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Abstract

Looking for a complete formalization of constructive topology we an-

alyzed the structure of the subsets of a Heyting algebra which correspond

to the concrete closed and open sets of a topological space over its formal

points. After this has been done, the rules for a formalization of construc-

tive topology, which is both predicative and complete, are unveiled.

1 Introduction

The aim of formal topology is to develop topology in a constructive framework
where the adjective “constructive” is meant to imply both intuitionistic and
predicative.

One of the main problems with the original definition of formal topology (see
for instance [GS99] or the introductory section in [CSSV]) is that it misses a
complete formalization of topological spaces since only some of the valid condi-
tions on the cover and the positivity relations are considered. This is confirmed
by the fact that, while in the pointset setting basic opens are sufficient to de-
termine both the open and the closed subsets of a topological space this in
general does not happen for a formal topology (see [Val00] for a discussion on
the problem of finding a complete formalization).

In this paper we propose new rules for a predicative inductive generation of
formal topologies and justify their completeness. It is interesting to observe that
this completeness result relies on using a predicative set theory, like Martin-Löf’s
type theory [ML84]; thus predicativity is essential not only from a philosophical
point of view, that is, in order to be able to give a constructive meaning to
quantification, but also because this assumption has mathematical consequences
which cannot be proved without it.

In order to make the paper self contained, we will give in the next sections
an introduction to formal topology.
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1.1 Concrete topological spaces

The classical definition of topological space reads as follows: (X, Ω(X)) is a
topological space if X is a set and Ω(X) is a subset of P(X) which satisfies:

(Ω1) ∅, X ∈ Ω(X);

(Ω2) Ω(X) is closed under finite intersection;

(Ω3) Ω(X) is closed under arbitrary union.

Usually, elements of X are called points and elements of Ω(X) are called opens.
The quantification implicitly used in (Ω3) is of the third order, since it says

(∀F ∈ P(P(X))) (F ⊆ Ω(X) →
⋃

F ∈ Ω(X))

We can “go down” one step by thinking of Ω(X) as a family of subsets indexed
by a set S through a map ext : S → P(X), that is, a binary relation between S

and X . In fact, we can now quantify on S rather than on Ω(X). But we still
have to say

(∀U ∈ P(S))(∃c ∈ S) (∪aεUext(a) = ext(c))

which is still impredicative1.
We can “go down” another step by defining opens to be of the form

Ext(U) ≡
⋃

aεU

ext(a)

for an arbitrary subset U of S. In this way ∅ is open, because Ext(∅) = ∅, and
closure under union is automatic, because obviously ∪i∈IExt(Ui) = Ext(∪i∈IUi).
So, all we have to do is to require that Ext(S) be the whole X , that is,

(B1) X = Ext(S)

and that closure under finite intersections holds, that is,

(B2) (∀a, b ∈ S)(∀x ∈ X) ((x ε ext(a) ∩ ext(b)) →
(∃c ∈ S) (x ε ext(c) & ext(c) ⊆ ext(a) & ext(c) ⊆ ext(b)))

It is not difficult to realize that this amounts to the standard definition saying
that {ext(a) ⊆ X | a ∈ S} is a base (see for instance [Eng77]).

We can make (B2) a little shorter by introducing an abbreviation, that is

a ↓ b ≡ {c : S| ext(c) ⊆ ext(a) & ext(c) ⊆ ext(b)}

so that it becomes (∀a, b ∈ S) ext(a)∩ext(b) ⊆ Ext(a ↓ b). But note that cεa ↓ b

implies that ext(c) ⊆ ext(a) ∩ ext(b), and hence Ext(a ↓ b) ⊆ ext(a) ∩ ext(b).
Thus we arrived at the following definition.

1All the set-theoretical notions that we use are conform to the subset theory for Martin-
Löf’s type theory as presented in [SV98]. In particular, we will use the symbol ∈ for the
membership relation between an element and a set or a collection and ε for the membership
relation between an element and a subset, which is never a set but a propositional function
so that aεU means U(a).
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Definition 1.1 A concrete topological space is a triple X ≡ (X, S, ext) where
X and S are sets and ext is a binary relation from S to X satisfying:

(B1) X = Ext(S)

(B2) (∀a, b ∈ S) ext(a) ∩ ext(b) = Ext(a ↓ b)

1.2 Towards formal topologies

The notion of formal topology arises by describing the structure induced by a
concrete topological space on the formal side, that is, the side of the set S of the
names. The reason for such a move is that the definition of concrete topological
space is too restrictive, given that in the most interesting cases of topological
space we do not have, from a constructive point of view, a set of points to start
with. One way to obtain such a structure is to introduce two operators which
link the concrete side, that is, the side of the set X of the concrete points, with
the formal side. The intention is to allow dealing with concrete open and closed
subsets of the topological space X by using only the names of the basic opens,
that is, the elements of the set S.

The problem to identify the open sets is easily solved. Since the elements in
S are names for basic opens of the topology on X , we can obtain their extension,
that is, the concrete basic open, by using the operator ext. Now, by definition,
any open set is the union of basic opens and hence it can be specified in the
formal side by using the subset of all the (names of the) basic opens which are
used to form it.

It is not difficult to check that, provided the conditions (B1) and (B2) are
satisfied, in this way we obtain a topology on the set X . Moreover, it is the
correct topology, namely, any open subset of the topology whose base is the
family (ext(a))a∈S is extensionally equal to the extension of some subset of S.
In fact, from a topological point of view, an open subset A of X is characterized
by the property of being the union of all the basic opens that it contains or,
equivalently, to coincide with its interior Int(A), where

Int(A) ≡ {x ∈ X | (∃a ∈ S) xεext(a) & ext(a) ⊆ A}

Of course, for any A ⊆ X , Int(A) ⊆ A and thus a subset A is open if and only
if A ⊆ Int(A).

Theorem 1.2 Let U ⊆ S. Then Ext(U) is an open subset of X.

Proof. Let us suppose that xεExt(U) then there exists a ∈ S such that xεext(a)
and aεU ; but the latter yields ext(a) ⊆ Ext(U) and hence xεInt(Ext(U)), that
is, Ext(U) is open. �

We can now prove the following theorem which characterizes the open sub-
sets of X .

Theorem 1.3 Let A ⊆ X. Then A is an open subset if and only if there exists
a subset U of S such that A = Ext(U).
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Proof. In the previous theorem we proved that, for any subset U of S, Ext(U)
is an open subset of X . Now, let A be an open subset of X and consider the
subset UA ≡ {a ∈ S| ext(a) ⊆ A}. Then A = Ext(UA). In fact

⋃

aεUA
ext(a) ⊆ A

is obvious and if xεA then there exists a ∈ S such that xεext(a) and ext(a) ⊆ A,
since A is open; hence aεUA and so xεExt(UA). �

The proof of the previous theorem shows how to find, for any given open sub-
set A of X , a suitable subset UA of S such that A and Ext(UA) are extensionally
equal; we chose the biggest among the possible subsets, that is, the one which
contains all of the suitable basic opens. It is clear that in general this is not the
only choice and that it is well possible that two different subsets of S have the
same extension. Thus, we don’t have a bijective correspondence between con-
crete opens and subsets of S and we need to introduce an equivalence relation
on the formal side if we want to obtain such a correspondence. What we need is
a relation which identifies the subsets U and V when Ext(U) = Ext(V ). We can
simplify a little the search for such a relation if we realize that Ext(U) = Ext(V )
holds if and only if, for any a ∈ S, ext(a) ⊆ Ext(U) if and only if ext(a) ⊆ Ext(V ).

Theorem 1.4 Let U and V be subsets of S. Then Ext(U) = Ext(V ) if and only
if, for all a ∈ S, (ext(a) ⊆ Ext(U)) ↔ (ext(a) ⊆ Ext(V )).

Proof. From left to right the statement is obvious. On the other hand, let us
suppose that xεExt(U), then xεext(u) for some uεU ; but uεU yields ext(u) ⊆
Ext(U) and hence the assumption yields ext(u) ⊆ Ext(V ) and thus xεExt(V )
follows from xεext(u). The proof of the other inclusion is completely similar. �

Thus we need to introduce, in the formal side, an infinitary binary relation
⊳, that we will call cover, between elements and subsets of S, whose intended
meaning is that, for a ∈ S and U ⊆ S,

a ⊳ U if and only if ext(a) ⊆ Ext(U)

The problem has now became to find a complete characterization for the
cover relation, which can be expressed completely within the formal side, that
is, making no reference to points. For the solution of this problem let us wait
for the next section.

Meanwhile, let us turn our attention to closed subsets. Here we have to face
the problem that from an intuitionistic point of view we cannot simply identify
the closed subsets with the complements of the open subsets. Thus our plan is
to follow for closed subsets an approach similar to the one that we used for the
open subsets and hence we need a primitive definition for them too. Of course
the problem is that we want to identify a closed subset by using only the basic
opens, which are the only subsets of X that can be named in the formal side.
But note that a subset A ⊆ X is closed if and only if any point which cannot
be separated from A by mean of a basic open is inside A, or, equivalently, if A

is equal to its closure Cl(A), where

Cl(A) ≡ {x ∈ X | (∀a ∈ S) xεext(a) → ext(a))(A}
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where ext(a))(A is a shorthand for (∃y ∈ X) yεext(a) & yεA that we will read
ext(a) meets A. It is straightforward to verify that, for any subset A of X ,
A ⊆ Cl(A) and hence a subset is closed if and only if it contains its closure.

The key observation to find a formal characterization of the concrete closed
subsets is that a closed subset is completely determined by the collection of the
basic opens which meet it.

Theorem 1.5 Let A and B be two closed subsets of the concrete topological
space on the set X whose base is the family (ext(a))a∈S . Then A and B are
equal if and only if, for any a ∈ S, (ext(a))(A) ↔ (ext(a))(B).

Proof. If A = B then obviously (ext(a))(A) ↔ (ext(a))(B) holds for any a ∈ S.
On the other hand, if we assume that, for any a ∈ S, (ext(a))(A) ↔ (ext(a))(B),
then, by using the fact that A and B are closed subsets, for any x ∈ X , we obtain
that xεA iff xεCl(A) iff (∀a ∈ S) xεext(a) → ext(a))(A iff (∀a ∈ S) xεext(a) →
ext(a))(B iff xεCl(B) iff xεB, that is, A and B are equal. �

So, in order to have a complete information on a concrete closed subset we
can simply collect, in the formal side, all the basic opens which meet it. It is
then necessary to introduce a new operator, besides Ext, which links the formal
side with the concrete one and which allows to obtain back the closed subset
when we are given with the collection of the basic opens which meet it. To
this aim we are going to characterize the set of all the points in X which are
of adherence for a given family of basic opens, that is, supposing F is a subset
of basic opens, we want to consider the subset of X of the points whose basic
neighborhoods are all in F . Thus, for any F ⊆ S, we put

Rest(F ) ≡ {x ∈ X | (∀a ∈ S) xεext(a) → aεF}

Let us state immediately some obvious facts on the operator Rest(−).

Lemma 1.6 Let a ∈ S and F ⊆ S. Then, if ext(a))(Rest(F ) then aεF .

Proof. Suppose that ext(a))(Rest(F ) holds, then there exists a point y ∈ X such
that yεext(a) and yεRest(F ); the latter means that, for all b ∈ S, if yεext(b)
then bεF and hence aεF follows since yεext(a). �

Theorem 1.7 Let F ⊆ S. Then Rest(F ) is a closed subset of X.

Proof. Suppose xεCl(Rest(F )). Then, for any a ∈ S, xεext(a) yields that
ext(a))(Rest(F ) and hence, by the previous lemma, if xεext(a) then aεF that is,
xεRest(F ). �

We can finally prove the following theorem.

Theorem 1.8 Let A be a subset of X. Then A is a closed subset if and only if
there exists a subset F of S such that A = Rest(F ).
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Proof. We already proved that, for any subset F of S, Rest(F ) is a closed
subset of X . So, let A be a closed subset of X and consider the subset FA ≡
{a ∈ S| ext(a))(A}. Then A = Rest(FA). In fact, supposing xεA, for any a ∈ S,
if xεext(a) then ext(a))(A and hence aεFA and thus xεRest(FA); let us now
suppose that xεRest(FA), thus, for all a ∈ S, if xεext(a) then aεFA, that is,
ext(a))(A, thus xεCl(A) which yields xεA since A is closed. �

Thus, we have solved the problem of dealing with concrete closed subsets by
using only subsets of the set S of names of basic opens, but, as in the previous
case with open subsets, in the proof of the theorem above we chose a suitable
subset which corresponds to a given concrete closed subset and there may well
be other subsets which correspond to the same closed subset. So, also in this
case we need to define an equivalence relation between subsets of S such that
two subsets F and G are equal if and only if Rest(F ) = Rest(G).

Theorem 1.9 Let F and G be two subsets of S. Then Rest(F ) = Rest(G) if
and only if, for all a ∈ S, (ext(a))(Rest(F )) ↔ (ext(a))(Rest(G)).

Proof. We have already proved that, for any F, G ⊆ S, Rest(F ) and Rest(G)
are closed subsets. Then the result is an immediate consequence of theorem 1.5.
�

Then, in order to have a completely formal counterpart of a closed subset,
we need to find the formal conditions which state that ext(a))(Rest(F ). To this
aim we introduce an infinitary relation ⋉ between elements and subsets of S,
that we call positivity predicate, whose intended meaning is that, for any a ∈ S

and F ⊆ S,
a ⋉ F if and only if ext(a))(Rest(F )

As for the cover relation above, here also the problem is to find the correct
conditions on the positivity predicate. The rest of the paper is devoted to this
topic.

2 Heyting algebras and formal topologies

To find the correct conditions on the cover relation and the positivity predicate
we will work with a typical case study, that is, the case the basic opens are
the elements of a Heyting algebra H . Since we are just looking for the correct
conditions and we are not actually developing constructive topology, we will not
feel stuck to intuitionistic logic and we will use sometimes classical reasoning.
We are confident that this approach is not too dangerous and we hope to be
forgiven by the most strict believers.

Our strategy will be to look for conditions which let us construct a bijective
correspondence between the collection of the concrete opens and the one of the
formal opens and between the collection of the concrete closed subsets and the
one of the formal closed subsets. In this way we will be able to deal with open
and closed subsets of a concrete topological space by using only the correspond-
ing subsets of the set of the basic opens. The problem is that at present there is
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no concrete side. In order to recognize the usual topological situation we have
to fill the basic opens with points.

Definition 2.1 (Formal point) A subset α of H is a formal point if, for all
a, b ∈ H and all subset U of H such that

∨

U exists,

(positivity) ¬(0Hεα) (non-emptyness) 1Hεα

(down-closure)
aεα bεα

a ∧ bεα
(up-closure)

aεα a ≤
∨

U

U)(α

where U)(α is a short-hand for (∃b ∈ H) bεU & bεα.

From a technical point of view a formal point is a completely prime proper
filter. However, its geometric interpretation should be clear: a formal point α

is “contained” in a basic open a if a is an element of the filter α. Thus, we
can obtain a topological space on the collection PtH of all the formal points by
setting, for any a ∈ H ,

ext(a) ≡ {α ∈ PtH | aεα}

and using the collection {ext(a)| a ∈ H} as a base. In fact, the conditions B1

and B2 of the previous section 1.1 are obviously satisfied since for any formal
point α there is an element in H , namely 1H , which “contains” α, and if α is
“contained” both in a and b, then there exists an element c in H , namely a∧ b,
such that α is “contained” in c and ext(c) ⊆ ext(a) ∩ ext(b) since formal points
are filters.

Our aims are now, first, to find two suitable collections of subsets of H such
that a bijective correspondence can be defined with the collection of the open
subsets and the collection of the closed subsets of this topology and, second, to
characterize the collections determined in this way without any reference to the
formal points.

Let us begin with the open sets. In analogy with what we did in the proof
of theorem 1.3, we can associate to any open subset A of PtH the subset Id(A)
of H by using the following definition.

Id(A) ≡ {a ∈ H | ext(a) ⊆ A}

Consider now any complete ideal of H , that is, any subset I of H such that,
for any a ∈ H and any U ⊆ H such that

∨

U exists, satisfies the following
condition:

a ≤
∨

U U ⊆ I

aεI

It is easy to check that the single condition above is sufficient to define an ideal.
In fact, 0HεI because 0H ≤

∨

∅; moreover, provided a, bεI, we obtain that
a ∨ bεI, because a ∨ b ≤

∨

{a, b}; finally, if aεI and b ≤ a then obviously bεI

since {a} ⊆ I if and only if aεI.
It is not difficult to prove that, for any open subset A of PtH , Id(A) is a

complete ideal of H .
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Theorem 2.2 Let A be any open subset of the topological space on PtH . Then
Id(A) is a complete ideal of H.

Proof. Let us suppose both that U is a subset of Id(A) such that
∨

U exists
and that a ≤

∨

U . Assume now that β is a formal point such that β ∈ ext(a);
then aεβ and hence there exists uεU such that uεβ since β is a formal point
and a ≤

∨

U . Thus uεId(A), since U ⊆ Id(A), and hence ext(u) ⊆ A which
yields β ∈ A, since β ∈ ext(u). We thus proved that, for any formal point β,
β ∈ ext(a) yields β ∈ A, that is, aεId(A). �

Thus, “being a complete ideal” is a property that, for any open set A, is
satisfied by Id(A). We will prove now that this is a characteristic property, that
is, we will prove that complete ideals correspond to open subsets.

Let us set, for any subset I of H ,

Ext(I) ≡ {α ∈ PtH | α)(I}

This definition is an instance of the analogous definition in section 1.1 and it
agrees with the definition of ext above; indeed ext(a) = Ext({a}) because, for
any formal point α, aεα if and only if α)({a}.

Then we can prove the following theorem which is completely analogous to
theorem 1.2.

Theorem 2.3 Let I be any subset of the Heyting algebra H. Then Ext(I) is an
open subset of the topology on PtH .

Proof. We have to prove that Ext(I) ⊆ Int(Ext(I)). To this aim, let us suppose
that α ∈ Ext(I), that is, (∃a ∈ H) aεα & aεI. Thus we know that there exists
an element a ∈ H such that aεα and in order to conclude that α ∈ Int(Ext(I))
we have to prove only that, supposing β ∈ PtH and β ∈ ext(a), that is, aεβ, we
can conclude that β ∈ Ext(I), that is, β)(I. But this is immediate since aεI and
hence β and I meets in a. �

It is interesting to note that the previous proof works for any subset of H

and not only for complete ideals. When A is an open subset we can “close the
circle”.

Theorem 2.4 Let A be any open subset of the topological space on PtH . Then
Ext(Id(A)) = A.

Proof. The proof consists just in expanding the definitions. In fact, α ∈
Ext(Id(A)) iff α)(Id(A) iff there exists a ∈ H such that aεα and aεId(A) iff there
exists a ∈ H such that aεα and ext(a) ⊆ A iff α ∈ Int(A) iff α ∈ A where the
last step holds because A is an open set. �

In order to prove that the correspondence between complete ideals and open
subsets is bijective we still have to prove that, for any complete ideal I of H ,
Id(Ext(I)) = I. One inclusion is straightforward: if aεI then, for any formal
point β, if aεβ then β)(I, that is, if aεβ then β ∈ Ext(I), which means that
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aεId(Ext(I)). The proof of the other inclusion is much more complex. In fact,
we should prove that if, for any formal point β, aεβ yields β)(I, then aεI. It is
well known that this result can not be proved in the most general setting since
there are Heyting algebras with no formal points2 and hence, in one of such
a Heyting algebra the complete ideal {0H} can not be equal to Id(Ext({0H}));
in fact in this case Id(Ext({0H})) is equal to the whole algebra H since the
universal quantification on the collection of the formal points is always true.
However, this statement can be proved if we stay strictly within a predicative
setting, namely, if we assume that the collection U of the subsets of H which
have a supremum is set-indexed, that is, there exists an inductive set3 and a
map from such a set onto U . Indeed, in this case we can prove the following
theorem.

Theorem 2.5 Let H be a Heyting algebra such that the collection of the subsets
which have a supremum is set-indexed. Then, if, for all formal points β, aεβ

yields bεβ, then a ≤ b.

Proof. In order to simplify the notation let us assume that the set used to
index the collection of the subsets of H which have a supremum is the set of
the natural numbers, so that induction is the usual one. The proof consists in
building a formal point α such that aεα and (bεα) → (a ≤ b). Of course, if
a = 0H it is not possible to build the formal point α such that aεα since, for
any formal point α, 0H 6 εα must hold. Thus, let us assume that a 6= 0H .

To construct the formal point α we build, in a countable number of steps, a
sequence c0, . . . , cn, . . . of elements of H such that, for any n ≥ 0, cn 6= 0H and
cn ≤ b yields a ≤ b.

Let U0, . . . , Un, . . . be a list of the subsets of H which have a supremum and
construct a new countable list W0, . . . , Wm, . . . of subsets of H out of the list
U0, . . . , Un, . . . in such a way that any subset Ui appears a countable number
of times among W0, . . . , Wm, . . .. Now, set c0 = a; hence clearly c0 6= 0H , since
we assumed that a 6= 0H , and c0 ≤ b yields a ≤ b. Let us suppose now that
we have defined the element cn such that cn 6= 0H and cn ≤ b yields a ≤ b and
define cn+1 by cases as follows:

cn+1 =

{

cn ∧ wn if cn ≤
∨

Wn

cn otherwise

where wn is an element of Wn such that cn ∧ wn 6= 0H and cn ∧ wn ≤ b yields
a ≤ b. Indeed, we can prove that such an element wn exists by using classical
logic as follows. Let us set Tn ≡ {wεWn| cn ∧ w 6= 0H}; then we can prove
that if cn ≤

∨

Wn then the subset Tn is not empty; indeed if cn ≤
∨

Wn we
have that cn = cn ∧

∨

Wn =
∨

wεWn
cn ∧ w =

∨

wεTn
cn ∧ w and hence if Tn

would be empty then cn would be equal to 0H which is contrary to the inductive

2One can consider for instance the Heyting algebra of the Cantor space which has no
completely prime filter.

3By inductive set we mean a set according to Martin-Löf’s type theory where any set is
defined by using inductively some introduction rules.
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hypothesis4; then, according to classical logic, we can prove that the required
element wn exists by showing that if cn ∧ w ≤ b, for all wεTn, then a ≤ b; now,
provided cn ≤

∨

Wn, if we assume that, for all wεTn, cn ∧w ≤ b then we obtain
that cn = cn ∧

∨

Wn =
∨

wεWn
cn ∧w =

∨

wεTn
cn ∧w ≤ b, and hence cn ≤ b so

that a ≤ b follows by the inductive hypothesis.
We can now define the formal point α by setting α ≡

⋃

n∈ω
↑ cn, where

↑ cn ≡ {c ∈ H | cn ≤ c}. In fact, we can immediately prove that ¬(0Hεα),
otherwise there would be an index n ∈ ω such that 0Hε ↑cn, that is, cn = 0H

and we already showed that this is not possible. Moreover α is a filter since it
is the union of a chain of filters because, for all n ≥ 0, cn+1 ≤ cn and hence
the filter ↑cn is contained in the filter ↑cn+1. But it is also a completely prime
filter since if

∨

Uεα then there is an index n ∈ ω such that
∨

Uε ↑cn; hence,
since any U appears a countable number of times in the list W0, . . . , Wm, . . .,
for some h ≥ n it happens that Wh = U and thus

∨

Wh =
∨

Uε ↑cn ⊆↑ch; so,
there exists whεU such that whε ↑ch+1 ⊆ α.

Finally, it is clear that aεα since aε ↑ c0 ⊆ α and that bεα yields a ≤ b

because bεα means that there exists an index n ≥ 0 such that bε ↑cn, that is,
cn ≤ b, and we already proved that this yields a ≤ b.

We can now conclude our proof. In fact, under the assumption that a 6= 0H ,
we showed that aεα. Then the hypothesis in the statement of the theorem yields
that bεα and hence a ≤ b follows since we proved that bεα yields a ≤ b. Thus
we obtain that (a 6= 0H) → a ≤ b, but, (a = 0H) → (a ≤ b) holds for any a

and b in H and hence, by using classical logic, we can conclude that a ≤ b holds
with no assumption. �

It is important to note that in the proof of the theorem above we used
classical logic. When we will arrive at the definition of formal topology we
will need to translate the classical principles that we used here into suitable
conditions on a formal topology if we want to preserve the completeness of our
formalization.

Let us recall now our original problem. Assume that a ∈ H and I is a
complete ideal of H ; then we want to show that if, for any formal point β ∈ PtH ,
aεβ yields β)(I, then aεI. To this aim let us consider the set

Va ≡
⋃

aεβ ∈ PtH

(β ∩ I)

Note that, provided a is contained in some formal point, Va is not empty since,
by assumption, aεβ yields β)(I. Consider now the subset

Ua ≡ a ∧ Va ≡ {a ∧ v| vεVa}

4It can be useful to recall that, given an element a ∈ H and a subset W of H such that
W

W

exists, also
W

wεW
a ∧ w exists and it is equal to a ∧

W

W . In fact, for any hε{a ∧ w| wεW},
h ≤ a∧

W

W and, for any k ∈ H such that, for any hε{a∧w| wεW}, h ≤ k we can prove that
a ∧

W

W ≤ k as follows: by assumption, for any wεW , a ∧ w ≤ k and hence w ≤ a → k, thus
W

W ≤ a → k and so a ∧
W

W ≤ k.

10



We can immediately see that Ua ⊆ I. In fact, uεUa means that there is vεVa

such that u = a ∧ v; but Va ⊆ I, hence vεI and thus uεI because u ≤ v.
A bit more complex is to prove that

∨

Ua exists. In fact, the supremum
of Ua is a. Indeed, for any uεUa, there exists vεVa such that u = a ∧ v and
hence u ≤ a. On the other hand, assume that, for some w ∈ H , u ≤ w holds
for any uεUa; then we can prove that a ≤ w by using theorem 2.5 as follows.
Let β ∈ PtH and assume that aεβ. Then Va is not empty and so Ua contains
elements in β, namely, all those elements a ∧ b of H such that bεβ ∩ I. Then
wεβ since β is a filter and a∧ b ≤ w since a∧ bεU and all the elements of U are
smaller then w. Thus we proved that, for any formal point β, if aεβ then wεβ

which yields a ≤ w.
Then both Ua ⊆ I and a ≤

∨

Ua hold and hence aεI since I is a complete
ideal.

It is interesting to note that the theorem

(∗)
(∀β ∈ PtH) aεβ → β)(I

aεI

that we proved now for any a ∈ H and any complete ideal I, is indeed equivalent
to the statement in theorem 2.5. In fact, we proved (∗) above as a consequence
of theorem 2.5. On the other hand, suppose b ∈ H and consider the subset
↓ b ≡ {c ∈ H | c ≤ b}. It is trivial to see that ↓ b is a complete ideal since,
supposing U is a subset of H which have a supremum, U ⊆↓b yields immediately
that

∨

U ≤ b and hence a ≤
∨

U yields a ≤ b, that is, aε ↓b. Now, for any
formal point β, β)( ↓b if and only if bεβ; moreover, aε ↓b if and only if a ≤ b

and hence (∗) above yields ((∀β ∈ PtH) aεβ → bεβ) → (a ≤ b), that is, the
statement in theorem 2.5.

In a similar way we can prove that the fact that a 6= 0H → a ≤ b yields
a ≤ b is also a consequence of (∗). In fact, let β ∈ PtH and aεβ, then a 6= 0H

and hence a 6= 0H → a ≤ b yields a ≤ b, that is, aε ↓b; now, by using again
the assumption that aεβ, we obtain that β)( ↓b; hence , by discharging all the
assumptions, we get that (∀β ∈ PtH) aεβ → β)( ↓b holds which, by (∗), yields
aε ↓b, that is, a ≤ b.

Let us sumerize the last three pages in one sentence. We proved that, under
the predicative constraint that the collection of the subsets of H which have a
supremum is set-indexed, it can be built a bijective correspondence between the
collection of the open subsets of the topological space on PtH and the collection
of the complete ideals of the Heyting algebra H .

The next question is how to provide a constructive presentation of complete
ideals. We can solve this problem if we will be able to solve the following one. Let
U be any subset of H ; how to build the minimal complete ideal which contains
U? A solution is a map sat : P(H) → P(H) which satisfies the following

11



conditions:

(reflexivity) U ⊆ sat(U)

(infinity)
a ≤

∨

W W ⊆ sat(U)

aεsat(U)

(minimality)
U ⊆ V aεV [a ≤

∨

W, W ⊆ V ]

sat(U) ⊆ V

where infinity applies only for the subsets W such that
∨

W exists.
Indeed, infinity states that sat(U) is a complete ideal and reflexivity states

that it contains U . Finally, minimality states that stat(U) is the minimal com-
plete ideal which contains U .

After minimality has been stated explicitly, it should be clear the need for a
set which indexes the collection of the subsets which have a supremum, at least
from a predicative point of view; in fact, only in this case the impredicative
universal quantification on subsets which appears in the minor premise of min-
imality can be transformed into a predicative quantification (see [CSSV] for a
more detailed discussion of this topic). On the other hand, this is the only case
we are interested in since only in this case we have a bijective correspondence
between formal and concrete opens.

Till now we considered reflexivity, infinity and minimality like conditions
that sat(−) has to satisfy, but it is obvious that minimality holds if reflexivity
and infinity are considered like the only rules for an inductive generation of the
subset sat(U).

We can prove now that reflexivity and infinity are the only rules that are
necessary to have an inductive generation of all complete ideals. In fact, given
any subset U of H we already proved that the inductively generated subset
sat(U) is a complete ideal. On the other hand, any complete ideal I is the
image by sat(−) of some subset of H because I = sat(I). In fact, reflexivity
shows immediately that the inclusion I ⊆ sat(I) always holds while the quickest
way to prove the other inclusion is to use minimality as follows:

I ⊆ I

[a ≤
∨

W ]1 [W ⊆ I]1
aεI

sat(I) ⊆ I
1

where the minor premise holds because I is a complete ideal.
It is interesting to observe that what we did leads immediately to the solution

of the problem of a complete and predicative formalization of the cover relation.
Indeed, we can first prove that, for any subset U of H , Ext(U) = Ext(sat(U)).
In fact, reflexivity, that is, U ⊆ sat(U), yields Ext(U) ⊆ Ext(sat(U)). On the
other hand, suppose that α ∈ Ext(sat(U)) holds for a formal point α; then
there exists an element a in H such that aεsat(U) and aεα. Now, since we are
supposing that the subset sat(U) is inductively generated, two possibilities have
to be considered for aεsat(U) to hold. Either it holds because aεU , and in this
case we are done since this yields α ∈ Ext(U), or there exists a subset W such
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that W ⊆ sat(U) and a ≤
∨

W and hence aεα yields W )(α, that is, there exists
wεW such that wεα and wεsat(U) and we can obtain also in this case that
α ∈ Ext(U) by inductive hypothesis.

Recall now that sat(U) is a complete ideal and hence Id(Ext(sat(U))) =
sat(U). So we obtain

aεsat(U) iff aεId(Ext(sat(U)))
iff ext(a) ⊆ Ext(sat(U))
iff ext(a) ⊆ Ext(U)

Thus, if we put
a ⊳ U ≡ aεsat(U)

we have found the rules on the cover relation that we were looking for, at least
in the case there is a set-indexed family of subsets of H which have a supremum:

(reflexivity)
aεU

a ⊳ U

(infinity)
a ≤

∨

W W ⊳ U

a ⊳ U

where W ⊳ U is a shorthand for (∀wεW ) w ⊳ U and infinity applies only for
the subsets W such that

∨

W exists.
A similar approach can be exploited also for the closed subsets of the topo-

logical space on PtH . As we saw in section 1.2, a subset of H can be associated
to the closed subset C by setting

Up(C) ≡ {a ∈ H | ext(a))(C}

Consider now any subset F of H such that, for any a ∈ H and any U ⊆ H

such that
∨

U exists,
a ≤

∨

U aεF

U)(F

We will call a subset which satisfies such a condition an up-complete set. Note
that any up-complete subset F is up-closed, that is, a ≤ b and aεF yield bεF ,
and that an up-complete set F can never contain 0H since 0H ≤

∨

∅ and hence
0HεF would yield ∅)(F which is absurd.

It is possible to prove that, for any closed subset C of the topological space
on PtH , Up(C) is an up-complete set .

Theorem 2.6 Let C be a closed subset of the topological space on PtH . Then
Up(C) is an up-complete set.

Proof. Let us suppose that both U is a subset of H such that
∨

U exists,
a ≤

∨

U and aεUp(C). Then ext(a))(C, that is, there is a formal point α such
that aεα and α ∈ C. Then α)(U , since a ≤

∨

U , and hence there exists u ∈ U

such that uεα and α ∈ C, that is, uεUp(C), and hence U)(Up(C). �
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In order to prove that we gave the correct definition we have to be able to
associate a closed subset to any up-complete subset of H . To this aim we can
specialize to our present setting what we did in section 1.2 and set

Rest(F ) ≡ {α ∈ PtH | α ⊆ F}

Then we can prove the following theorem, which is the analogous of theorem
1.7.

Theorem 2.7 Let F be any subset of H. Then Rest(F ) is a closed subset of
the topological space on PtH .

Proof. In order to prove that Cl(Rest(F )) ⊆ Rest(F ), let us suppose that
α ∈ Cl(Rest(F )), that is, (∀a ∈ H) aεα → ext(a))(Rest(F ), and assume that
a ∈ H and aεα. Then ext(a))(Rest(F ), that is, there exists β ∈ PtH such that
aεβ and β ⊆ F , which yield that aεF . Thus, for any a ∈ H such that aεα we
showed that aεF , that is, α ⊆ F , i.e. α ∈ Rest(F ). �

We are now ready to “close the circle” also for closed subsets.

Theorem 2.8 Let C be any closed subset of the topological space on PtH . Then
C = Rest(Up(C)).

Proof. The proof is obtained also in this case by expanding the definitions:
α ∈ Rest(Up(C)) iff α ⊆ Up(C) iff (∀a ∈ H) aεα → aεUp(C) iff (∀a ∈ H) aεα →
ext(a))(C iff α ∈ Cl(C) iff α ∈ C where the last step is a consequence of the fact
that C is a closed subset. �

In order to prove that the correspondence between closed subsets of PtH
and up-complete subsets of H is bijective we have to show that, for any up-
complete subset F of H , Up(Rest(F )) = F . One inclusion is straightforward:
aεUp(Rest(F )) if and only if ext(a))(Rest(F ) if and only if there exists a formal
point α such that aεα and α ⊆ F which yields that aεF . In order to prove the
other inclusion all we need to do is to reverse the last implication above, that
is, we need the following theorem.

Theorem 2.9 Let H be a Heyting algebra such that the collection of the subsets
which have a supremum is set-indexed, let F be an up-complete subset of H and
suppose that aεF . Then there exists a formal point α such that aεα and α ⊆ F .

Proof. In order to simplify the notation let us assume also in this case that the
set used to index the collection of the subsets of H which have a supremum is the
set of the natural numbers. Let us build a list U0, U1, . . . of all the subsets which
have a supremum such that each subset appears a countable number of times
and let us consider the following inductive definition of a sequence c0, . . . , cn, . . .

of elements of H .

c0 = a

cn+1 =

{

i(Wn)(F ) if cn ≤
∨

Un

cn otherwise
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where Wn ≡ {cn ∧ u| uεUn} and i(W )(F ) is an element in the intersection
between W and F 5.

It is not difficult to prove by induction that, for any n ≥ 0, cnεF and that,
provided cn ≤

∨

Un, Wn)(F holds. In fact, c0 = aεF holds by assumption and
c0 ≤

∨

U0 yields c0 ≤ c0 ∧
∨

U0 =
∨

W0 and hence W0)(F follows since F is up-
complete. Moreover, if we assume, by inductive hypothesis, both that cnεF and
that cn ≤

∨

Un yields Wn)(F then cn+1εF holds; in fact, provided cn ≤
∨

Un

we obtain Wn)(F and thus cn+1 is an element both in Wn and F ; otherwise cn+1

is equal to cn and thus it belongs to F by hypothesis. Finally, cn ≤
∨

Un yields
cn ≤ cn ∧

∨

Un =
∨

Wn and hence also in this case Wn)(F follows since F is
up-complete.

Moreover, it is immediate to see that, for any n ≥ 0, cn+1 ≤ cn. Consider
now, for any n ≥ 0, the filter αn ≡ ↑cn generated by cn, and put

α ≡
⋃

n∈ω

αn

Then α is the formal point that we are looking for. In fact, α ⊆ F since, for
each i ≥ 0, αi ⊆ F because ciεF and F is up-complete. Moreover aεα since
aεα0 ⊆ α. We have to show now that α is a formal point. First of all ¬(0Hεα)
since α ⊆ F and ¬(0HεF ) because F is up-complete. Moreover 1Hεα since
1Hε ↑a = α0 ⊆ α. Now, note that, for any i ≥ 0, αi ⊆ αi+1, since ci+1 ≤ ci,
and hence, supposing b, dεα, we obtain that there exists k such that b, dεαk,
that is, ck ≤ b and ck ≤ d and hence ck ≤ b∧d; thus b∧dεαk and hence b∧dεα.
Finally, if bεα and b ≤

∨

U , then, for some natural number k, bεαk, that is,
ck ≤ b, and hence ck ≤

∨

U , and there is a natural number h ≥ k such that
U ≡ Uh. Then ch ≤ ck ≤

∨

Uh and hence ch+1 ≡ i(Uh ∧ ch)(F ) is an element
such that ch+1 ≡ u ∧ ch for some uεU ; thus uεαh+1 and hence uεα. �

Thus we proved that, for any Heyting algebra such that the collection of
the subsets which have a supremum is set-indexed, there is a bijective corre-
spondence between closed subsets of PtH and up-complete subsets of H . The
next problem is to find a constructive way to present them. We will follow an
approach similar to the one that we used to present complete ideals, namely, we
will generate by co-induction a map pos : P(H) → P(H) which, given any sub-
set F of H , gives the biggest among the up-complete subset which are contained
in F . The necessary conditions are

(anti-reflexivity) pos(F ) ⊆ F

(compatibility)
a ≤

∨

W aεpos(F )

W )(pos(F )

(maximality)
G ⊆ F W )(G [a ≤

∨

W, aεG]

G ⊆ pos(F )

where compatibility applies only for the subsets W such that
∨

W exists.

5Provided W)(F holds, the map i(−) can be defined by using the axiom of choice.
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Now, compatibility states that pos(F ) is an up-complete subset and anti-
reflexivity states that it is contained in F . Finally, maximality states that pos(F )
is the maximal up-complete subset which is contained in F .

It should be clear that in order to give a predicative meaning to maximality
it is necessary that the collection of the subsets of H which have a supremum
is indexed by a set.

Similarly to what we did with the map sat(−), we are going to consider here
anti-reflexivity and compatibility like the only rules for a co-inductive generation
of the subset pos(F ); in this way maximality holds automatically and we do not
need to require it. Then, we can prove that they are the only rules that are
necessary to generate by co-induction all the up-complete subsets. In fact, given
any subset F of H we already proved that pos(F ) is an up-complete subset. On
the other hand, any up-complete subset F is the image by pos(−) of some subset
of H since F = pos(F ). Indeed, anti-reflexivity yields trivially that pos(F ) ⊆ F .
To prove that F ⊆ pos(F ) we can use maximality as follows:

F ⊆ F

[a ≤
∨

W ]1 [aεF ]1

W )(F
F ⊆ pos(F )

1

where the minor premise holds because F is up-complete.
Similarly to the case of the cover relation, we can use the map pos(−) to

define the positivity predicate. Indeed, for any subset F of H , Rest(pos(F )) =
Rest(F ). In fact, anti-reflexivity, that is, pos(F ) ⊆ F , yields Rest(pos(F )) ⊆
Rest(F ). On the other hand, suppose that, for a formal point α, α ∈ Rest(F );
then α ⊆ F . But a formal point α is an up-complete subset, since aεα and
a ≤

∨

W yield W )(α, and hence α ⊆ F yields α ⊆ pos(F ) since pos(F ) is
the biggest among the up-complete subsets which are contained in F . Thus
α ∈ Rest(pos(F )).

Recall now that pos(F ) is up-complete and hence Up(Rest(pos(F ))) = pos(F )
holds. So we obtain

aεpos(F ) iff aεUp(Rest(pos(F )))

iff ext(a))(Rest(pos(F ))

iff ext(a))(Rest(F )

Thus, if we put
a ⋉ F ≡ aεpos(F )

we have found the rules on the positivity predicate that we were looking for,
with the usual proviso that there must be a set-indexed family of subsets of H

which have a supremum:

(anti-reflexivity)
a ⋉ F

aεF

(compatibility)
a ≤

∨

W a ⋉ F

W ⋉ F
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where compatibility applies only for the subsets W such that
∨

W exists and
W ⋉ F is a shorthand for (∃wεW ) w ⋉ F .6

3 Where formal topologies come from

In the previous section we showed that, given any Heyting algebra H , in order
to be able to prove that there is a bijective correspondence between the open
subsets of the topological space PtH and the complete ideals of H and the closed
subsets of PtH and the up-complete subsets of H we have to require that the
collection of subsets which has supremum is set-indexed. This condition was
also essential to be able to provide a constructive presentation of these subsets
of H by means of the maps sat(−) and pos(−) and the rules

(reflexivity)
aεU

aεsat(U)
(infinity)

a ≤
∨

W W ⊆ sat(U)

aεsat(U)

(anti-reflexivity)
aεpos(F )

aεF
(compatibility)

a ≤
∨

W aεpos(F )

W )(pos(F )

Indeed the proofs that we provided were by induction and in order to be able to
argue by induction it is necessary that sat(−) and pos(−) are inductively gen-
erated which, from a predicative point of view, is possible only if the collection
of the subsets of H which have a supremum is set-indexed.

Inductively generated formal topologies are the result of a generalization of
this condition and the rules above from the case of a Heyting algebra and a
set-indexed collection of axioms, like a ≤

∨

U , to the case of a set S of basic
opens and an axiom-set, that is, a family of sets I(a), for a ∈ S, and a family
C(a, i) of subsets of S, for a ∈ S and i ∈ I(a), whose purpose is to state that, for
any i ∈ I(a), a is covered by C(a, i). Thus we arrive at the following definition.

Definition 3.1 Let I(a) be a set for any a ∈ S and C(a, i) be a subset of S for
any a ∈ S and i ∈ I(a). Then, an inductively generated formal topology is a
structure (S, ⊳, ⋉) where ⊳ is an infinitary relation inductively generated and
⋉ is an infinitary relation co-inductively generated by using the following rules:

(reflexivity)
aεU

a ⊳ U
(infinity)

C(a, i) ⊳ U

a ⊳ U

(anti-reflexivity)
a ⋉ F

aεF
(compatibility)

a ⋉ F

C(a, i) ⋉ F

Then, minimality and maximality have to be adapted to the new framework:

(minimality)
U ⊆ V aεV [C(a, i) ⊆ V ]

⊳(U) ⊆ V

(maximality)
G ⊆ F C(a, i))(G [aεG]

G ⊆ ⋉(F )
6The reader should be aware of the notation we are using. Indeed, despite there similarity,

W ⊳ U is a shorthand for (∀wεW ) w ⊳ U while W ⋉ F is a shorthand for (∃wεW ) w ⋉ F .
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where ⊳(U) ≡ {a ∈ S| a ⊳ U} and ⋉(F ) ≡ {a ∈ S| a ⋉ F}, that is, ⊳(U) ≡
sat(U) and ⋉(F ) ≡ pos(F ).

Of course, we should add here also all the conditions on ⊳ and ⋉ which
are the formal counterpart of the properties of a Heyting algebra whose proof
required classical logic and which are nevertheless valid in any concrete situation.
We recall for instance that, given any a and b in a Heyting algebra H we needed
to deduce that a ≤ b holds from the fact that (a 6= 0H) → (a ≤ b). We can
express this property here in the language that we developed. In fact, a 6= 0H

can be expressed by stating that ext(a))(Rest(H). Indeed Rest(H) is equal to
the collection PtH of all the formal points of H and the proof of theorem 2.5
shows that, if a 6= 0H then it is contained in some formal point; on the other
hand, if ext(a))(Rest(H) holds then there is a formal point which contains a and
this yields that a 6= 0H . Then the condition that we are interested in can be
expressed in the language of a formal topology (S, ⊳, ⋉) by stating

(positivity)
(a ⋉ S) → (a ⊳ U)

a ⊳ U

where we have generalized from the order relation ≤ to the cover relation ⊳. It
is now possible to prove that positivity is valid in any concrete topological space
and hence it should be part of the definition of formal topology since it was
used in the proof of completeness of our characterization of the open subsets.
Here it follows a proof of its validity. Suppose that (X, S, ext) is a concrete
topological space and assume that (a ⋉ S) → (a ⊳ U) holds. This means that
(∃x ∈ X) xεext(a) & xεRest(S) yields (∀x ∈ X) xεext(a) → xεExt(U). Since
Rest(S) = X the antecedent of this implication can be simplified into (∃x ∈
X) xεext(a). In order to show that a ⊳ U holds, that is, (∀x ∈ X) xεext(a) →
xεExt(U), let us assume that x ∈ X and xεext(a). Then we immediately obtain
that (∃x ∈ X) xεext(a) holds and hence, under the same assumptions, also (∀x ∈
X) xεext(a) → xεExt(U) holds. Let us now use the same assumptions again on
this last conclusion and obtain that xεExt(U) holds. Thus, by discharging the
assumptions, we finally obtain that (∀x ∈ X) xεext(a) → xεExt(U) holds.

In the proof of theorems 2.5, we used the fact that, given any Heyting algebra
H , any non-empty subset W of H , and any elements a, b, c ∈ H , in classical
logic, ((∀wεW ) c∧w ≤ b) → (a ≤ b) yields (∃wεW ) (c∧w ≤ b) → (a ≤ b). It is
not difficult to transform this condition into a condition on the cover relation,
but the problem is to find a condition which is classically equivalent to the
one above and which can be proved constructively to be valid in any concrete
topological space. This problem is still open.

Finally, in the proof of theorems 2.5 and 2.9, we used a definition by cases
which rely on the decidability of the order relation in the considered Heyting
algebra. Clearly, no valid condition can be proposed in formal topology for this
choice.

The second step to arrive at the definition of formal topology consists in
forgetting the condition which makes it possible to characterize the closed and
the open subsets of a topological space by using only suitable subsets of ba-
sic opens and jump into a completely axiomatic definition which just considers
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some of the consequences of the previous rules and looses its character of con-
structive, namely, inductive, definition. On the other hand, in the definition of
formal topology we require no special condition, apart for the stated ones which
concern only the cover relation and the positivity predicate, and hence more
mathematical structures fall into its realm.

Definition 3.2 Let S be a set and R⊳(a, U) and R⋉(a, F ), for a ∈ S and
U, F ⊆ S, be propositions. Then a formal topology is a structure (S, ⊳, ⋉) such
that ⊳ satisfies the following conditions:

(reflexivity)
aεU

a ⊳ U

(⊳-axioms)
R⊳(a, U)

a ⊳ U

(⊳-transitivity)
a ⊳ V V ⊆⊳(U)

a ⊳ U

(⊳-right)
a ⊳ V a ⊳ U

a ⊳ {c| (∃uεU) c ⊳ {u} & (∃vεV ) c ⊳ {v}}

⋉ satisfies the following conditions:

(anti-reflexivity)
a ⋉ F

aεF

(⋉-axioms)
a ⋉ F

R⋉(a, F )

(⋉-transitivity)
a ⋉ F ⋉(F ) ⊆ G

a ⋉ G

and ⊳ and ⋉ are linked by the following condition:

(compatibility)
a ⊳ U a ⋉ F

U ⋉ F

From a constructive point of view, the problem with this definition of for-
mal topology is to provide examples. Indeed, it is possible to show that the
conditions above cannot be used to generate by induction a cover relation and
by co-induction a positivity predicate (see [Val00]), at least if we want to rest
within a predicative approach to topology, which seems to be the only one which
guarantees a bijective correspondence between the concrete and the formal side.
Anyhow, we will show here that all inductively generated formal topologies are
indeed formal topologies.

A detailed discussion on the proof that, in the case of an inductively gen-
erated formal topology, ⊳-axiom, ⊳-transitivity, ⊳-right are consequences of
infinity can be found in [CSSV]. Here we will show a quick proof of the validity
of the first two of them and give only a short sketch of the proof of the validity
of ⊳-right since to obtain such a proof one has to introduce some technicalities
which are not relevant to the topic of this paper.
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• (⊳-transitivity) The quickest way to prove that this rule is valid is to
prove its set-theoretic equivalent, that is, (V ⊆⊳(U)) ⇒ (⊳(V ) ⊆⊳(U)),
by using minimality as follows:

V ⊆⊳(U)

[C(a, i) ⊆⊳(U)]1

aε ⊳(U)

⊳(V ) ⊆⊳(U)
1

• (⊳-axiom) In the case of an inductively generated formal topology the only
considered axioms have the following shape, for any a ∈ S and U ⊆ S,

R⊳(a, U) if and only if (∃i ∈ I(a)) C(a, i) ⊆ U

To prove the validity of ⊳-axiom it is sufficient to show that, for any a ∈ S

and i ∈ I(a), aε ⊳(C(a, i)) holds. In fact, aε ⊳(U) can then be derived
from C(a, i) ⊆⊳(U), which is an immediate consequence of C(a, i) ⊆ U , by
using ⊳-transitivity that we already proved to be valid. But aε ⊳(C(a, i))
is immediate by infinity since C(a, i) ⊆⊳(C(a, i)) holds by reflexivity.

• (⊳-right) In order to prove the validity of this rule the easiest way is to
prove the validity of one of its equivalent in a structure where also an
infimum operation ∧ is present, namely,

(localization) ⊳(U) ∧ b ⊆⊳(U ∧ b)

To this am let us substitute infinity with its localized form

(localized-infinity)
C(a, i) ∧ c ⊆⊳(U)

a ∧ cε ⊳(U)

and modify minimality in the obvious way, that is,

(localized-minimality)
U ⊆ V a ∧ cεV [C(a, i) ∧ c ⊆ V ]

⊳(U) ⊆ V

It is straightforward to see that localized-infinity is valid in the case of a
Heyting algebra. Let us also introduce the following abbreviation which
will make the next proof more readable

V → W ≡ {x ∈ S| x ∧ V ⊆⊳(W )}

It is immediate to see that U ∧ V ⊆⊳(W ) if and only if U ⊆ V → W .

Then localization can be proved by using localized-minimality as follows:

U ∧ b ⊆⊳(U ∧ b)

U ⊆ {b} → (U ∧ b)

[C(a, i) ∧ c ⊆ {b} → (U ∧ b)]1

C(a, i) ∧ c ∧ b ⊆⊳(U ∧ b)

a ∧ c ∧ bε ⊳(U ∧ b)

a ∧ cε{b} → (U ∧ b)

⊳(U) ⊆ {b} → (U ∧ b)
1

⊳(U) ∧ b ⊆⊳(U ∧ b)
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Let us now turn our attention on the conditions on ⋉.

• (⋉-axiom) In the case of an inductively generated formal topology no
axiom for the positivity predicate exists and hence nothing needs to be
proved for ⋉-axiom.

• (⋉-transitivity) The quickest way to prove the validity of this rule is to
prove its set-theoretic equivalent, that is, (⋉(F ) ⊆ G) ⇒ (⋉(F ) ⊆ ⋉(G)),
by using maximality as follows:

⋉(F ) ⊆ G

[aε ⋉(F )]1

C(a, i))( ⋉(F )

⋉(F ) ⊆ ⋉(G)
1

• (compatibility) Validity of compatibility can be proved by induction on the
length of the proof of aε ⊳(U). In fact, if aε ⊳(U) was derived from aεU

then the result is immediate since U and ⋉(F ) meet in a. On the other
hand, if aε ⊳(U) is a consequence of C(a, i) ⊆⊳(U), then, since aε ⋉(F )
yields C(a, i))( ⋉(F ), U)( ⋉(F ) follows by induction.

4 Conclusion

No conclusion at present, but only a first attempt to describe a complete for-
malization of the concrete situation.

It is not clear if the move from inductively generated formal topologies to
formal topologies is convenient: one has to balance between completeness of the
formalization and wider number of interesting structures.
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