitution is a central operation on judgements. Many concepts we shall introduce in the next

section will be based on the two kinds of substitutions we define now.

Definition 3.3: (tail substituted judgements)

Let D ≡ [C, x1: A1,…, xn: An] be a context, a1: A1[C],…, an: An[C] and a1=a'1: A1[C],…, an=a'n:

An[C] be substitutions that fit with the last n assumption in the context D, J ≡ F[D ] then

1. J[x1:=a1,…, xn:=an] is an abbreviation for the tail substituted judgement of J :

1.1 ((x1,…, xn)A)(a1,…, an) type[C] if F ≡ A type

1.2 ((x1,…, xn)A)(a1,…, an)=((x1,…, xn)B)(a1,…, an)[C] if F ≡ A=B

1.3 ((x1,…, xn)a)(a1,…, an)∈((x1,…, xn)A)(a1,…, an)[C] if F ≡ a∈A

1.4 ((x1,…, xn)a)(a1,…, an)=((x1,…, xn)b)(a1,…, an)∈((x1,…, xn)A)(a1,…, an)[C]

if F ≡ a=b∈A

2. J[x1<−a1=a'1,…, xn<−an=a'n] is an abbreviation for the tail substituted judgement of J :

2.1 ((x1,…, xn)A)(a1,…, an)=((x1,…, xn)A)(a'1,…, a'n)[C] if F ≡ A type

2.2 ((x1,…, xn)A)(a1,…, an)=((x1,…, xn)B)(a'1,…, a'n)[C] if F ≡ A=B

2.3 ((x1,…, xn)a)(a1,…, an)=((x1,…, xn)a)(a'1,…, a'n)∈((x1,…, xn)A)(a1,…, an)[C]

if F ≡ a∈A



2.4 ((x1,…, xn)a)(a1,…, an)=((x1,…, xn)b)(a'1,…, a'n)∈((x1,…, xn)A)(a1,…, an)[C]

if F ≡ a=b∈A

In general, the substitutions rules of HITT are sufficient to prove the following theorem.

Theorem 3.4:

The tail substituted judgements of a derivable judgement are derivable.

Proof: Just apply the suitable substitution rule except for the cases 2.2 and 2.4. For these cases first

note that if a1=a'1:A1[C] ,… , an=a'n:An[C] is a substitution that fits with the tail of D, then also

a1:A1[C] ,… , an:An[C], whose derivability is showed by theorem 3.2, is a substitution that fits with the

tail of D. Then apply the suitable substitution rule (:=) to A=B[D] (case 2.2) or to a=b∈A[D] (case

2.4) and the suitable substitution rule (<−) to B type[D] (case 2.2) or to b∈A[D] (case 2.4), which are

the associate of A=B[D] and a=b∈A[D] respectively. The result follows by transitivity.

The substitution of the second kind does not rely directly on the substitutions rules. It

substitutes the first part of a context and consequentially it modifies not only the form part of the

judgement but also the tail of the context.

Definition 3.5: (head substituted judgements)

Let D ≡ [x1: A1,…, xn: An] be a context, a1: A1,…, ai: Ai and a1=a'1: A1…, ai=a'i: Ai , i ≤ n, be

substitutions that fit with the first i assumptions of D, J ≡ F[D ]. Let A'j ≡((x1,…, xi)Aj)(a1,…, ai), i+1

≤j ≤n, then

1. J[x1:=a1,…, xi:=ai] is an abbreviation for the head substituted judgement of J:

1.1 ((x1,…, xi)A)(a1,…, ai) type[xi+1:A'i+1,…, xn:A'n] if F ≡ A type

1.2 ((x1,…, xi)A)(a1,…, ai)=((x1,…, xi)B)(a1,…, ai)[xi+1:A'i+1,…, xn:A'n]

if F ≡ A=B

1.3 ((x1,…, xi)a)(a1,…, ai)∈((x1,…, xi)A)(a1,…, ai)[xi+1:A'i+1,…, xn:A'n]

if F ≡ a∈A

1.4 ((x1,…,xi)a)(a1,…,ai)=((x1,…,xi)b)(a1,…,ai)∈((x1,…,xi)A)(a1,…,an)[xi+1:A'i+1,…,xn:A'n]

if F ≡ a=b∈A

2. J[x1<−a1=a'1,…, xi<−ai=a'i] is an abbreviation for the head substituted judgement of J:

2.1 ((x1,…, xi)A)(a1,…, ai)=((x1,…, xi)A)(a'1,…, a'i)[xi+1:A'i+1,…, xn:A'n]

if F ≡ A type

2.2 ((x1,…, xi)A)(a1,…, ai)=((x1,…, xi)B)(a'1,…, a'i)[xi+1:A'i+1,…, xn:A'n]

if F ≡ A=B

2.3 ((x1,…,xi)a)(a1,…,ai)=((x1,…,xi)a)(a'1,…,a'i)∈((x1,…,xi)A)(a1,…,ai)[xi+1:A'i+1,…, xn:A'n]

if F ≡ a∈A

2.4 ((x1,…,xi)a)(a1,…,ai)=((x1,…,xi)b)(a'1,…,a'i)∈((x1,…,xi)A)(a1,…,ai)[xi+1:A'i+1,…,xn:A'n]

if F ≡ a=b∈A



Theorem 3.6:

The head substituted judgements of a derivable judgement are derivable.

Proof: For case 1. note that if a1: A1,…, ai: Ai is a substitution that fits with [x1:A1,…, xi:Ai] then a1:

A1,…, ai: Ai, xi+1:Ai+1,…, xn:An  is a substitution that fits with [x1:A1,…, xn:An]. Hence the result

follows by using the suitable substitution rule. For case 2., if a1=a'1: A1,…, ai=a'i: Ai is a substitution

that fits with [x1:A1,…, xi:Ai] then a1=a'1: A1,…, ai=a'i: Ai, xi+1=xi+1:Ai+1,…, xn=xn:An  is a

substitution that fits with [x1:A1,…, xn:An]. Hence the result follows by using directly the suitable

substitution rule except for the subcases 2.2 and 2.4 where the associate judgements must be

considered (see theorem 3.4).

Note that we use the same notation for the head and the tail substitutions since the names of the

variables and their positions in the context are sufficient to determine the kind of substitution we want

to perform.

3.3 The evaluation tree
In HITT, a set of computation rules is associated to each defined type such as Π, Σ, etc. They

specify a process for evaluating expressions denoting elements or types. They apply to variable-free

and saturated expressions, i.e. expressions of arity 0 in which no variable occurs free. The "normal

form" theorem for expressions [BoV85], assures us that a variable-free, saturated expression is always

definitionally equivalent to an expression of the form c(a1,…, an) where c is a constant. Hence, to

evaluate an expression, we first consider its normal form and then detect the suitable computation rule.

This can be done by looking at the outermost constant of the expression in normal form and, only in

some cases, at the value of its first argument. Then each premise of the selected rule indicate how

recursively to continue the process. Clearly, the process of evaluating an expression denoting an

element or a type using the computation rules naturally gives rise to a finitary tree: we will refer to it as

the evaluation tree. Of course an expression evaluates if and only if its evaluation tree is finite.  Hence

if we know that an expression can be evaluated an induction on the depth of its evaluation tree is a

correct proof-method. It can be used to prove the following:

Theorem 3.7:

Let c and C be variable-free and saturated expressions. Then

1) If c⇒g then g is a canonical expression for an element, i.e. exactly one of the following holds:

g≡λ(b), g≡&(a,b), g≡i(a), g≡j(b), g≡r, g≡mn, g≡0, g≡s(a), g≡sup(a,b), g≡¹(a,b), g≡σ(a,b),

g≡+(a,b), g≡i(a,b,d), g≡nn, g≡n, g≡w(a,b).

2) If C»G then G is a canonical expression for a type, i.e. exactly one of the following holds:

G≡∏(A,B), G≡Σ(A,B), G≡+(A,B), G≡I(A,b,d), G≡Nn, G≡N, G≡W(A,B), G≡U.

Note that the objects in the conclusion of a formation rule or an introduction rule are always

denoted by canonical expressions. We will call them canonical elements or canonical types

respectively. However a canonical expression does not necessarily denote a canonical element or a

canonical type. The successive normalization theorem will certify this whenever we consider



judgements derived within the theory. More precisely, if the judgement a∈A (or A type) is derived

within the theory, then the canonical expression resulting from the evaluation of the expression a (or

A) denotes a canonical element (or a canonical type). Moreover, under the same hypothesis, the

evaluation process of the expression a (or A) always terminates.

Finally let us also observe that, since the computation rules do not "add" variables, it is obvious

that if no variable appears in a (respectively A) and a⇒g (resp. A»G), then no variable appears in g

(resp. G).

4. Computability
In this section we introduce the main notions of the paper: the definitions of computation tree

and computable judgement.

To prove a canonical-form theorem for the system we are considering, and whose complete set

of rules is reported in the Appendix, we will follow a proof style similar to the one used by Martin-Löf

[Mar71] based on the method of Tait [Tai67] to prove normalization theorems. Therefore we will

introduce the notion of computable judgement. This notion applies both to closed judgements and to

hypothetical ones. Essentially, to express the computability of a judgement is equivalent to express

what it is necessary to know in order to be allowed to formulate that judgement. Hence the definition

formally summarizes the meaning of all the forms of judgements which can be obtained by a

derivation in type theory. Of course, it is directly inspired by the informal explanation of the rules

given in [Mar84], but the needs of formalization make it a very long definition. We will base it on the

concept of computation tree which represents the full process needed to recognize the computability of

a given judgement. The nodes of a computation tree are labelled by derivable judgements and if J is

the label of a node then the labels of its sons are all the judgements whose computability is required in

order to establish the computability of  J.

As regards hypothetical judgements, their computability is referred to the computability of any

closed judgement that can be obtained by substituting, in any possible way, computable judgements to

the open assumptions.

As regards closed judgements, the definition obviously differs when considering one form of

judgement or another. Still there are some basic common points:

• any term appearing in the judgement must be (syntactically) valuable (evaluation) to a canonical

term. This requirement is directly expressed for the two forms A type and a∈A and indirectly,

by requiring the computability of the associate judgements (associate), for the forms A=B and

a=b∈A.

• the equality between a term and its corresponding evaluated form must be a provable judgement

(correct evaluation)

• the computability of a judgement is recursively referred to the computability of the components

(parts) of the judgement built up with the evaluated canonical terms.



4.1 The main definitions

Definition 4.1: ( Computable judgement )

The judgement  J ≡ F[C] is computable if it is derivable and

Case 1:  There is no assumption, i.e. the context C is empty

Subcase 1.1: F ≡ A type  then

1.1.1) (evaluation ) A » GA

1.1.2) (correct evaluation ) the judgement A=GA is provable

1.1.3) (parts ) the parts of GA are computable type(s), i.e.

• if GA≡∏(A1,A2) then the judgements  A1 type and A2(x) type[x:A1] are computable

• if GA≡Σ(A1,A2) then the judgements  A1 type  and A2(x) type[x:A1] are computable

• if GA≡+(A1,A2) then the judgements  A1 type  and A2 type are computable

• if GA≡I(A1,b,d) then the judgements  A1 type,  b∈A1 and d∈A1 are computable

• if GA≡Nn no condition

• if GA≡N no condition

• if GA≡W(A1,A2) then the judgements  A1 type and A2(x) type[x:A1] are computable

• if GA≡U  (i.e. A≡U) no condition

Subcase 1.2:  F ≡ A=B  then

1.2.1) (associate judgements) the associate judgements A type and B type  are computable
(and hence A»GA  and  B»GB).

1.2.2) (parts ) GA and  GB  are equal computable types, i.e.

• GA≡∏(A1,A2) iff GB≡∏(B1,B2) and the judgements

A1=B1  and A2(x)=B2(x)[x:A1] are computable

• GA≡Σ(A1,A2) iff GB≡Σ(B1,B2) and the judgements                         

A1=B1  and A2(x)=B2(x)[x:A1] are computable

• GA≡+(A1,A2) iff GB≡+(B1,B2) and the judgements

A1=B1  and A2=B2  are computable

• GA≡I(A1,a,c)iff GB≡I(B1,b,d) and the judgements

A1=B1, a=b∈A1 and c=d∈A1  are computable

• GA≡Nn iff GB≡Nn

• GA≡N iff GB≡N

• GA≡W(A1,A2) iff GB≡W(B1,B2) and the judgements

A1=B1  and  A2(x)=B2(x)[x:A1] are computable

• GA≡U iff GB≡U

Subcase 1.3: F ≡ c∈A then

1.3.1) (associate judgements ) The associate judgement  A type is computable
(and hence A»GA)

1.3.2) (evaluation ) c ⇒ g

1.3.3) (correct evaluation ) c=g ∈ A  is provable

1.3.4) (parts ) the parts of g are computable element(s) in  GA, i.e.

• GA≡ ∏(A1,A2) iff g≡λ(b) and the judgement b(x)∈A2(x)[x:A1]  is computable



• GA≡ Σ(A1,A2) iff g≡&(a,b) and the judgements

a∈A1 and b∈A2(a) are computable

• GA≡ +(A1,A2) iff either g≡i(a) and the judgement  a∈A1  is computable

or g≡j(b) and the judgement  b∈A2  is computable

• GA≡ I(A1,b,d) iff g≡r and the judgement  b=d∈A1  is computable

• GA≡ Nn iff g≡mn for some 0≤m≤n-1

• GA≡ N iff either g≡0

or g≡s(a) and the judgement  a∈N  is computable

• GA≡ W(A1,A2) iff g≡sup(a,b) and the judgements

a∈A1 and b(x)∈W(A1,A2)[x:A2(a)] are computable

• GA≡U iff either  g≡¹(a,b) and the judgements

a∈U and b(x)∈U[x:<a>] are computable

or g≡σ(a,b) and the judgements

a∈U and b(x)∈U[x:<a>]  are computable

or g≡+(a,b)

and the judgements a∈U  and  b∈U are computable

 or g≡i(a,b,d) and the judgements

a∈U, b∈<a> and d∈<a> are computable

 or g≡nn

 or g≡n

or g≡w(a,b) and the judgements

a∈U and b(x)∈U[x:<a>]  are computable

Subcase 1.4: F ≡ a=b∈A then

1.4.1) (associate judgements ) the associate judgements a∈A and b∈A are computable

(hence a⇒ga, b⇒gb and A»GA).

1.4.2) (parts ) the parts of ga and gb are computable equal elements in GA, i.e.

• GA≡ ∏(A1,A2) iff ga≡λ(a') and gb≡λ(b') and the judgement

a'(x)=b'(x)∈A2(x)[x:A1] is computable

• GA≡ Σ(A1,A2) iff ga≡&(a',a") and gb≡&(b',b") and the judgements

a'=b'∈A1  and a"=b"∈A2(a') are computable

• GA≡ +(A1,A2) iff either ga≡i(a') and gb≡i(b')

and the judgement a'=b'∈A1 is computable

or ga≡j(a") and gb≡j(b")

and the judgement a"=b"∈A2 is computable

• GA≡ I(A1,c,d) iff ga≡r  and  gb≡r and the judgement  c=d∈A1  is computable

• GA≡ Nn iff ga≡mn  and  gb≡mn for some 0≤m≤n-1

• GA≡ N iff either ga≡0  and  gb≡0

or ga≡s(a') and gb≡s(b')

and the judgement a'=b'∈N is computable

• GA≡ W(A1,A2) iff ga≡sup(a',a")  and  gb≡sup(b',b")



and the judgements a'=b'∈A1

and a"(x)=b"(x)∈W(A1,A2)[x:A2(a')] are computable

• GA≡ U iff either ga≡¹(a',a")  and   gb≡¹(b',b") and the judgements

a'=b'∈U  and a"(x)=b"(x)∈U[x:<a'>] are computable

or ga≡σ(a',a")  and   gb≡σ(b',b") and the judgements

a'=b'∈U  and  a"(x)=b"(x)∈U[x:<a'>] are computable

or ga≡+(a',a")   and   gb≡+(b',b")  and the judgements

a'=b'∈U   and  a"=b"∈U  are computable

or ga≡i(a',c,d)   and   gb≡i(b',e,f)  and the judgements

a'=b'∈U, c=e∈<a'>  and d=f∈<a'>  are computable

or ga≡nn   and   gb≡nn

or ga≡n    and   gb≡n

or ga≡w(a',a")  and   gb≡w(b',b") and the judgements

a'=b'∈U and a"(x)=b"(x)∈U[x:<a'>] are computable

Case 2: There are assumptions, i.e. C ≡x1:A1,…, xn:An, n>0. The judgement  J  is computable if for

any computable closed substitution (c.c.s.) a1:A1,…,an:An (i.e. ai:Ai, 1≤i≤n, are computable

judgements), and for any computable closed substitution (c.c.s.) a1=c1:A1,…,an=cn:An  (i.e. ai=ci:Ai,

1≤i≤n, are computable judgements) that fit with C:

Subcase 2.1: F ≡ B(x1,…, xn) type

2.1.1) (substitution  :=) the judgement  B(a1,…, an) type  is computable

2.1.2) (substitution  <−) the judgement  B(a1,…, an)=B(c1,…, cn)  is computable

Subcase 2.2: F ≡ B(x1,…, xn)=D(x1,…, xn)  then

2.2.1) (associate) the judgement B(x1,…, xn) type [C] is computable

2.2.2) (substitution  :=) the judgement  B(a1,…, an)=D(a1,…, an)  is computable

2.2.3) (substitution  <−) the judgement  B(a1,…, an)=D(c1,…, cn)  is computable

Subcase 2.3: F ≡ b(x1,…, xn)∈B(x1,…, xn)  then

2.3.1) (associate) the judgement  B(x1,…, xn) type [C] is computable

2.3.2) (substitution  :=) the judgement  b(a1,…, an)∈B(a1,…, an)  is computable

2.3.3) (substitution  <−) the judgement b(a1,…,an)=b(c1,…,cn)∈B(a1,…,an)

is computable

 Subcase 2.4: F ≡ b(x1,…, xn)=d(x1,…, xn)∈B(x1,…, xn)  then

2.4.1) (associate) the judgement b(x1,…, xn)∈B(x1,…, xn)[C] is computable

2.4.2) (substitution  :=) the judgement  b(a1,…, an)=d(a1,…, an)∈B(a1,…, an)

is computable

2.4.3) (substitution  <−) the judgement  b(a1,…, an)=d(c1,…, cn)∈B(a1,…, an)

is computable

Note that the asymmetry in the conditions on associate judgements (point 2.2.1 and 2.4.1)

reflects the asymmetry in the rules of the theory. Actually we will prove that also the other associate

judgement is computable but the reduced requirement simplifies the following inductive proofs.



By looking at the above definition as a "generalized process" to search for computability of a

judgement, a search tree is naturally associate to any derivable judgement. It is clear that whenever J is

recognized to be a computable judgement its search tree is well founded. In such a case we give the

definition of computation tree .

Definition  4.2:   ( Computation tree )

The computation tree of the computable judgement  J  is a tree whose root is J  and whose

principal sub-trees are the computation trees of all the judgements whose computability is asked to

prove that J is computable.

For instance, the computable judgement   λ(s)∈Π(N,(x)N) has the following computation tree:

    N type 0∈N

N type    N type     N type  0∈N      N type s(0)∈N

N type    N type[x:N] N type[x:N]         s(0)∈N s(s(0))∈N    … … …

Π(N,(x)N) type s(x)∈N[x:N]

λ(s)∈Π(N,(x)N)

In general the computation tree of a judgement J is an infinitary tree: a node has a finite number

of branches when we deal with closed judgements, and this number is related to the parts, and a

possibly infinite one when we deal with hypothetical judgements.

Note that  if we know that a judgement is computable the use of induction on the complexity of

its well founded computation tree is a correct proof-method.

Definition 4.3: ( Computational complexity )

Let J be a computable judgement. We will call computational complexity of J the ordinal which

measures the complexity of its computation tree T, in the following way:

0 if T is a leaf.
∨i∈I (αi +1) if T has principal sub-trees Ti of computational complexity αi, (i∈I) .

We will use both the notation "comp(J)=β" and the notation "J comp β"  to mean that J is a

computable judgement of computational complexity β.



4.2 The lemmas.

We are now going to prove that any judgement derivable in the theory is computable. The proof

will consist in proving that any rule preserves computability, that is, if the judgements in the premisses

of a rule are computable then also the judgement in the conclusion of the rule is computable. Of

course, this is the inductive step in a proof by induction on the depth of the derivation of the

considered judgement.

Note that the computability of the judgements in the base cases is given by definition. Generally,

the inductive step for a particular rule will be carried on by subordinate induction on the computational

complexity of one of the judgements appearing in the premisses of the rule, usually the first one which

has no assumption discharged.

We will consider only "full-context" derivations, i.e. derivations build up by applying a rule only

if the assumptions which are not discharged by the rule are equal in all the premises, with the only

exception of the assumption rules. Note that this is not restrictive since every derivable judgement can

be derived by a full-context derivation.

Before starting this analysis of the rules we state some results which follow rather directly from

the definition of computable judgement and which are useful in simplifying the subsequent lemmas.

Fact 4.4: (N0  is empty )

The closed judgement c∈N0  is not computable.

It is stated by the definition of computable judgement since there are no canonical elements in N0 .

Fact 4.4 (a):

Every hypothetical judgement with open assumption  x: N0   is computable.

Fact 4.5: (Evaluation-free)

1. If A type comp β and A»GA then GA type comp β.
2. If A=C comp β and  A»GA and  C»GC then GA=GC comp β.

3. If a∈A comp β and a⇒ga and A»GA then ga∈GA comp β.

4. If  a=b∈A comp β and a⇒ga, b⇒gb and A»GA then ga=gb∈GA comp β.

We will conclude this subsection with the analysis of the simplest rules; we establish also some

direct consequences of the definition of computable judgement.

Lemma 4.6: (Weakening rules)

If F[C] is computable then, for any context C' extending C, F[C'] is computable.

Proof: When considering associate judgements, if any, the claim follows by induction on the

computational complexity of F[C]. When considering substitutions just observe that any c.c.s. that fits

with C' fits also with C, with redundancies, and we yet know that the resulting substituted judgement is

computable.



The next lemma on the reflexivity rule states not only that the rule preserves computability but

gives us also a relation between the computational complexities of the judgements in the premise and

in the conclusion of the rule. This kind of information, on the dependencies among the computational

complexities of computable judgements, has a crucial role in the successive proofs when we proceed

by induction on the computational complexity of a judgement. The dependencies are often easy to

determine simply by looking at the computation tree of one of the considered judgements.

Lemma 4.7:   (Reflexivity_on_elements)

The reflexivity_on_element rule preserves computability, i.e. if a∈A[C] comp α then a=a∈A[C]

comp α'=α+1.

Proof: By induction on the computational complexity of the computable judgement a∈A[C].

Subcase C = ∅.
The associate judgements are computable by hypothesis. To prove the computability of the parts

we should analyze each possible form of the values of a and A. Let us consider only the case  a⇒λ(b)

and A»Π(Α1, A2). Fig.1a illustrates a piece of the computation tree for this case.

There is only one part judgement b(x)=b(x)∈A2(x)[x:A1]. Its computability follows, by inductive

hypothesis, from the computability of the judgement b(x)∈A2(x)[x:A1]. Thus, a=a∈A is computable.

It remains to prove the stated relations on complexities.

Let α, α',β,β' be the computational complexities of the computable judgements a∈A, a=a∈A,

b(x)∈A2(x)[x:A1], b(x)=b(x)∈A2(x)[x:A1]. The computability of a∈A depends on the computability of

b(x)∈A2(x)[x:A1], then we have α≥β+1. By applying the inductive hypothesis we have β'=β+1, and

hence α'=∨(α+1, β'+1)=α+1.

For all the other cases the proof is analogous.

A type b(x)∈A2(x)[x:A1] -β

a∈A -α≥β+1 a∈A -α b(x)=b(x)∈A2(x)[x:A1]-β'=β+1≤α

a=a∈A - α'=∨(α+1,β'+1)=α+1

Fig. 1a

Subcase C ≠ ∅.
The computability of the associate judgement of a=a∈A[C] is given by hypothesis, while that of

its substituted judgements directly follows by inductive hypothesis.

Moreover, if comp(a[x:=e]=a[x:=e]∈A[x:=e])=β and comp(a[x:=e]∈A[x:=e])=αi then, by inductive

hypothesis, β = αi+1, hence  β +1≤ α +1 since α ≥ αi+1, and α'= ∨(α+1, β +1) = α+1. See the

Fig. 1b.



A type[C]         a[x:=e]∈A[x:=e] -αi a[x:=e]=a[x:=f]∈A[x:=e]-αk

a∈A [C]-α

  a∈A[C] -α     a[x:=e]=a[x:=e]∈A[x:=e] -β=αi+1≤α  a[x:=e]=a[x:=f]∈A[x:=e] -αk+1≤α

a=a∈A[C] -α'=α+1

Fig.1b

Lemma  4.8: ( Reflexivity_on_type)

The reflexivity_on_type rule preserves computability, i.e. if A type[C] comp α then

A=A[C] comp α'=α+1.

Proof: The proof, by induction on the computational complexity of the computable judgement

A type[C], is analogous to the one of the previous lemma 4.7 except when the value of A is I(A1,a,b)

where the use of the reflexivity_on _elements lemma is needed.

The next corollary is a purely technical result we will use in the following lemmas to abbreviate

the proofs.

Corollary 4.9:

i) Let a∈A and c∈A be computable closed judgements and g be the value both of a and c.

If a=c∈A is derivable then it  is also computable.

ii) Let A type and C type be computable closed judgements and G be the value both of A and C.

If A=C is derivable then it is also computable.

iii) Let a∈A be a computable closed judgement and g the value of a, then a=g∈A is computable.

iv) Let A type be a computable closed judgement and G the value of A, then A=G is computable.

Proof:

i) The associate judgements are computable by hypothesis, then we must only prove that the parts are

computable. Since a∈A is computable and a⇒g, if A»G then that the judgement g∈G is computable,

by fact 4.5 (point 3). Hence, by the reflexivity-on-element lemma, also the judgement g=g∈G is

computable and hence the parts of g and g are equal computable elements in G.  

ii) The proof is analogous to point i) except for the use of point 1 of fact 4.5, instead of point 3, and

the use of the reflexivity-on-type lemma, instead of the reflexivity-on-element lemma.

iii) The proof follows by point i) if we prove that g∈A is computable. By correct evaluation, the

judgement a=g∈A is derivable and hence also its associate judgement g∈A is derivable. Its



computability then follows by reflexivity and the fact that the parts of g∈A are exactly those of a∈A

which is computable by hypothesis.

iv) The proof is analogous to point iii) except for the use of point ii) instead of i).

The following lemma 4.10 does not concern one of the rules of the theory but states some

properties of computable judgements which will be very often referred to in the following subsections.

Lemma 4.10: (Head substitution)

Let C ≡[x1:A1,…, xn:An] be a context, J≡F[C] be a computable judgement, a1:A1,…,ai:Ai and

a1=a'1:A1,…, ai=a'i:Ai (i<n)4  be c.c.s that fit with the context [x1:A1,…, xi:Ai]. Then

i) J[x1:=a1,…, xi:=ai] is a computable judgement.

ii) J[x1<−a1=a'1,…, xi<−ai=a'i] is a computable judgement.

Proof: The proof is by induction on the computational complexity of J.

Let D ≡[xi+1:A'i+1,…, xn:A'n] where A'j≡((x1,…, xi) Aj)(a1,…, ai), i+1≤ j ≤ n, and let

ai+1:A'i+1,…, an:A'n be a c.c.s. that fits with the context D. To prove the computability of the head

substituted judgements we will show that for any c.c.s. saturating J[x1:=a1,…,xi:=ai] or

J[x1<−a1=a'1,…,xi<−ai=a'i] it is possible to find out a c.c.s. saturating J and yielding the same

judgement. First of all note that for i+1≤ j ≤ n,

Aj ≡ ((x1,…, xj-1) Aj)(a1,…, aj-1)

≡ ((xi+1,…, xj-1)(((x1,…, xi) Aj)(a1,…, ai))(ai+1,…, aj-1)

≡ A'j.

case i)

(associate judgements) The computability of  the associate judgements, if any, follows by inductive

hypothesis.

(substitution  :=) For any c.c.s. ai+1:A'i+1,…,  an:A'n  we have that a1:A1,…,  an:An  is a c.c.s. that fits

with C; hence (J[x1:=a1,…,xi:=ai])[xi+1:=ai+1,…,xn:=an] ≡ J[x1:=a1,…,xn:=an] is computable.

(substitution  <−) For any c.c.s. ai+1=a'i+1:A'i+1,…,  an=a'n:A'n that fits with the context D, we have

that a1=a1:A1 ,…,  ai=ai:A1, ai+1=a'i+1:Ai+1,…, an=a'n:An is a c.c.s. that fits with C. (Note that the

reflexivity_on_elements lemma is used).

Hence

(J[x1:=a1,…,xi:=ai])[xi+1<−ai+1=a'i+1,…,xn<−an=a'n]

≡ J[x1<−a1=a1,…,xi<−ai=ai,xi+1<−ai+1=a'i+1,…, xn<−an=a'n]

is computable.

case ii)

(associate judgements) The computability of  the associate judgements follows from case i) since if

a1=a'1:A1,…,ai=a'i:Ai (i<n) are computable then also a1:A1,…,ai:Ai are computable and

J[x1:=a1,…,xi:=ai] is the associate judgement of J[x1<−a1=a'1,…, xi<−ai=a'i] whose computability is

required.

                                                
4 Note that for i=n  the claim is true by definition of computable judgement.



(substitution  :=) For any c.c.s. ai+1:A'i+1,…,an:A'n  that fits with the context D,  we have that

a1=a'1:A1 ,…,ai=a'i:A1, ai+1=ai+1:Ai+1,…,an=an:An is a c.c.s. that fits with C; hence also

 (J[x1<−a1=a'1,…, xi<−ai=a'i] )[xi+1:=ai+1,…,xn:=an]

≡ J[x1<−a1=a'1,…,xi<−ai=a'i, xi+1<−ai+1=ai+1,…,xn<−an=an]

is computable.

(substitution  <−) For any c.c.s. ai+1=a'i+1:A'i+1 ,…, an=a'n:A'n that fits with the context D, we have

that a1=a'1:A1 ,…,  ai=a'i:A1, ai+1=a'i+1:Ai+1,…, an=a'n:An is a c.c.s. that fits with C; hence

(J[x1<−a1=a'1,…, xi<−ai=a'i] )[xi+1<−ai+1=a'i+1,…, xn<−an=a'n]

≡ J[x1<−a1=a'1,…, xi<−ai=a'i, xi+1<−ai+1=a'i+1,…, xn<−an=a'n]

is computable.

Remark 4.11:

Let C ≡ [x1:A1,…, xn:An] be a context, a1:A1,…, an:An and a1=a'1:A1,…, an=a'n:An be c.c.s.s that fit

with C, and B≡ (s1:S1,…, sm:Sm)A(s1,…, sm), then from the head substitution lemma we have that

if :B[C] is computable then :B[C] [x1:=a1,…, xn:=an] and

:B[C] [x1<−a1=a'1,…, xn<−an=a'n] are computable;

if b:B[C] is computable then b:B[C] [x1:=a1,…, xn:=an] and

b:B[C] [x1<−a1=a'1,…, xn<−an=a'n] are computable;

if b=b':B[C] is computable then b=b':B[C] [x1:=a1,…, xn:=an] and

b=b':B[C] [x1<−a1=a'1,…,xn<−an=a'n] are computable.

We continue by proving that each rule listed in the appendix preserves  computability, i.e. any

judgement in the conclusion of that rule is computable whenever all the judgements in the premises are

computable. The ordering of the lemmas has been suitably chosen to allow us to deal separately with

each rule thus mastering the complexity of the computability proof.

4.2.1. The substitution rules

The definition of computable judgement directly states that the substitution rules preserve

computability in the special case of saturating substitutions. In the next lemma we will prove that

computability is preserved by substitution rules also in the general case of tail substitution.

Since the different forms of judgement of the six substitution rules are not essential to prove the

result we will compact the sentence as much as possible.

Lemma 4.12: (Substitution lemma)

Let D ≡[C, x1:A1,…,xn:An], where C is a context, J≡F[D] be a computable judgement,

a1:B1[C],…, an:Bn[C]  and a1=a'1:B1[C],…, an=a'n:Bn[C] be substitutions that fit with the context

[x1:A1,…,xn:An], ( i.e.  Bj ≡ ((x1,…,xj-1) Aj) (a1,…, aj-1), 1≤j≤n ). Then

i) J[x1:=a1,…, xn:=an] is a computable judgement.

ii) J[x1<−a1=a'1,…, xn<−an=a'n] is a computable judgement.

Proof: If C =∅ then the claim holds by definition. Let C ≡[s1:S1,…,sm:Sm], m>0. The proof is by

induction on the computational complexity of J.



case i)

(associate judgements) The computability of the associate judgements follows by inductive

hypothesis.

(substitution  :=) For any c.c.s. c1:S1,…, cm:Sm fitting with the context C, we define

di ≡ ((s1,…, sm) ai)(c1,…, cm), 1≤i≤n.

By remark 4.11

di : ((s1,…, sm) Bi)(c1,…, cm) ≡ ai:Bi[C] [s1:=c1,…, sm:=cm]

is computable.

Moreover we have

((s1,…, sm) Bi)(c1,…, cm) ≡ ((s1,…, sm)((x1,…, xi-1) Ai)(a1,…, ai-1))(c1,…, cm)

≡ ((s1,…, sm, x1,…, xi-1) Ai)(c1,…, cm, d1,…, di-1)

≡ Αi

Therefore c1:S1,…, cm:Sm, d1:A1,…, dn:An is a c.c.s. fitting with the context D. Hence

(J[x1:=a1,…, xn:=an])[s1:=c1,…, sm:=cm] ≡ J[s1:=c1,…, sm:=cm, x1:=d1,…, xn:=dn]

is computable.

(substitution  <−) For any c.c.s. c1=c'1:S1,…, cm=c'm:Sm that fits with the context C, we define

di ≡ ((s1,…, sm) ai)(c1,…, cm)

and

d'i ≡ ((s1,…, sm) ai)(c'1,…, c'm), 1≤i≤n.

By remark 4.11

di=d'i : ((s1,…, sm) Bi)(c1,…, cm) ≡ ai:Bi [C] [s1<−c1=c'1,…, sm<−cm=c'm]

is computable.

Moreover we have, see previous point, ((s1,…, sm) Bi)(c1,…, cm) ≡ Αi. Then, c1=c'1:S1,…,cm=c'm:Sm,

d1=d'1:A1,…, dn=d'n:An is a c.c.s. that fits with the context D. Hence

(J[x1:=a1,…, xn:=an])[s1<−c1=c'1,…, sm<−cm=c'm]

≡ J[s1<−c1=c'1,…, sm<−cm=c'm, x1<−d1=d'1,…, xn<−dn=d'n]

is computable.

case ii)

(associate judgements) The computability of  the associate judgements follows from case (i).

(substitution  :=) For any c.c.s. c1:S1,…, cm:Sm fitting with the context C , we define

di ≡ ((s1,…, sm) ai)(c1,…, cm)

and

d'i ≡ ((s1,…, sm) a'i)(c1,…, cm).

By remark 4.11

di=d'i : ((s1,…, sm) Bi)(c1,…, cm) ≡ ai=a'i:Bi [C] [s1:=c1,…, sm:=cm]

is computable.

Then, since ((s1,…, sm) Bi)(c1,…, cm) ≡ Αi, c1=c1:S1,…, cm=cm:Sm, d1=d'1:A1,…, dn=d'n:An is a c.c.s.

fitting with the context D. Hence

(J[x1<−a1=a'1,…, xn<−an=a'n])[s1:=c1,…, sm:=cm]

≡ J[s1<−c1=c1,…, sm<−cm=cm, x1<−d1=d'1,…, xn<−dn=d'n]



is computable.

(substitution <−) For any c.c.s. c1=c'1:S1,…, cm=c'm:Sm fitting with the context C , we define

di ≡ ((s1,…, sm) ai)(c1,…, cm)

and

d'i ≡ ((s1,…, sm) ai)(c'1,…, c'm).

By remark 4.11

di=d'i : ((s1,…, sm) Bi)(c1,…, cm) ≡ ai=a'i:Bi [C] [s1<−c1=c'1,…, sm<−cm=c'm]

is computable.

Then, since ((s1,…, sm) Bi)(c1,…, cm) ≡ Αi, c1=c'1:S1,…,cm=c'm:Sm, d1=d'1:A1,…, dn=d'n:An is a c.c.s.

fitting with the context D. Hence

(J[x1<−a1=a'1,…, xn<−an=a'n] )[s1<−c1=c'1,…, sm<−cm=c'm]

≡ J[s1<−c1=c'1,…, sm<−cm=c'm, x1<−d1=d'1,…, xn<−dn=d'n]

is computable.

4.2.2. U-elimination rules

Lemma 4.13 deals with U-elimination rules. We need to know that they preserve both

computability and computational complexity to establish the next lemma 4.14 about computability of

the remaining structural rules. For this reason their analysis precede so much that of all the other

logical rules.

Lemma 4.13: ( U-elimination )

The U-elimination rules preserve computability and do not increase computational complexity, i.e.

1) If a∈U[C] comp β then <a> type[C] comp β'≤β
2) If a=b∈U[C]  comp β then <a> = <b>[C] comp  β'≤β
Proof: by induction on the computational complexity β.

Case 1:

Subcase C  = ∅.
(evaluation) <a>»G<a> immediately follows from the computability of the judgement a∈U by using

the suitable computation rule.

(correct evaluation) the required derivation can be obtained by applying the suitable U-equality rule to

premises whose existence is guarantied by the computability of the judgement a∈U. For instance, if

a⇒π(a',a"):

a=π(a',a")∈U
<a>=<π(a',a")>               

a'∈U           a"(x)∈U[x:<a'>]
<π(a',a")>=∏(<a'>,(x)<a"(x)>)

<a> = ∏(<a'>,(x)<a"(x)>)  

(parts) the parts of G<a> are computable type(s) with computational complexity less or equal of that

of the corresponding parts of the computable judgement a∈U. For instance if G<a> ≡

∏(<a'>,(x)<a"(x)>), by ind. hyp., we obtain that a'∈U comp β' implies <a'> type comp γ'≤β ' and

a"(x)∈U[x:<a'>] comp β" implies <a"(x)> type[x:<a'>] comp γ"≤β". The other cases are completely

similar.

Subcase C  ≠ ∅.



(substitution :=) immediately follows by ind. hyp. (1)

(substitution <−) immediately follows by ind. hyp. (2)

Case 2.

Subcase C  = ∅.

(associate) from a=b∈U comp β we obtain a∈U comp β1<β and b∈U comp β2<β. Hence by ind.

hyp., point 1,  <a> type comp β1'≤β1 and <b> type comp β2'≤β2.
(parts) if <a>»G<a> and <b>»G<b> then the parts of G<a> and G<b> are equal computable types

with the same computational complexity of the corresponding parts of the computable judgement
a=b∈U. Let us analyze the case G<a> ≡ ∏(<a'>,(x)<a"(x)>):

G<a> ≡ ∏(<a'>,(x)<a"(x)>) iff a⇒π(a',a")

iff b⇒π(b',b")
iff G<b> ≡ ∏(<b'>,(x)<b"(x)>)

and, by ind. hyp., we obtain that a'=b'∈U comp β3 implies <a'>=<b'> comp β3'≤β3 and

a"(x)=b"(x)∈U[x:<a'>] comp β4 implies <a"(x)>=<b"(x)> [x:<a'>] comp β4'≤β.

Hence β'=∨(β1'+1, β2'+1, β3'+1, β4'+1)≤ ∨(β1+1, β2+1, β3+1, β4+1)=β.

The other cases are completely similar.

Subcase C  ≠ ∅.

(associate ) immediately follows by ind. hyp., point 1.

(substitution := ) immediately follows by ind. hyp., point 2.

(substitution <− ) immediately follows by ind. hyp., point 2.

Note that the computational complexity of the judgements in the premise and in the conclusion

are usually equal, but we may also have different complexities. For instance, the complexity of a basic

judgement, like N type, is 0 while the complexity of the corresponding judgement, <n>∈U, is 1 due

to the requirement that the associate judgement U type is computable.

4.2.3. The structural rules

All the other structural rules, i.e. the transitivity-on-element, the transitivity-on-type, the

symmetry-on-element, the symmetry-on-type, the equal element and the equal type rules,  are

considered in the next lemma 4.14 . This lemma is a key point in the proof of computability since it

establishes, besides the fact that structural rules preserve computability, other basic and important

relationships among the computational complexities of related judgements. As we already pointed out,

these information are essential in the subsequent proof since they guarantee the applicability of the

inductive hypothesis when we proceed by induction on the computational complexity of a judgement.

Lemma 4.14: (Structural rules)

Let β be a computational complexity.

1. If a=c∈A[C]  comp α1<β, b=d∈A[C]  comp α2<β, a=b∈A[C]  comp α
then (i) α1=α2=α  and (ii) c=d∈A[C] comp α

1.1 (transitivity on elements)
If a=b∈A[C]  comp α1<β, b=c∈A[C]  comp α2<β then a=c∈A[C]  comp α=α1= α2



2. If A=C[C]  comp α1< β,  B=D[C] comp α2< β, A=B[C]  comp α
then (i) α1= α2= α and  (ii) C=D[C] comp α

2.1 (transitivity on types)
If A=B[C] comp α1< β,  B=C[C]  comp α2< β then A=C[C] comp α=α1=α2

3. If A=C[C]  comp β then

i. (associate judgements)

A type[C]  comp α iff C type[C]  comp α
ii. (symmetry on types)

C=A [C] comp β
iii. (element in equal types and equal elements in equal types)

iii.a a∈A[C]  comp α iff a∈C[C] comp α
iii.b a=c∈A[C] comp α iff a=c∈C[C]  comp α

iv. (assumption in equal types)

J[C , x:A] comp α iff J[C , x:C] comp α
4. If  a=c∈A[C]  comp β then

i. (associate judgements)

a∈A[C]  comp α iff c∈A[C]  comp α
ii. (symmetry on elements)

c=a∈A[C] comp β
Proof: By principal induction on β. The base cases are obvious.

Point 1. The proof follows by subordinate induction on α. As regards Point 1.ii, a derivation for the

judgement c=d∈A[C] can easily be found by using symmetry and transitivity rules and the derivations

for a=c∈A[C], b=d∈A[C], a=b∈A[C].

Point 1. Subcase C= Ø
Let GA be the canonical value of A. The proof varies according to the outermost constant of GA, but

there is a common pattern. First we prove that the three considered judgements have corresponding

part judgements with the same computational complexity. Then, a similar result follows also for the

corresponding associate judgements. Here we analyse only three main cases; the other cases are

similar.
• GA≡∏(A1, A2)  and  a⇒λ(a'), b⇒λ(b'), c⇒λ(c'), d⇒λ(d')



 A type a'(x)∈A2(x)[x:A1]

a∈A -γ1   c∈A -γ'1 a'(x)=c'(x)∈A2(x)[x:A1] -α1'

a=c∈A-α1<β

 A type b'(x)∈A2(x)[x:A1]

b∈A -γ2   d∈A -γ'2 b'(x)=d'(x)∈A2(x)[x:A1]-α2'

b=d∈A-α2<β

a∈A -γ1 b∈A -γ2 a'(x)=b'(x)∈A2(x)[x:A1] -α'< β

a=b∈A-α

Fig. 2.  Computation trees (Point 1.i. Π-case)

(Point 1.i Π-case) We know that (see fig. 2 )

a'(x)=c'(x)∈A2(x)[x:A1] comp α1'<α1<β  and

b'(x)=d'(x)∈A2(x)[x:A1] comp α2'<α2<β  and

a'(x)=b'(x)∈A2(x)[x:A1] comp α'<α
hence, by subordinate ind. hyp., α1'=α2'=α'. Hence the parts have the same computational

complexity. Note that α'<β.

As regards the associate judgements, we obtain by ind. hyp. 4.i:
γ1=comp(a∈A)=comp(c∈A)=γ'1  from  a=c∈A comp-α1<β
γ2=comp(b∈A)=comp(d∈A)=γ'2 from b=d∈A comp-α2<β  

comp(a'(x)∈A2(x)[x:A1])=comp(b'(x)∈A2(x)[x:A1])

from a'(x)=b'(x)∈A2(x)[x:A1] comp α'<β
which guarantees γ1=comp(a∈A)=comp(b∈A)=γ2. Hence γ'1=γ1=γ2=γ'2.

(Point 1.ii Π-case) We yet proved that comp(c∈A)=comp(d∈A), hence c=d∈A comp α follows by

applying ind. hyp. (point 1.ii) to the part judgements of the four considered judgements.

• GA≡Σ(A1, A2) and a⇒&(a',a"), b⇒&(b',b"), c⇒&(c',c"), d⇒&(d',d")

(Point 1.i Σ-case) We know that (see fig. 3 )



a'=c'∈A1 comp α1'<α1<β  and

b'=d'∈A1 comp α2'<α2<β  and

(*) a'=b'∈A1 comp α'<α
hence, by subordinate ind. hyp., α1'=α2'=α'<β

Moreover
a"=c"∈A2(a') comp α1"<α1<β  and

b"=d"∈A2(b') comp α2"<α2<β  and

a"=b"∈A2(a') comp α"<α.

By  using (*), we obtain
comp(A2(a')=A2(b'))<comp(A2(x) type[x:A1])<comp(A type)<comp(a∈A)<comp(a=c∈A)<β
then, by ind. hyp. (point 3.iii.b), we have: comp(b"=d"∈A2(a'))=α2"<β and hence, by subordinate ind.

hyp., α1"=α2"=α"< β.

…… A2(a')=A2(b')-δ … A2(a')=A2(c')-γ

 A1 type A2(x) type[x:A1]

A type …

a∈A -γ1 c∈A -γ'1 a'=c'∈A1 -α1'<β a"=c"∈A2(a') -α1"<β

a=c∈A -α1<β

b∈A -γ2 d∈A -γ'2 b'=d'∈A1 -α1'<β b"=d"∈A2(b') -α2"<β

b=d∈A -α2<β

a∈A -γ1 b∈A -γ2 a'=b'∈A1 -α'< β a"=b"∈A2(a') -α"<α

a=b∈A -α

Fig. 3.  Computation trees (Point 1.i. Σ-case)

The proof proceeds analogously to the Π−case. Simply note that to prove that the three

considered judgements have corresponding associate judgements with the same computational

complexity we need the ind. hyp. (point 3.iii.a) to obtain that comp(b"∈A2(a')) = comp(b"∈A2(b')).



(Point 1.ii Σ-case) Since A2(a')=A2(b') comp δ<β, from b"=d"∈A2(b') comp α2", by ind. hyp. points

3.ii and 3.iii.b we obtain b"=d"∈A2(a') comp α2". Then from a"=c"∈A2(a') comp α1", b"=d"∈A2(a')

comp α2" and a"=b"∈A2(a') comp α", by ind. hyp. point 1.ii, we obtain:

c"=d"∈ A2(a') comp α".

From this, since A2(a')=A2(c') comp γ<β, by ind. hyp. point 3.iii.b, we obtain:

c"=d"∈A2(c') comp α".

We can easily prove also that  c∈A comp γ1, d∈A comp γ2, c'=d'∈A comp α', and hence that c=d∈A

comp α.

• GA≡U.

We develop in a detailed way only the case a⇒π(a',a"),b⇒π(b',b"),c⇒π(c',c"),d⇒π(d',d").

(Point 1.i U-case)  We know that
a'=c'∈U comp α1'<α1<β  and

b'=d'∈U comp α2'<α2<β  and

a'=b'∈U comp α'<α
hence, by subordinate ind. hyp., α1'=α2'=α'<β.

Moreover we know that
a"(x)=c"(x)∈U [x:<a'>] comp α1"<α1<β  and

b"(x)=d"(x)∈U [x:<b'>] comp α2"<α2<β and

a"(x)=b"(x)∈U [x:<a'>] comp α"< α.

Since a'=b'∈U comp α'<β, by lemma 4.13, we obtain <a'>=<b'> comp γ'≤α '<β and then, by ind.

hyp. (point 3.iv), b"(x)=d"(x)∈U[x:<a'>] comp α2", hence, by subordinate ind. hyp., α1"=α2"=α"<β.

Analogously to the previous cases, it is now easy to prove that the three considered judgements have

corresponding associate judgements with the same computational complexity .

(Point 1.ii U-case) The proof proceeds analogously to the previous cases. It is worth to describe only

the proof that c"(x)=d"(x)∈U [x:<c'>] comp α". By subordinate inductive hypothesis we know that

c"(x)=d"(x)∈U [x:<a'>] comp α". Since a'=c'∈U comp α1'<β, by lemma 4.13, we obtain <a'>=<c'>

comp γ1'≤α1'<β and then, by ind. hyp. (point 3.iv), we obtain:

c"(x)=d"(x)∈U [x:<c'>] comp α".

Point 1. Subcase C ≠ Ø

(Point 1.i) We prove that the three considered judgements have the corresponding associate

judgements and substituted judgements of the same computational complexity.

(substitution :=) Immediate by subordinate ind. hyp., (see fig. 4 ).



 … a[x:=e]=a[x:=e]∈A[x:=e]-α1*

a∈A[C]-α1' a[x:=e]=c[x:=e]∈A[x:=e]-α1" a[x:=e]=c[x:=f]∈A[x:=e]-α1"'

a=c∈A[C]-α1<β

 … b[x:=e]=b[x:=f]∈A[x:=e]-α2*

b∈A[C]-α2' b[x:=e]=d[x:=e]∈A[x:=e]-α2" b[x:=e]=d[x:=f]∈A[x:=e]-α2"'

b=d∈A[C]-α2<β

a∈A[C]-α'=α1' a[x:=e]=b[x:=e]∈A[x:=e]-α" a[x:=e]=b[x:=f]∈A[x:=e]-α"'

a=b∈A[C]-α<β

Fig. 4. Point 1.i (substitution :=)

(substitution <−) First observe that, by subordinate ind. hyp. (1.i) α" = α1
"'= α2"'. Moreover, if  e=f:

is a c.c.s. fitting with C this holds also for e:; hence α1*<β and α2*<β and, by subordinate ind. hyp.

(points 1.i and 1.ii), α" = α1*= α2* = α"'. Hence α"' = α1
"'= α2"'.

(associate judgements) Since α'=α1', α"=α1" and α"'=α1
"' then α=α1<β and, by ind. hyp. 4.i,

comp(b∈A[C])=α2'=comp(a∈A[C])=α1'.

(Point 1.ii)  By ind. hyp. (point 4.i) comp(c∈A[C])=comp(a∈A[C])=α', by subordinate ind. hyp. on

substituted judgements, for any c.c.s.  e:, comp(c[x:=e]=d[x:=e]∈A[x:=e])=α" holds and for any c.c.s.

e=f:, comp(c[x:=e]=d[x:=f]∈A[x:=e])=α" holds hence comp(c=d∈A[C] )=α.

Point 1.1
By ind. hyp. (point 4.ii) from comp(a=b∈A[C])=α1<β we obtain comp(b=a∈A[C])=α1<β.

Hence b∈A[C] is computable and, by the reflexivity lemma, b=b∈A[C] is computable. Then  the result

follows from the previous point 1.ii.

Point 2.

The proof follows by subordinate induction on α.



The proof of this case is analogous to the one of point 1. Just substitute the judgement 'equal elements
in a type' with the judgement 'equal types' and pay attention  in analyzing the case GA≡I(A1,e,f)  where

an obvious application of point 1. is required.

Point 2.1
By ind. hyp. point 3.ii, from comp(A=B[C])=α1<β we obtain comp(B=A[C])=α1<β. Hence B

type[C] is computable and, by the reflexivity lemma, B=B[C] is computable. Then the result follows

from the previous point 2.ii.

Point 3.i

Point 3.i Subcase C = Ø.
Let A»GA and C»GC we must prove that the parts of GA and GC have the same computational

complexity. The proof varies according to the outermost constant of GA. We analyze only two

significant cases; the other cases are similar.
• GA≡∏(A1,A2)  hence, since A=C is a computable judgement, GC≡∏(C1,C2) and we know that

(*) comp(A1=C1) < β,

hence, by ind. hyp. point 3.i, comp(A1 type)=comp(C1 type);

(**) comp(A2(x)=C2(x) [x:A1]) < β,

hence, by ind. hyp. point 3.i, comp(A2(x) type [x:A1]) = comp(C2(x) type[x:A1]) and finally

comp(A2(x) type [x:A1]) = comp(C2(x) type [x:C1]),

by using  ind. hyp. point 3.iv.
• GA≡I(A1,a',a")  and GC≡I(C1,c',c") and we know that

(*) comp(A1=C1) < β,

then, by ind. hyp. point 3.i, comp(A1 type) = comp(C1 type)

(**) comp(a'=c'∈A1) < β,

hence, by ind. hyp. point 4.i, comp(a'∈A1) = comp(c'∈A1) and then, by  ind. hyp. point 3.iii.a,

comp(a'∈A1) = comp(c'∈C1);

(***) comp(a"=c"∈A1) < β,

hence, by ind. hyp. point 4.i, comp(a"∈A1) = comp(c"∈A1) and then, by  ind. hyp. point 3.iii.a,

comp(a"∈A1) = comp(c"∈C1).

Point 3.i Subcase C ≠ Ø
For any c.c.s. e:, since comp(A[x:=e]=C[x:=e])<β, by ind. hyp. 3.i, it immediately follows:

comp(A[x:=e] type)=comp(C[x:=e] type).

For any c.c.s. e=f: we know that e: and, by reflexivity, e=e: are c.c.s fitting with C. Hence,

comp(A[x:=e]=A[x:=e])=comp(A[x:=e]=A[x:=f]),

by  ind. hyp. 2.i, and

comp(A[x:=e]=A[x:=e])=comp(C[x:=e]=C[x:=f]),

by ind. hyp. 2.ii. Hence

comp(A[x:=e]=A[x:=f])=comp(C[x:=e]=C[x:=f])

and thus comp(A type[C]) = comp(C type[C])



Point 3.ii

(associate judgements) We must prove that the associate judgements of the derivable judgement

C=A[C] are computable and their computational complexities are equal to the computational

complexities of the corresponding associate of the judgement A=C[C]. This result is obvious by the

previous point 3.i.

Point 3.ii Subcase C = Ø.

We must prove that the parts of C=A have the same computational complexity of the parts of

A=C. Let us consider two cases
• GA≡∏(A1, A2)  and hence GC≡∏(C1, C2).

The parts of A=C  are  A1=C1 comp α1  and  A2(x)=C2(x)[x:A1] comp α2 and the parts of C=A are

C1=A1 comp α1'  and  C2(x)=A2(x)[x:C1] comp α2'

Now  α1= α1',  by  inductive  hypothesis  point 3.ii,  because  α1<β  and,  since, by ind. hyp.

point 3.v, comp(C2(x)=A2(x)[x:A1])=α2', it follows that α2=α2', again by using the ind. hyp. point 3.ii,

because α2< β.
• GA≡I(A1,a',a")  and hence  GC≡I(C1,c',c").

The  parts of  A=C   are  A1=C1 comp α1, a'=c'∈A1 comp α2 and  a"=c"∈A1 comp α3 and the parts

of C=A  are C1=A1 comp α1', c'=a'∈C1 comp α2' and c"=a"∈C1 comp α3'.  Now  α1= α1'  by ind.

hyp. point 3.ii because α1<β and, since, by ind. hyp. point 4.ii, comp(c'=a'∈A1)=α2 and

comp(c"=a"∈A1)=α3, we obtain  comp(c'=a'∈C1)=α2 and comp(c"=a"∈C1)=α3 by using ind. hyp.

point 3.iv.

Point 3.ii Subcase C ≠ Ø.

We have to prove that the two considered judgements have substituted judgements with the same

computational complexity.

(substitution :=) Immediate by ind. hyp. 3.ii.

(substitution <−) For any c.c.s. e=f: fitting with C also e: is a c.c.s. fitting with C, hence by ind. hyp.

(2.i and 2.ii)

comp(A[x:=e]=C[x:=e])= comp(A[x:=e]=A[x:=f])

= comp(A[x:=e]=A[x:=e])

= comp(C[x:=e]=A[x:=f])

comp(A[x:=e]=C[x:=e])= comp(A[x:=e]=C[x:=f])

= comp(A[x:=e]=A[x:=e])

 = comp(C[x:=e]=C[x:=f]).

Hence comp(C[x:=e]=A[x:=f]) = comp(A[x:=e]=C[x:=f]).

Point 3.iii.a.

Let us prove the if-part (the proof of the only-if part is completely similar) by subordinate

induction on the complexity α.

Note that, by point 3.i,  the associate judgements of a∈Α[C] and a∈C[C] are computable judgements

with the same complexity.



Point 3.iii.a Subcase C =Ø.
(evaluation) a⇒ga, by hypothesis

(correct evaluation) a=ga∈C is provable, immediate

(parts) Let us analyze three cases according to the form of GC.

• GC≡Σ(C1,C2)  and hence  GA≡Σ(A1,A2) and ga≡&(a', a") and we know that

A1=C1 comp α1<β,

A2(x)=C2(x) [x:A1] comp α2<β,

a'∈A1  comp α'< α and a"∈A2(a')  comp α"< α
and hence comp(a'∈C1)= α', by ind. hyp. point 3.iii.a, and, since  

comp(A2(a')=C2(a'))<comp(A2(x)=C2(x)[x:A1])<comp(A=C)<β,

we obtain a"∈C2(a')   comp α", by using ind. hyp. point 3.iii.a.
• GC≡I(C1,c',c")  and hence  GA≡I(A1,a',a") and ga≡r and we know that

a'=c'∈A1 comp α2<β,

a"=c"∈A1 comp α3<β
a'=a"∈A1  comp α'< α

and, by point 1., we obtain  c'=c"∈A1 comp α'

then, since A1=C1 comp α1<β, by using ind. hyp. point 3.iii.b, comp(c'=c"∈C1 )= α'.

• GC≡W(C1,C2)  and hence  GA≡W(A1,A2) and ga≡sup(a',a") and we know that

A1=C1 comp α1<β,

a'∈A1 comp α'< α and

then, by  ind. hyp. 3.iii.a, a'∈C1 comp α'.  

Moreover we know that
a"(y)∈W(A1,A2)[y:A2(a')] comp α"< α
A2(x)=C2(x) [x:A1] comp α2<β

and, since comp(A2(a')=C2(a'))<comp(A2(x)=C2(x)[x:A1])<β, by ind. hyp. point 3.iv,

 a"(y)∈W(A1,A2)[y:C2(a')] comp α"<α.

Now to prove a"(y)∈W(C1,C2)[y:C2(a')] comp α" we must consider

(associate judgements) Since
comp(W(A1,A2) type)=comp(W(C1,C2) type)

and
comp(W(A1,A2)=W(A1,A2))=comp(W(C1,C2)=W(C1,C2))

then
comp(W(A1,A2) type[y:C2(a')])=comp(W(C1,C2) type[y:C2(a')])

(substitutions) By subordinate ind. hyp. 3.iii.a and 3.iii.b, for any c.c.s. e∈C2(a') and e=f∈C2(a') we

have
 comp(a"(e)∈W(A1,A2))=comp(a"(e)∈W(C1,C2))

comp(a"(e)=a"(f)∈W(A1,A2))=comp(a"(e)=a"(f)∈W(C1,C2))

Point 3.iii.a Subcase C ≠ Ø.

(substitution :=) the result immediately follows by using the ind. hyp. point 3.iii.a.

(substitution <−) the result immediately follows by using the ind. hyp. point 3.iii.b.



Point 3.iii.b.

The proof of this case is similar to the previous point 3.iii.a. Just note that, by point 3.iii.a, the

associate judgements of a=c∈Α[C] and c=a∈C[C] are computable with the same complexity.

Point 3.iv.

The proof is by subordinate induction on the computational complexity α. Let us prove the if-

part (the proof of the only if-part is completely similar) .

(associate judgements) By subordinate ind. hyp. the associate judgements of J[C, x:C] are computable

with the same complexity of those of J[C, x:A].
(substitutions) For analyzing the substituted judgements, let C be [y1:B1,…,yn:Bn]. Since

A=C[C] comp β then for any c.c.s. a1:B1,…,an:Bn, e:C (or a1=a'1:B1,…,an=a'n:Bn, e=e':C) fitting with

[C, x:C], we have comp(A[y:=a]=C[y:=a])<β hence, by point 3.iii.a (or 3.iii.b), e:A (or e=e':A) is a

computable judgement and thus the same substitution fits also with [C, x:A]. Hence the substituted

judgements are computable with the same complexity.

Point 4.i.

Let us prove the if-part (the proof of the only if-part is completely similar).

(associate judgements)  The associate judgement of both judgements is A type.

Point 4.i Subcase C = Ø.

We must prove only that the parts of c∈A have the same computational complexity of the

corresponding parts of a∈A. According to the values of A  and a we consider here only three cases:

• A»Σ(A1,A2) and a⇒&(a',a"). Then we know that

c⇒&(c',c"), and that

comp(a'=c'∈A1) < β   and

comp(a"=c"∈A2(a')) < β;

therefore:
comp(a'∈A1)= comp(c'∈A1), by ind. hyp. 4.i;  and, since

comp(A2(a')=A2(c')) < comp(A2(x) type[x:A1])

< comp(A type)<comp(a∈A)

< comp(a=c∈A)=β,

we obtain comp(a"∈A2(a'))= comp(c"∈A2(c')), by using ind. hyp. point 4.i and point 3.iii.a.

• A»W(A1,A2) and a⇒sup(a',a"). Then we know that

c⇒sup(c',c"), and that

comp(a'=c'∈A1)<β

therefore
comp(a'∈A1)=comp(c'∈A1), by using ind. hyp. point 4.i.

We know also that
comp(a"(x)=c"(x)∈W(A1,A2)[x:A2(a')])<β

and



comp(A2(a')=A2(c')) <comp(A2(x)=A2(x)[x:A1])

<comp(A2(x)type[x:A1]<β,

by ind. hyp. point 4.i and point 3.iv, then we obtain
comp(a"(x)∈W(A1,A2)[x:A2(a')])

= comp(c"(x)∈W(A1,A2)[x:A2(a')])

= comp(c"(x)∈W(A1,A2)[x:A2(c')])

• A»U  and  a⇒π(a',a"), and therefore c⇒π(c',c"). We know that

comp(a'=c'∈U)<β  and

comp(a"(x)=c"(x)∈U [x:<a'>])<β,

therefore, by ind. hyp. (4.i),

comp(a'∈U)= comp(c'∈U) and

comp(a"(x)∈U [x:<a'>]) = comp(c"(x)∈U [x:<a'>]).

Moreover,

comp(a'=c'∈U)<β
then we know, by lemma 4.13, that

comp(<a'>=<c'>)<β,

and we obtain, by using ind. hyp. (3.iv),

comp(c"(x)∈U [x:<a'>])=comp(c"(x)∈U [x:<c'>]).

Point 4.i Subcase C ≠ Ø.

(substitution :=) the result immediately follows by ind. hyp.4.i.

(substitution <−) the result follows by ind. hyp. point 1 using the fact that if e=f: is a c.c.s fitting with

C so is e: .

Point 4.ii.

Point 4.ii Subcase C = Ø.

Since the associate judgement of a=c∈A are exactly those of c=a∈A, we must prove only that

the parts of c=a∈A have the same computational complexity of the corresponding parts of a=c∈A.

The proof is similar to that of the previous point 4.i; let us analyze just one case:
• A»Σ(A1,A2) and a⇒&(a',a"). Then we know that

c⇒&(c',c"),

and that
comp(a'=c'∈A1)< β and

comp(a"=c"∈A2(a') )< β;

therefore:
comp(a'=c'∈A1)= comp(c'=a'∈A1),

by ind. hyp. 4.ii;  and, since
comp(A2(a')=A2(c')) < comp(A2(x) type[x:A1])

< comp(A type)

< comp(a∈A)

< comp(a=c∈A) = β,



we obtain comp(a"=c"∈A2(a'))=comp(c"=a"∈A2(c')), by using ind. hyp. point 4.ii and point 3.iii.b.

Point 4.ii Subcase C ≠ Ø.

As for the previous case the result follows by ind. hyp. (4.i. and 4.ii) by using ind. hyp. (point

1.1) and the fact that if e=f: is a c.c.s fitting with C so is e:.

It is worth noting that, the computability of the associate judgements which were left out from

the definition 4.1 of computable judgement (points 2.2.1 and 2.4.1) is now established by the

symmetry rules.

4.2.4. The assumption rules

In section 2 we presented the assumption rules of our system; they introduce variables of any

arity. The new assumption appears in the context of the conclusion of the rule and for this reason only

the case C ≠ Ø has to be considered in order to prove that assumption rules preserve computability.

Lemma 4.15: (First assumption_rule)
Let ai:Ai[Ci] (1≤i≤n) and :B[C] ≡ A(x1,…,xn) type[C, x1:A1,…,xn:An], be computable

judgements then the judgement y(a1,…,an)∈A(a1,…,an)[C'], where C' is the merge without

duplication of the contexts C1,…,Cn, C, [y:B], is computable;

Proof: Let C' ≡ s1:S1,…, sk:Sk, y:B, z1:C1,…, zm:Cm, k≥ 0, m≥0, where z1:C1,…, zm:Cm strictly

depend on y: B. First note that, since the context C' extends the contexts C  and Ci, 1≤i≤n , by the
weakening lemma, we have that  A(x1,…,xn) type[C', x1:A1,…,xn:An] and ai:Ai[C'] (1≤i≤n) are

computable judgements.
(associate judgement) The computability of the judgement A(a1,…,an) type[C'] follows by the

substitution lemma.

(substitution :=) Consider any c.c.s. fitting with C': d1:S1,…, dk:Sk, b:B, c1:C1,…,cm:Cm. Note that, if

A'i≡((s1,…,sk) Ai)(d1,…,dk) then

b:B

abbreviates:
b:B[s1:=d1,…,sk:=dk] ≡ b(x1,…,xn)∈((s1,…,sk) A)(d1,…,dk) [x1:A'1,…,xn:A'n].

Moreover ai:Ai[C'] (1≤i≤n) are computable judgements then, by the head substitution lemma,

ai:Ai[C'] [s1:=d1,…, sk:=dk, y:=b, z1:=c1,…, zm:=cm] (1≤i≤n)

are also computable, and
((s1,…,sk,y,z1,…,zm)Ai)(d1,…,dk,b,c1,…,cm) ≡ ((s1,…,sk)Ai)(d1,…,dk) ≡ A'i, (1≤i≤n).

Let

ei ≡ ((s1,…,sk,y,z1:,…,zm) ai)(d1,…,dk,b,c1,…,cm), (1≤i≤n),

then also the judgement

b:B[x1:=e1,…, xn:=en] is computable.

But  y:B, z1:C1,…, zm:Cm, cannot appear in [C, x1:A1,…,xn:An] then  

((s1,…,sk,y,z1,…,zm) A)(d1,…,dk,b,c1,…,cm) ≡ ((s1,…,sk) A)(d1,…,dk)

and therefore



b:B[x1:=e1,…,xn:=en] ≡ y(a1,…,an)∈A(a1,…,an)[C'][s1:=d1,…,sk:=dk,y:=b, z1:=c1,…, zm:=cm]

(substitution <−) Consider any c.c.s. fitting with C': d1=d'1:S1,…,dk=d'k:Sk,b=b':B, c1=c'1:C1,…,

cm=c'm:Cm. The proof proceeds as before by noting that the judgements
ai:Ai[C'][s1<−d1=d'1,…,sk<−dk=d'k,y<−b=b',z1<−c1=c'1,…,zm<−cm=c'm] (1≤i≤n)

are computable and can be substituted for xi in b=b':B obtaining a computable judgement which is

exactly
y(a1,…,an)∈A(a1,…,an)[C'][s1<−d1=d'1,…,sk<−dk=d'k, y<−b=b', z1<−c1=c'1,…, zm<−cm=c'm]

Lemma 4.16 (Second assumption_rule)
Let ai=a'i:Ai[Ci] (1≤i≤n) and :B[C] ≡ A(x1,…,xn) type[C, x1:A1,…,xn:An], be computable

judgements then the judgement y(a1,…,an)=y(a'1,…,a'n)∈A(a1,…,an)[C'], where C' is the merge

without duplication of the contexts C1,…,Cn, C, [y:B], is computable.

Proof: Let C'≡ s1:S1,…, sk:Sk, y:B, z1:C1,…, zm:Cm ,k≥ 0, m≥0, where z1:C1,…, zm:Cm strictly depend

on y:B.
(associate judgement) By hypothesis,  ai=a'i:Ai[Ci] (1≤i≤n) are computable judgements then also

their associate judgements ai:Ai[Ci] (1≤i≤n) are computable. Hence, by the previous lemma, the

judgement y(a1,…,an)∈A(a1,…,an)[C'] is computable.

(substitution :=) Consider any c.c.s. fitting with C': d1:S1,…, dk:Sk, b:B, c1:C1,…, cm:Cm. The proof

proceeds as before by noting that b=b:B is computable (reflexivity lemma) and that
ai=a'i:Ai[C'][s1:=d1,…,sk:=dk,y:=b, z1:=c1,…, zm:=cm], (1≤i≤n)

are computable judgements which can be substituted for xi in b=b:B obtaining a computable

judgement which is exactly
y(a1,…,an)=y(a'1,…,a'n)∈A(a1,…,an)[C'][s1:=d1,…,sk:=dk, y:=b, z1:=c1,…, zm:=cm]

(substitution <−) Consider any c.c.s. fitting with C': d1=d'1:S1,…,dk=d'k:Sk,b=b':B, c1=c'1:C1,…,

cm=c'm:Cm. The proof proceeds as before by noting that
ai=a'i:Ai[C'][s1<−d1=d'1,…, sk<−dk=d'k, y<−b=b', z1<−c1=c'1,…, zm<−cm=c'm] (1≤i≤n)

are computable judgements which can be substituted for xi in b=b':B obtaining a computable

judgement which is exactly
y(a1,…,an)=y(a'1,…,a'n)∈A(a1,…,an)[C'][s1<−d1=d'1,…,sk<−dk=d'k,y<−b=b',z1<−c1=c'1,…,zm<−cm=c'm]

4.2.5. The logical rules

We have now to analyse the rules that we call "logical" since they can be used to interpret a

logical intuitionistic first order calculus or a logical theory of natural numbers. An informal discussion

on the computability of these rules is usually depicted in many of the descriptions of ITT and we

follow the same ideas. Nevertheless, we should like to note that in our experience a complete formal

proof of computability for these rules cannot be carried on without a  substantial use of lemma 4.14

on structural rules.



Lemma 4.17: (∏-formation rules)

The ∏-formation rules preserve computability. That is:
1. Let J1≡ A type[C]  and  J2≡ B(x) type[C, x:A] be computable judgements then the judgement

∏(A,B) type[C]  is computable
2. Let J1≡ A=C[C] and J2≡ B(x)=D(x)[C, x:A] be computable judgements then the judgement

∏(A,B)=∏(C,D)[C] is computable.
Proof:  By induction on the computational complexity α of J1 .

Case 1 (∏-formation rules)

Subcase C = Ø.

(evaluation) ∏(A,B) » ∏(A,B)

(correct evaluation) ∏(A,B) = ∏(A,B)  is derivable (use formation rule and reflexivity).
(parts) They are  J1  and J2.

Subcase C ≠ Ø.

(substitution :=) Consider any c.c.s. a1:A1,…, an:An fitting with C ≡[x1:A1,…,xn:An], then

A type[C][x1:=a1,…, xn:=an]

is computable with complexity lower then α;

B(x) type[C, x:A][x1:=a1,…, xn:=an]

is computable, by head substitution lemma, hence the result follows by inductive hypothesis (case 1).

(substitution <−) Consider any c.c.s. a1=a'1:A1,…, an=a'n:An fitting with C ≡[x1:A1,…,xn:An], then

A type[C][x1<−a1=a'1,…, xi<−an=a'n]

is computable with complexity lower then α;

B(x) type[C, x:A][x1<−a1=a'1,…, xi<−an=a'n]

is computable, by head substitution lemma, hence the result follows by inductive hypothesis (case 2).

Case 2 (∏-formation rules)

Subcase C = Ø.
(associate judgements)  The  judgements A type and B(x) type[x:A], associate of J1 and J2, are

computable by definition, and, by lemma 4.14 (3.i) also C type and D(x) type[x:A] are computable

with the same computational complexity. By lemma 4.14 (case 3.iv), we know that also D(x) type[x:C]

is computable and hence the result follows by inductive hypothesis (case 1).
(parts) They are J1  and  J2.

Subcase C ≠ Ø.
(associate judgement)  The associate judgements A type[C] of J1 and B(x) type[C, x:A] of J2 are

computable judgements. Hence the result follows by ind. hyp. (case 1) since the computational

complexity of the judgement A type[C] is lower than that of J1.

(substitution :=) and (substitution <−) Similar to the previous case 1 by using ind. hyp. (case 2).

Lemma 4.18:  (∏-introduction rules)

The ∏-introduction rules preserve computability. That is:
1. Let J1≡b(x)∈B(x)[C, x:A] and J2≡ A type[C]  and  J3≡ B(x) type[C, x:A] be computable



judgements then λ(b)∈∏(A,B)[C] is computable.

2. Let J1≡b(x)=d(x)∈B(x) [C, x:A] and J2≡A type[C]  and  J3 ≡ B(x) type[C, x:A] be

 computable judgements then the judgement λ(b)=λ(d)∈∏(A,B)[C] is computable.

Proof:  By induction on the computational complexity α of J2.

Case 1 (∏-introduction rules)

(associate judgement) Immediate by the previous lemma on  ∏-formation rules.

Subcase C = Ø.

(evaluation) λ(b)⇒λ(b)

(correct evaluation) λ(b)=λ(b)∈∏(A,B)   is derivable (use introduction rule and reflexivity).

(parts) It is J1

Subcase C ≠ Ø.

(substitution :=) Consider any c.c.s. a1:A1,…, an:An fitting with C ≡[x1:A1,…,xn:An], then

A type[C][x1:=a1,…, xn:=an]

is computable with complexity lower then α;

B(x) type[C, x:A][x1:=a1,…, xn:=an]

is computable, by head substitution lemma,

b(x)∈B(x) [C, x:A][x1:=a1,…, xn:=an]

is computable, by head substitution lemma, hence the result follows by inductive hypothesis (case 1).

(substitution <−) Consider any c.c.s. a1=a'1:A1,…, an=a'n:An fitting with C ≡[x1:A1,…,xn:An], then

also a1:A1,…, an:An is a c.c.s. fitting with C, and so

A type[C][x1:=a1,…, xn:=an]

is computable with complexity lower then α;

B(x) type[C, x:A][x1:=a1,…, xn:=an]

is computable, by head substitution lemma,

b(x)∈B(x) [C, x:A][x1<−a1=a'1,…, xi<−an=a'n]

is computable, by head substitution lemma, hence the result follows by inductive hypothesis (case 2).

Case 2 (∏-introduction rules)

Subcase C = Ø.
(associate judgements) The  judgement b(x)∈B(x)[x:A], associate of J1 is computable by definition

and, by lemma 4.14 (4.i) also d(x)∈B(x)[x:A] is computable.  Hence the result follows by case 1.

(parts) It is J1.

Subcase C ≠ Ø.
(associate judgements) The  judgement b(x)∈B(x)[x:A], associate of J1 is computable by definition,

hence the result follows by case 1.

(substitutions) Similar to the previous case 1 using inductive hypothesis (case 2).

Lemma 4.19:  (∏-elimination rules)  

The ∏-elimination rules preserve computability. That is:
1. Let J1 ≡ c∈∏(A,B) [C], J2 ≡ d(y)∈C(λ(y)) [C, y:(x:A)B(x)],



J3 ≡ C(t) type [C, t:∏(A,B)]  be computable judgements then the judgement

F(c,d)∈C(c)[C] is computable.

2. Let J1 ≡ c=c'∈∏(A,B) [C], J2 ≡ d(y)=d'(y)∈C(λ(y)) [C, y:(x:A)B(x)],

J3 ≡ C(t) type [C, t:∏(A,B)]  be computable judgements then the judgement

F(c,d)=F(c',d')∈C(c)[C] is computable.

Proof:  By induction on the computational complexity α of J1.

Case 1 (∏-elimination rules)

(associate judgements) The computability of the associated judgement  C(c) type [C]  follows by

substitution lemma.

Subcase C = Ø.
(evaluation) J1 is computable and ∏(A,B)»∏(A,B), then c⇒λ(b) and that the judgement b:(x:A)B(x) is

computable and it is a c.c.s. fitting with y:(x:A)B(x); therefore J2[y:=b], which is d(b)∈C(λ(b)), is a

computable judgement. Hence d(b)⇒g and the result follows by using the computation rule.

(correct evaluation) Since J1 is computable, we know that there exists a derivation of the judgement

∏(A,B) type  hence x∈∏(A,B) is a correct assumption, and c=λ(b)∈∏(A,B) is derivable. Let Π1  be

the following derivation

c=λ(b)∈∏(A,B) 
x∈∏(A,B)[x∈∏(A,B)]   J2   J3

F(x,d)∈C(x)[x∈∏(A,B)]
F(c,d)=F(λ(b),d)∈C(c)         

c=λ(b)∈∏(A,B) J3
C(c)=C(λ(b))

F(c,d)=F(λ(b),d)∈C(λ(b))  

Since J1 is computable, so is b(x)∈B(x)[x:A] and then J2[y:=b] is computable. Thus the judgements

d(b)=g∈C(λ(b)) and b(x)∈B(x)[x:A] are derivable. Let Π2 be the following derivation

Π1
F(c,d)=F(λ(b),d)∈C(λ(b))  

b(x)∈B(x)[x:A]  ∏(A,B) type   J2   J3
F(λ(b),d)=d(b)∈C(λ(b))    d(b)=g∈C(λ(b))

F(λ(b),d)=g∈C(λ(b))
F(c,d)=g∈C(λ(b))  

Hence

Π2
F(c,d)=g∈C(λ(b)) 

C(c)=C(λ(b))
C(λ(b))=C(c)

F(c,d)=g∈C(c)  

(parts) Since J1 is computable we know that c⇒λ(b) and, by fact 4.5 (point 3), that the judgement

λ(b)∈∏(A,B) is computable. Hence, by lemma 4.9 (point i ), we can deduce that the judgement

c=λ(b)∈∏(A,B) is computable. Therefore, since J3 is computable, we obtain that the judgement

C(λ(b))=C(c) is a computable. Then, since d(b)∈C(λ(b)) is a computable judgement, so is d(b)∈C(c),

by lemma 4.14 point 3.iii. Hence, since d(b)⇒g, the parts of g, which is also the value of F(c,d), are

computable element(s) in the value of C(c).

Subcase C ≠ Ø

(substitution :=) immediate by ind.hyp. (case 1).

(substitution <−) immediate by ind. hyp. (case 2)

Case 2 (∏-elimination rules)



(associate judgements) The computability of the associate judgement  F(c,d)∈C(c)[C] follows by case

1. If C is empty, also the computability of F(c',d')∈C(c') follows by case 1. since from the fact that J1

and J2 are computable by lemma 4.14 point 4.i we obtain that c'∈Π(A,B) and

d'(y)∈C(λ(y))[y:(x:A)B(x)] are computable judgements. Then, since the judgement  C(c)=C(c') is

computable, by lemma 4.14 point 3.iii.a, F(c',d')∈C(c') is computable.

Subcase C = Ø.
(parts) J1 is computable, then c⇒λ(b), c'⇒λ(b') and the judgement b(x)=b'(x)∈B(x)[x:A] is

computable. Moreover b=b':(x:A)B(x) is a c.c.s. for y:(x:A)B(x) in J2, and then J2[y<−b=b'], that is the

judgement d(b)=d'(b')∈C(λ(b)) is computable. Then, by lemma 4.14 point 3.iii.b, d(b)=d'(b')∈C(c) is

a computable judgement, since, as in the previous point, we can prove that C(λ(b))=C(c) is a
computable judgement. So, if d(b)⇒gd and d'(b')⇒gd', the parts of gd and gd' are computable equal

elements in the value of C(c).

Subcase C ≠ Ø.

(substitution :=) and (substitution <−) Immediately follows by ind. hyp. (case 2.).

Lemma 4.20:   (∏-equality rule)

The ∏-equality rule preserves computability. That is, let
J1 ≡ b(x)∈B(x) [C, x:A],

J2 ≡ ∏(A,B) type [C],

J3 ≡ d(y)∈C(λ(y)) [C, y:(x:A)B(x)],

J4 ≡ C(t) type [C, t:∏(A,B)]

be computable judgements then the judgement F(λ(b),d)=d(b)∈C(λ(b)) [C]  is computable.

Proof: by induction on the computational complexity α of J2.

(associated judgements) J1 and J2 are computable, thus, by the ∏-introduction lemma, we obtain that

λ(b)∈∏(A,B)[C] is a computable judgement, and hence F(λ(b),d)∈C(λ(b)) [C] is computable, by the

previous lemma on Π-elimination rules. Moreover, if C is empty, since J1 and J3 are computable, we

obtain that J3[y:=b], i.e. the second associate judgement d(b)∈C(λ(b)), is computable.

Subcase C = Ø.

Since F(λ(b),d) and d(b) evaluate into the same canonical element, the computability of

F(λ(b),d)=d(b)∈C(λ(b)) follows from the computability of the associated judgements by lemma 4.8.

Subcase C ≠ Ø.

(substitution :=) It immediately follows by inductive hypothesis.

(substitution <−) Consider any c.c.s. a1=a'1:A1,…, an=a'n:An fitting with C ≡[x1:A1,…,xn:An], then

also a1:A1,…,an:An is a c.c.s. fitting with C, and, by ind. hyp. we obtain that

F(λ(b),d)=d(b)∈C(λ(b))[C][x1:=a1,…,xn:=an]

is computable. Moreover, since J3[y:=b] is computable so is J3[y:=b][x1<−a1=a'1,…,xi<−an=a'n]

which is d(b)∈C(λ(b))[C][x1<−a1=a'1,…,xi<−an=a'n] and then the result follows by transitivity.

For all the other cases, with a few exceptions, the proof goes on analogously to the Π case. In

the following we will stress the essential points.



• We proceed always by induction on the computational complexity of the first premise such that

none of its assumptions is discharged.

• For each type we must consider the rules in the following association and ordering:

- the two formation rules

- the two introduction rules

- the two elimination rules (with the exception of I and U )

- the equality rule.

The ordering is important since, in some cases, to carry on the proof we need to apply a rule

which precedes the considered one in the given ordering and therefore we must have already proved

that such a rule preserves computability. For instance, when the first introduction rule is considered,

the computability of the associate judgement follows by applying the formation rule to some suitable

judgements which are among the premises.

The association is important since, when the first of the two associated rules is considered, to

prove the computability of the substituted judgements (substitution <−) we apply the second rule

while, when the second rule is considered, the computability of the associate judgements follows by

applying the first rule.

(associate judgements)

• For the first introduction rule, the computability of the associate judgements follows, as already

noted, by applying the formation rule to suitable judgements which are among the premises.

• For the first elimination rule, the computability of the associate judgements follows by applying

a suitable substitution to one of the premise. U-elimination rules are unlike and had been treated

in Lemma 4.13.

• For the second formation, introduction or elimination rule, the computability of the associate

judgements follows, by inductive hypothesis, by applying the first rule to the associate of the

premises or to their variants whose computability is assured by definition or by lemma 4.14 and

also 4.13 when U-introductions are considered. These lemmas are needed in order to prove the

computability of the second associate judgement or to allow switching the assumptions from

one type to a computationally equal one . For instance, in the Π case from the computability of

the judgements B(x)=D(x) [x:A] and A=C, we deduced, by lemma 4.14 (3.i and 3.iv) the

computability of D(x) type[x:C] which is a variant of the computationally equal judgement

B(x) type [x:A]. Only for the elimination rules, in the case C ≠Ø, the application of the first rule

does not immediately produce the wanted associate: a changing of type is required and allowed

by lemma 4.14 since C(c)=C(c') is a computable judgement. Clearly I-elimination is an

exception (there is only one elimination rule). In this case, when a substitution e=f: is considered

in order to prove the computability of a hypothetical judgement a=b∈A[C] derived from the

computable premises c∈I(A,a,b)[C], A type[C], a∈A[C],b∈A[C], the computability of the

saturated judgement can be proved as follows. The substitution e: is first applied to the premises

in order to obtain, by inductive hypothesis, that the judgement  a=b∈A[C][..:=e]  is computable;



then the substitution e=f: is applied to the judgement b∈A[C]; the result follows by  transitivity

(lemma 4.14 point 1.1).

• For the equality rule, the computability of the first associate is obtained by using an instance of

the introduction rule and an instance of the elimination rule of the considered type. In the case

C = Ø, the computability of the other associate judgement is obtained by a suitable use of the

substitution rules, that is easy, even if not immediate, also in the case of the inductive types N

and W. The only exception is the type U where suitable formation rules, that preserves

computability (see Lemma 4.13), must be applied to the judgements of kind type that one obtain

by using the first U-elimination rule.

(evaluation), (correct evaluation), (parts)

• When formation or introduction rules are considered, the points (evaluation), (correct

evaluation), (parts), are always immediate.

• As regards elimination rule, the points (evaluation), (correct evaluation), (parts), in the case

C = Ø, must be a little more detailed.

Case 1: first elimination rule.

Let non-can-el∈C(c) be the conclusion of the rule (in the Π-case we have F(c,d)∈C(c)). First of

all, note that there is always a premise of the form c∈Tp where the outermost constant of the

expression Tp characterizes the type to which the elimination refers (in the Π-case we have c∈Π(A,B)),

a hypothetical type-judgement depending on Tp (in the Π-case we have C(t) type[t:Π(A,B)]) and one

or more other minor premises (in the Π-case we have d(y)∈C(λ(y))[y:(x:A)B(x)] ). Then the proof gets

on in the following way.

(evaluation) The canonical value gc of c (λ(b) in the Π-case), which exists since the major premise

c∈Tp is computable,  allows one to choose which minor premises to analyze (in the Π-case there is

only one minor premise: d(y)∈C(λ(y))[y:(x:A)B(x)]). When this is a hypothetical judgement it must be

saturated and the part judgements of the major premise gives us some of the substitutions needed to

saturate it (in the Π-case we obtained d(b)∈C(λ(b)). This saturated judgement, sat-el∈C(gc) is

computable and its evaluation is exactly what we are looking for. Usually the parts of the major

premise together with the other premises provides all the needed substitutions; exceptions are the

cases U, which had been considered in Lemma 4.13, N and W  where an induction on the complexity

of the major premise is necessary to build the suitable substitution. Let us develop these two cases in

detail.

N-elimination

The premises are c∈N, d∈C(0), e(x,y)∈C(s(x))[x:N, y:C(x)] and C(t) type[t:N]. c∈N is computable

thus either c⇒0 or c⇒s(a). If c⇒0 then we choose d∈C(0) among the minor premises and the value

of d, which exists since d∈C(0) is computable, is just the value of R(c,d,e). Otherwise, if c⇒s(a), we

choose e(x,y)∈C(s(x))[x:N, y:C(x)]. a∈N is computable then a:N is a c.c.s. fitting with x:N.

comp(a∈N)<comp(c∈N) thus, by ind. hyp., R(a,d,e)∈C(a) is computable and a:N, R(a,d,e):C(a) is a

c.c.s. fitting with x:N, y:C(x). Hence e(a,R(a,d,e))∈C(s(a)) is computable and the value of

e(a,R(a,d,e)) is just the value of R(c,d,e).



W-elimination

c∈W(A,B) is computable, then c⇒sup(a,b), a∈A and b(x)∈W(A,B)[x:B(a)] ≡ b:(x:B(a))W(A,B) are

computable judgements. Hence a:A,b:(x:B(a))W(A,B) is a c.c.s. fitting with z:A, y:(x:B(z))W(A,B) and

since comp(b(x)∈W(A,B)[x:B(a)]) < comp(c∈W(A,B)), by applying again the same rule with

b(x)∈W(A,B)[x:B(a)] instead of c∈W(A,B) we obtain, by inductive  hypothesis, that T(b(x),

d)∈C(b(x)) [x:B(a)] ≡ (x)T(b(x),d):(x:B(a))C(b(x)) is computable and is a c.c.s. fitting with

t:(x:B(a))C(b(x)). Then, by substituting, we obtain that d(a,b,(x)T(b(x), d))∈C(sup(a,b)) is computable

and the value of d(a,b,(x)T(b(x), d)) is exactly the value of T(c,d) we are looking for.

(correct evaluation) For each canonical value of the major premise a derivation can be constructed

analogously to the Π-case. It is sufficient to substitute any application of Π-elimination and Π-

equality rules by the corresponding one for the considered type.

(parts) The computability of the major premise c∈Tp guarantees, by lemmas 4.5 and 4.9.i, the

computability of the judgement c=gc∈Tp (in the Π-case we have c=λ(b)∈Π(A,B)). This allows us to

obtain the computability of the type equality: C(c)=C(gc) (C(c)=C(λ(b) in the Π-case). At this point if

we consider the computable judgement built up to prove the previous evaluation point, satel∈C(gc) (in

the Π-case we have d(b)∈C(λ(b)) ), by lemma 4.14 point 3.iii, we obtain that sat-el∈C(c) is

computable (in the Π-case we have d(b)∈C(c) ). Hence if sat-el ⇒can-el and C(c)⇒can-C, then also

non-can-el ⇒ can-el and the parts of can-el are computable elements in can-C.

Case 2: second elimination rule.

Let non-can-el1 = non-can-el2∈C(c) be the conclusion of the rule.

(parts) First of all, note that the computability of the first associate of the major premise, c=c'∈Tp,

guarantees the computability of the judgement C(c) = C(gc). Then, analogously to the case 1 of the

first elimination rule, we can choose the suitable minor premise and saturate it by using <− instead of

:=. By the computability of the resulting judgement sat-el1=sat-el2∈C(gc) together with that of C(c) =

C(gc), we will obtain the computability of  sat-el1=sat-el2∈C(c). From this the result is immediate.

• For the equality rule, the point (parts), follow easily since, by lemma 4.9.i (or 4.9.ii. for U), the

computability of the associate judgements together with the definition of ⇒, guarantees the

computability of the judgement in the conclusion.

(substitution :=)

• The point (substitution :=) always follows, by induction, by first applying the same substitution

to the premises and next applying again the same rule to the resulting judgements. Note that

when a rule which discharges assumptions is considered, we must apply a head substitution

which preserves computability.

(substitution <−)

• For the first formation, introduction or elimination rule, the point (substitution <−) follows, by

inductive hypothesis, by applying the second rule in the association to judgements obtained by

properly substituting the given premises. In some cases, when a rule which discharges



assumptions is considered, the computability of the suitably substituted premises is stated by the

head substitution lemma.

• For the second formation, introduction or elimination rule, the proof of the point (substitution

<−) follows by applying the same rule to judgements obtained by wisely applying the same

substitution  e=f:  or its associate e: to the given premises.

• For the equality rule, when the substitution e=f: is considered in proving the point (substitution

<−), we will proceed as follows. On one side we apply the same rule to judgements obtained by

applying the associate substitution e: to the premises. On the other side, we apply the

substitution e=f: to a judgement built up by applying a suitable head substitution to the minor

premise analogously to what done for the (evaluation) point. The result then follows by

transitivity (consider again the Π-case as a typical example). For the U case we must build up a

first judgement by applying the same rule to judgements obtained by  applying the  substitution

e: to the given premises, and a second one by applying a formation rule to the result of applying

the U-elimination to the premises. The result then follows by transitivity. Note that all the rules

used in the construction preserve computability.

5. The computability theorem.
Now we can state our main theorem: it shows that any derivable judgement is computable and

hence that all the properties we ask for a judgement to be computable hold for any derivable

judgement.

Theorem 5.1: (Computability theorem)

Any derivable judgement  is computable.

From a proof-theoretical point of view the main meta-theoretical result on a deductive system in

natural deduction style as ours, is a normal form theorem, i.e. a theorem that states that any proof can

be transformed in a new one with the same conclusion but enjoying stronger structure properties.

These properties generally allow in turn to deduce important properties on the considered deduction

system such as its consistency. Our computability theorem does not regard derivations but still is

strongly related to normal form theorems as the following definitions will clarify.

Definition 5.2: (Canonical proof)

(1) A proof of the judgement  A type  or  A=B is canonical when its last inference step is obtained

by a formation rule.

(2) A proof of the judgement a∈A  or  a=b∈A  is canonical  when its last inference step is obtained

by an introduction rule.

A canonical proof might be also called "normal at the end". Clearly not every closed judgement

can be derived by a canonical proof. This holds only for the judgements which, according to the

following definition, are in canonical form.



Definition 5.3:   (Canonical form)

Let J be a closed judgement,

if  J ≡ A type and A »GA  then the canonical form of J is GA  type;

if  J ≡ A=B and A»GA   and B»GB then the canonical form of J is GA=GB;

if  J ≡ a∈A and a⇒ ga and A»GA then the canonical form of J is ga∈GA;

if  J ≡ a=b∈A and a⇒ga and b⇒gb and A»GA then the canonical form of J is ga=gb∈GA.

Corollary 5.4:   (Canonical-form theorem)

Let J be a derivable closed judgement then there exists a canonical proof of the canonical form

of J.

Proof. Since J is derivable then it is computable and hence there exist a derivation of its parts

judgements since they also are computable. By putting them together with a formation or an

introduction rule we obtain a canonical proof of the canonical form of J.

It is easy to see that if J is a derivable closed judgement then its computability implies that its

canonical form is a judgement equivalent to J, in fact:

• if J ≡ A type  and A»GA  then the canonical form of J is GA type and the computability of J

assures that A=GA is derivable.

• if J ≡ A=B and A»GA and B»GB then the canonical form of J is GA=GB and the computability

of J assures that A=GA  and B=GB are derivable judgements.

• if J ≡ a∈A  and a⇒ga and A»GA  then the canonical form of J is ga∈GA and the computability

of J assures that A=GA  and a=ga∈A are derivable judgements.

• if J ≡ a=b∈A  and a⇒ga, b⇒gb and A»GA  then the canonical form of J is ga=gb∈GA and the

computability of J assures that A=GA, a=ga∈A and b=gb∈A are derivable judgements.

Then the previous canonical form theorem is, in our system, the counterpart of a standard

normal form theorem since it guarantees that if J is a closed derivable judgement then we can construct

a canonical proof for a judgement equivalent to J. Moreover it allows us to deduce most of the results

usually obtained by a normal form theorem such as, for instance, consistency.

Corollary 5.5: (Consistency of HITT)

The Higher order Intuitionistic Theory of Type is consistent.
Proof: Since the judgement  c∈N0  is not computable, see Fact 4.4, then it cannot be derivable.

Note that this result establishes also the consistency of the original ITT. As we could expect, the

minimal properties, which are usually asked for a logical system to be considered constructive,

immediately follow just by reading the definition of computable judgement.



Corollary 5.6: (Disjunction property)

If the judgement c∈+(A,B) is derivable then either there exists an element a such that a∈A is

derivable or there exists an element b such that b∈B is derivable.

Proof: If c∈+(A,B) is derivable then it is computable and hence either c⇒i(a) and a∈A is derivable or

c⇒j(b) and b∈B is derivable.

Corollary 5.7: (Existential property)

If the judgement c∈Σ(A,B) is derivable then there exists an element b such that the judgement

b∈B(a) is derivable for some a∈A.

Proof: If c∈Σ(A,B) is derivable then it is computable and hence c⇒&(a, b) and a∈A and b∈B(a) are

derivable judgements.

Other consequences of the computability theorem can be stated when the Intuitionistic Theory

of Type is viewed as a formal system to derive programs, that is when a type is interpreted as the

specification of a problem and an element in this type as the program which meets this specification.

In this environment an expression denoting an element in a type is thought as a program written in a

functional language whose operational semantics is given by the computation rules and hence to

execute a program corresponds to evaluating it. The computability theorem shows that whenever we

prove that program a is partially correct with respect to its specification A, i.e. we derive the judgement

a∈A,  then we know also that it is totally correct, i.e. its evaluation terminates.

Corollary 5.8: (Evaluation theorem)

(1) Let  A type be a provable judgement, then A has a canonical value.

(2) Let a∈A be a provable judgement, then a has a canonical value.

Thus any program whose evaluation does not terminate, such as the famous Church's non-

terminating function, cannot be typed in HITT.
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Forms of judgement

A type [C]          A = C [C]           a ∈A [C]          a=c ∈A [C]

Weakening

J [C]
J [C'] 

where C' is a context extending C

Assumptions

a1:A1  ...  an:An                B(w1,..,wn) type [w1:A1,..,wn:An]
x(a1,..,an)∈B(a1,..,an) [x:(w1:A1,..,wn:An) B(w1,..,wn)]  

where  a1:A1  ...  an:An  fits with w1:A1,..,wn:An

a1=c1:A1 ... an=cn:An            B(w1,..,wn) type [w1:A1,..,wn:An]
x(a1,..,an)=x(c1,..,cn)∈B(a1,..,an) [x:(w1:A1,..,wn:An) B(w1,..,wn)]  

where  a1=c1:A1 ... an=cn:An  fits with w1:A1,..,wn:An

Equality rules

Ref
a ∈ A

a=a ∈A 
A type
A = A  

Sim
a=c ∈ A
c=a ∈ A 

A = C
C = A

 

Tran
a=e ∈ A    e=c ∈ A

a=c ∈ A  
A = E     E = C

A = C  

Equal types rules

a ∈ A         A = C
a ∈ C   

a=c ∈ A       A = C
a=c ∈ C  



Substitution rules
Let e1:E1... en:En  and  e1=f1:E1 ... en=fn:En fit  with y1:E1, ... ,yn:En.

e1:E1... en:En       A(y1,..,yn) type[y1:E1, ... ,yn:En]
A(e1,..,en) type  

e1=f1:E1 ... en=fn:En    A(y1,..,yn) type[y1:E1, ... ,yn:En]
A(e1,..,en) = A(f1,..,fn)  

e1:E1 ... en:En            A(y1,..,yn)=C(y1,..,yn)[y1:E1, ... ,yn:En]
A(e1,..,en)=C(e1,..,en)  

e1:E1 ... en:En     a(y1,..,yn)∈A(y1,..,yn)[y1:E1, ... ,yn:En]
a(e1,..,en)∈A(e1,..,en)  

e1=f1:E1 ... en=fn:En    a(y1,..,yn)∈A(y1,..,yn)[y1:E1, ... ,yn:En]
a(e1,..,en)=a(f1,..,fn)∈A(e1,..,en)  

e1:E1 ... en:En     a(y1,..,yn)=c(y1,..,yn)∈A(y1,..,yn)[y1:E1, ... ,yn:En]
a(e1,..,en)=c(e1,..,en)∈A(e1,..,en)  



∏-rules
Note that in the following rules we suppose that x-0 var ,  y-(0)0 var,  t-0 var.

Formation

A type        B(x) type [x:A]
∏(A,B) type  

A=C           B(x)=D(x)[x:A]
∏(A,B) = ∏(C,D)  

Introduction

b(x)∈B(x)[x:A]  A type  B(x) type[x:A]
λ(b)∈∏(A,B)         

b(x)=d(x)∈B(x)[x:A]  A type  B(x) type[x:A]
λ(b)=λ(d)∈∏(A,B)  

Elimination

c∈∏(A,B)        d(y)∈C(λ(y))[y:(x:A)B(x)]        C(t) type[t:∏(A,B)]
F(c,d)∈C(c)  

c=c'∈∏(A,B)       d(y)=d'(y)∈C(λ(y))[y:(x:A)B(x)]        C(t) type[t:∏(A,B)]
F(c,d)=F(c',d')∈C(c)  

Equality

b(x)∈B(x)[x:A]    ∏(A,B) type     d(y)∈C(λ(y))[y:(x:A)B(x)]      C(t) type[t:∏(A,B)]
F(λ(b),d)=d(b)∈C(λ(b))  

Computation

∏(A,B) » ∏(A,B)

λ(b) ⇒ λ(b) 
c ⇒ λ(b)    d(b) ⇒ g

F(c,d) ⇒ g  



∑-rules
Note that in the following rules  x-0 var ,  y-0 var,  t-0 var.

Formation

A type          B(x) type[x:A]
Σ(A,B) type   

A=C            B(x)=D(x)[x:A]
Σ(A,B) = Σ(C,D)  

Introduction

a∈A  b∈B(a)  A type  B(x) type[x:A]
&(a,b)∈Σ(A,B)      

a=c∈A   b=d∈B(a)  A type  B(x) type[x:A]
&(a,b)=&(c,d)∈Σ(A,B)  

Elimination

c∈Σ(A,B)      d(x,y)∈C(&(x,y))[x:A, y:B(x)]      C(t) type[t:Σ(A,B)]
E(c,d)∈C(c)  

c=c'∈Σ(A,B)    d(x,y)=d'(x,y)∈C(&(x,y))[x:A, y:B(x)]    C(t) type[t:Σ(A,B)]
E(c,d)=E(c',d')∈C(c)  

Equality  

a∈A  b∈B(a)    Σ(A,B) type    d(x,y)∈C(&(x,y))[x:A, y:B(x)]     C(t) type[t:Σ(A,B)]
E(&(a,b),d)=d(a,b)∈C(&(a,b))  

Computation

Σ(A,B) » Σ(A,B)

&(a,b) ⇒ &(a,b)
c ⇒ &(a,b)    d(a,b) ⇒ g

E(c,d) ⇒ g        



+ -rules
Note that in the following rules  x-0 var ,  y-0 var,  t-0 var.

Formation

A type       B type

+(A,B) type
 

A=C         B=D

+(A,B) = +(C,D)
 

Introduction

a∈A       A type    B type

i(a)∈+(A,B)
 

b∈B      A type    B type

j(b)∈+(A,B)
 

a=c∈A     A type    B type

i(a)=i(c)∈+(A,B)
 

b=d∈B     A type   B type

j(b)=j(d)∈+(A,B)
 

Elimination

c∈+(A,B)     d(x)∈C(i(x))[x:A]     e(y)∈C(j(y))[y:B]       C(t) type[t:+(A,B)]
D(c,d,e)∈C(c)  

c=c'∈+(A,B)  d(x)=d'(x)∈C(i(x))[x:A] e(y)=e'(y)∈C(j(y))[y:B] C(t) type[t:+(A,B)]
D(c,d,e)=D(c',d',e')∈C(c)  

Equality

a∈A    +(A,B) type      d(x)∈C(i(x))[x:A]   e(y)∈C(j(y))[y:B]     C(t) type[t:+(A,B)]
D(i(a),d,e)=d(a)∈C(i(a))  

b∈B    +(A,B) type     d(x)∈C(i(x))[x:A]   e(y)∈C(j(y))[y:B]     C(t) type[t:+(A,B)]
D(j(b),d,e)=e(b)∈C(j(b))  

Computation

+(A,B) » +(A,B)

i(a) ⇒ i(a)           j(b) ⇒ j(b)
c ⇒ i(a)    d(a) ⇒ g

D(c,d,e) ⇒ g  
c ⇒ j(b)     e(b) ⇒ g

D(c,d,e) ⇒ g  



I-rules

Formation

A type      a∈A     b∈A
I(A,a,b) type   

A=C       a=c∈A     b=d∈A
I(A,a,b)=I(C,c,d)  

Introduction

a=b∈A
r∈I(A,a,b) 

a=b∈A
r=r∈I(A,a,b) 

Elimination

c∈I(A,a,b)     A type    a∈A     b∈A
a=b∈A  

Equality

a=b∈A      c∈I(A,a,b)
c=r∈I(A,a,b)  

Computation

I(A,a,b) » I(A,a,b)

r ⇒ r



Nn-rules

Note that in the following rules  t-0 var.

Formation

Nn type Nn = Nn

Introduction

0n∈Nn,..., mn∈Nn,..., n-1n∈Nn 0n=0n∈Nn,..., mn=mn∈Nn,..., n-1n=n-1n∈Nn

Elimination

c∈Nn     d0∈C(0n)  ...  dn-1∈C(n-1n)     C(t) type[t:Nn]
Rn(c,d0,…,dn-1) ∈ C(c)  

note that if n=0 this is the usual ⊥-rule

c=c'∈Nn     d0=d'0∈C(0n)  ...  dn-1=d'n-1∈C(n-1n)     C(t) type[t:Nn]
Rn(c,d0,..,dn-1) =Rn(c',d'0,..,d'n-1) ∈ C(c)  

Equality

d0∈C(0n)  ...  dn-1∈C(n-1n)     C(t) type[t:Nn]
Rn(mn,d0,…,dn-1)=dm ∈ C(mn)  

note that Nn has n equality-rules. N0  has no equality-rule.

Computation

 Nn » Nn

mn ⇒ mn 
c ⇒ mn      dm ⇒ g
Rn(c,d0,..,dn-1) ⇒ g  

note that Nn has n computation rules for canonical elements and n computation rules for non

canonical elements.
N0  has no computation rule.



N-rules
Note that in the following rules  x-0 var ,  y-0 var,  t-0 var.

Formation

 N type N = N

Introduction

0∈N          
a∈N

s(a)∈N 0=0 ∈ N               
a=b ∈ N

s(a)=s(b)∈N 

Elimination

c∈N     d∈C(0)       e(x,y)∈C(s(x))[x:N, y:C(x)]     C(t) type[t:N]
R(c,d,e)∈C(c)  

c=c'∈N   d=d'∈C(0)     e(x,y)=e'(x,y)∈C(s(x))[x:N, y:C(x)]      C(t) type[t:N]
R(c,d,e)=R(c',d',e')∈C(c)  

Equality

d∈C(0)       e(x,y)∈C(s(x))[x:N, y:C(x)]        C(t) type[t:N]
R(0,d,e)=d∈C(0)  

c∈N    d∈C(0)       e(x,y)∈C(s(x))[x:N, y:C(x)]        C(t) type[t:N]
R(s(c),d,e)=e(c,R(c,d,e))∈C(s(c))  

Computation

N » N

0 ⇒ 0      s(a) ⇒ s(a) 
c ⇒ 0    d ⇒ g
R(c,d,e) ⇒ g      

c ⇒ s(a)   e(a,R(a,d,e)) ⇒ g
R(c,d,e) ⇒ g  



W-rules
Note that in the following rules  x-0 var, u-0, y-(0)0 var,  z-(0)0 var, t-0 var.

Formation

A type          B(x) type[x:A]
W(A,B) type  

A=C         B(x)=D(x)[x:A]
W(A,B) =  W(C,D)  

Introduction

a∈A  b(x)∈ W(A,B)[x:B(a)]   A type   B(x) type[x:A]
sup(a,b)∈ W(A,B)  

a=c∈A     b(x)=d(x)∈ W(A,B)[x:B(a)]   A type   B(x) type[x:A]
sup(a,b)=sup(c,d)∈ W(A,B)  

Elimination

 C(t) type[t: W(A,B)]
c∈W(A,B)     d(x,y,z)∈C(sup(x,y))[x:A, y:(t:B(x)) W(A,B), z:(u:B(x)) C(y(u))]

T(c,d) ∈ C(c)  

 C(t) type[t: W(A,B)]
c=c'∈W(A,B)     d(x,y,z)=d'(x,y,z)∈C(sup(x,y))[x:A, y:(t:B(x)) W(A,B),z:(u:B(x)) C(y(u))]

T(c,d)=T(c',d') ∈ C(c)  

Equality

W(A,B)type     C(t) type[t: W(A,B)]
a∈A b(x)∈W(A,B)[x:B(a)]     d(x,y,z)∈C(sup(x,y))[x:A, y:(t:B(x)) W(A,B), z:(u:B(x)) C(y(u))]

T(sup(a,b),d)=d(a,b,(x)T(b(x),d)) ∈ C(sup(a,b))  

Computation

W(A,B) »  W(A,B)

sup(a,b) ⇒ sup(a,b)
c ⇒ sup(a,b)     d(a,b,(x)T(b(x),d)) ⇒ g

T(c,d) ⇒ g  



U-rules
Note that in the following rules  x-0 var.

Formation

U type U=U

Introduction

a∈U     b(x)∈U[x:<a>]
π(a,b)∈U  

a=c∈U      b(x)=d(x)∈U[x:<a>]
π(a,b)=π(c,d)∈U  

a∈U     b(x)∈U[x:<a>]
σ(a,b)∈U  

a=c∈U     b(x)=d(x)∈U[x:<a>]
σ(a,b)=σ(c,d)∈U  

a∈U    b∈U
+(a,b)∈U  

a=c∈U      b=d∈U
+(a,b)=+(c,d)∈U  

a∈U  b∈<a>  d∈<a>
i(a,b,d)∈U  

a=c∈U   b=e∈<a>   d=f∈<a>
i(a,b,d)=i(c,e,f)∈U  

nn∈U nn=nn∈U

n∈U n=n∈U

a∈U     b(x)∈U[x:<a>]
w(a,b)∈U  

a=c∈U     b(x)=d(x)∈U[x:<a>]
w(a,b)=w(c,d)∈U  

Elimination

a∈U
<a> type 

a=b∈U
<a>=<b> 



Equality

a∈U             b(x)∈U[x:<a>]
<π(a,b)>=∏(<a>,(x)<b(x)>) 

a∈U             b(x)∈U[x:<a>]
<σ(a,b)>=Σ(<a>,(x)<b(x)>)  

a∈U        b∈U

<+(a,b)>=+(<a>,<b>)
 

a∈U    b∈<a>     d∈<a>
<i(a,b,d)>=I(<a>,b,d)  

<nn>=Nn

<n>=N

a∈U              b(x)∈U[x:<a>]
<w(a,b)>= W(<a>,(x)<b(x)>) 

Computation

U » U

π(a,b) ⇒ π(a,b)
c ⇒Êπ(a,b)

<c> » ∏(<a>,(x)<b(x)>) 

σ(a,b) ⇒ σ(a,b)
c ⇒ σ(a,b)

<c> » Σ(<a>,(x)<b(x)>) 

+(a,b) ⇒ +(a,b)
c ⇒ +(a,b)

<c> » +(<a>,<b>)
 

i(a,b,d) ⇒ i(a,b,d)
c ⇒ i(a,b,d)

<c> » I(<a>,b,d) 

nn ⇒ nn
c ⇒ nn

<c> » Nn
 

n ⇒ n
c ⇒ n

<c> » N 

w(a,b) ⇒ w(a,b)
c ⇒ w(a,b)

<c> » W(<a>,(x)<b(x)>) 


