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Looking for a suitable logic for the subtype relation between the types of the inter-
section types lambda calculus we developed a modal logic with a two-places modality.
We present here its main syntactical and semantical properties, that is, the completeness
theorem, the finite model property, the cut-elimination theorem and a decision procedure
for theoremhood.

1. INTERSECTION TYPES

Let us quickly recall the main ideas of intersection type lambda calculus (for a
recent paper on this topic see [6]). It is well known that the pure lambda calculus
Λ (see [2]) formalizes the notion of computable function without any reference
to the concepts of domain and co-domain, contrary to what happens in the set
theoretic or the categorical approach. The main advantage of this approach is
the possibility of coding any recursive function within a very simple formalism.
Indeed, a lambda term is built inductively, starting from variables, by means of
lambda abstraction and afree form of application, that is, we have the following
term formation rules:

Term := Var | (λ Var.Term) | Term(Term)

whereVar is a countable set whose elements are called variables.
Not only the syntax of the objects ofΛ is simple, but also the notion of

computation for this very abstract formalization of computable functions becomes
the simpleβ-reduction(notation β). This is the relation between lambda terms
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obtained by closing under the term construction operationsthe relation ofβ-
contraction, that is(λx.c)(a) c[x := a].

The computation of the value of a lambda term is then defined asa reduction
process, that is, successive steps ofβ-reduction, until anormal formof the term is
possibly reached, that is, a form where noβ-contraction can be applied. Given a
lambda termc, there are in general many different reduction processes, according
to the choice of theβ-contraction to be expandedwithinc; hence, it is well possible
that only some of the reduction processes eventually terminate into a normal form.
Moreover, since it is possible to have a code withinΛ for any recursive function,
there is no possibility to know if a reduction process forcwill eventually terminate,
because of the halting problem.

On the other hand, in the usual mathematical practice - both in the set theoretic
and in the categorical approach - and in many concrete algorithms, functions are
intended to operate over objects of a certain type in order toproduce objects of
some other type. Following this idea, the rule of application should be no longer
completely free; in fact a function should be applicable only to arguments of the
correct type. Thus it will be no longer possible to build all the terms ofΛ. However,
a main advantage of this approach is the possibility to provemore properties on
the terms which can be built because of the greater quantity of information. For
instance, one of the main problems on the terms ofΛ is to determine whether all
the reduction processes for a certain term will eventually terminate, that is, the
strong normalizationproblem. In the case of the lambda-calculi where functions
and their arguments have a type there are suitable tools to deal with this problem.

In order to keep the good aspects of both the sides, a possiblestrategy is to find
suitable typing systems for the terms ofΛ. For instance, a possibility is to use
simply typedlambda calculusΛ→; its rules of type formation are the following:

Type := BasTypes | Type → Type

wereBasTypes is a set whose elements are calledbasic types.
The intended meaning is that a typeσ → τ denotes a set of functions from

elements of the set denoted by the typeσ into elements of the set denoted by the
typeτ . Thus, in order to build the elements of these types, we use the following
rules1:

(variable) Γ, x : σ ⊢ x : σ

(lambda abstraction)
Γ, x : σ ⊢ c : τ

Γ ⊢ λx.c : σ → τ

(application)
Γ ⊢ c : τ → σ Γ ⊢ a : τ

Γ ⊢ c(a) : σ

1To be more precise we should speak here of typing systema la Curry versus a typing systema la
Church where all the variables within a term and the sub-terms themselves are typed.
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whereΓ is a commutative list of assumptions of the formx : σ for some typeσ
such that no variable appears more than once.

It is well known (see for instance [8]) that all the terms ofΛ→ are strongly
normalizing. Hence, the terms ofΛ→ form a subset of the set of strongly normal-
izing terms ofΛ. But, not all of the strongly normalizing terms ofΛ have a type
in Λ→; for instance, consider the termλx.x(x): it is in normal form, and hence it
is trivially strongly normalizing, but it cannot have a typewithin Λ→ because of
the instance ofself-application. It is clear that a complete solution of the strong
normalization problem would be a typing system which allowsto build all the
strongly normalizing terms ofΛ, and only them.

Surprisingly, this typing system exists and can be obtainedfrom Λ→ by adding
just one type (see [13] or [20] for a recent new proof). The abstract syntax of the
types of this calculusΛ∧ of intersection typesis the following:

Type := BasTypes | Type → Type | Type ∧ Type

The intended meaning of the new typeσ ∧ τ of Λ∧ is thatσ ∧ τ denotes the
intersection of the two sets denoted by the typeσ andτ respectively. Thus, in
order to build the elements for these new types, we add the following rules to the
previous ones:

(intersection introduction)
Γ ⊢ c : σ Γ ⊢ c : τ

Γ ⊢ c : σ ∧ τ

(intersection elimination)
Γ ⊢ c : σ ∧ τ

Γ ⊢ c : σ

Γ ⊢ c : σ ∧ τ

Γ ⊢ c : τ

An interesting problem when studying a typed lambda calculus is the problem
of inhabitation of a type, namely, given a type, is it possible to know whether there
is some lambda term which can be typed by such a type?

One possible strategy in order to answer to this question is to use the Curry-
Howard correspondence between a typed lambda calculus and alogical system.
For instance, if we strip all the lambda terms in the rules ofΛ→ we obtain
the rules for the implication fragment of the usual intuitionistic propositional
calculus. Moreover, it is easy to see that a type ofΛ→ is inhabited if and only if
the corresponding propositional formula can be proved.

On the other hand, if we strip all the terms in the rules ofΛ∧, we obtain an almost
standard sequent calculusPC∗ for the fragment of the intuitionistic propositional
logic containing only implication and conjunction. However, it is necessary to
stress that the theorems ofPC∗ do notcorrespond to the non-empty types ofΛ∧;
consider for instance the formula(α → α) ∧ (α → (β → α)): it is provable in
PC∗ whereas this type is not inhabited inΛ∧.

Some propositional calculi have been proposed to solve thisproblem (see [14]
and [4]).
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A step toward a better comprehension of the properties of theintersection type
systemΛ∧ can be found in [3], where the following axioms and rules havebeen
proposed for a subtyping relation≤∧ among types ofΛ∧:
Axioms

α ≤∧ ω ω ≤∧ ω → ω

α ≤∧ α ∧ α α ∧ β ≤∧ α α ∧ β ≤∧ β

(α→ β) ∧ (α→ γ) ≤∧ (α→ (β ∧ γ))

Rules

α ≤∧ β β ≤∧ γ

α ≤∧ γ

α1 ≤∧ β1 α2 ≤∧ β2

α1 ∧ α2 ≤∧ β1 ∧ β2

α1 ≤∧ α2 β2 ≤∧ β1

α2 → β2 ≤∧ α1 → β1

Note that the new typeω has been added to the collection of types ofΛ∧; its
purpose is to denote the set of all the strongly normalizing lambda terms.

The axioms and the rules above set natural requirements for asubtyping relation
among types ofΛ∧; for instance the axiom

(α→ β) ∧ (α→ γ) ≤∧ (α→ (β ∧ γ))

states that all the lambda terms to which can be assigned boththe typeα → β

andα → γ can also be typed byα → (β ∧ γ). And indeed inΛ∧ if it holds
Γ ⊢ λx.c : (α→ β)∧ (α→ γ) then alsoΓ ⊢ λx.c : α→ (β ∧ γ) can be proved.
The subtyping relation≤∧ has been introduced with the intention to extend such a
property to any term and not only to those with a particolar shape. To this aim the
following assignement rule has been added to the rules ofΛ∧ (see [3]) to obtain a
new typing system that we will callextended intersection type systemand that we
will indicate by⊢≤∧

:

Γ ⊢≤∧
c : α α ≤∧ β

Γ ⊢≤∧
c : β

It allows to prove the following theorem.

Theorem 1.1. Supposeα andβ are two types ofΛ∧. Thenα ≤∧ β if and
only if, for any baseΓ and any lambda termt, Γ ⊢≤∧

t : α yieldsΓ ⊢≤∧
t : β.

So, a logical system exists for the subtyping relation amongtypes ofΛ∧, but it
is far from enjoying a good presentation. Our purpose here isto introduce a modal
calculus which gives a complete interpretation for≤∧ and which is nevertheless
a standard logical system.

1.1. A semantics for the subtype relation
In order to disclose the correct idea for the definition of themodal logic that

we are looking for, it is useful to recall the notion of filter model for the subtype
relation [3].
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LetM be a set andR be a three places relation overM and consider any map
ν : BasTypes −→ P(M) from the set of basic types into the set of the subsets of
M . Then we can define a forcing relationν between elements ofM and types
by setting

x ν α iff x ∈ ν(α), for any basic typeα
x ν ω iff true

x ν α ∧ β iff x ν α andx ν β

x ν α→ β iff (∀y ∈M)(∀z ∈M)R(x, y, z) ⇒ (y ν α⇒ z ν β)

This forcing relation can be used to define an interpretationof the relation≤∧ in
a model(M,R, ν). In fact, we can set

(M,R, ν) |= α ≤∧ β iff (∀x ∈M) x ν α⇒ x ν β

and this interpretation can be generalized to any structure(M,R) by setting

(M,R) |= α ≤∧ β iff (M,R, ν) |= α ≤∧ β,

for any mapν : BasTypes −→ P(M)

Thus we arrived at a semantics for the subtype relation, thatis,

α |= β iff (M,R) |= α ≤∧ β, for any structure(M,R)

It is now possible to state the following theorem of validityand completeness.

Theorem 1.2. α |= β if and only ifα ≤∧ β

The proof of this theorem can be found in [3, 11], but it is convenient to recall
here the construction of the filter model which is used to prove completeness since
it provides the main ideas for the proof of completeness of our modal logic (see
section 2).

We call filter ofΛ∧ any non-empty subsetF of Λ∧ closed under∧, that is, for
all α, β ∈ Λ∧, if α, β ∈ F thenα ∧ β ∈ F , and upward closed, that is, for all
α, β ∈ Λ∧, if α ∈ F andα ≤∧ β thenβ ∈ F .

In the following we will use the following filter construction.

Definition 1.1. Letα be any type. Then

↑α ≡ {β ∈ Λ∧| α ≤∧ β}

will be called thefilter generatedbyα.

It is easy to verify that, for any typeα, ↑α is a filter.
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Consider now the set

M ≡ {F | F is a filter ofΛ∧}

and define a three place relationR on its elements by setting

R(F,G,H) ≡ (∀α)(∀β) (α→ β ∈ F ) ⇒ (α ∈ G⇒ β ∈ H)

Finally consider the interpretation mapφ defined by setting

φ(α) = {F | α ∈ F}

for any basic typeα and extend it to a forcing relationφ. It is not difficult to
prove that(M,R, φ) is a model for≤∧. Moreover, it is possible to prove by
induction on type complexity the following lemma.

Lemma 1.1. Let α be any type andF be any filter ofΛ∧. ThenF φ α if
and only ifα ∈ F .

And this lemma immediately yields the completeness theorem1.2 since sup-
posingα |= β we obtain(M,R, φ) |= α ≤∧ β and hence for any filterF ∈ M ,
if F φ α thenF φ β. But, after lemma 1.1, this means that ifα ∈ F then
β ∈ F . Let us consider now the filter↑α; it clearly containsα and henceβ ∈↑α,
that isα ≤∧ β.

The semantics we considered here is clearly recalling a sortof non-standard
Kripke semantics for a modal logic: the idea to define a modal interpretation for
the connective→ started here.

2. THE TWO-PLACES MODAL LOGIC BK

Consider the propositional modal language whose formula are inductively de-
fined as follows

1. Any propositional variable is a formula;

2. ⊥ and⊤ are formulas;

3. If α andβ are formulas then alsoα ∧ β, α ∨ β, ¬α, α→ β are formulas;

4. If α andβ are formulas then2(α, β) is a formula.

We can define akripke-like semantics for the formulas of this language as
follows. LetA be a set andR be a ternary relation overA and suppose thatv is a
map of the propositional variables into subsets ofA. Then, supposingx ∈ A and
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p is a propositional variable, set

x v p iff x ∈ v(p)
x v ⊥ iff falsum

x v ⊤ iff true

x v α ∧ β iff x v α andx v β

x v α ∨ β iff x v α or x v β

x v ¬α iff x 6v α

x v α→ β iff x v α yieldsx v β

x v
2(α, β) iff (∀y ∈ A)(∀z ∈ A) R(x, y, z) → (y v α→ z v β)

A formulaα is true in the model(A,R, v) if, for every elementx ∈ A, x v α

holds, and it is true in the frame(A,R) if, for every valuationv, it is true in the
model(A,R, v). Finally, a formula is valid if it is true in every frame.

It is interesting to note that what we defined is a generalization of the usual
modal situation. In fact, we can define a standard modality bysetting2(β) ≡
2(⊤, β) and then we obtain the usual definition for a forcing relationby setting
R(x, z) ≡ (∃y ∈ A) R(x, y, z). Since no extra condition is required on the
relationR, the models that we defined directly generalize the situation for the
modal logicK. This is the reason why we calledBK thisbinarymodal logic.

Consider now any sequent calculus for a classical propositional calculus and
add it the following single modal rule

2-rule
α ⊢ α1, . . . , αn β1, . . . , βm ⊢ β

{2(αi, βj)| i = 1 . . . n, j = 1 . . .m} ⊢ 2(α, β)
n ≥ 0,m ≥ 0

This rule is valid in any frame. In fact, let us suppose that its conclusion is not valid
in some frame(A,R), that is, let us suppose that there exists a pointx ∈ A and a
valuationv such thatx v ¬2(α, β) whereas for alli = 1 . . . n andj = 1 . . .m,
x v

2(αi, βj). Then there must be two pointsy, z ∈ A such thatR(x, y, z)
holds andy v α andz v ¬β. Hence, by the left premise, we obtain that there
must be some indexi such thaty v αi and thus, for anyj = 1 . . .m, z v βj ,
sincex v

2(αi, βj). But then the right premise forcesz v β, contradiction.

2.1. The completeness theorem
We want now prove that the2-rule is sufficient to prove any valid sequent.

To this aim it is convenient to consider two of its instances,which are indeed
sufficient to obtain the result. The first one is obtained forn = 1 andα1 ≡ α and
the second one form = 1 andβ1 = β.

2-monotonicity
β1, . . . , βm ⊢ β

2(α, β1), . . . ,2(α, βm) ⊢ 2(α, β)
m ≥ 0

2-antimonotonicity
α ⊢ α1, . . . , αn

2(α1, β), . . . ,2(αn, β) ⊢ 2(α, β)
n ≥ 0
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Note that settingn = 0 andα ≡ ⊥ in 2-antimonotonicitywe obtain that2(⊥, β)
is provable and settingm = 0 andβ ≡ ⊤ in 2-monotonicitywe obtain that
2(α,⊤) is provable.

Moreover, the2-rule is sufficient to prove that the binary modal operator is
an operation in the Lindenbaum algebraLBK of BK. In fact, we can prove the
following theorem.

Theorem 2.1. Let ⊢ α1 ↔ α2 and ⊢ β1 ↔ β2. Then⊢ 2(α1, β1) ↔
2(α2, β2).

Proof. It is sufficient to show that ifα2 ⊢ α1 andβ1 ⊢ β2 hold then also
2(α1, β1) ⊢ 2(α2, β2) holds, which is immediate by2-rule. �

It is worth noting that the proof of this theorem shows that the modality that
we are considering behaves like an implication, even if one should be aware that
the usual rule of implication introduction is not valid for such a modality, that is,
α ⊢ β does not yield⊢ 2(α, β).

We can now prove the completeness theorem.

Theorem 2.2. The sequentα1, . . . , αn ⊢ β1, . . . , βm is provable if and only
if it is valid in any frame.

We already proved that all the rules are valid. To prove that they are also suffi-
cient we will adapt toBK the standard approach. First note that the Lindenbaum
algebraLBK is a boolean algebra. Consider now the setU of ultrafilters ofLBK

and define a ternary relationR overU by setting

R(F,G,H) ≡ (∀γ, δ) 2(γ, δ) ∈ F → ((γ ∈ G) → (δ ∈ H))

Let us now suppose that the sequentα1, . . . , αn ⊢ β1, . . . , βm is not provable;
then the formula(α1∧ . . .∧αn) → (β1∨ . . .∨βm) is not equal to the top element
of LBK and hence its negation is different from the bottom element of LBK ;
hence there exists an ultrafilter containing it. In order to conclude it is sufficient
to define a valuationV of the propositional variables into the set of the subsets of
U by setting

V(p) ≡ {F ∈ U | p ∈ F}

since this position yields that, for any formulaα, F V α if and only if α ∈ F .
In fact, let us argue according to the complexity of the formula α. If α is the
propositional variablep then by definitionF V p if and only if F ∈ V(p) if
and only if p ∈ F . If α ≡ ⊥ then the result is immediate sinceF is a proper
filter. If α ≡ ⊤ or α ≡ α1 ∧ α2 the result follows by induction from the fact
thatF is a filter of a boolean algebra. Ifα ≡ α1 ∨ α2 then the result follows
by induction from the fact thatF is a prime filter. Ifα ≡ ¬α1 then the result
follows by induction and the fact thatF is an ultrafilter. Hence also the case



THE BINARY MODAL LOGIC OF THE INTERSECTION TYPES 9

α ≡ α1 → α2 is immediate sinceα1 → α2 is logically equivalent to¬α1 ∨ α2

and filter are closed under logical equivalence. Finally, ifα ≡ 2(α1, α2) then we
can immediately prove that2(α1, α2) ∈ F yieldsF V

2(α1, α2). In fact, let
us suppose thatG,H ∈ U andR(F,G,H) andG V α1 hold. Thenα1 ∈ G by
inductive hypothesis and hence2(α1, α2) ∈ F andR(F,G,H) yieldsα2 ∈ H .
ThenH V α2 by inductive hypothesis and henceF V

2(α1, α2) by definition.
The proof thatF V

2(α1, α2) yields2(α1, α2) ∈ F is more complex. In fact, it
will be a proof by absurd, that is, we will assume that2(α1, α2) 6∈ F and we will
prove that there exist two ultrafiltersG andH such thatR(F,G,H), G V α1

andH V ¬α2, that is,F 6V
2(α1, α2).

The idea is to build the ultrafilterGwith a continuous attention for the possibility
to buildH . To this aim let us consider the following inductive definition of a
sequence(Yi)i∈ω of filters . Let (φi)i∈ω be any surjective numbering of the
elements ofLBK and set

Y0 = ↑{α1}

Yi+1 =

{

↑(Yi ∪ {φi}) if ↑(Yi ∪ {φi}) is 〈F,¬α2〉-consistent
↑(Yi ∪ {¬φi}) otherwise

where we write↑A to mean the minimal filter ofLBK which contains the subset
A, that is,↑A ≡ {γ ∈ LBK | (∃α1, . . . , αn ∈ A) α1 ∧ . . . ∧ αn ⊢ γ}, and we say
that a set of formulasA is 〈F,¬α2〉-consistent to mean that the set

{δ| (∃γ ∈ A) 2(γ, δ) ∈ F} ∪ {¬α2}

is consistent.

Lemma 2.1. For anyi ≥ 0, the filterYi is generated by one formula, that is,
there exists a formulaψi such thatYi =↑{ψi}.

Proof. By induction. By definition,Y0 is generated byα1 and, supposing that
Yi is generated byψi, thenYi+1 =↑{ψi ∧ φi} or Yi+1 =↑{ψi ∧ ¬φi} according
to the clause which applies in the definition ofYi+1. In fact, it is immediate to
verify that↑(Yi ∪{γ}) =↑{ψi∧γ} becauseδ ∈↑(Yi ∪{γ}) means that there exist
γ1, . . . , γn ∈ Yi such thatγ1 ∧ . . . ∧ γn ∧ γ ⊢ δ and henceψi ∧ γ ⊢ δ because,
for each1 ≤ k ≤ n, ψi ⊢ γk; in the other direction the result is an immediate
consequence of the fact thatψi is an element ofYi =↑{ψi}. �

Lemma 2.2. For anyi ≥ 0, the filterYi is 〈F,¬α2〉-consistent.

Proof. By induction. Let us suppose thatY0, that is,↑{α1}, is not〈F,¬α2〉-
consistent; then there existγ1, δ1, . . . , γn, δn such thatδ1 ∧ . . . ∧ δn ∧ ¬α2 ⊢ ⊥
and, for any1 ≤ k ≤ n, α1 ⊢ γk and2(γk, δk) ∈ F . Thusδ1 ∧ . . . ∧ δn ⊢ α2

and hence

2(α1, δ1) ∧ . . . ∧ 2(α1, δn) ⊢ 2(α1, α2)
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by 2-monotonicity. But, by using2-antimonotonicity, we obtain that

2(γi, δi) ⊢ 2(α1, δi)

and hence2(α1, δi) ∈ F sinceF is upward closed. But then we obtain that
2(α1, α2) ∈ F which is contrary to our assumption.

Suppose now, by inductive hypothesis, thatYi is 〈F,¬α2〉-consistent and let us
assume that both↑(Yi ∪ φi) and↑(Yi ∪ ¬φi) are not〈F,¬α2〉-consistent. Then
there existγ1, δ1, . . . , γn, δn andγ′1, δ

′
1, . . . , γ

′
m, δ

′
m such that, for any1 ≤ k ≤ n,

γk ∈↑(Yi ∪φi) and2(γk, δk) ∈ F and, for any1 ≤ h ≤ m, γ′h ∈↑(Yi ∪¬φi) and
2(γ′h, δ

′
h) ∈ F . Moreoverδ1∧. . .∧δn ⊢ α2 andδ′1∧. . .∧δ

′
m ⊢ α2. But, after the

previous lemma 2.1, we know thatYi ≡↑{ψi} for some formulaψi. Hence, for
each1 ≤ k ≤ n,ψi ∧φi ⊢ γk and, for each1 ≤ h ≤ m,ψi ∧¬φi ⊢ γ′k. Then, by
2-antimonotonicity, for each1 ≤ k ≤ n, 2(γk, δk) ⊢ 2(ψi ∧ φi, δk) and hence
2(ψi ∧ φi, δk) ∈ F and, for each1 ≤ h ≤ m, 2(γ′h, δ

′
h) ⊢ 2(ψi ∧ ¬φi, δ

′
h) and

hence2(ψi ∧ ¬φi, δ
′
h) ∈ F . But by2-monotonicity,

2(ψi ∧ φi, δ1) ∧ . . . ∧ 2(ψi ∧ φi, δn) ⊢ 2(ψi ∧ φi, α2)

and

2(ψi ∧ ¬φi, δ
′
1) ∧ . . . ∧ 2(ψi ∧ ¬φi, δ

′
m) ⊢ 2(ψi ∧ ¬φi, α2)

hold and hence both2(ψi ∧ φi, α2) ∈ F and2(ψi ∧ ¬φi, α2) ∈ F . We can
now conclude immediately if we observe thatψi ⊢ (ψi ∧ φi) ∨ (ψi ∧ ¬φi) is a
tautology and then, by2-antimonotonicitywe can infer that

2(ψi ∧ φi, α2) ∧ 2(ψi ∧ ¬φi, α2) ⊢ 2(ψi, α2)

and hence2(ψi, α2) ∈ F , that is,Yi is not〈F,¬α2〉-consistent, which is contrary
to the inductive hypothesis. �

Now let us set

G ≡
⋃

i∈ω

Yi

and we can prove the following lemma.

Lemma 2.3. G is a 〈F,¬α2〉-consistent ultrafilter.

Proof. G is a filter because⊤ ∈ G since⊤ ∈ Y0 ≡↑{α1} and, supposing
γ1, γ2 ∈ G, there is an indexi such thatγ1, γ2 ∈ Yi, that is,ψi ⊢ γ1 andψi ⊢ γ2,
because for anyi, Yi ⊆ Yi+1 obviously holds; henceψi ⊢ γ1 ∧ γ2, that is,
γ1 ∧ γ2 ∈ Yi, and henceγ1 ∧ γ2 ∈ G; finally, if γ1 ∈ G andγ1 ⊢ γ2 then there is
an indexi such thatγ1 ∈ Yi, that is,ψi ⊢ γ1, and henceψi ⊢ γ2, that is,γ2 ∈ Yi,
so thatγ2 ∈ G.
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Moreover, ifG would not be〈F,¬α2〉-consistent then there would beγ1, δ1,
. . . , γn, δn such thatγ1, . . . , γn ∈ G, 2(γ1, δ1) ∈ F , . . . , 2(γn, δn) ∈ F and
δ1∧ . . .∧δn ⊢ α2, but then there would exist an indexi such thatγ1, . . . , γn ∈ Yi,
that isYi would not be〈F,¬α2〉-consistent, contrary to lemma 2.2.

To prove thatG is an ultrafilter we have only to prove it is a complete consistent
filter. Since any formulaγ appears in the sequence(φi)i∈ω, that is,γ ≡ φi for
somei ∈ ω, we obtain thatγ ∈ Yi+1 or ¬γ ∈ Yi+1, and thusγ ∈ G or ¬γ ∈ G,
that is,G is complete. Finally consistency is a consequence of the fact thatG
is 〈F,¬α2〉-consistent. In fact, ifG is not consistent then⊥ ∈ G and hence
⊥ ∈ {δ| (∃γ ∈ A) 2(γ, δ) ∈ F} ∪ {¬α2}, because2(⊥,⊥) is provable and
hence it belongs to every filter. �

In order to build the ultrafilterH , let us consider the set

Z ≡ {δ| (∃γ ∈ G) 2(γ, δ) ∈ F} ∪ {¬α2}

The setZ is consistent by definition sinceG is 〈F,¬α2〉-consistent; thenZ can
be extended to a proper ultrafilterH in the usual way. Now it is immediate to
prove thatR(F,G,H), that is, for allγ andδ, if 2(γ, δ) ∈ F andγ ∈ G then
δ ∈ H ; moreoverα1 ∈ G by construction and¬α2 ∈ H because¬α2 ∈ Z. We
have thus completed the proof of theorem 2.2.

2.2. Cut-elimination
In the previous section we proved that2-rule is valid with respect to the Kripke

models that we proposed and sufficient to obtain a completeness proof. On the
other hand, to investigate the proof theorethical properties of a logical system it is
often convenient to have some kind of cut-elimination procedure for its sequent
calculus. In fact, we are able to define such a procedure for a version of the
sequent calculus forBK obtained by a slight modification of the modal rule.

(2-gen-rule)
α ⊢

∧

i=1...n

∨

j=1...mi
γij

∧

i=1...n

∨

j=1...mi
δij ⊢ β

2(γ11, δ11), . . . ,2(γnmn
, δnmn

) ⊢ 2(α, β)

with the obvious meaning of the generalized connectives. Note that distributivity
of ∧ over∨ allows to present2-gen-rulelike a more standard rule, provided we
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use sequents with many premises instead of generalized quantifiers, that is,

(2-gen-rule)

α ⊢ γ11, . . . , γ1m1

...
α ⊢ γn1, . . . , γnmn

δ11, δ21, . . . , δn1 ⊢ β
δ12, δ21, . . . , δn1 ⊢ β

...
δ1m1

, δ21, . . . , δn1 ⊢ β
...

δ1m1
, δ2m2

, . . . , δnmn
⊢ β

2(γ11, δ11), . . . ,2(γnmn
, δnmn

) ⊢ 2(α, β)

It is easy to check that2-gen-ruleis valid in any of the consideredKripke model.
In fact, let us suppose that there is a pointx in a model such thatx  ¬2(α, β)
andx  2(γij , δij) for any1 ≤ i ≤ n and1 ≤ j ≤ mi; hence there must exist
in the model two pointsy andz, in relation withx, such thaty  α andz  ¬β;
theny 

∧

i=1...n

∨

j=1...mi
γij , and hence for alli = 1 . . . n, there is at least one

1 ≤ j ≤ mi such thaty  γij holds; hencez  δij , becausex  2(γij , δij), and
soz 

∧

i=1...n

∨

j=1...mi
δij which yieldsz  β; contradiction.

It is worth noting that2-monotonicityand2-antimonotonicityare special in-
stances of2-gen-rule. In fact, let us putmi = 1 for each1 ≤ i ≤ n andγij ≡ α

in the2-gen-rulerule, then we obtain

α ⊢ α ∧ . . . ∧ α δ1 ∧ . . . ∧ δn ⊢ β

2(α, δ1), . . . ,2(α, δn) ⊢ 2(α, β)

which is equivalent to2-monotonicity. And if we putn = 1, m1 = m and
δ1j ≡ β, then we obtain

α ⊢ γ1 ∨ . . . ∨ γm β ∨ . . . ∨ β ⊢ β

2(γ1, β), . . . ,2(γm, β) ⊢ 2(α, β)

which is equivalent to2-antimonotonicity.
Thus, after the completeness theorem 2.2,2-gen-rule is equivalent to2-

monotonicityand2-antimonotonicitytogether. But our interest in this rule is in
that by using it we do not need to use the cut-rule. The proof ofcut-eliminability
is almost standard, that is, it is by principal induction on the complexity of the cut-
formula and secondary induction on the length of the thread of the cut-formula.
The reductions to lower the length of the threads and those for lowering the com-
plexity of the cut-formula in the non-modal cases are standard. Thus, we consider
here only the case the cut-formula is2(α, β) and a modal rule is applied, that is,

α ⊢
∧

i

∨

ji
γiji

∧

i

∨

ji
δiji

⊢ β

{2(γiji
, δiji

)}i,ji
⊢ 2(α, β)

φ ⊢
∧

h

∨

kh
φhkh

∧

h

∨

kh
ψhkh

⊢ ψ

{2(φhkh
, ψhkh

)}h,kh
⊢ 2(φ, ψ)

{2(γiji
, δiji

)}i,ji
∪ ({2(φhkh

, ψhkh
)}h,kh

\ 2(α, β)) ⊢ 2(φ, ψ)



THE BINARY MODAL LOGIC OF THE INTERSECTION TYPES 13

In this case,α ⊢ A1 ∧ . . . ∧ An andφ ⊢ B1 ∧ . . . ∧ (Bh ∨ α) ∧ . . . ∧ Bm

whereA1 ≡
∨

j1
γ1j1 , . . . , An ≡

∨

jn
γnjn

andB1 ≡
∨

k1
φ1k1

, . . . , Bm ≡
∨

km
φmkm

. Hence,φ ⊢ B1; . . . ; φ ⊢ Bh, α; . . . ; φ ⊢ Bm. Then, by using a
cut on the formulaα, we obtain thatφ ⊢ Bh, A1 ∧ . . . ∧ An and hence we can
construct, by using no cut, a proof of

φ ⊢ B1 ∧ . . . ∧ (Bh ∨A1) ∧ . . . ∧ (Bh ∨An) ∧ . . . ∧Bm

In a similar way, fromA′
1 ∧ . . . ∧ A′

n ⊢ β andB′
1 ∧ . . . ∧ (B′

h ∨ β) ∧ . . . ∧
B′

m ⊢ ψ, whereA′
1 ≡

∨

j1
δ1j1 , . . . ,A′

n ≡
∨

jn
δnjn

andB′
1 ≡

∨

k1
ψ1k1

, . . . ,
B′

m ≡
∨

km
ψmkm

, we obtain both thatB′
1 ∧ . . . ∧ B′

h ∧ . . . ∧ B′
m ⊢ ψ and

that B′
1 ∧ . . . ∧ β ∧ . . . ∧ B′

m ⊢ ψ. Hence, by using a cut onβ, we obtain
B′

1∧ . . .∧A
′
1∧ . . .∧A

′
n ∧ . . .∧B′

m ⊢ ψ. Thus, by using no cut, we can construct
also a proof of

B′
1 ∧ . . . ∧ (B′

h ∨A′
1) ∧ . . . ∧ (B′

h ∨A′
n) ∧ . . . ∧B′

m ⊢ ψ

Then we can conclude; in fact, by using an instance of2-gen-rulewe obtain the
sequent in the conclusion of the application of the cut-rule, except for the non
essential repetition of some of the boxed assumptions.

2.3. Decidability and finite model property
Nice consequences of the theorem of cut-elimination that weproved in the

previous section 2.2 are decidability ofBK and the finite model property. These
results are an immediate consequence of the fact that a always terminating proce-
dure for looking for the derivability of any sequent which does not use the cut-rule
can be provided; and such a procedure is correct, that is, when it fails we can use
the proof tentative to build a finite counter-model for the non provable sequent.

The proof of this statement follows the general ideas of a cut-redundancy proof
(see for instance [16]) and we have only to add a special treatment for the modal
case like it has been done in [18] for the modal logicK. For this reason in this
section we assume to work with a set of double-sound rules forthe propositional
connectives. We mean that a rule is double-sound when the conclusion holds
if and only if all of the premises do. For instance a double-sound rule for the
introduction of the connective∧ is

Γ ⊢ α,∆ Γ ⊢ β,∆

Γ ⊢ α ∧ β,∆

becauseΓ ⊢ α∧ β,∆ does not hold if eitherΓ ⊢ α,∆ or Γ ⊢ β,∆ does not hold.
It is well known that a complete set of double-sound rules canbe provided for the
classical propositional calculus (see for instance [18]).

The decision strategy for the non-modal case is simply to apply any applicable
propositional rule. Since the premise(s) of each propositional rule is (are) strictly
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simpler than the conclusion, this search procedure is goingto arrive in a finite
number of steps at an axiom or at a sequent of the following shape:

p1, . . . , pr,2(α1, β1), . . . ,2(αn, βn) ⊢ 2(φ1, ψ1), . . . ,2(φm, ψm), q1, . . . , qs

(1)

wherep1, . . . , pr andq1, . . . , qs are propositional variables. If all of the leaves
of the search tree we arrived at in this way are axioms then oursearch procedure
stops with a success. On the other hand, let us suppose that wedid not arrive at an
axiom. To begin with a simple case let us first consider the case that the sequent
1 that we are examining is

p1, . . . , pr,2(α1, β1), . . . ,2(αn, βn) ⊢ q1, . . . , qs

that is, the casem = 0 and{p1, . . . , pr} ∩ {q1, . . . , qs} = ∅. In this case the
sequent can easily be falsified in the finite model({∗}, R, ν) defined on the one
element set{∗} by settingR = ∅ andν(p) = {∗} if and only if p ∈ {p1, . . . , pr}.

On the other hand, that is, when we consider the casem ≥ 1, the cut-elimination
theorem suggests that the sequent 1, provided it is not already an axiom, can only
be obtained by weakening from:

2(α1, β1), · · · ,2(αn, βn) ⊢ 2(φh, ψh) (2)

for some1 ≤ h ≤ m. Indeed, if we will be able to find a suitable indexh and
prove the corresponding sequent 2, then we will eventually obtain a proof of the
sequent 1 by using some instances of weakening. Of course, the problem will
be in proving that if, for no sequent like 2, for1 ≤ h ≤ m, a proof tentative is
successful then the sequent 1 is not valid and it can be falsified by using some
finite counter-model.

In general, a cut free proof of the sequent 2 should be obtained by an application
of the2-gen-ruleand the left premise of such a rule should have the following
shape:

φh ⊢
∧

A∈G

∨

j∈A

αj (3)

whereG is a suitable partition of the set{1, . . . , n}. But the sequent 3 is provable
if and only if, for anyA ∈ G, φh ⊢

∨

j∈A αj . So, in the search for the left
premise of the required2-gen-rulewe can consider only the following set of set
of indexes:

H = {A ⊆ {1, . . . , n}| φh ⊢
∨

j∈A

αj}

It is clear that all of the sequentsφh ⊢
∨

j∈A αj are simpler than the sequent 2
and thus we can assume to be able to decide on membership toH.
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Let us note that supposingH is empty, that is, supposing there is no subset
A ⊆ {1, . . . , n} such thatφh ⊢

∨

j∈A αj , yields in particular thatφh 6⊢ α1, . . . , αn

and hence, by inductive hypothesis, a finite model(M ′
h, R

′
h, ν

′
h) can be built which

contains a pointyh such thatyh  φh and, for all1 ≤ j ≤ n, yh  ¬αj .
Let us now observe that6⊢ ψh, otherwise the sequent 2 is obviously prov-
able by an instance of2-gen-rulewith premisesφh ⊢

∧

i=1...0,j=1...mi
αij and

∧

i=1...0,j=1...mi
βij ⊢ ψh. Then a finite model(M ′′

h , R
′′
h, ν

′′
h) can be built which

contains a pointzh such thatzh  ¬ψh. Thus a finite model(Mh, Rh, νh) which
falsifies the sequent 2 can be built by adding a new pointxh to M ′

h andM ′′
h , in

order to obtainMh = {x} ∪M ′
h ∪M ′′

h , and settingRh = {〈x, y, z〉} ∪R′
h ∪R′′

h

andνh = ν′h ∪ ν′′h .
So, let us continue under the assumption thatH 6= ∅. We will use in the sequel

the fact that in this case{1, . . . , n} ∈ H. If H 6= ∅, then if we would be able to
find a subsetG of H such that

∧

A∈G

∨

j∈A

βj ⊢ ψh (4)

then we would have found the required instance of2-gen-rule. And all of the
sequents 4 can be assumed to be decidable since they also are simpler than the
sequent 2.

It can be useful to note that the elements of the setH arenot a partition of
the set{1, . . . , n}, but this is not a real problem. In fact, the only difference in
the conclusion of the considered2-gen-rulewith respect to the sequent 2 is the
possible repetition of some of the boxed-formulas on the left hand side.

In order to conclude the proof of decidability ofBK, we have to show that if no
subsetG of H can be found such that the sequent 4 holds, then a finite counter-
model for the sequent 2 can be built. To this aim, we need some preliminary
lemmas. Let us consider the setF of all the functionsφ : H −→ {1, . . . , n} such
thatφ(A) ∈ A.

Lemma 2.4. Suppose no subsetG of H can be found such that the sequent 4
holds. Then there is a functionφ∗ ∈ F such that

∧

A∈H

βφ∗(A) 6⊢ ψh (5)

Proof. If no subsetG of H can be found which satisfies the condition in the
hypothesis, then in particular, namely, forG ≡ H, we have that

∧

A∈H

∨

j∈A

βj 6⊢ ψh
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Then, by distributivity we obtain

∨

φ∈F

∧

A∈H

βφ(A) 6⊢ ψh

Hence the result is immediate. �

The functionφ∗ that we pointed out in the previous lemma is useful for finding
a suitable subset of indexesB =

⋃

A∈H φ
∗(A) of the set{1, . . . , n} such that, by

induction on the complexity of the considered sequent,a finite model(M ′
h, R

′
h, ν

′
h)

can be built which contains a pointzh such that, for anyβi with i ∈ B, zh  βi

whereaszh  ¬ψh.
Note that to build a finite counter-model for the sequent 2 whenB = {1, . . . , n}

we need only to build a finite model(M ′′
h , R

′′
h, ν

′′
h) which contains a pointyh such

that yh  φh. Since the sequent 2 is clearly provable if⊢ ¬φh, and hence our
proof search would have stoped with a proof in this case, we can suppose, by
inductive hypothesis, to know how to build such a model.

The next lemma will show how to proceed in building the finite counter-model
for the sequent 2 when the set of indexesB is not{1, . . . , n}.

Lemma 2.5. SupposeB 6= {1, . . . , n} and setC = {1, · · · , n} \B. Then

φh 6⊢
∨

j∈C

αj (6)

Proof. Suppose the sequentφh ⊢
∨

j∈C αj is provable. ThenC ∈ H.
Consider now the functionφ∗ that we pointed out in the previous lemma 2.4.
Then, we get thatφ∗(C) ∈ C sinceφ∗ ∈ F whereas the very definition ofC
yields thatφ∗(C) 6∈ C. Contradiction. �

Thus, by inductive hypothesis, we can build a finite model(M ′′
h , R

′′
h, ν

′′
h) such

that there is a pointyh such that for anyαj , with j ∈ {1, . . . , n} \ B, yh  ¬αj

andyh  φh.
In order to build a finite counter-model(Mh, Rh, νh) for the sequent 2 we can

now put together the two models we built and add them a new point xh, that is,

Mh = {xh} ∪M
′
h ∪M ′′

h

and define the relationRh by setting

Rh ≡ {< xh, yh, zh >} ∪R
′
h ∪R′′

h

and the interpretationνh by setting, for anyw ∈Mh and any propositional variable
p,

w ∈ νh(p) if and only ifw ∈ ν′h(p) orw ∈ ν′′h(p)
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Let us go back now to the problem of the proof of the sequent 1 and let us suppose
that for no1 ≤ h ≤ m, the corresponding sequent 2 is provable, otherwise we
would have the required proof of the sequent 1. Then, for each1 ≤ h ≤ m,
we can construct as above the finite models(M ′

h, R
′
h, ν

′
h) and(M ′′

h , R
′′
h, ν

′′
h) with

suitable pointsyh andzh. Then in order to build a finite counter-model(M,R, ν)
for the sequent 1, it is sufficient to put all of these models together, that is, we
have to add a new pointx and connect it with all the couple(yh, zh). So,

M ≡ {x} ∪M ′
1 ∪M

′′
1 ∪ . . . ∪M ′

m ∪M ′′
m

R ≡ {〈x, y1, z1〉, . . . , 〈x, ym, zm〉} ∪R′
1 ∪R

′′
1 ∪ . . . ∪R′

m ∪R′′
m

ν(p) =

{

ν′1(p) ∪ ν
′′
1 (p) ∪ . . . ν′m(p) ∪ ν′′m(p) ∪ {x} if p ∈ {p1, . . . , pr}

ν′1(p) ∪ ν
′′
1 (p) ∪ . . . ν′m(p) ∪ ν′′m(p) otherwise

It is now obvious that the pointx falsifies the sequent 1. In fact, for each
p ∈ {p1, . . . , pr}, x  p holds by definition of the valuationν and, for1 ≤ i ≤ n,
x  2(αi, βi) since, for each1 ≤ h ≤ m and for eachyh andzh, if yh  αi

thenzh  βi. Finally, for noq ∈ {q1, . . . , qs}, x  q, again by definition of
the valuationν, and, for each1 ≤ h ≤ m, there are suitable pointsyh and
zh in M such thatR(x, yh, zh) holds andyh  φh andzh  ¬ψh and hence
x  ¬2(φh, ψh).

3. RELATIONS BETWEEN BK AND ≤∧

In this section we will prove thatBK furnishes a complete interpretation of the
subtype relation between types ofΛ∧. Let us begin by introducing the obvious
interpretation of types into modal formulas. To simplify the notation we assume
to use the same notation for variables for types ofΛ∧ and propositional variables
of BK.

Interpretation

I(α) = α for every type variableα
I(ω) = ⊤
I(α ∧ β) = I(α) ∧ I(β)
I(α→ β) = 2(I(α), I(β))

It is immediate to prove the validity of this interpretation.

Theorem 3.1. Let α and β be two types ofΛ∧. Then, ifα ≤∧ β then
I(α) ⊢ I(β).

Proof. The proof is almost straghtforward by induction on the length of the
proof ofα ≤∧ β. The result is almost immediate for the axioms and concerning
the rules almost no proof is necessary since the first and the second rule are valid
in both the deductive systems and we already proved the thirdone within the proof
of theorem 2.1. �
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To prove the other implication, namely, ifα 6≤∧ β thenI(α) 6⊢ I(β), even if
a straight proof is possible which uses the Kripke-like semantics of the previous
sections, we think that it is more interesting to pass throught the definition of a
different semantics both for the subtyping relation andBK.

Let us recall the definition ofapplicative structureandcombinatory algebra
(see [2]).

Definition 3.1. LetA be a set and· be a (partial) operation overA. Then
A ≡ (A, ·) is anapplicative structure. An applicative structure is acombinatory
algebra if the operation· is total and there are inA two elementsK andS such
that, for anyx, y, z ∈ A,K · x · y = x andS · x · y · z = x · y · (x · z).

It is well known that any combinatory algebra is functionally complete, that
is, for any termt[x1 . . . xn, x] overA there exists a termf [x1 . . . xn] such that
f [x1 . . . xn] · x = t[x1 . . . xn, x]. We will indicate the termf [x1 . . . xn] by ∆x.t.

Functional completeness can be used to show that, given any combinatory
algebraA, any mapη : Var → A can be extended to an interpretation of the terms
of the pure lambda calculusΛ intoA, which respectsβ-reduction. In fact we can
first define an interpretation(−)∗ of λ-terms into terms overA by setting

(x)∗ = x

(t(u))∗ = (t)∗ · (u)∗

(λx.t)∗ = ∆x.(t)∗

and then instantiate such terms by extendingη to all terms by settingη(a) ≡ a,
for all elementa ∈ A, andη(a · b) ≡ η(a) · η(b).

We will write (A, η) to mean theλ-model built over the combinatory algebra
A by using the interpretationη.

Given any combinatory algebraA, the types ofΛ∧ can be interpreted into
subsets ofA by extending any mapν : BasicType → P(A) by setting

ν(ω) ≡ A

ν(α ∧ β) ≡ ν(α) ∩ ν(β)
ν(α→ β) ≡ {x ∈ A| (∀y ∈ ν(α)) x · y ∈ ν(β)}

It is easy to check the following theorem.

Theorem 3.2. Let α andβ be two types ofΛ∧. Thenα ≤∧ β if and only
if for any combinatory algebraA and any interpretationν of the types ofΛ∧,
ν(α) ⊆ ν(β).

A λ-model(A, η) can be combined with an interpretationν for the types of
Λ∧ in order to obtain a model for the extended intersection typesystem that was
introduced in the end of section 1.
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Definition 3.2. Let (A, η) be aλ-model andν be an interpretation of the
types ofΛ∧ into subsets ofA. Then aΛ≤∧

-model(A, η, ν) is defined by setting

(A, η, ν) � c : α iff η(c) ∈ ν(α)
(A, η, ν) � Γ iff for all (x : α) ∈ Γ, η(x) ∈ ν(α)

Then

Γ � c : α iff for all Λ≤∧
-model(A, η, ν) if (A, η, ν)  Γ then(A, η, ν)  c : α

It is now possible to prove the following theorem (see [3]).

Theorem 3.3. Λ≤∧
-models are a valid and complete semantics for the ex-

tended intersection type system, that is,

Γ ⊢≤∧
c : α if and only ifΓ � c : α

In a similar way, applicative structures can be used to give an interpretation to
the formulas ofBK. We need only to extend to all of the classical connectives
what we already did for∧.

Definition 3.3. Let A be an applicative structure. Then, any mapν from
the propositional variables ofBK into subsets ofA can be inductively extended to
an interpretation of the formulas ofBK by setting:

ν(⊤) = A

ν(⊥) = ∅
ν(α ∧ β) = ν(α) ∩ ν(β)
ν(α ∨ β) = ν(α) ∪ ν(β)
ν(¬α) = A \ ν(α)
ν(α→ β) = (A \ ν(α)) ∪ ν(β)
ν(2(α, β)) = {x ∈ A| for all y ∈ ν(α), if x · y is defined thenx · y ∈ ν(β)}

It is not difficult to use the proof of decidability in the previous section in order
to obtain a proof of validity and completeness for the semantics of the applicative
structures.

Theorem 3.4. LetΓ ⊢ ∆ be any sequent ofBK. ThenΓ ⊢ ∆ is provable if
and only if, for every applicative structureA and every valuationν of the formulas
of BK intoA,

⋂

α∈Γ ν(α) ⊆
⋃

β∈∆ ν(β).

Proof. We will show the proof of the validity for the only rule whose proof is
not completely straightforward, that is, the2-rule. Let us suppose thatν(α) ⊆
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⋃

i=1...n ν(αi) and that
⋂

j=1...m ν(βj) ⊆ ν(β). Then, we have to show that
⋂

i=1...n,j=1...m ν(2(αi, βj)) ⊆ ν(2(α, β)). To this aim, let us suppose that
x ∈

⋂

i=1...n,j=1...m ν(2(αi, βj)), that is, for anyi = 1 . . . n, j = 1 . . .m
and y ∈ αi, if x · y is defined then it belongs toβj, and let us assume that
y ∈ ν(α). Thenν(α) ⊆

⋃

i=1...n ν(αi) yields that there exists1 ≤ i ≤ n such
that y ∈ ν(αi) and hence we obtain that for anyj = 1 . . .m, providedx · y is
defined,x · y ∈ ν(βj). Hence, providedx · y is defined,

⋂

j=1...m ν(βj) ⊆ ν(β)
yields thatx · y ∈ ν(β).

Let us consider now completeness. First observe that the finite counter-model
(M,R, ν) that we provided in section 2.3 for any non provable sequent was built
in such a way that for everyx andy in M there exists at most one elementz

in M such thatR(x, y, z) holds. Then, supposingΓ 6⊢ ∆, define an applicative
structureA by settingA ≡ M andx · y = z if and only ifR(x, y, z). Then it is
easy to check that for the interpretation defined by setting,for any propositional
variablep, ν(p) ≡ {x| x  p},

⋂

α∈Γ ν(α) ⊆
⋃

β∈∆ ν(β) holds. �

It is now possible to estabilish the conservativity theoremthat we were looking
for.

Corollary 3.1. SupposeI(α) ⊢ I(β). Thenα ≤∧ β.

Proof. Let us suppose thatα 6≤∧ β. Then there exists aλ-model(A, ν) such
thatν(α) 6⊆ ν(β). It is easy to check thatν can be extended to a valuation of the
formulas ofBK such thatν(I(α)) 6⊆ ν(I(β)). Hence thevalidity part of theorem
3.4 shows thatI(α) 6⊢ I(β). �

4. CONCLUSION AND OPEN PROBLEMS

The new semantics that we proposed forBK seems to suggest that this logic
extands in a natural way the subtyping relation≤∧. Unfortunately the complete-
ness theorem 3.4 holds only if we let the algebraA vary over all the applicative
structures and not only over the combinatory algebras; indeed the algebras used
in the proof of the completeness theorem 3.4 is far from beinga combinatory
algebra. Thus, a question naturally arises:”Is it possibleto define a complete
sequent calculus for the sub-logic ofBK defined by the set of formulas which are
valid in all the combinatory algebras?”.

An answer to this question would be a great progress in the direction towards the
setting of a type system for theλ-calculus which extends intersection types with
a∨ constructor, that is, the syntactical counterpart of the operation of union, and
also with a¬ constructor, that is, the counterpart of the operation of complement.
In fact, the subtyping relation for this type system would extend with negation the
subtyping relationΞ proposed in [1].
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