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Looking for a suitable logic for the subtype relation betwehe types of the inter-
section types lambda calculus we developed a modal logic svitwo-places modality.
We present here its main syntactical and semantical piepethat is, the completeness
theorem, the finite model property, the cut-eliminationotieen and a decision procedure
for theoremhood.

1. INTERSECTION TYPES

Let us quickly recall the main ideas of intersection typeltaia calculus (for a
recent paper on this topic see [6]). It is well known that thesdambda calculus
A (see [2]) formalizes the notion of computable function withany reference
to the concepts of domain and co-domain, contrary to whapéap in the set
theoretic or the categorical approach. The main advanthtj@soapproach is
the possibility of coding any recursive function within arysimple formalism.
Indeed, a lambda term is built inductively, starting fronmighles, by means of
lambda abstraction andfeee form of application, that is, we have the following
term formation rules:

Term := Var | (A Var.Term) | Term(Term)

whereVar is a countable set whose elements are called variables.

Not only the syntax of the objects df is simple, but also the notion of
computation for this very abstract formalization of conghlé functions becomes
the simples-reduction(notation~-3). This is the relation between lambda terms
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obtained by closing under the term construction operattbesrelation of3-
contraction that is(Az.c)(a) ~ c[z := a.

The computation of the value of a lambda term is then definexraduction
processthat is, successive steps/@feduction, until anormal formof the term is
possibly reached, that is, a form whereaontraction can be applied. Given a
lambda ternt, there are in general many different reduction processesrding
to the choice of thg-contraction to be expanded withinhence, it is well possible
that only some of the reduction processes eventually tet@into a normal form.
Moreover, since it is possible to have a code withifor any recursive function,
there is no possibility to know if a reduction processduwiill eventually terminate,
because of the halting problem.

On the other hand, in the usual mathematical practice - Inathei set theoretic
and in the categorical approach - and in many concrete #hgosi functions are
intended to operate over objects of a certain type in orderaduce objects of
some other type. Following this idea, the rule of applicagbould be no longer
completely free; in fact a function should be applicableydnlarguments of the
correcttype. Thusitwill be no longer possible to build b#terms ofA. However,

a main advantage of this approach is the possibility to progee properties on
the terms which can be built because of the greater quaritinfarmation. For
instance, one of the main problems on the terma &f to determine whether all
the reduction processes for a certain term will eventugliyninate, that is, the
strong normalizatioproblem. In the case of the lambda-calculi where functions
and their arguments have a type there are suitable toolsataith this problem.

In order to keep the good aspects of both the sides, a possiategy is to find
suitable typing systems for the terms &f For instance, a possibility is to use
simply typedambda calculug\ _; its rules of type formation are the following:

Type := BasTypes | Type — Type

wereBasTypes is a set whose elements are calbesic types

The intended meaning is that a type— 7 denotes a set of functions from
elements of the set denoted by the typmto elements of the set denoted by the
typer. Thus, in order to build the elements of these types, we wesétlowing
rules:

(variable) Tz:okbax:o

Tx:obkc:7T

I .
(lambda abstraction) F'tXecio—T

I'Fe:71— 0 I'Fa:7
I'c(a): o

(application)

1To be more precise we should speak here of typing syaténCurry versus a typing systeala
Church where all the variables within a term and the sub4ahemselves are typed.
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wherelI is a commutative list of assumptions of the foxm o for some typer
such that no variable appears more than once.

It is well known (see for instance [8]) that all the terms/of, are strongly
normalizing. Hence, the terms af , form a subset of the set of strongly normal-
izing terms ofA. But, not all of the strongly normalizing terms afhave a type
in A_,; forinstance, consider the terhx.2(x): itis in normal form, and hence it
is trivially strongly normalizing, but it cannot have a typithin A_, because of
the instance o$elf-application It is clear that a complete solution of the strong
normalization problem would be a typing system which alldasuild all the
strongly normalizing terms of, and only them.

Surprisingly, this typing system exists and can be obtafrad A _, by adding
just one type (see [13] or [20] for a recent new proof). Theralss syntax of the
types of this calculud » of intersection typess the following:

Type := BasTypes | Type — Type | Type A Type

The intended meaning of the new typen T of A, is thato A 7 denotes the
intersection of the two sets denoted by the typand respectively. Thus, in
order to build the elements for these new types, we add thefivlg rules to the
previous ones:

I'kFe:o I'kFe:7

(intersection introduction)

I'Fec:oNnT
(intersection elimination) Lreionr DFciohT
I'kc:o I'kFe:7

An interesting problem when studying a typed lambda cakiduhe problem
of inhabitation of a type, namely, given a type, is it posstiolknow whether there
is some lambda term which can be typed by such a type?

One possible strategy in order to answer to this question issé the Curry-
Howard correspondence between a typed lambda calculus kmgical system.
For instance, if we strip all the lambda terms in the rulesAof we obtain
the rules for the implication fragment of the usual intuiiigtic propositional
calculus. Moreover, it is easy to see that a typd of is inhabited if and only if
the corresponding propositional formula can be proved.

Onthe other hand, if we strip all the terms in the rules gf we obtain an almost
standard sequent calculBE* for the fragment of the intuitionistic propositional
logic containing only implication and conjunction. Howeyvi is necessary to
stress that the theorems®E€™* do notcorrespond to the non-empty types/of;
consider for instance the formula — a) A (o — (8 — «)): itis provable in
PC* whereas this type is not inhabitedAn,.

Some propositional calculi have been proposed to solveptioislem (see [14]
and [4]).
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A step toward a better comprehension of the properties ahtieesection type
systemA , can be found in [3], where the following axioms and rules hiagen
proposed for a subtyping relatiaf, among types o\ x:

Axioms
a <pw w<Aaw—w
alpraha aANB<ia  aAB<SAPB
(= B)A (=) <a(a— (BAY))
Rules
a <\ B B<ay a1 <AB ag <A P ap S o B2 <A B
a<sy oar Nag <p Bi Ao og — B2 <p0q — Br

Note that the new type has been added to the collection of typesAgf; its
purpose is to denote the set of all the strongly normalizamgdda terms.

The axioms and the rules above set natural requirementstdrtgping relation
among types of\ 5; for instance the axiom

(@ = P)A(a—=7) <h(a—(BA9))

states that all the lambda terms to which can be assignedtiettypea — 3
anda — ~ can also be typed by — (8 A ). And indeed inA, if it holds

'k Az.c: (a— B)A(a— v)thenalsd - Az.c: o — (8 A~y) can be proved.
The subtyping relatiort , has been introduced with the intention to extend such a
property to any term and not only to those with a particolapgh To this aim the
following assignement rule has been added to the rulds,dtee [3]) to obtain a
new typing system that we will cadixtended intersection type systand that we

will indicate byt<,:

I l_g/\ C. « S/\ B
I'k<,c: 8
It allows to prove the following theorem.

THEOREM 1.1. Supposer and 3 are two types oA\ ,. Thena <, g if and
only if, for any basé&" and any lambdatermy I' =<, ¢t : awyieldsI' F<, t: (.

So, a logical system exists for the subtyping relation antgpgs ofA 1, but it
is far from enjoying a good presentation. Our purpose hereilgroduce a modal
calculus which gives a complete interpretation for and which is nevertheless
a standard logical system.

1.1. A semantics for the subtype relation
In order to disclose the correct idea for the definition of thedal logic that
we are looking for, it is useful to recall the notion of filteloatel for the subtype
relation [3].
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Let M be a set andk be a three places relation ovif and consider any map
v : BasTypes — P (M) from the set of basic types into the set of the subsets of
M. Then we can define a forcing relatiti¥ between elements dff and types
by setting

zF « iff = € v(a), for any basic typev

xIF w iff true

zFanpg iff zIF candzIF” B

I a— g iff (VYye M)(Vze M)R(z,y,2) = (yIF" a= zIFY )

This forcing relation can be used to define an interpretaifdhe relation<, in
a model(M, R,v). In fact, we can set

(M,R,v)Ea<,piff Ve M)zl a=zIFj
and this interpretation can be generalized to any stru¢tureR) by setting

(MaR) lZOL S/\ﬂ Iﬁ (MvRaV) l:a S/\ 67
for any mapy : BasTypes — P (M)

Thus we arrived at a semantics for the subtype relationjshat
a | piff (M,R) E a <, 8, forany structuré M, R)

It is now possible to state the following theorem of validityd completeness.

THEOREM 1.2. « = fifandonlyifa <, 8

The proof of this theorem can be found in [3, 11], but it is cament to recall
here the construction of the filter model which is used to prmympleteness since
it provides the main ideas for the proof of completeness ofnoodal logic (see
section 2).

We call filter of A, any non-empty subsét of A, closed unden, that is, for
all a,8 € Ap, if a, 3 € F thena A 3 € F, and upward closed, that is, for all
a, B € Ap, if a € Fanda <, Stheng € F.

In the following we will use the following filter constructio

DEFINITION 1.1. Leta be any type. Then

Ta={f €A a <A B}

will be called thefilter generatedy «.

It is easy to verify that, for any type, Ta is a filter.
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Consider now the set
M = {F| Fisafilter of A5}
and define a three place relati®on its elements by setting
R(F,G,H)= Va)(VB) (a = € F)=(acG=p<€H)
Finally consider the interpretation maydefined by setting
¢(a) = {F| a € F}

for any basic typex and extend it to a forcing relatior?. It is not difficult to
prove that(M, R, ¢) is a model for<,. Moreover, it is possible to prove by
induction on type complexity the following lemma.

LeEmMA 1.1. Leta be any type and” be any filter ofA .. ThenF I-¢ « if
and only ifa € F.

And this lemma immediately yields the completeness thedketrsince sup-
posinga = [ we obtain(M, R, ¢) E « <. § and hence for any filteF’ € M,
if FIF? othenF IF? 8. But, after lemma 1.1, this means thabife F then
8 € F. Let us consider now the filtgi; it clearly containgy and hences €1,
thatisa <, .

The semantics we considered here is clearly recalling acfarbn-standard
Kripke semantics for a modal logic: the idea to define a mautakpretation for
the connective- started here.

2. THE TWO-PLACES MODAL LOGIC BK

Consider the propositional modal language whose formaratuctively de-
fined as follows

1. Any propositional variable is a formula;

2. 1 andT are formulas;

3. If « andg are formulas then alse A 3, a V 8, —«, o — [ are formulas;
4. If « andp are formulas theml(«, ) is a formula.

We can define &ripke-like semantics for the formulas of this language as
follows. Let A be a set and be a ternary relation ovet and suppose thatis a
map of the propositional variables into subsetslofThen, supposing € A and
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p is a propositional variable, set

z I p iff = € v(p)
zIFY L iff falsum
zIF T iff true

I anpg iff zlF «andx Y 3

I avp iff I aorzlkY g

z IFY —a iff =l «

zIFa— g iff xIF ayieldsz IFY 3

xIF O(a, B) iff (Vye€ A)(Vz € A) R(z,y,2) — (I a— zIFY 5)

A formula« is true in the mode(A, R, v) if, for every elementz € A, = IF «
holds, and it is true in the fram@4, R) if, for every valuatiorv, it is true in the
model(A, R, v). Finally, a formula is valid if it is true in every frame.

It is interesting to note that what we defined is a generatinadf the usual
modal situation. In fact, we can define a standard modalitgéttingd(3) =
0O(T,8) and then we obtain the usual definition for a forcing relatigrsetting
R(x,z) = (Jy € A) R(z,y,2). Since no extra condition is required on the
relation R, the models that we defined directly generalize the sitodio the
modal logicK. This is the reason why we call&K this binary modal logic.

Consider now any sequent calculus for a classical propasiticalculus and
add it the following single modal rule

O['*O[17...,Oén 61;"'767”'76 n>0m>0

O-rule {O(a, B)|i=1...n,5=1...m}F O(, B) zU,m=

Thisruleis valid in any frame. Infact, let us suppose ttetdnclusion is not valid

in some framé A, R), that is, let us suppose that there exists a ppiat4 and a
valuationv such that: IF¥ —-O(«, §) whereasforalf =1...nandj =1...m,

x IFY O(wy, ;). Then there must be two poinisz € A such thatR(x, y, z)
holds andy IFY « andz IFY =3. Hence, by the left premise, we obtain that there
must be some indexsuch thaty IF¥ «; and thus, forany = 1...m, z IF¥ 3;,
sincez IF¥ O(wy, 5;). Butthen the right premise forcest-" 3, contradiction.

2.1. The completeness theorem
We want now prove that th8-rule is sufficient to prove any valid sequent.
To this aim it is convenient to consider two of its instanoehjch are indeed
sufficient to obtain the result. The first one is obtainedfet 1 anda; = o and
the second one fon = 1 and3; = g.

N Bi,....Bm E B

- >

O-monotonicity (e, B1), - - ., O(a, Bm) F O(ex, B) m >0
al—ah...,an

D(alvﬂ)v" '7D(an76) F D(O{,ﬁ) " Z 0

O-antimonotonicity



8 SILVIO VALENTINI - MATTEO VIALE

Note that setting. = 0 anda = L in O-antimonotonicityve obtain thati(_L, 3)
is provable and setting: = 0 and = T in O-monotonicitywe obtain that
O(c, T) is provable.

Moreover, theO-rule is sufficient to prove that the binary modal operator is
an operation in the Lindenbaum algelta x of BK. In fact, we can prove the
following theorem.

THEOREM 2.1. Letk a; < as and - ﬁl — ﬁg. Thent D(alaﬁl) —
O(az, Ba).

Proof. It is sufficient to show that itvs - «; and3; + (2 hold then also
O(aq, 81) F O(az, 82) holds, which is immediate by-rule. |

It is worth noting that the proof of this theorem shows that thodality that
we are considering behaves like an implication, even if droeikl be aware that
the usual rule of implication introduction is not valid farch a modality, that is,
a - 5 does notyield- O(«, 5).

We can now prove the completeness theorem.

THEOREM 2.2. The sequenty,...,a, - B1,..., Oy is provable if and only
if it is valid in any frame.

We already proved that all the rules are valid. To prove they aire also suffi-
cient we will adapt tBBK the standard approach. First note that the Lindenbaum
algebralp is a boolean algebra. Consider now thelgetf ultrafilters of L g i
and define a ternary relatid® overi/ by setting

R(F,G, H) = (V,6) B(7,0) e F — ((y € G) — (0 € H))

Let us now suppose that the sequent...,«, - Gi,..., 5, is not provable;
then the formulda; A. .. Aaw,) — (81 V...V By) is notequal to the top element
of Lgx and hence its negation is different from the bottom elemérnt o ;
hence there exists an ultrafilter containing it. In orderdadaude it is sufficient

to define a valuatiol of the propositional variables into the set of the subsets of
U by setting

Vip)={FelU|pe F}

since this position yields that, for any formula F' IFV « if and only if « € F.

In fact, let us argue according to the complexity of the folanw. If « is the
propositional variable then by definitionF” IV p if and only if F' € V(p) if
and only ifp € F. If @« = L then the result is immediate sinééis a proper
filter. If @« = T ora = a1 A as the result follows by induction from the fact
that F' is a filter of a boolean algebra. & = a1 V as then the result follows
by induction from the fact thakt’ is a prime filter. Ifa = —a; then the result
follows by induction and the fact thdt is an ultrafilter. Hence also the case
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a = a; — ag IS immediate sincer; — as is logically equivalent tonay V as
and filter are closed under logical equivalence. Finally, # O(aq, o) then we
can immediately prove thal(ay, as) € F yields F IFY O(ag, as). In fact, let
us suppose thaf, € U andR(F, G, H) andG IFV «; hold. Thena; € G by
inductive hypothesis and hent&a,, as) € F andR(F, G, H) yieldsas € H.
ThenH IFY oy by inductive hypothesis and hengel-Y O(ay, o) by definition.
The proofthatr” IFY O(aq, o) yieldsO(aq, o) € F is more complex. In fact, it
will be a proof by absurd, that is, we will assume thdtv;, as) ¢ F and we will
prove that there exist two ultrafilters and H such thatR(F,G, H), G IFV oy
andH IFY —ag, thatis,F IV O(aq, as).

The ideais to build the ultrafilt&r with a continuous attention for the possibility
to build H. To this aim let us consider the following inductive defioitiof a
sequence€Y;);c,, of filters . Let(¢;);c., be any surjective numbering of the
elements off g and set

Yo = Hai}
V. — T1(Y;U{e:i}) if 1(Y;U{ei}) is (F, asz)-consistent
R { 1(Y; U {~¢;}) otherwise

where we write] A to mean the minimal filter of g x which contains the subset
A thatis,fA={y € Lpk| Baa,...,an € A) a1 A... Ny, F v}, and we say
that a set of formulasdl is (F, —«-)-consistent to mean that the set

{0l (3y € A) B(7,6) € F} U{~az}

is consistent.

LeEmMA 2.1. Foranyi > 0, the filterY; is generated by one formula, that is,
there exists a formula; such thaty; =1{v,}.

Proof. By induction. By definitionY} is generated by; and, supposing that
Y; is generated by;, thenY; 1 =T{v; A ¢;} or Yiy1 =T{u; A =¢;} according
to the clause which applies in the definitiongf,;. In fact, it is immediate to
verify that1(Y; U{~v}) =1{¢: Ay} becausé €1(Y;U{~}) means that there exist
Y1,---,7n € Y;suchthaty A ... Av, Ay F § and hencey; A+ + § because,
for eachl < k < n, ¢; | ~; in the other direction the result is an immediate
consequence of the fact that is an element o¥; =1{«;}. |

LEMMA 2.2. Foranyi > 0, the filterY; is (F, ~«a2)-consistent.

Proof. By induction. Let us suppose thg, that is,T{a1 }, is not(F, ~as)-
consistent; then there exist, 61, ..., v, 0, Such thaty A ... Ad, A nap - L
and, foranyl < k <mn, ay F vy andO(yg,0;) € F. Thusé; A ... Ad, F as
and hence

D(al,él) VANAN D(a1,5n) = D(Oél,OéQ)
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by O-monotonicity But, by usingd-antimonotonicitywe obtain that
D('Yi; 51) F D(Oél, 51)

and hencel(aq,6;) € F sinceF is upward closed. But then we obtain that
O(a, ) € F which is contrary to our assumption.

Suppose now, by inductive hypothesis, thiats (F, ~asq)-consistent and let us
assume that both(Y; U ¢;) and1(Y; U —¢;) are not(F, ~«as)-consistent. Then
there existy;, 01, . . ., Yn, 0 @NAYY, 84, . . ., ¥, 01, Such that, forany < k < n,
e €1(Y; Ug;) andO(yg, 6x) € F and, foranyl < h < m,~; €1(Y; U-¢;) and
O(v;,,07,) € F. Moreovers; A. .. Ady, F aganddi A...Ad,, F aq. But, after the
previous lemma 2.1, we know thi} =1{«;} for some formulap;. Hence, for
eachl <k <n,9; A¢; -y and, foreach < h < m,¢; A—=¢; ;. Then, by
O-antimonotonicityfor eachl < k < n, O(vx, dx) F O(1; A ¢4, 0x) and hence
O(t; A ¢4,0x) € F and, for each < h < m, O(v},,d7) F O(p; A ¢4, 07,) and
henced(y; A —¢;,6},) € F. But by O-monotonicity

O A i, 61) Ao AD( A, 0) F O A ¢y, v2)
and

D(wi A ﬁ¢i,5ll) Ao A D(wi A ﬁ¢i,6;n) [ D(wi A ﬁ(bi,OéQ)

hold and hence bothi(y; A ¢;,a2) € F andO(¢; A =, a0) € F. We can
now conclude immediately if we observe thatk (v; A ¢;) V (i A =) is a
tautology and then, by-antimonotonicitywe can infer that

O(i A ¢y az) A DOy A =y, az) = O(1;, az)

and hencél(y;, as) € F, thatis,Y; is not(F, ~«as)-consistent, which is contrary
to the inductive hypothesis. |

Now let us set

G = UYi

€W
and we can prove the following lemma.

LEMMA 2.3. Gis a(F, ~as)-consistent ultrafilter.

Proof. G is a filter becaus@ € G sinceT € Y, =7{«1} and, supposing
71,72 € G, there is an indexsuch thaty;, 72 € Y;, thatis,y; F v andy; - s,
because for any, Y; C Y;., obviously holds; hence; + ~1 A 7, that is,
v1 Av2 € Y;, and hence; A, € G;finally, if 41 € G andy; F s then there is
an index; such thaty; € Y, thatis,y; - 1, and hence); - ~», thatis,y, € Y;,
so thaty, € G.
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Moreover, if G would not be(F, ~«s)-consistent then there would be, 41,

-y Yn, O SUCh thatyy, ..., v, € G, O(y1,01) € F, ..., 0(yn,6,) € F and
01 A...Nd, F ag, butthen there would exist an indéguch thatyy, . ...y, € Y;,
that isY; would not be(F, —as)-consistent, contrary to lemma 2.2.

To prove that7 is an ultrafilter we have only to prove it is a complete comsist
filter. Since any formula appears in the sequengs; )ic., that is,y = ¢, for
somei € w, we obtain thaty € Y; 1 or -y € Y;1, and thusy € G or+y € G,
that is, G is complete. Finally consistency is a consequence of thietliat G
is (F, —az)-consistent. In fact, i{G is not consistent thed. € G and hence
1 e {4 3y € A) O(v,d) € F} U {—as}, becausel(L, 1) is provable and
hence it belongs to every filter. [ ]

In order to build the ultrafiltefd, let us consider the set
Z ={6| (3y € G) O(v,9) € F}U{—az}

The setZ is consistent by definition sind@ is (F, —as)-consistent; thet can
be extended to a proper ultrafiltéf in the usual way. Now it is immediate to
prove thatR(F, G, H), that is, for ally andd, if O(y,0) € F andy € G then
& € H; moreoveln; € G by construction anehay € H because-a, € Z. We
have thus completed the proof of theorem 2.2.

2.2. Cut-elimination

In the previous section we proved thadrule is valid with respect to the Kripke
models that we proposed and sufficient to obtain a complssepeof. On the
other hand, to investigate the proof theorethical propeuf a logical system it is
often convenient to have some kind of cut-elimination poage for its sequent
calculus. In fact, we are able to define such a procedure farsion of the
sequent calculus fdK obtained by a slight modification of the modal rule.

F Nz \/jzl...m,_» Vij Nicin Vj:l...mi Oij = B
D(’Yll; 611)7 ey D(’Ynmna(snmn) F D(Oé, ﬁ)

«
(O-gen-rule)

with the obvious meaning of the generalized connectivede Wt distributivity
of A overV allows to presentl-gen-rulelike a more standard rule, provided we
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use sequents with many premises instead of generalizedifigranthat is,

51155215"'76711 F 6
al_/ylla"'a’ylml .

) 61m176217--'76n1|_ﬁ
al_’Ynla---a'Ynmn .

51m1752m27'-'75nmn '76
D(’Yll;éll)a ceey D(’Ynmna(snmn) F D(Oé,ﬁ)

Itis easy to check thai-gen-ruleis valid in any of the considered Kripke model.
In fact, let us suppose that there is a pairih a model such that I+ -0O(«, 5)
andz |- O(y;5, 0;5) foranyl < i < nandl < j < m;; hence there must exist
in the model two pointy andz, in relation withz, such thaty I+ o andz IF —=;
theny = A,y . V=1 m, 7ij, and hence forall = 1...n, there is at least one
1 < j <'m; suchthat I v;; holds; hence I ¢;;, because IF O(~;;, d;;), and
so0z - Aizy. . V=1 m, 0i; Which yieldsz I- 3; contradiction.

It is worth noting thatd-monotonicityand O-antimonotonicityare special in-
stances ofi-gen-rule In fact, let us puin; = 1 foreachl <i <n andy;; = «
in the d-gen-rulerule, then we obtain

(O-gen-rule)

aFaN...Na S AN...ANopF(
D(aaal)v"'vm(av(sn)FD(avﬁ)

which is equivalent tdJ-monotonicity And if we putn = 1, m; = m and
01; = B, then we obtain

aFy V... Vv, BV...VBFEpS
D(’YIaﬁ)a"'aD(/ymaﬁ)I_D(aaﬁ)

which is equivalent tal-antimonotonicity

Thus, after the completeness theorem 22gen-ruleis equivalent toO-
monotonicityand O-antimonotonicittogether. But our interest in this rule is in
that by using it we do not need to use the cut-rule. The prootibeliminability
is almost standard, that is, it is by principal induction bbe tomplexity of the cut-
formula and secondary induction on the length of the thrdatecut-formula.
The reductions to lower the length of the threads and thadeviering the com-
plexity of the cut-formulain the non-modal cases are stethdBhus, we consider
here only the case the cut-formuleliga, ) and a modal rule is applied, that is,

at AV, v NV 0 B8 6 Ay Vi, Onkn An Vi, nkn B0
{9(iji» 6ig.) i F O(e, B) {O(Bnkn» Yty ) Y ken, = O, 7))
{D(,Yiji76iji)}i-,ji U ({D((bhkhawhkh)}h-,kh \ D(a, 6)) F D((b’q/))
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In thiscasepr - Ay A ... ANA,andd - By A...A(BRVa)A...A By
where A, = \/; v, oy An =V, g, @nd By =\, b1k, - oo, B =
\/km Omk,,. Hencep - By, ...; ¢ F Bn,a; ...; ¢ F By, Then, by using a
cut on the formulax, we obtain thaty + By, A1 A ... A A, and hence we can
construct, by using no cut, a proof of

¢pFBiA...AN(ByVA)NA...AN(ByVA)N...ABp,

In a similar way, fromA} A ... A A}, - SandB{ A...A (B, VB)A...A
B, b9, whereAy =\, 015y, ..., A, =V, Ony, @andBy =V Yk, -y
B, = Vi, Ymk,,, we obtain both thaBj A ... A Bj A... A B, = ¢ and
that B A...AB A ... \BJ, F 4. Hence, by using a cut o, we obtain
BiA...NAYN.NAL N AB], F 9. Thus, by using no cut, we can construct
also a proof of

BIAN...ANBRLVA)N...N(B,VA)N...AB], F

Then we can conclude; in fact, by using an instance-gfen-rulewe obtain the
sequent in the conclusion of the application of the cut;raleept for the non
essential repetition of some of the boxed assumptions.

2.3. Decidability and finite model property

Nice consequences of the theorem of cut-elimination thaprewed in the
previous section 2.2 are decidability BK and the finite model property. These
results are an immediate consequence of the fact that a sabeayinating proce-
dure for looking for the derivability of any sequent whichegmot use the cut-rule
can be provided; and such a procedure is correct, that is) Wwifedls we can use
the proof tentative to build a finite counter-model for thepoovable sequent.

The proof of this statement follows the general ideas of aedtundancy proof
(see for instance [16]) and we have only to add a speciahesattfor the modal
case like it has been done in [18] for the modal lokjic For this reason in this
section we assume to work with a set of double-sound rulethépropositional
connectives. We mean that a rule is double-sound when thelusion holds
if and only if all of the premises do. For instance a doublergbrule for the
introduction of the connective is

T'ka,A kg A
T'FanpB A

becausé' - o A 3, A does not hold if eithel - o, A orI" - 3, A does not hold.
It is well known that a complete set of double-sound ruleshmaprovided for the
classical propositional calculus (see for instance [18]).

The decision strategy for the non-modal case is simply tdyaapy applicable
propositional rule. Since the premise(s) of each propwsitirule is (are) strictly
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simpler than the conclusion, this search procedure is garggrive in a finite
number of steps at an axiom or at a sequent of the followingesha

P1s-- -5 DPry D(alaﬂl)v ERE D(O[n,ﬂn) F D(d’lawl)a R D(Qbmﬂ/Jm)a(h, -eey(Qs
(1)

wherepy,...,p, andqs, ..., gs are propositional variables. If all of the leaves
of the search tree we arrived at in this way are axioms thesearch procedure
stops with a success. On the other hand, let us suppose tlaid wet arrive at an
axiom. To begin with a simple case let us first consider the taat the sequent
1 that we are examining is

P1,- "7p7'7D(a15ﬁ1)7" '7D(an7ﬁn) F q1,---54s

that is, the casen = 0 and{p1,...,p-} N{q1,...,¢s} = 0. In this case the
sequent can easily be falsified in the finite model}, R, v) defined on the one
element sefx} by settingR = () andv(p) = {x} ifand only ifp € {p1,...,p,}.

Onthe other hand, thatis, when we consider the gage1, the cut-elimination
theorem suggests that the sequent 1, provided it is notli@aaxiom, can only
be obtained by weakening from:

O(a1,61),- -+, O(an, Bn) F O(dn, ¥n) 2

for somel < h < m. Indeed, if we will be able to find a suitable indéxand
prove the corresponding sequent 2, then we will eventuditgio a proof of the
sequent 1 by using some instances of weakening. Of coumrsertblem will
be in proving that if, for no sequent like 2, far< h < m, a proof tentative is
successful then the sequent 1 is not valid and it can be &ldify using some
finite counter-model.

In general, a cut free proof of the sequent 2 should be olatdipean application
of the O-gen-ruleand the left premise of such a rule should have the following
shape:

ot N\ Vo ©)

AegG jeA

whereg is a suitable partition of the s¢t, ..., n}. But the sequent 3 is provable
if and only if, for anyA € G, ¢ = V,c4 ;. So, in the search for the left
premise of the required-gen-rulewe can consider only the following set of set
of indexes:

H={AC{l,....n}l¢nt \/ o5}
jEA
It is clear that all of the sequents, + \/jeA o are simpler than the sequent 2
and thus we can assume to be able to decide on membersHip to
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Let us note that supposiriy is empty, that is, supposing there is no subset
A C{1,...,n}suchthaty, - \/jeA o, yieldsin particular thapy, t/ o, . .., an
and hence, by inductive hypothesis, a finite mddé] , i}, v;,) can be built which
contains a pointy, such thaty, I- ¢, and, for alll < j < n, y, IF —a;.
Let us now observe thd¥ ¢, otherwise the sequent 2 is obviously prov-
able by an instance afi-gen-rulewith premisespy, = A,_; ;-1 ,,, @i and
Ni=1..0.=1..m; Bij F ¥n. Then afinite modelM;/, R}, v;/) can be built which
contains a point,, such thaty, IF —,. Thus a finite modelM},, Ry, v,) which
falsifies the sequent 2 can be built by adding a new peinto M, and A4}/, in
order to obtaim/;, = {z} U M; U M}/, and settingR;, = {(z,y,2)} UR} UR}
andvy, = vy, U}

So, let us continue under the assumption ftiat ). We will use in the sequel
the fact that in this cas€l, ..., n} € H. If H # 0, then if we would be able to
find a subseg of H such that

AV B+ n 4)

A€gG jeA

then we would have found the required instancélegen-rule And all of the
sequents 4 can be assumed to be decidable since they aldsmpler shan the

sequent 2.
It can be useful to note that the elements of the7¢adre not a partition of
the set{1,...,n}, but this is not a real problem. In fact, the only difference i

the conclusion of the considerédgen-rulewith respect to the sequent 2 is the
possible repetition of some of the boxed-formulas on thehiafid side.

In order to conclude the proof of decidability BK, we have to show that if no
subsetg of H can be found such that the sequent 4 holds, then a finite asunte
model for the sequent 2 can be built. To this aim, we need salénnary
lemmas. Let us consider the sEbf all the functionsy : H — {1,...,n} such
thatp(A) € A.

LEMMA 2.4. Suppose no subsétof H can be found such that the sequent 4
holds. Then there is a functiatt € F such that

/\ By (ay I n %)

AeH

Proof. If no subseig of H can be found which satisfies the condition in the
hypothesis, then in particular, namely, fp= H, we have that

NV 8 7 n

AEH jEA
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Then, by distributivity we obtain

\ A\ Bacay 7 n

PEF AeH

Hence the result is immediate. [ |

The functionp* that we pointed out in the previous lemma is useful for finding
a suitable subset of indexés= [ J ,.,, ¢*(A) of the set{1,...,n} such that, by
induction on the complexity of the considered sequent, &finbde( M, , R , v;,)
can be built which contains a poinj such that, for any; with i € B, z;, IF ;
whereasyy, |- —y,.

Note that to build a finite counter-model for the sequent 2mlBie= {1,...,n}
we need only to build a finite modéM/’, R}/, v;/) which contains a poinj;, such
thaty, I- ¢p,. Since the sequent 2 is clearly provablé-if-¢;,, and hence our
proof search would have stoped with a proof in this case, wescgpose, by
inductive hypothesis, to know how to build such a model.

The next lemma will show how to proceed in building the finibeioter-model

for the sequent 2 when the set of indeXess not{1,...,n}.
LEMMA 2.5. SupposeB # {1,...,n} andsetC' = {1,---,n} \ B. Then
on \/ a (6)
jec

Proof. Suppose the sequen, + \/].ec o is provable. TherC' € H.
Consider now the functiop* that we pointed out in the previous lemma 2.4.
Then, we get thap*(C) € C since¢* € F whereas the very definition af
yields thatp* (C) ¢ C. Contradiction. [ |

Thus, by inductive hypothesis, we can build a finite madé}/, R}, v;/) such
that there is a poing;, such that for anyy;, with j € {1,...,n}\ B, yx IF —¢;
andyh I op.

In order to build a finite counter-modél/;,, Ry, v,,) for the sequent 2 we can
now put together the two models we built and add them a newt pgirthat is,

My, = {xp} UM}, UM}
and define the relatioR;, by setting
R = {< @n,yn, zn >} U R, UR},

and the interpretation, by setting, foranyw € M, and any propositional variable
p1

w € vp(p) ifand only if w € v}, (p) orw € v} (p)
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Letus go back nowto the problem of the proof of the sequentiledinis suppose
that for nol < h < m, the corresponding sequent 2 is provable, otherwise we
would have the required proof of the sequent 1. Then, for daghh < m,
we can construct as above the finite modél§ , R; , v}, ) and(M;’, R}, v;/) with
suitable pointg;, andz;. Then in order to build a finite counter-modal/, R, v)
for the sequent 1, it is sufficient to put all of these modegetber, that is, we
have to add a new pointand connect it with all the couple,, z1). So,

M {z}uM{UM{U...UM UM

R {<‘T7ylazl>7a<xaymazm>}URI1UR/11UUR;’nURZ’L

u(p) = vi(p) Ui (p)U...v,(p) Uy (p) U{a} ifped{p,....pr}
P vi(p) Ui (p)U...v., (p) Uvl (p) otherwise

It is now obvious that the point falsifies the sequent 1. In fact, for each
p € {p1,...,pr}, x IF p holds by definition of the valuationand, forl <i < n,

x I+ O(ay, B;) since, for each < h < m and for eachy, and z, if y, IF «;
thenz, I- 8;. Finally, for nog € {¢,...,qs}, z IF ¢, again by definition of
the valuationv, and, for eachli < h < m, there are suitable pointg, and
zp in M such thatR(z, yn, z1) holds andy,;, - ¢, andz;, I+ —;, and hence

z - ﬁD((bh,wh).

3. RELATIONS BETWEEN BK AND <A

In this section we will prove thaBK furnishes a complete interpretation of the
subtype relation between types &f. Let us begin by introducing the obvious
interpretation of types into modal formulas. To simplifethotation we assume
to use the same notation for variables for typed gfand propositional variables
of BK.

Interpretation
Z( « for every type variable:
T(w) =T
I(anpB) = I(a) NI(B)
I(a — B) = B(Z(),Z(B))

It is immediate to prove the validity of this interpretation

£
I

THEOREM 3.1. Let « and 5 be two types of\,. Then, ifa <, g then
I(a) F Z(0).

Proof. The proof is almost straghtforward by induction on the léngt the
proof ofa <, (. The result is almost immediate for the axioms and concgrnin
the rules almost no proof is necessary since the first ancetteng rule are valid
in both the deductive systems and we already proved thedhiadvithin the proof
of theorem 2.1. |
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To prove the other implication, namely,df £, 0 thenZ(a) t/ Z(3), even if
a straight proof is possible which uses the Kripke-like setica of the previous
sections, we think that it is more interesting to pass thnbtige definition of a
different semantics both for the subtyping relation &id

Let us recall the definition ofpplicative structureandcombinatory algebra
(see [2]).

DErFINITION 3.1. Let A be a set andbe a (partial) operation ovet. Then
A = (4, ") is anapplicative structure An applicative structure is @mbinatory
algebraif the operation is total and there are id two elementsK andS such
that, foranyz,y,z € A, K -z-y=xandS-z-y-z=x-y- (x-2).

It is well known that any combinatory algebra is functiogatbmplete, that
is, for any termt[z; .. .x,, x] over A there exists a ternf[xz; ... z,] such that
fler - zp) -2 = tlxr ...z, z]. We willindicate the termyf[z; ... z,] by Ax.t.
Functional completeness can be used to show that, given @ampinatory
algebraA, any map; : Var — A can be extended to an interpretation of the terms
of the pure lambda calculusinto A, which respectg-reduction. In fact we can
first define an interpretatiofi-)* of A-terms into terms oved by setting

@ =
(t(u)* = (&) - (u)*
(Az.t)* = Az.(t)*

and then instantiate such terms by extendijrtg all terms by setting)(a) = a,
for all element € A, andn(a - b) = n(a) - n(b).

We will write (A, n) to mean the\-model built over the combinatory algebra
A by using the interpretation

Given any combinatory algebrd, the types ofA, can be interpreted into
subsets oA by extending any map : BasicType — P(A) by setting

vw) = A
viaeAB) = v(a) Nv(B)
vioe— ) = {ze€ Al (Vyev(a)z-yev(f)}

It is easy to check the following theorem.

THEOREM 3.2. Let« andj be two types oA ,. Thena <, 3 if and only
if for any combinatory algebrad and any interpretation’ of the types of\,,

v(e) C v ().

A X-model (A,n) can be combined with an interpretatiorfor the types of
A, in order to obtain a model for the extended intersection gystem that was
introduced in the end of section 1.
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DEeFINITION 3.2. Let (A4,7n) be ax-model and- be an interpretation of the
types ofA  into subsets ofi. Then aA<, -model(A, n,v) is defined by setting

(A,n,v)Ec:a iff n(c) € via)
(A,n,v)ET  iff forall (z:a) €T, n(z) € v(a)
Then

I'Ec:aiffforall A<,-model(A,n,v)if (A,n,v)IFT then(A,n,v)lFc: a

It is now possible to prove the following theorem (see [3]).

THEOREM 3.3. A<,-models are a valid and complete semantics for the ex-
tended intersection type system, that is,

k<, c:aifandonlyifl' Fc: a

In a similar way, applicative structures can be used to givingerpretation to
the formulas oBK. We need only to extend to all of the classical connectives
what we already did fon.

DEFINITION 3.3. Let.4 be an applicative structure. Then, any mafsom
the propositional variables &K into subsets ofl can be inductively extended to
an interpretation of the formulas 8K by setting:

v(T) = A

v(l) =10

vienp) = v(ia)Nv(B)

viavp) = v(ia)Ur(s)

v(—a) = A\ v(a)

vie—p) = (A\v(a))Ur(H)

v(O(a, ) = {x € Alforally € v(a), if x - yis defined then: - y € v(5)}

It is not difficult to use the proof of decidability in the piieus section in order
to obtain a proof of validity and completeness for the seimamtf the applicative
structures.

THEOREM 3.4. LetI' - A be any sequent &K. ThenI' - A is provable if
and only if, for every applicative structusé and every valuation of the formulas

of BKiinto A4, (N, v(a) C UﬁeA v(5).

Proof. We will show the proof of the validity for the only rule whoseopf is
not completely straightforward, that is, therule. Let us suppose tha{a) C
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Uiz1 (i) and that(),_, ,, v(8;) € v(B). Then, we have to show that

i=1..nj=1..mV(O(a:,85)) € v(O(a,B)). To this aim, let us suppose that
T € Nic1 njer1..m V(O(ai, 85)), thatis, foranyi = 1...n, j = 1...m
andy € oy, If -y is defined then it belongs t6;, and let us assume that
y € v(a). Thenv(a) C U,_; ,, ¥(o;) yields that there exists < i < n such
thaty € v(«;) and hence we obtain that for afiy= 1...m, providedz - y is
definedx - y € v(3;). Hence, provided - y is defined(,_, ,,v(8;) € v(B)
yields thatr - y € v(5).

Let us consider now completeness. First observe that tie finunter-model
(M, R,v) that we provided in section 2.3 for any non provable sequasthuilt
in such a way that for every andy in M there exists at most one element
in M such thatR(z,y, z) holds. Then, supposing t/ A, define an applicative
structureA by settingA = M andz - y = z if and only if R(z,y, z). Thenitis
easy to check that for the interpretation defined by setfimgany propositional

variablep, v(p) = {z| z It p}, N,er ¥(@) € Ugea v(8) holds. |

It is now possible to estabilish the conservativity theotbat we were looking
for.

COROLLARY 3.1. Suppos€(«a) - Z(3). Thena <, 3.

Proof. Let us suppose that £, 3. Then there exists a-model(A, v) such
thatv(a) € v(5). Itis easy to check that can be extended to a valuation of the
formulas ofBK such thav(Z(«)) € v(Z(8)). Hence thevalidity part of theorem
3.4 shows thaf (a) I/ Z(5). [ |

4. CONCLUSION AND OPEN PROBLEMS

The new semantics that we proposed Bt seems to suggest that this logic
extands in a natural way the subtyping relation. Unfortunately the complete-
ness theorem 3.4 holds only if we let the algeldraary over all the applicative
structures and not only over the combinatory algebras;eddee algebras used
in the proof of the completeness theorem 3.4 is far from bairgpmbinatory
algebra. Thus, a question naturally arises:”Is it possibledefine a complete
sequent calculus for the sub-logicBK defined by the set of formulas which are
valid in all the combinatory algebras?”.

An answer to this question would be a great progress in tleetitin towards the
setting of a type system for thecalculus which extends intersection types with
aV constructor, that is, the syntactical counterpart of theragion of union, and
also with a— constructor, that is, the counterpart of the operation afglement.
In fact, the subtyping relation for this type system woulteex with negation the
subtyping relatiort proposed in [1].
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