
The forget-restore principle:
a paradigmatic example

Silvio Valentini

Dipartimento di Matematica Pura ed Applicata,

Università di Padova

Via Belzoni 7, I–35131 Padova, Italy

e-mail: silvio@math.unipd.it

1 Introduction

The aim of this note is to give a simple but instructive example of the forget-
restore principle, conceived by Giovanni Sambin as a discipline for a constructive
development of mathematics and first appeared in print in the introduction of
Sambin and Valentini 1997. The best way to explain such a philosophical position
is to quote from that paper: “To build up an abstract concept from a row flow

of data, one must disregard inessential details . . . this is obtained by forgetting

some information. To forget information is the same as to destroy something, in

particular if there is no possibility of restoring that information . . . our principle

is that an abstraction is constructive . . . when information . . . is forgotten in such

a way that it can be restored at will in any moment.”
The example we want to show here refers to Martin-Löf’s intuitionistic type

theory (just type theory from now on). We assume knowledge of the main pe-
culiarities of type theory, as formulated in Martin-Löf 1984 or Nordström et al.

1990.
Type theory is a logical calculus which adopts those notions and rules which

keep total control of the amount of information contained in the different forms
of judgment. However, type theory offers a way of “forgetting” information, that
is, supposing A set, the form of judgment A true.

The meaning of A true is that there exists an element a such that a ∈ A but
it does not matter which particular element a is (see also the notion of proof
irrelevance in de Bruijn 1980). Thus to pass from the judgment a ∈ A to the
judgment A true is a clear example of the forgetting process.

We will show that it is a constructive way to forget since, provided that
there is a proof of the judgment A true, an element a such that a ∈ A can be
re-constructed.

Of course the simple solution of adding only the rule

a ∈ A

A true

1



2 S. Valentini

allows to obtain such a result but is completely useless in practice. In fact, it does
not allow to operate with judgments of the form A true and, in our experience,
judgments of this form are essential in developing constructive mathematics, like
for instance in formal topology, and in developing metamathematical arguments
(see for instance Sambin and Valentini 1997 and Maietti and Valentini 1997).

To obtain the same result, but avoiding this limitation, we provide a general
calculus for expressions, directly inspired by Martin-Löf’s Siena lectures in April
1983 (see Bossi and Valentini 1989). This calculus was first published in Valentini
1996 and is similar for instance to that in Nordström et al. 1990. The advantage
of our calculus with respect to the other ones present in the literature is that its
rules, besides to allow to express all of the judgments of basic type theory, also
permit a rigorous treatment of judgments of the form A true.

2 The multi-level typed lambda calculus

The first idea for the definition of our calculus is to use a sort of simple typed
λ-calculus (see Barendregt 1992). In this way it is possible both to abstract on
variables and to preserve a decidable theory of equality, which is an essential
feature to describe any logical system since decidability is necessary in order to
recognize the correct application of the inference rules. On the other hand, to
describe type theory a simple typed λ-calculus is not sufficient. Thus we define
the following multi-level typed λ-calculus: the intuitive idea is to construct a
tower of dependent typed λ-calculi, each one over another, marked by a level.
Hence the rules of the multi-level typed λ-calculus are those of a simple typed
λ-calculus enriched by a label which specifies the level.

(assumption)
Γ ⊢ N :i M

Γ, x :i−1 N ⊢ x :i−1 N
i ≥ 1

(weakening)
Γ ⊢ N :i M Γ ⊢ K :j L

Γ, x :i−1 N ⊢ K :j L
i ≥ 1

(abstraction)
Γ, x :j N ⊢ K :i L

Γ ⊢ ((x :j N)K) :i ((x :j N)L)

(application)
Γ ⊢ N :i ((x :j L)M) Γ ⊢ K :j L

Γ ⊢ N(K) :i M [x := K]

The assumption rule tells that, if N is an expression of level greater than zero,
then we may assume it to be inhabited. The weakening rule tells that we may
add assumptions of the form x :i−1 N provided that the level of N is greater
than zero. Abstraction and application are like usual, except that they apply to
any level; note that they do not change the level of an expression.

These rules by themselves are not sufficient to develop any logical calculus
since no expression can be assigned a type because to prove the conclusion of
a rule one should have already proved its premise(s). So, in order to start, one
needs some axioms. The first thing one has to do is to settle the maximum
level m needed to describe a particular theory; to this aim we will introduce the



The forget-restore principle: a paradigmatic example 3

symbol ∗ to indicate the only type of the highest level. One can then define all
the other types downward from ∗ by means of axioms of the form ⊢ c :m ∗ for
some constant c. Note that the only elements of ∗ are constants. Then, all the
other axioms will have the form Γ ⊢ c :j−1 M for some constant c provided that
j > 0 and there exists a type N such that Γ ⊢ M :j N . It is not difficult to
recognize here some analogies with the approach to typed lambda-calculi used
in the Pure Type Systems approach (see Barendregt 1992).

In the case of type theory, we define a chain

a :0 A :1 set :2 ∗

to mean that a is an element of A which is a set, i.e. an element of set, which is
the only element of ∗. Thus our first axiom is:

⊢ set :2 ∗

We can now begin our description of type theory; to this aim we will follow the
informal explanation by Martin-Löf in Martin-Löf 1984. We start by stating an
axiom which introduces a constant for each set-constructor in correspondence
with each formation rule of type theory. For instance, suppose we want to
describe the set Π(A, B); to this aim we add the axiom

⊢ Π :1 (X :1 set)(Y :1 (x :0 X) set) set

which means that Π is a set-constructor constant which gives a new set when
applied to the set X and to the propositional function Y on elements of X . It
is straightforward to verify that this is a correct axiom since

⊢ (X :1 set)(Y :1 (x :0 X) set) set :2 (X :1 set)(Y :1 (x :0 X) set) ∗

The next step corresponds to the introduction rule(s): we add a new axiom
for each kind of canonical element. Let us consider again the case of the set
Π(A, B); then we put

⊢ λ :0 (X :1 set)(Y :1 (x :0 X) set)(y :0 (x :0 X) Y (x)) Π(X, Y )

which states that, if X is a set, Y is a propositional function on elements of X

and y is a function which gives a proof of Y (x) for any x in X , then λ(X, Y, y)
is an element of the set Π(X, Y ). Thus this axiom is just a rephrasing of the
Π-introduction rule in Martin-Löf 1984.

Also the elimination rule becomes a new axiom; it defines the term-constructor
constant introduced by the elimination rule. For instance for the set Π(A, B),
following the standard elimination rule (see the introduction of Martin-Löf 1984),
we put

⊢ F :0 (X :1 set)(Y :1 (x :0 X) set)(Z :1 (z :0 Π(X, Y )) set)
(c :0 Π(X, Y ))(d :0 (y :0 (x :0 X) Y (x)) Z(λ(X, Y, y))) Z(c)



4 S. Valentini

which states that, if X is a set, Y is a propositional function on elements of X ,
Z is a propositional function on elements of Π(X, Y ), c is an element of Π(X, Y )
and d is a method which maps any function y from x in X to Y (x) into an
element of Z(λ(X, Y, y)), then F (X, Y, c, d) is an element of Z(c).

In a similar way all of the rules of type theory become axioms of the multi-
level typed λ-calculus.

The notion of level will not be necessary to prove the main theorem of this pa-
per but it is useful to prove that the multi-level typed lambda-calculus is normal-
izing. In fact, because of the presence of the levels, the multi-level typed lambda-
calculus is obtained just putting together many dependent typed lambda-calculi
with constants which cannot interact one with the other. Hence one can adapt to
this framework any normalization proof for a dependent typed lambda calculus
present in the literature (cf. Capretta and Valentini 1997). Anyway, in order to
simplify the notation, in the following we will not write all the indexes of the
levels whenever they are not necessary.

3 The judgment A true

The main novelty of our approach with respect to a standard simple typed
lambda calculus, besides the notion of level, is that, besides the judgments of the
form N : M together with their rules, we can introduce here also the new form
of judgment “M true”, whose intended meaning is that the type M is inhabited.
The rules we require on this form of judgment are completely similar to those
for the judgment N : M in the previous section. This fact will be crucial in the
proof of the next theorem 3.1 which links the judgments of the form N : M with
those of the form M true.

(assumption)
Γ ⊢ N :i M

Γ, x :i−1 N ⊢ N true
i ≥ 1

(weakening)
Γ ⊢ N :i M Γ ⊢ L true

Γ, x :i−1 N ⊢ L true
i ≥ 1

(abstraction)
Γ, x :j N ⊢ L true

Γ ⊢ ((x :j N)L) true

(application)
Γ ⊢ ((x :j L)M) true Γ ⊢ K :j L

Γ ⊢ M [x := K] true

It may be useful to note that in most of the previous rules, besides judgments
of the form M true, it is necessary to use also those of the form N : M and thus
this calculus cannot be expressed independently from the previous one.

Like for the judgments of the form N : M in the previous section, no type
M can be proved to be inhabited, i.e. ⊢ M true, unless some specific axioms
are added. The intended meaning of the judgment M true suggests to add the
axiom Γ ⊢ M true whenever an axiom of the form Γ ⊢ c : M is present for
some constant c. For instance, when we consider the set Π(A, B) we will add



The forget-restore principle: a paradigmatic example 5

the following two axioms:

⊢ (X : set)(Y : (x : X) set)(y : (x : X) Y (x)) Π(X, Y ) true

which states that the type (X : set)(Y : (x : X) set)(y : (x : X) Y (x)) Π(X, Y )
is inhabited; by using it, one can prove for instance that Γ ⊢ Π(A, B) true,
provided that Γ ⊢ A : set and Γ, x : A ⊢ B(x) : set and Γ, x : A ⊢ B(x) true

hold, since if Γ, x : A ⊢ B(x) true holds then, by the next theorem 3.1, it is
possible to construct an expression b such that Γ, x : A ⊢ b(x) : B(x);

⊢ (X : set)(Y : (x : X) set)(Z : (z : Π(X, Y )) set)
(c : Π(X, Y ))(d : (y : (x : X) Y (x)) Z(λ(X, Y, y))) Z(c) true

which shows Γ ⊢ C(c) true provided that Γ ⊢ A : set, Γ, x : A ⊢ B(x) : set,
Γ, z : Π(A, B) ⊢ C(z) : set, Γ ⊢ c : Π(A, B) and Γ, y : (x : A) B(x) ⊢ C(λ(A, B, y)) true

hold. Note that, if the set C(z) does not depend on z, the last axiom can be
simplified to obtain Γ ⊢ C true provided that Γ ⊢ A : set, Γ, x : A ⊢ B(x) : set,
Γ, z : Π(A, B) ⊢ C : set, Γ ⊢ Π(A, B) true and Γ, y : (x : A) B(x) ⊢ C true hold,
since, by theorem 3.1, Γ ⊢ Π(A, B) true implies that there exists an element c

such that Γ ⊢ c : Π(A, B).
Since the rules for the judgment N : M are completely similar to those for

the judgment M true and whenever an axiom of the form Γ ⊢ c : M is added
to the calculus also the axiom Γ ⊢ M true is added, we can prove the following
theorem 3.1. It allows to give a formal counterpart of the intended meaning of
the judgment Γ ⊢ M true. Its proof, in one direction, shows how the reconstruct
a witness for the judgment M true while, in the other, it shows how it is possible
to forget safely.

Theorem 3.1 Let Σ be any set of axioms of the form Γ ⊢ c : K, for some

constant c and type K, and let Σ∗ be obtained from Σ by suitably substituting

some of the axioms Γ ⊢ c : K in Σ with the corresponding axiom Γ ⊢ K true.

Then Γ ⊢ M true is derivable from Σ∗ if and only if there exists an expression

N such that Γ ⊢ N : M is derivable from Σ.

Proof In both directions the proof is by induction on the given proof. When
we are “forgetting” we must start from below so that we know what can be
forgotten. Let us show the inductive steps (provided Π is a proof, we will write
Π∗ to mean the proof obtained by inductive hypothesis).
(axiom)

Π
Γ ⊢ K :i N

Γ ⊢ c :i−1 K
⇒

Π
Γ ⊢ K :i N

Γ ⊢ K true

(assumption)

Π
Γ ⊢ N :i M

Γ, x :i−1 N ⊢ x :i−1 N
⇒

Π
Γ ⊢ N :i M

Γ, x :i−1 N ⊢ N true



6 S. Valentini

(weakening)

Π
Γ ⊢ N :i M

Σ
Γ ⊢ K :j L

Γ, x :i−1 N ⊢ K :j L
⇒

Π
Γ ⊢ N :i M

Σ∗

Γ ⊢ L true

Γ, x :i−1 N ⊢ L true

(abstraction)

Π
Γ, x :i N ⊢ K :j L

Γ ⊢ ((x :i N)K) :j ((x :i N)L)
⇒

Π∗

Γ, x :i N ⊢ L true

Γ ⊢ ((x :i N)L) true

(application)

Π
Γ ⊢ N :j ((x :i L)M)

Σ
Γ ⊢ K :i L

Γ ⊢ N(K) :j M [x := K]
⇒

Π∗

Γ ⊢ ((x :i L)M) true

Σ
Γ ⊢ K :i L

Γ ⊢ M [x := K] true

It should now be clear how we obtain the set of axioms Σ∗ from the set of
axioms Σ: we have to change only those axioms which appear on a modified
proof and this is the reason why we have to “forget” from below: for instance in
the rules of weakening or application only one the premises is modified and only
the axioms on that premise have to be changed.

On the other side, in the case we are “restoring”, we must start from above
in such a way that an axiom (possibly in Σ∗) is replaced with a suitable instance
of an axiom (in Σ).
(axiom)

Π
Γ ⊢ M :i N

Γ ⊢ M true
⇒

Π
Γ ⊢ M :i N

Γ ⊢ c :i M

(assumption)

Π
Γ ⊢ N :i M

Γ, x :i−1 N ⊢ N true
⇒

Π
Γ ⊢ N :i M

Γ, x :i−1 N ⊢ x :i−1 N

(weakening)

Π
Γ ⊢ N :i M

Σ
Γ ⊢ L true

Γ, x :i−1 N ⊢ L true
⇒

Π
Γ ⊢ N :i M

Σ∗

Γ ⊢ K :j L

Γ, x :i−1 N ⊢ K :j L

(abstraction)

Π
Γ, x :i N ⊢ L true

Γ ⊢ ((x :i N)L) true
⇒

Π∗

Γ, x :i N ⊢ K :j L

Γ ⊢ ((x :i N)K) :j ((x :i N)L)



The forget-restore principle: a paradigmatic example 7

(application)

Π
Γ ⊢ ((x :i L)M) true

Σ
Γ ⊢ K :i L

Γ ⊢ M [x := K] true
⇒

Π∗

Γ ⊢ N :j ((x :i L)M)
Σ

Γ ⊢ K :i L

Γ ⊢ N(K) :j M [x := K]

2

It is worth noting that in the process which transforms first the proof of
Γ ⊢ N : M into Γ ⊢ M true and then into Γ ⊢ N ′ : M we will not in general
obtain the same element, i.e. N and N ′ may differ for the constants used in the
axioms with the same type.

4 Final remarks

What we have illustrated in the previous sections is just an example of the process
of “forgetting”; for instance, as one of the referees of this paper has suggested,
one could consider also the judgments M type and M element as a forgetting
abbreviation for the judgment M :j N with j > 0 and j = 0 respectively and
develop for these judgments a suitable calculus analogous to the one we proposed
for the judgment M true.

Moreover it should be clear that what we have done is just a simple illustra-
tion of the forget-restore paradigma and that it is not a complete description of a
full theory for judgments of the form A true within type theory. In fact we chose
to develop a dependent type multilevel lambda calculus since it is well suited for
the framework of the Martin-Löf’s dependent type theory that we have described
but it is not of immediate application if we consider also the non-dependent part
of the theory like for instance when we define A → B as Π(A, (x : A) B) provided
that the proposition B does not depend on the elements of A. For instance the
rule

Γ ⊢ A → B true Γ ⊢ A true

Γ ⊢ B true

is admissible in our system but it is not derivable ; hence we have a too weak
theory for judgments of the form A true. To solve this problem the first step is to
be able to deal also with assumptions of the form A true, instead that only with
those of the form x : A, when the variable x does not appear in the conclusion
B true. This is not possible in a general dependent type calculus since even a
conclusion of the form B true may in general depend on the variables in the
assumptions.

We can obtain this result if, when performing the forgetting process, we will
take into account also which variables appear in the types in the conclusion of
a rule. Thus we will have the following transformation of a full proof into a
forgetting one:

(assumption)

Π
Γ ⊢ N :i M

Γ, x :i−1 N ⊢ x :i−1 N
⇒

Π
Γ ⊢ N :i M

Γ, N true ⊢ N true



8 S. Valentini

since the variable x is introduced by the rule and hence cannot appear in N ;

(weakening)

Π
Γ ⊢ N :i M

Σ
Γ ⊢ K :j L

Γ, x :i−1 N ⊢ K :j L
⇒

Π
Γ ⊢ N :i M

Σ∗

Γ ⊢ L true

Γ, N true ⊢ L true

since the variable x is assumed by weakening and hence it cannot appear in L.
The case of the abstraction rule

(abstraction)

Π
Γ, x :i N ⊢ K :j L

Γ ⊢ ((x :i N)K) :j ((x :i N)L)

deserves a more detailed analysis; in fact we can surely use the transformation
that we have proposed in the proof of theorem 3.1, but, provided the variable x

does not appear in L, also the following transformation can be used

Π∗

Γ, N true ⊢ L true

Γ ⊢ ((N)L) true

where we have introduced the new notation ((N)L) to mean that the abstracted
variables does not appear in the body of the abstraction. Finally also for the
application rule

(application)

Π
Γ ⊢ N :j ((x :i L)M)

Σ
Γ ⊢ K :i L

Γ ⊢ N(K) :j M [x := K]

two transformations are possible according to the variables which appear in the
conclusion. The first is the one that we used in the proof of theorem 3.1 and it
can be applied in any case. However, provided M does not depend on x, it is
possible to use also the following

Π∗

Γ ⊢ ((L)M) true

Σ∗

Γ ⊢ L true

Γ ⊢ M true

It is now possible to change also the form of the axioms. Here we will show
only a simple example. Suppose that we want to introduce the type A → B.
Then we need the following axioms:

⊢→:1 (X :1 set)(Y :1 set) set

⊢ λ :0 (X :1 set)(Y :1 set)(y :0 (x :0 X) Y ) X → Y

⊢ ap :0 (X :1 set)(Y :1 set)(f :0 X → Y )(x :0 X) Y

If we now consider the transformations used in the prove of theorem 3.1 we will
obtain

⊢ (X :1 set)(Y :1 set)(y :0 (x :0 X) Y ) X → Y true

⊢ (X :1 set)(Y :1 set)(f :0 X → Y )(x :0 X) Y true



The forget-restore principle: a paradigmatic example 9

but, provided that we use also the notation ((X)Y ) for the abstractions when Y

does not depends on the elements in X , we can add to them the following new
axioms:

⊢ (X :1 set)(Y :1 set)(((X) Y ) X → Y ) true

⊢ (X :1 set)(Y :1 set)(f :0 X → Y )((X) Y ) true

⊢ (X :1 set)(Y :1 set)((X → Y )(x :0 X) Y ) true

⊢ (X :1 set)(Y :1 set)((X → Y )((X) Y )) true

and it is straightforward to use the last one to derive the rule

Γ ⊢ A → B true Γ ⊢ A true

Γ ⊢ B true

Since any of the new axioms is the result of a forgetting process from a stan-
dard axiom and we can restore it simply by adding the abstracted variables,
which can be done in an algorithmic way, this is again an instance of a construc-
tive way of forgetting and a theorem like theorem 3.1 can be proved also in this
case.

Bibliography

Barendregt, H. P. (1992). Lambda-calculi with types, in “Handbook of logic and
computer science”, vol. II, S. Abramski, D. M. Gabbay and T. S. Maibaum,
eds., vol. 2, pp. 118-309, Oxford University Press.

Bossi, A. and Valentini, S. (1989). The expressions with arity, internal report,
Dip. Scienze dell’Informazione, Univ. Milano N. 61/89.

Capretta, V. and Valentini, S. (1997). A general method to prove the normaliza-

tion theorem for first and second order typed λ-calculi, to appear.

de Bruijn, N. G. (1980). A survey of the project Automath., in “To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism”, J. P. Seldin
and J. R. Hyndley, eds., Academic Press, London, pp. 589-606.

Martin-Löf, P. (1984). “Intuitionistic type theory”, notes by Giovanni Sambin
of a series of lectures given in Padua, June 1980, Bibliopolis, Neaples.

Maietti, M. E. and Valentini, S. (1997). Why you should not add power-set to

Martin-Löf intuitionistic set theory to appear.

Nordström, B., Petersson, K. and Smith, J.M. (1990). “Programming in Martin-
Löf’s Type Theory, an introduction”, Clarendon Press, Oxford.

Sambin, G. and Valentini, S. (1997). Building up a toolbox for Martin-Löf ’s type

theory., in “Twenty five years of Constructive Type Theory”, Venice.

Valentini, S. (1996) Another introduction to Martin-Löf ’s Type Theory, in
“Trends in Theoretical Informatics”, R. Albrecht and H. Herre, eds., Schriften-
reihe der Österreichischen Computer Gesellscaft, Bd. 89, München.


