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Abstract

In this paper we analyze an extension of Martin-Löf’s intensional set
theory by means of a set contructor P such that the elements of P(S) are
the subsets of the set S.

Since it seems natural to require some kind of extensionality on the
equality among subsets, it turns out that such an extension cannot be
constructive. In fact we will prove that this extension is classic, that is
(A ∨ ¬A) true holds for any proposition A.
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1 Introduction

In [GR94] it is shown that the proof theoretic strength of Martin-Löf’s set theory
[Mar84, NPS90] with restricted well-orders and the universe of the small sets
is that of a subsystem of second order arithmetic with ∆1

2 comprehension and
bar-induction. Thus, it is natural to wonder whether it is possible to enforce
it to a theory with the strength of the full comprehension schema by adding a
power-set constructor; in fact, this extension is necessary if we want to quantify
over the subsets of a given set since in Martin-Löf’s set theory quantification is
meaningful only on elements of a set.

In the literature there are already examples of constructive set theories with
some kind of power-set constructor. For instance, one can think of a topos as a
“generalized set theory” by associating with any topos its internal language (cf.
[Bel88]). The logic underlying such a set theory is the intuitionistic predicate
calculus and so any topos can be thought of as an intuitionistic universe of sets.
Then, the lack of the rule of excluded middle seems to assure the constructivity
of any proof developed within topos theory. The problem of adapting the topos
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theoretic approach to Martin-Löf’s set theory is due to the impredicativity of
the former. Indeed, Martin-Löf’s set theory is predicative and provides a fully
algorithmic way to construct the elements of the sets and the proofs of the
propositions over these sets.

Another approach which should be considered is the Calculus of Construc-
tions by Coquand and Huet, where the power of a set S can be identified with
the collection of the functions from S into prop. But, if we identify sets and
propositions, which is basic for a constructive explanation of the meaning of
Martin-Löf’s set theory, the power-set so obtained is not a set, since prop can-
not be a set and hence also the collection of the functions from a set S to prop

cannot be a set. Thus, there is no chance to give a constructive, i.e. intuition-
istic and predicative, meaning to quantification over its elements. A second
problem with this approach is that in this way we would obtain an intensional
notion of power-set, which is not the intended one since we think that equality
among subsets has to be understood extensionally. Finally, it can be proved
that the strong sum type, which is characteristic in Martin-Löf’s set theory,
cannot consistently be added to the Calculus of Constructions at the level of
propositions (see [Coq90]); thus, this approach cannot have the full strong sum
on propositions (see for instance [Luo90]) and hence it cannot be considered an
extension of Martin-Löf’s set theory.

Of course, there is no reason to expect that a second order construction
becomes constructive only because it is added to a theory which is construc-
tive. Indeed, we will prove that even the weaker fragment iTT , which contains
only the basic set constructors, i.e. no universes and no well-orders, and the
intensional equality, cannot be extended with a power-set constructor in a way
compatible with the usual semantical explanation of the connectives, if the
power-set is the collection of all the subsets of a given set equipped with exten-
sional equality expressed in a uniform way at the propositional level. In fact,
by using the so called intuitionistic axiom of choice, it is possible to prove that,
given any power-set constructor, which satisfies the conditions that we will il-
lustrate in the next section, classical logic arises (see also [Hof95] page 170,
where it is suggested that a similar result holds in the setoid model built upon
the Calculus of Constructions). A crucial point in carrying on our proof is the
uniformity of the equality condition expressing extensionality on the power-set.
This is to be contrasted with the proofs of similar results already proposed in the
literature, after Diaconescu’s original proof in [Dia75], where proof-irrelevance
of propositions, which does not hold in constructive type theory, is used.

2 iTT
P = iTT + power-sets

To express the rules and the conditions that we are going to require on the
power-set we need to use judgements of the form A true (see [Mar84]) and
hence it is convenient to recall their main property: A true holds if and only if
there exists a proof-element a such that a ∈ A holds (for a formal approach to
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this topic see [Val95]). In particular, the following rule is admissible

(True Introduction)
a ∈ A

A true

as well as all the rules of the intuitionistic predicative calculus with equality,
where the judgement A true is the type theoretic interpretation of ⊢ A (see
[Mar84] for the definition of the embedding of the intuitionistic predicative cal-
culus within iTT ). Here, we only recall the rules for the set of the intensional
propositional equality Id (see [NPS90], page 61) which plays a central role in
this paper (for sake of clearness, supposing A is a set and a, b ∈ A, we will write
a =A b to mean Id(A, a, b)). The formation and introduction rules are

A set a ∈ A b ∈ A

a =A b set

A = C a = c ∈ A b = d ∈ A

(a =A b) = (c =A d)

A set a ∈ A

id(a) ∈ a =A a

A set a = b ∈ A

id(a) = id(b) ∈ a =A a

whereas the elimination rule is

c ∈ a =A b

[x : A]1
|

d(x) ∈ C(x, x, id(x))

[x : A, y : A, z : x =A y]1
|

C(x, y, z) set

idpeel(c, d) ∈ C(a, b, c)
1

and, if C(x, y, z) set [x : A, y : A, z : x =A y] and D(x, y) set [x : A, y : A], it
yields the admissibility of the following two rules:

c ∈ a =A b

[x : A]
|

C(x, x, id(x)) true

C(a, b, c) true

a =A b true

[x : A]
|

D(x, x) true

D(a, b) true

The rules for the set P(S) depend on the definition of what a subset is within
iTT . Following a long tradition, we identify a subset of S with a propositional
function on S, i.e., provided that U(x) set [x : S], we say that U ≡ (x : S) U(x)
is a subset of S, and hence, we say that an element a ∈ S is an element of U

if U(a) is inhabited, i.e. the judgement U(a) true holds (cf. [dB80] and [SV95]
for a detailed discussion on this topic).

Thus, provided that we want to have an extensional equality between subsets,
we are forced to consider equal two subsets U and V of S if and only if they
have the same elements, i.e. U(x) ↔ V (x) true [x : S].

The will to construct a set out of the collection of the propositional func-
tions over a set equipped with an equality relation between propositional func-
tions based on equi-provability is the point where classical logic breaks into the
system. Inspired by the previous explanations, here we propose the following
formation and introduction rules for P(S):
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Formation
S set

P(S) set

S = T

P(S) = P(T )

Introduction
U(x) set [x : S]

{(x : S) U(x)} ∈ P(S)

Now, we should formulate the next rules for the set P(S), i.e. the equality
introduction rule, the elimination rule and the equality rule. But the aim of
this paper is to show that it is actually impossible to formulate any rules which
make valid the conditions that we are are going to discuss in the following and
that seem to be necessary to make P(S) the power-set of S, because otherwise
we would obtain a Heyting semantics for classical logic.

As already said, it is necessary to formalize the fact that the equality between
subsets is extensional; otherwise, P(S) would not be the set of the subsets of
S but the collection of the propositional functions over S, and to add this
collection as a set is not consistent (see [Jac89]). Thus, one seems to be forced
to require that, whenever the two subsets U and V of S are equal, that is if
U(x) ↔ V (x) true [x : S] then {(x : S) U(x)} = {(x : S) V (x)} ∈ P(S).
However, as noted by Peter Aczel after reading a preliminary version of this
work, this should not be a formal rule for the set P(S) since the use of an
extensional equality rule for power-sets does not fit with the idea of treating
the judgemental equalities as definitional, which is basic in iTT . To avoid this
problem, we require here a weaker condition, which is a consequence of the
judgemental equality above.

Equality introduction condition

Let U(x) ↔ V (x) true [x : S]. Then there exists a proof-term c(U, V ) such that
c(U, V ) ∈ {(x : S) U(x)} =P(S) {(x : S) V (x)}.

Also this condition does not follow completely the general approach used
in Martin-Löf’s set theory since some information is lost in the path from the
premise to the conclusion, i.e. the proof term which testifies that U(x) ↔
V (x) true [x : S]. For this reason we do not want to consider it a formal
rule. In the following we will prove that this lack of information is one of the
main point in obtaining classical logic by adding the power-set constructor and
this fact suggests that there is still some hope to be able to add a power-set
constructor to constructive set-theory. For instance, one could consider the
following rule

f(x) ∈ U(x) ↔ V (x) [x : S]

c(U, V, f) ∈ {(x : S) U(x)} =P(S) {(x : S) V (x)}

and in this case it would be no more possible to carry on our proof to its
end. In any case it is worth noting that this approach is not sufficient in most of
the actual implementations of constructive set theory. Indeed, they use pattern-
matching instead of elimination rules and thus they validate stronger conditions,
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as the uniqueness of equality proofs [HS95] which allows to obtain classical logic
also with this rule.

The elimination and the equality rules are even more problematic. In fact it
is difficult to give a plain application of the standard approach that requires to
obtain the elimination rule out of the introduction rule(s) (see [Mar71]). In fact,
the introduction rule does not act over elements of a set but over elements of
the collection ((x : S) set)↔. Thus, if one wants to follow for P(S) the general
pattern for a quotient set, he could look for a rule similar to the following:

c ∈ P(S)

[Y : (x : S) set]
|

d(Y ) ∈ C({Y })

[Y, Z : (x : S) set, Y (x) ↔ Z(x) true [x : S]]
|

d(Y ) = d(Z) ∈ C({Y })

Prec(c, d) ∈ C(c)

But this rule requires the use of variables for propositional functions, which are
difficult to justify since prop is not a set.

Moreover, a standard equality rule should be something similar to the fol-
lowing

[x : S]
|

U(x) set

[Y : (x : S) set]
|

d(Y ) ∈ C({Y })

[Y, Z : (x : S) set, Y (x) ↔ Z(x) true [x : S]]
|

d(Y ) = d(Z) ∈ C({Y })

Prec({(x : S) U(x)}, d) = d((x : S) U(x)) ∈ C({(x : S) U(x)})

These rules are a direct consequence of the introduction rule and the equality
introduction condition and they are already not completely within standard
Martin-Löf’s set theory. But, the problem is that, as they stand, they are not
sufficient to make P(S) the set of the subsets of S. For instance, there is no way
to obtain a proposition out of an element of P(S) and this does not fit with the
introduction rule. Thus, to deal with the set P(S), one should add some rules
which links its elements both with the elements of the type set and with those
of the collection set↔, whose elements are propositions but whose equality is
induced by the logical equivalence.

Again, we don’t want to propose any particular rule since we are going
to show that there can be no suitable rule, but we simply require that two
conditions, which should be a consequence of such rules, are satisfied. The first
condition is:

Elimination condition

Let c ∈ P(S) and a ∈ S. Then there exists a proposition aεc.

This condition is suggested by the elimination rule that we have considered.
In fact, a free use of the elimination rule with C(z) ≡ set↔ allows to obtain
that Prec(c, (Y ) Y (a)) is an element of set↔ and hence that it is a proposition
and we can identify such a proposition with aεc. Of course, the above condition
is problematic because it requires the existence of a proposition but it gives
no knowledge about it; in particular it is not clear if one has to require a new
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proposition (which are its canonical elements? which are its introduction and
elimination rules?) or an old one (which proposition should one choose?).

As a consequence of the suggested equality rule, we require the following
equality condition.

Equality condition

Suppose U(x) set [x : S] and a : S then aε{(x : S) U(x)} ↔ U(a) true.

This condition can be justified in a way similar to the justification of the
elimination condition, but using the equality rule instead of the elimination rule;
in fact, supposing U(x) set [x : S] and a : S, the equality rule allows to obtain
that aε{(x : S) U(x)} and U(a) are equal elements of set↔ which yields our
condition. This condition cannot be justified from a semantical point of view
since we have no way to recover the proof element for its conclusion; this is the
requirement which allows us to develop our proof in the next section without
furnishing term constructors for classical logic.

It is worth noting that no form of η-equality, like

c ∈ P(S)

{(x : S) xεc} = c ∈ P(S)
x 6∈ V F (c),

is required on P(S), but its validity is a consequence of the suggested elimination
rule for P(S) at least within the extensional version of Martin-Löf’s set theory
eTT . This theory is obtained from iTT by substituting the intensional equality
proposition by the extensional equality proposition Eq(A, a, b) which allows to
deduce a = b ∈ A from a proof of Eq(A, a, b). The problem with extensional
equality is that it causes the lack of decidability of the equality judgement;
for this reason it is usually rejected in the present version of the theory. To
prove the η-equality in eTT let us assume that Y is a subset of S and that
x : S, then Y (x) set and hence xε{Y } ↔ Y (x) true holds because of the
equality condition and it yields Eq(PS, {(x : S) xε{Y }}, {Y }); thus, if c ∈ PS,
by using the elimination rule one obtains Eq(PS, {(x : S) xεc}, c) and hence
{(x : S) xεc} = c ∈ PS. Note that the last step is not allowed in iTT P .

3 iTT
P is consistent

It is well known that by adding as a set to iTT the collection P(1l), whose ele-
ments are (the code for) the non-dependent sets, but using an equality between
its elements induced by the intensional equality between sets, one obtains an
inconsistent extension of iTT [Jac89]. On the contrary, we will prove that any
extension of iTT with a power-set as proposed in the previous section, i.e. where
the equality between two elements of a power-set is induced by the provability
equivalence, is consistent or at least it is not inconsistent because of the rules
we proposed on the power-sets and the conditions we required.

The easiest way to prove such a result is to show first that iTT P can be em-
bedded in the extensional theory eTT Ω, which is an extension of the extensional
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version of type theory eTT only with the power-set Ω ≡ P(1l) of all the subsets
of the one element set 1l. Then we will prove that such a theory is consistent.

Thus we have the following formation and introduction rules

Ω set Ω = Ω
U(x) set [x : 1l]

{(x : 1l) U(x)} ∈ Ω

Moreover, we require that the introduction equality condition holds, i.e. if
U(x) ↔ V (x) true [x : 1l] then there exists a proof-term c(U, V ) such that

c(U, V ) ∈ {(x : 1l) U(x)} =Ω {(x : 1l) V (x)}

where if x, y : Ω then x =Ω y is the abbreviation for the extensional propositional
equality set Eq(Ω, x, y).

Now, the condition on the existence of a proposition aεc set [a : 1l, c : Ω] can
be satisfied by putting, for any c ∈ Ω,

aεc ≡ (c =Ω ⊤1l)

where ⊤1l ≡ {(x : 1l) x =1l x}; here, any reference to the element a disappears
in the definiens because all the elements in 1l are equal. Finally, we require that

if U(x) set [x : 1l] then ({(x : 1l) U(x)} =Ω ⊤1l) ↔ U(w) true [w : 1l]

Now, any power-set can be defined by putting

P(S) ≡ S → Ω

since, for any proposition U(x) set [x : S], one obtains an element in P(S) by
putting

{(x : S) U(x)} ≡ λ((x : S) {(w : 1l) U(x)})

where we suppose that w does not appear free in U(x), which is in fact an ele-
ment in S → Ω. Then the equality introduction condition holds provided that
the propositional equality on functions is at least weakly extensional, i.e. for
f, g : A → B, (∀x ∈ A) (f(x) =B g(x)) → (λx.f(x) =A→B λx.g(x)) is inhab-
ited, as it happens when the extensional version of type theory is considered.

Moreover, for any element c ∈ P(S), i.e. a function from S into Ω, and any
element a ∈ S, one obtains a proposition by putting

aεc ≡ (c(a) =Ω ⊤1l)

which indeed satisfies the required equality condition.
Thus, any proof of c ∈ ⊥ in iTT P , i.e. any inconsistency in iTT P , can be

reconstructed in eTT Ω. Hence, it is sufficient to show that this new theory is
consistent and this will be done by defining an interpretation I of this theory
into Zermelo-Fraenkel set theory with the axiom of choice ZFC.

The basic idea is to interpret any non-dependent set A into a set I(A) of
ZFC and, provided that
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I(A1) is a set of ZFC,
I(A2) is a map ¿from I(A1) into the collection of all sets of ZFC,
. . . ,
I(An) is a map from the disjoint union

⊎

α1∈I(A1),...,αn−2∈I(An−2)(〈α1,...,αn−3〉)

I(An−1)(〈α1, . . . , αn−2〉)

into the collection of all sets of ZFC, then the dependent set

A(x1, . . . , xn) set [x1 : A1, . . . , xn : An(x1, . . . , xn−1)],

i.e. the propositional function A : (x1 : A1) . . . (xn : An(x1, . . . , xn−1)) set, is
interpreted into a map from the disjoint union

⊎

α1∈I(A1),...,αn−1∈I(An−1)(〈α1,...,αn−2〉)

I(An)(〈α1, . . . , αn−1〉)

into the collection of all sets of ZFC.
Since the axiom of replacement allows to avoid the use of maps into the

collection of all sets, which can be substituted by indexed families of sets, all
the interpretation can be explained within basic ZFC, but we think that the
approach we use here is more perspicuous and well suited for the interpretation
of a theory like eTT Ω where propositional functions have to be considered.

The interpretation I(a) of a closed term a ∈ A, where A is a non-dependent
set, will be an element of the set I(A) whereas the interpretation of a not-closed
term

a(x1, . . . , xn) ∈ A(x1, . . . , xn) [x1 : A1, . . . , xn : An(x1, . . . , xn−1)],

i.e. the function-element a : (x1 : A1) . . . (xn : An(x1, . . . , xn−1)) A(x1, . . . , xn),
is a function I(a) which, when applied to the element

α ∈
⊎

α1∈I(A1),...,αn−1∈I(An−1)(〈α1,...,αn−2〉)

I(An)(〈α1, . . . , αn−1〉)

gives the element I(a)(α) of the set I(A)(α).
Now, for the basic sets we put: I(⊥) ≡ ∅, I(1l) ≡ {∅} and I(Bool) ≡

{∅, {∅}} and there is an obvious interpretation of their elements. Moreover, the
sets Σ(A, B) and Π(A, B) (or, equivalently, the propositions (∃x ∈ A) B(x)
and (∀x ∈ A) B(x)) are interpreted respectively in the disjoint union and the
indexed product of the interpretation of B(x) indexed on the elements of the
interpretation of A. The disjoint sum set A + B is interpreted in the disjoint
union of the interpretation of A and B and the interpretation of the extensional
equality proposition a =A b is the characteristic function of the equality of the
interpretation of a and b.

Finally, the interpretation of the set Ω is the set {∅, {∅}}.
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Moreover, the judgement A(x1, . . . , xn) true [Γ] is interpreted in I(A)(γ) 6= ∅
for every γ ∈ I(Γ), which gives I(A) 6= ∅ when A is a non-dependent set.

The interpretation of all the terms is straightforward; thus, here we only
illustrate the interpretation of the elements related to the set Ω:

I({(x : 1l) U(x)}) ≡

{

∅ if I(U(∗)) = ∅
{∅} if I(U(∗)) 6= ∅

and I(c(U, V )) ≡ ∅.
After these definitions, for any subset U of 1l, I(({(x : 1l) U(x)} =Ω ⊤1l) ↔

U(∗)) 6= ∅ by the axiom of choice and hence the equality condition is valid.
It is tedious, but straightforward, to check that all the rules of eTT Ω are

valid in this interpretation and hence that any proof of the judgement a ∈ ⊥
within eTT Ω, i.e. any form of inconsistency, would result in a proof that there
is some element in ∅, that is an inconsistency in ZFC.

4 iTT
P is classical

We are going to prove that iTT P gives rise to classical logic, i.e. for any proposi-
tion A the judgement A∨¬A true holds. Even if iTT P is not a topos, the proof
that we show here is obtained by adapting to our framework an analogous result
stating that any topos satisfying the axiom of choice is boolean. Among the
various proofs of this result (cf. for instance [LS86],[Bel88]), which goes back to
Diaconescu’s work showing that one obtains ZF by adding the axiom of choice
to IZF [Dia75], we choose to translate the proof of Bell [Bel88], because it is
very well suited to work in iTT P since it is almost completely developed within
local set theory instead that in topos theory, except for the use of a choice rule.

In iTT P the result is a consequence of the strong elimination rule for disjoint
union which allows to prove the so called intuitionistic axiom of choice, i.e.

> ((∀x ∈ A)(∃y ∈ B) C(x, y)) → ((∃f ∈ A → B)(∀x ∈ A) C(x, f(x))) true

Let us recall the proof [Mar84]. Assume that h ∈ (∀x ∈ A)(∃y ∈ B) C(x, y) and
that x ∈ A. Then h(x) ∈ (∃y ∈ B) C(x, y). Let p(−) and q(−) be the first and
the second projection respectively; then the elimination rule for the set of the
disjoint union allows to prove that p(h(x)) ∈ B and q(h(x)) ∈ C(x, p(h(x))).
Hence, by putting f ≡ λx.p(h(x)) we obtain both f ∈ A → B and q(h(x)) ∈
C(x, f(x)) since, by β-equality, f(x) ≡ (λx.p(h(x)))(x) = p(h(x)). Finally, we
conclude by true introduction.

Since in the following we will mainly use the power-set P(1l), we introduce
some abbreviations besides of Ω ≡ P(1l) and ⊤1l ≡ {(w : 1l) w =1l w} already
used in section 3; let us suppose that U is any proposition and w : 1l is a variable
which does not appear free in U , then we put [U ] ≡ {(w : 1l) U} and, supposing
p ∈ Ω, we put p ≡ ∗εp. Moreover, following a standard practice, supposing A is
a proposition, sometimes we will simply write A to assert the judgement A true.

It is convenient to state here all the properties of the intensional equality
proposition Id that we need in the following. First, we recall two well known
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results: Id is an equivalence relation, and if A and B are sets and a =A c and
f =A→B g then f(a) =B g(c) (for a proof see [NPS90], page 64).

Moreover, the following properties of Id are specific of the new set Ω. They
are similar to the properties that the set Id enjoys when it is used on elements
of the set U0, i.e. the universe of the small sets, which we will not use at all. In
fact, Ω resembles this set, but it also differs because of the considered equality
and because a code for each set is present in Ω whereas only the codes for the
small sets can be found in U0.

Lemma 4.1 If p =Ω q then p ↔ q.

Proof. Let x ∈ Ω; then x ↔ x and hence p ↔ q is a consequence of p =Ω q by
Id-elimination. 2

Lemma 4.2 ¬(true =Bool false).

Proof. Let x ∈ Bool; then if x then [1l] else [⊥] ∈ Ω. Now, suppose that
true =Bool false, then if true then [1l] else [⊥] =Ω if false then [1l] else [⊥] which
yields [1l] =Ω [⊥] by boole-equality and transitivity. Thus, by the previous
lemma [1l] ↔ [⊥], but [1l] ↔ 1l and [⊥] ↔ ⊥ by the equality condition; hence
⊥ true and thus, by discharging the assumption true =Bool false, we obtain the
result. 2

Now, we will start the proof of the main result of this section. The trick to
internalize the proof in [Bel88] within iTT P is stated in the following lemma.

Lemma 4.3 For any proposition A, if A true then

c((w : 1l) A, (w : 1l) w =1l w) ∈ [A] =Ω ⊤1l

and hence [A] =Ω ⊤1l true; moreover, if [A] =Ω ⊤1l true then A true.

Proof. If A true then A ↔ (w =1l w) true [w : 1l]; hence, by the equality
introduction condition, c((w : 1l) A, (w : 1l) w =1l w) ∈ [A] =Ω ⊤1l, and thus
[A] =Ω ⊤1l true by true-introduction; on the other hand, if [A] =Ω ⊤1l true then

[A] ↔ ⊤1l by lemma 4.1, but [A] ↔ A and ∗ =1l ∗ ↔ ⊤1l by the equality
condition, and hence A true since ∗ =1l ∗ true. 2

After this lemma, for any proposition A it is possible to obtain a logically
equivalent proposition, i.e. [A] =Ω ⊤1l, such that, if A true, the proof element
c((w : 1l) A, (w : 1l) w =1l w) of [A] =Ω ⊤1l has no memory of the proof
element which testifies the truth of A. We will see that this property is crucial
to get the main result. We will use the above lemma immediately in the next
one where, instead of the proposition p(w) ∨ q(w) set [w : Ω × Ω], we write
[p(w) ∨ q(w)] =Ω ⊤1l set [w : Ω × Ω] in order to avoid that the proof-term in
the main statement depends on the truth of the first or of the second disjunct.
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Proposition 4.4 In iTT P the following proposition

(∀z ∈ Σ(Ω × Ω, (w) [p(w) ∨ q(w)] =Ω ⊤1l))

(∃x ∈ Bool) (x =Bool true → p(p(z))) ∧ (x =Bool false → q(p(z)))

is true.

Proof. Suppose z ∈ Σ(Ω×Ω, (w) [p(w) ∨ q(w)] =Ω ⊤1l) then p(z) ∈ Ω×Ω and

q(z) is a proof of [p(p(z)) ∨ q(p(z))] =Ω ⊤1l. Thus, by lemma 4.3, p(p(z)) ∨

q(p(z)). Now, the result can be proved by ∨-elimination. In fact, if p(p(z)) true

then true =Bool true → p(p(z)); moreover, ¬(true =Bool false) by lemma 4.2 and
hence true =Bool false → q(p(z)). Thus we obtain that

(∃x ∈ Bool) (x =Bool true → p(p(z))) ∧ (x =Bool false → q(p(z)))

On the other hand, by a similar proof we reach the same conclusion starting
from the assumption q(p(z)) true. 2

Thus, we can use the intuitionistic axiom of choice to obtain:

Proposition 4.5 In iTT P the following proposition

(∃f ∈ Σ(Ω × Ω, (w) [p(w) ∨ q(w)] =Ω ⊤1l) → Bool)

(∀z ∈ Σ(Ω × Ω, (w) [p(w) ∨ q(w)] =Ω ⊤1l))

(f(z) =Bool true → p(p(z))) ∧ (f(z) =Bool false → q(p(z)))

is true.

Now, suppose that A is any proposition; then

〈〈[A],⊤1l〉, k([A],⊤1l)〉 ∈ Σ(Ω × Ω, (w) [p(w) ∨ q(w)] =Ω ⊤1l)

where k(x, y) is short for c((w : 1l) p(〈x, y〉) ∨ q(〈x, y〉), (w : 1l) w =1l w).

In fact, 〈[A],⊤1l〉 ∈ Ω × Ω and ⊤1l true, hence p(〈[A],⊤1l〉) ∨ q(〈[A],⊤1l〉);
thus the result follows by lemma 4.3.

Now, let f be the choice function in the proposition 4.5; then

f(〈〈[A],⊤1l〉, k([A],⊤1l)〉) =Bool true → [A]

But

(f(〈〈[A],⊤1l〉, k([A],⊤1l)〉) =Bool true) ∨ (f(〈〈[A],⊤1l〉, k([A],⊤1l)〉) =Bool false)

since the set Bool is decidable (for a proof see [NPS90], page 177), and hence,
by ∨-elimination and a little of intuitionistic logic, one obtains that

(1) [A] ∨ (f(〈〈[A],⊤1l〉, k([A],⊤1l)〉) =Bool false)

Analogously one can prove that

(2) [A] ∨ (f(〈〈⊤1l, [A]〉, k(⊤1l, [A])〉) =Bool true)

Thus, by using distributivity on the conjunction of (1) and (2), one finally
obtains
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Proposition 4.6 For any proposition A in iTT P the following proposition

(∃f ∈ Σ(Ω × Ω, (w) [p(w) ∨ q(w)] =Ω ⊤1l) → Bool)

[A] ∨ ((f(〈〈[A],⊤1l〉, k([A],⊤1l)〉) =Bool false)∧
(f(〈〈⊤1l, [A]〉, k(⊤1l, [A])〉) =Bool true))

is true.

Now, let us assume [A] true; then [A] =Ω ⊤1l true by lemma 4.3 and hence

〈〈[A],⊤1l〉, k([A],⊤1l)〉 =Σ(Ω×Ω,...) 〈〈⊤1l,⊤1l〉, k(⊤1l,⊤1l)〉

since λx.〈〈x,⊤1l〉, k(x,⊤1l)〉 is a function from Ω to Σ(Ω × Ω, (w) [p(w) ∨

q(w)] =Ω ⊤1l). Thus

f(〈〈[A],⊤1l〉, k([A],⊤1l)〉) =Bool f(〈〈⊤1l,⊤1l〉, k(⊤1l,⊤1l)〉)

where f is the function whose existence is stated by the proposition 4.6.
With the same assumption, also

f(〈〈⊤1l, [A]〉, k(⊤1l, [A])〉) =Bool f(〈〈⊤1l,⊤1l〉, k(⊤1l,⊤1l)〉)

can be proved in a similar way; hence, by transitivity of the equality proposition,

f(〈〈[A],⊤1l〉, k([A],⊤1l)〉) =Bool f(〈〈⊤1l, [A]〉, k(⊤1l, [A])〉)

It is worth noting that this result depends mainly on lemma 4.3, and hence on
the equality introduction condition whose premise is a “true judgement”. In-
deed, λx.〈〈x,⊤1l〉, k(x,⊤1l)〉 and λx.〈〈⊤1l, x〉, k(⊤1l, x)〉 yield equal results when
applied to ⊤1l since they do not depend on the proof-terms used to derive the
two judgements

(x ∨⊤1l) ↔ (w =1l w) true [x : Ω, w : 1l]

and
(⊤1l ∨ x) ↔ (w =1l w) true [x : Ω, w : 1l]

In the case we admit dependency on the proof-terms in the equality introduction
condition we can redo the whole proof if we assume that uniqueness of equality
proofs (see the rules in [HS95] or [Hof95]) holds and we replace a with a =Ω ⊤1l,
where a ∈ Ω, everywhere in the proof in order to get an actual proof-term at
this point.

Now, by assuming both [A] true and

(f(〈〈[A],⊤1l〉, k([A],⊤1l)〉) =Bool false) ∧ (f(〈〈⊤1l, [A]〉, k(⊤1l, [A])〉) =Bool true)

one can conclude true =Bool false. On the other hand, we know that ¬(true =Bool

false) holds by lemma 4.2. Hence ⊥ follows and so we obtain that the judgement
¬[A] true holds by discharging the assumption [A] true. Then, by using propo-
sition 4.6 and a little of intuitionistic logic, we can conclude ([A] ∨ ¬[A]) true

which, by the equality condition, yields (A ∨ ¬A) true. Thus, if we could give
suitable rules for the power-sets that allow our conditions to hold and follow
the usual meaning for the judgement C true, i.e. C true holds if and only if
there exists a proof element for the proposition C, then we would have a proof
element for the proposition A ∨ ¬A, which is expected to fail.
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5 Conclusion

To help the reader who knows the proof in [Bel88], it may be useful to explain
the differences between the original proof and that presented in the previous
section. Our proof is not the plain application of Bell’s result to iTT P since
iTT P is not a topos. It is possible to build a topos out of the extensional theory
eTT P obtained by adding a power-set constructor to eTT , if one adds to it also
the rule of η-equality for power-sets, like in the end of section 2. However, we
showed that it is not necessary to be within a topos to reconstruct Diaconescu’s
result and that a weaker theory is sufficient.

This fact suggests that it is not possible to extend Martin-Löf’s set theory,
where sets and propositions are identified and proof-elements can be provided
for any provable proposition, to an intuitionistic theory of sets fully equipped
with power-sets satisfying the conditions discussed in section 2, provided that
we want to preserve the constructive meaning of the connectives. However,
observe that the requirement of uniformity in the extensional equality condition
is crucial to carry on our proof. Therefore, it seems that there is still some hope
to get power-sets in constructive type theory by dropping uniformity. But, it is
worth recalling that an analogous proof of excluded middle can be performed
also without uniformity if the uniqueness of equality proofs holds. Thus, no
constructive power-set can be added if type theory is endowed with pattern
matching, which is usually used in most of its actual implementations.
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