An intuitionistic version of Cantor’s theorem

Dario Maguolo, Silvio Valentini
Dipartimento di Matematica Pura ed Applicata
Università di Padova
via G. Belzoni n.7, I–35131 Padova, Italy
valentini@pdmat1.math.unipd.it

September 24, 1996

Abstract

An intuitionistic version of Cantor’s theorem, which shows that there is no surjective function from the type of the natural numbers \mathbb{N} into the type $\mathbb{N} \to \mathbb{N}$ of the functions from \mathbb{N} into \mathbb{N}, is proved within Martin-Löf’s Intuitionistic Type Theory with the universe of the small types.

Mathematics Subject Classification: 03B15, 03B20.

Keywords: Intuitionistic type theory, Cartesian closed categories.

1 The intuitionistic Cantor’s theorem

In this work we show that within Martin-Löf’s Intuitionistic Type Theory with the universe of the small types [ML84, NPS90] (ITT for short in the following) a version of Cantor’s theorem holds, which shows that there is no surjective function from the type of the natural numbers \mathbb{N} into the type $\mathbb{N} \to \mathbb{N}$ of the functions from \mathbb{N} into \mathbb{N}. As the matter of fact a similar result can be stated for any not-empty type A such that there exists a function from A into A which has no fixed point, as is the case of the successor function for the type \mathbb{N}. In order to express Cantor’s theorem within ITT we need the Equality proposition: let A is a type and $a, c \in A$, then by $a =_A c$ we mean the Equality proposition for elements of type A [NPS90].

Theorem 1.1 (ITT Cantor’s theorem) Let \mathbb{N} be the type of the natural numbers; then

$$\neg(\exists f \in \mathbb{N} \to (\mathbb{N} \to \mathbb{N}))(\forall y \in \mathbb{N} \to \mathbb{N})(\exists x \in \mathbb{N}) f(x) =_{\mathbb{N} \to \mathbb{N}} y$$

To prove this theorem some lemmas are useful. Indeed we need to obtain a contradiction from the assumption

$$(\exists f \in \mathbb{N} \to (\mathbb{N} \to \mathbb{N}))(\forall y \in \mathbb{N} \to \mathbb{N})(\exists x \in \mathbb{N}) f(x) =_{\mathbb{N} \to \mathbb{N}} y$$

1
i.e. from the two assumptions

\[f \in \mathcal{N} \rightarrow (\mathcal{N} \rightarrow \mathcal{N}) \]

and

\[(\forall y \in \mathcal{N} \rightarrow \mathcal{N})(\exists x \in \mathcal{N}) \ f(x) =_{\mathcal{N} \rightarrow \mathcal{N}} y \]

By using the basic idea of the classic proof of Cantor’s theorem, from the first assumption we can prove \(\lambda x. s(f(x)(x)) \in \mathcal{N} \rightarrow \mathcal{N} \), where \(s : (x : \mathcal{N})\mathcal{N} \) is the successor function, by the following deduction:

\[
\begin{array}{c}
[x : \mathcal{N}]_1 f \in \mathcal{N} \rightarrow (\mathcal{N} \rightarrow \mathcal{N}) \\
\hline \\
\frac{f(x)(x) \in \mathcal{N}}{\lambda x. s(f(x)(x)) \in \mathcal{N} \rightarrow \mathcal{N}}_1
\end{array}
\]

We can now use this function in the second assumption in order to obtain \((\exists x \in \mathcal{N}) f(x) =_{\mathcal{N} \rightarrow \mathcal{N}} \lambda x. s(f(x)(x)) \). So our problem becomes to obtain a contradiction from the two assumptions \(x : \mathcal{N} \) and \(f(x) =_{\mathcal{N} \rightarrow \mathcal{N}} \lambda x. s(f(x)(x)) \). We can use these assumptions to prove, by transitivity of the equality proposition, that \(f(x)(x) =_{\mathcal{N}} s(f(x)(x)) \) is true since in general if \(A \) and \(B \) are types and \(a =_A c \) and \(f =_{A \rightarrow B} g \) then \(f(a) =_B g(c) \) and obviously \((\lambda x. s(f(x)(x)))(x) =_{\mathcal{N}} s(f(x)(x)) \) is true.

We can thus re-state our aim by saying that we have to prove that ITT is not consistent with the assumption that the successor function has a fixed point. To prove this result we can transpose a well known categorical arguments within ITT [L69, HP90]. Let us recall that we can solve the usual recursive definition of the sum between two natural numbers

\[
\begin{cases}
 n + 0 = n : \mathcal{N} \\
 n + s(x) = s(n + x) : \mathcal{N}
\end{cases}
\]

by putting \(n + x \equiv \text{Rec}(x, n, (u, v) \ s(v)) \). Then the following lemma can be proved by induction.

Lemma 1.2 For any \(n, x \in \mathcal{N} \), \(n + s(x) =_\mathcal{N} s(n) + x \).

As for the sum, we can solve the recursive equation for the predecessor function

\[
\begin{cases}
 p(0) = 0 : \mathcal{N} \\
 p(s(x)) = x : \mathcal{N}
\end{cases}
\]

by putting \(p(x) \equiv \text{Rec}(x, 0, (u, v) \ u) \), and then that for the subtraction

\[
\begin{cases}
 n - 0 = n : \mathcal{N} \\
 n - s(x) = p(n - x) : \mathcal{N}
\end{cases}
\]

by putting \(n - x \equiv \text{Rec}(x, n, (u, v) \ p(v)) \).
Lemma 1.3 For any \(x \in \mathcal{N} \), \((\forall n \in \mathcal{N}) (n + x) - x =_\mathcal{N} n \).

Proof. By induction on \(x \). If \(x = 0 \) then \((n + 0) - 0 =_\mathcal{N} n + 0 =_\mathcal{N} n \); let us now suppose that \((\forall n \in \mathcal{N}) (n + x) - x =_\mathcal{N} n \), then \((n + s(x)) - s(x) =_\mathcal{N} p((n + s(x)) - x) =_\mathcal{N} p((s(n) + x) - x) =_\mathcal{N} p(s(n)) =_\mathcal{N} n \). □

We can apply this lemma to the case \(n = 0 \) and obtain the following corollary.

Corollary 1.4 For any \(x \in \mathcal{N} \), \(x - x =_\mathcal{N} 0 \).

Proof. Immediate, since \(0 + x =_\mathcal{N} x \) holds for each \(x \in \mathcal{N} \). □

Now we conclude our proof. Let us write \(\omega \) to mean the fixed point of the successor function, i.e. \(\omega =_\mathcal{N} s(\omega) \); then the following lemma holds.

Lemma 1.5 For any \(x \in \mathcal{N} \), \(\omega - x =_\mathcal{N} \omega \).

Proof. Again a proof by induction on \(x \). If \(x = 0 \) then \(\omega - 0 =_\mathcal{N} \omega \) and, supposing \(\omega - x =_\mathcal{N} \omega \), we obtain \(\omega - s(x) =_\mathcal{N} p(\omega - x) =_\mathcal{N} p(\omega) =_\mathcal{N} p(s(\omega)) =_\mathcal{N} \omega \). □

So we proved that \(\omega - \omega =_\mathcal{N} 0 \) by corollary 1.4 and also that \(\omega - \omega =_\mathcal{N} \omega \) by lemma 1.5; hence \(0 =_\mathcal{N} \omega =_\mathcal{N} s(\omega) \). Finally we reach a contradiction.

Theorem 1.6 For any \(x \in \mathcal{N} \), \(\neg(0 =_\mathcal{N} s(x)) \)

Proof. By an elimination rule for the type \(\mathcal{N} \), from the assumption \(y : \mathcal{N} \), we obtain \(\text{Rec}(y, \bot, (u, v) \top) \in U_0 \), where \(U_0 \) is the universe of the small types, \(\bot \) is the empty type and \(\top \) is the one-element type. Now let us assume that \(x \in \mathcal{N} \) and that \(0 =_\mathcal{N} s(x) \) is true, then \(\text{Rec}(0, \bot, (u, v) \top) =_{U_0} \text{Rec}(s(x), \bot, (u, v) \top) \) since in general if \(A \) and \(B \) are types and \(a =_A c \) is true and \(b(x) \in B \) \(x : A \) then \(b(a) =_B b(c) \) is true. Hence, by transitivity of the equality proposition, \(\bot =_{U_0} \top \) since \(\bot =_{U_0} \text{Rec}(0, \bot, (u, v) \top) \) and \(\text{Rec}(s(x), \bot, (u, v) \top) =_{U_0} \top \). Then, because of one of the properties of the equality proposition for the elements of the type \(U_0 \), \(\bot \) is inhabited since \(\top \) is and hence, by discharging the assumption \(0 =_\mathcal{N} s(x) \), we obtain that \(\neg(0 =_\mathcal{N} s(x)) \) is true. □

Thus the proof of theorem 1.1 is finished since we have obtained the contradiction we were looking for. Anyhow we stress on the fact that a similar result holds for any type \(A \) such that there exists a function from \(A \rightarrow A \) with no fixed point. In fact, in this hypothesis, we can prove that there exists a function \(g \) from \(A \rightarrow (A \rightarrow A) \) into \(A \rightarrow A \) which supplies, for any function \(h \) from \(A \) into \(A \rightarrow A \), a function \(g(h) \in A \rightarrow A \) which is not in the image of \(h \).

Theorem 1.7 Let \(A \) be a type; then

\[
(\exists f : A \rightarrow A)(\forall x : A) \neg (f(x) =_A x) \\
\rightarrow (\exists g : (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)) \\
(\forall h : A \rightarrow (A \rightarrow A)) \\
(\forall x : A) \neg (g(h) =_{A \rightarrow A} h(x))
\]
The proof of this theorem is similar to the first part of the proof of theorem 1.1. In fact we only have to use the function \(f \in A \to A \), instead of the successor function, to construct the function \(g \equiv \lambda k.\lambda y. f(k(y)(y)) \in (A \to (A \to A)) \to (A \to A) \) such that, for any \(h \in A \to (A \to A) \) and any \(x \in A \), allows to prove \(h(x)(x) =_A f(h(x)(x)) \), which is contrary to the assumption that the function \(f \) has no fixed point.

References

