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Abstract

We prove that unary formal topologies are exponentiable in the cat-
egory of inductively generated formal topologies. From an impredicative
point of view, this means that algebraic dcpos with a bottom element are
exponentiable in the category of open locales.
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1 Introduction

Formal topology is nowadays recognized like one of the main approaches to the
development of constructive topology, where by constructive we mean both intu-
itionistic and predicative. Many results of classical and impredicative topology
have been already studied, and found their place in a predicative framework, by
using formal topology (see [Sam03] for an updated overview on formal topol-
ogy). Moreover, the category FTop of formal topologies and continuous relations
is a predicative presentation of the category OpLoc of open locales (see [JT84])
and the category FTop− of formal topologies without positivity predicate is a
predicative presentation of the category Loc of locales (see [Joh82]).

In this paper, we begin to study a full sub-category of FTop, that is, the
category FTopi of the inductively generated formal topologies (see [CSSV03]).
We consider such a category instead of FTop because it is predicatively known
to be cartesian while FTop is not, even if these categories are equivalent from an
impredicative point of view. In particular, we show that unary topologies (see
section 2.7) are exponentiable within FTopi. Our proof is intuitionistically valid
but not yet entirely predicative since the co-inductive definition of the positiv-
ity predicate for the exponent topology that we propose is, at present, justified
only by using Tarski fixed-point theorem. However, as a consequence of our
result, one gets an entirely predicative proof that unary formal topologies are
exponentiable in the category FTopi

− of inductively generated formal topolo-
gies without the positivity predicate. Since, from an impredicative point of
view, unary topologies essentially correspond to algebraic dcpos with a bottom
element, our result states that algebraic dcpos are exponentiable in OpLoc.

The question of characterizing exponentiable topologies has a long history
in the development of topology. It is well known that the category Top of
topological spaces and continuous functions is not cartesian closed. In fact,
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the topological spaces that can be exponentiated in Top are only those whose
frames of open sets are locally compact locales (for an overview on the topic see
[EHar]). This result was reproduced by Hyland in the context of the intuition-
istic but impredicative theory of locales by showing that in Loc only the locally
compact locales can be exponentiated [Hyl81]. Later, his proof of exponentia-
tion was adapted to the language of formal topology, but still working within
an impredicative setting (see [Sig95]). More recently, Vickers reproduced most
of Hyland’s results by using geometric reasoning (see [Vic01]).

We think that our main contribution in proving exponentiation of unary
topologies in FTopi is a detailed analysis of the conditions characterizing contin-
uous relations between a unary formal topology and an inductively generated
one. In fact, after this analysis, the axioms defining the cover on the exponent
topology and its corresponding positivity predicate emerge naturally.

In order to obtain a self contained paper we decided to begin our presentation
with a section containing the main definitions and results on formal topologies
and their maps. Indeed, it is still difficult to find a complete introduction to the
topic and some of the definitions and results appear here for the first time.

2 Formal topologies and their morphisms

In this section the basic definitions of formal topology will be quickly recalled.
The reader interested to have more details on formal topology and a deeper
analysis of the foundational motivations for the formal development of topology
within Martin-Löf’s constructive type theory [NPS90, Mar84] is invited to look,
for instance, at the updated overview in [Sam03].

2.1 Concrete topological spaces

We start by recalling how to describe predicatively a topological space. Let X be
a set. Then (X, Ω(X)) is a topological space if Ω(X) is a subset of P(X) which
contains ∅ and X and is closed under finite intersection and under arbitrary
union. The quantification implicitly used in this last condition is of the third
order, since it says that, for all F ⊆ Ω(X),

⋃
F ∈ Ω(X). We can “go down”

one step by thinking of Ω(X) as a family of subsets indexed by a set S through
a map ext : S → P(X). Indeed, we can now quantify on S rather than on
Ω(X). But, we have to say that, for all U ∈ P(S) there exists c ∈ S such that
∪aεUext(a) = ext(c), which is still impredicative1. We can “go down” another
step by defining opens to be of the form Ext(U) ≡ ∪aεUext(a) for an arbitrary
subset U of S. In this way ∅ is open, because Ext(∅) = ∅, and closure under
union is automatic, because obviously ∪i∈IExt(Ui) = Ext(∪i∈IUi). So, all we

1All the set-theoretical notions that we use conform to the subset theory for Martin-Löf’s
type theory as presented in [SV97]. In particular, we use the symbol ∈ for the membership
relation between an element and a set or a collection and ε for the membership relation
between an element and a subset, which is never a set but a propositional function, so that
aεU holds if and only if U(a) holds.
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have to do is to require that Ext(S) is the whole X and closure under finite
intersections, that is,

(∗) (∀a, b ∈ S)(∀x ∈ X) (xεext(a) ∩ ext(b) →
(∃c ∈ S) (xεext(c) & ext(c) ⊆ ext(a) ∩ ext(b)))

It is not difficult to realize that this amounts to the standard definition saying
that {ext(a) ⊆ X | a ∈ S} is a base (see for instance [Eng77]).

We can make (∗) a bit shorter by introducing the abbreviation

a ↓ b ≡ {c : S | ext(c) ⊆ ext(a) & ext(c) ⊆ ext(b)}

so that it becomes (∀a, b ∈ S) ext(a) ∩ ext(b) ⊆ Ext(a ↓ b). Now, note that
cεa ↓ b implies that ext(c) ⊆ ext(a) ∩ ext(b), so that Ext(a ↓ b) ≡ ∪cεa↓bext(c) ⊆
ext(a) ∩ ext(b). Thus we arrived at the definition of concrete topological space.

Definition 2.1 (Concrete topological space) A concrete topological space
is a triple X ≡ (X, S, ext) where X and S are sets and ext is a map from S to
P(X) satisfying:

(B1) X = Ext(S)

(B2) (∀a, b ∈ S) ext(a) ∩ ext(b) = Ext(a ↓ b)

2.2 Formal topologies

The notion of formal topology arises by describing, as well as possible, the
structure induced by a concrete topological space (X, S, ext) on the set S, and
then by taking the result as an axiomatic definition. The reason for such a
move is that the definition of concrete topological space is too restrictive given
that in the most interesting cases of topological space we do not have, from a
constructive point of view, a set of points to start with2.

Since the elements in S are names for the basic opens of the topology on X,
and any open set is the union of basic opens, we can specify an open set A by
using the subset UA of all the (names of the) basic opens which are used to form
it, that is, A = Ext(UA). However, it is clear that in general it is well possible
that two different subsets of S have the same extension. Thus, we don’t have a
bijective correspondence between concrete opens and subsets of S and we need
to introduce an equivalence relation if we want to obtain it. What we need is
a relation which identifies the subsets U and V when Ext(U) = Ext(V ). The
following lemma gives the correct hint.

Lemma 2.2 Let U and V be subsets of S. Then Ext(U) = Ext(V ) if and only
if, for all a ∈ S, ext(a) ⊆ Ext(U) ↔ ext(a) ⊆ Ext(V ).

2Here we commit ourselves to Martin-Löf’s constructive set theory; hence we distinguish
between sets, which can be inductively generated, and collections.
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Thus, in order to define the equivalence relation among subsets of S that
we are looking for, we need to introduce a new proposition a C U between an
element a and a subset U of S whose intended meaning is that ext(a) ⊆ Ext(U).
Indeed, provided we are able to formalize such a relation with no reference to
the elements of X, we can define the equivalence relation over the subsets of S
that we are looking for by putting

U =C V ≡ (∀a ∈ S) a C U ↔ a C V

Now, we can simply state that a formal open is the “fullest” among the
subsets which have the same extension, that is, for any subset U , we choose

C(U) ≡ {a ∈ S | a C U}

In fact, it is possible prove that C (U) =C U by using the following valid
conditions on C:

(reflexivity)
aεU

a C U
(transitivity)

a C U U C V

a C V

where U C V is a short-hand for a derivation of u C V under the assumption
that uεU .

Thus, we found a relation, that is, C, and two conditions over it, that is,
reflexivity and transitivity, which allow to deal with concrete open subsets by
using only the subsets of S. But these conditions are not sufficient to describe
completely the concrete situation; for instance there is no condition which de-
scribe formally the conditions (B1) and (B2).

Now, (B1) states that, for any x ∈ X, there exists an element a ∈ S such
that xεext(a). The easiest way to meet such a condition is to require that there
is an element > in S such that X = ext(>). It is clear that such a condition
is not necessary, but, on the other hand, it does introduce no real constrain on
any concrete topological space. We can now formulate (B1) within the formal
side by requiring that, for any a ∈ S,

a C {>}

To formulate (B2) within the formal side, we can use the fact that

Ext(U) ∩ Ext(V ) ⊆ Ext(U ↓ V )

where U ↓ V ≡ {a ∈ S | ((∃uεU) ext(a) ⊆ ext(u)) & ((∃vεV ) ext(a) ⊆ ext(v))}.
Now, let us suppose ext(a) ⊆ Ext(U) and ext(a) ⊆ Ext(V ), then we immediately
obtain ext(a) ⊆ Ext(U) ∩ Ext(V ) and hence ext(a) ⊆ Ext(U ↓ V ). Its formal
counterpart is

(↓-right)
a C U a C V

a C U ↓ V

where U ↓ V ≡ {c ∈ S | (∃uεU) c C {u} & (∃vεV ) c C {v}}.
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To express constructively the fact that a basic open subset is inhabited it
is convenient3 to introduce also a second primitive predicate, called Pos(−), on
the elements of S. Its intended meaning is that, for any a ∈ S, Pos(a) holds
if and only if there exists x ∈ X such that xεext(a). We require the following
conditions on this predicate.

(monotonicity)
Pos(a) a C U

(∃uεU) Pos(u)

(positivity)
Pos(a) → a C U

a C U

While the meaning of monotonicity is obvious and the proof of its validity
in any concrete topological space is immediate, positivity may require some
explanation. It states two things in one condition: first, that a not-inhabited
basic open subset is covered by any subset, second that proof by cases on the
positivity of a are valid when the conclusion is a C U (see [SVV96]). The proof
of validity of positivity is straightforward and it uses only intuitionistic logic.

It is worth noting that, provided that there exists a positive element a ∈ S,
monotonicity yields Pos(>) since a C {>}.

We thus arrived at the main definition.

Definition 2.3 (Formal topology) A formal topology is a structure S ≡
(S,>,C,Pos) where S is a set, > is a distinguished element of S, C is an infini-
tary relation, called cover relation, between elements and subsets of S satisfying
the following conditions:

(top-element) a C {>}

(reflexivity)
aεU

a C U

(transitivity)
a C U U C V

a C V

(↓-right)
a C U a C V

a C U ↓ V

and Pos is a predicate over S satisfying the following conditions:

(monotonicity)
Pos(a) a C U

(∃uεU) Pos(u)

(positivity)
Pos(a) → a C U

a C U

It is useful to recall the following equivalent formulations of the positivity
condition that we will often use in the next sections (see [Sam87]). To state
them, given any predicate Pos(−) over elements of S and any subset U of S, we
write U+ to mean the subset {x ∈ S | xεU & Pos(x)}.

3All what appears from here on can be developed as well with no reference to the positivity
predicate that we introduce now. The reader who prefers to work without it can just skip the
parts where it appears, or, better, to specialize all the results to the case of an always true
positivity predicate.
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Proposition 2.4 Let S be a set, C be a relation between elements and subsets of
S which satisfies reflexivity and transitivity and Pos be a predicate on elements
of S. Then, the following conditions are equivalent:

1. (positivity) for any a ∈ S and U ⊆ S, Pos(a) → a C U yields a C U ;

2. (axiom positivity) for any a ∈ S, a C {a}+;

3. (cover positivity) for any a ∈ S and U ⊆ S, a C U yields a C U+.

The first consequence of the previous proposition is the following theorem
which shows that the cover relation uniquely determines the positivity predicate.

Theorem 2.5 Let − C − be a cover relation over a set S and Pos1(−) and
Pos2(−) be two positivity predicates with respect to such a cover. Then Pos1(−)
and Pos2(−) are equivalent, namely, for any a ∈ S, Pos1(a) if and only if
Pos2(a).

Proof. By the positivity axiom, for every a ∈ S, a C a+2 , where a+2 is a
shorthand for the subset {x ∈ S | x = a & Pos2(x)}. Now, let us assume
Pos1(a); then, by monotonicity, there exists xεa+2 such that Pos1(x) holds.
But xεa+2 means both that x = a and Pos2(x) hold and hence Pos2(a) follows.
Thus, by discharging the assumption Pos1(a), we proved that Pos1(a) yields
Pos2(a). In a completely analogous way we can prove the other implication.

The definition of formal topology that we recalled here is almost identical
to the one in [CSSV03]. In fact, the only difference rests in the presence of the
top element and the corresponding axiom. In general many of the results in the
paper can be obtained also by using the definition in [CSSV03]. However, the use
of the top element seems to be unavoidable when dealing with exponentiation;
anyhow we will try to restrict its usage only to the cases where we think that it
is convenient or necessary.

On the other hand, the definition that we proposed here differs more deeply
from the one in [Sam87]; indeed there the notion of formal topology is introduced
starting from a base closed under a monoid operation which is then lifted at the
level of subsets in order to describe the intersection between open subsets. In
any case, both definitions allow a predicative presentation of frames.

2.3 Formal points

When working in formal topology one is in general interested to those proper-
ties of a concrete topological space (X, S, ext) which make no reference to the
elements of X. Thus, (s)he is dispensed of the collection X and it is possible
to work by using the set S only. But this does not mean that points are out of
reach. In fact, a point x ∈ X can be identified with the filter of the basic opens
that, in the concrete case, contain x itself. So, we can associate to any x ∈ X,
the following subset of S

αx ≡ {a ∈ S | xεext(a)}

7



Now, note that from a topological point of view we can see only those points
which can be distinguished by using the open sets and hence we are led to
identify the concrete point x with the subset αx.

If we want to move to the formal side, we have to find those properties which
characterize such subsets and are expressible in our language. Here we point
out the following ones:

(point inhabitance) (∃a ∈ S) aεαx

(point convergence)
aεαx bεαx

(∃cεa ↓ b) cεαx

(point splitness)
aεαx ext(a) ⊆ Ext(U)

(∃uεU) uεαx

(point positivity)
aεαx

(∃x ∈ X) xεext(a)

In fact, point inhabitance is an obvious corollary of the condition B1, point
convergence is an immediate consequence of the condition B2, and point splitness
and point positivity follows by logic. Thus, we are led to the following definition.

Definition 2.6 (Formal point) Let (S, C,Pos) be a formal topology. Then an
inhabited subset α of S is a formal point if, for any a, b ∈ S and any U ⊆ S, it
satisfies the following conditions:

(point convergence)
aεα bεα

(∃cεa ↓ b) cεα

(point splitness)
aεα a C U

(∃uεU) uεα

As observed by Peter Aczel, we can avoid to require the condition of point
positivity, namely, that Pos(a) is a consequence of aεα, since it can be proved
by using point splitness. In fact, we know that a C a+ and hence if, for some
point α, aεα then point splitness shows that there exists some element x in a+

such that xεα. Then x = a and Pos(x) hold and hence Pos(a) follows.
It is worth noting that, by top-element and point splitness, the requirement

that a point is inhabited is equivalent to the following condition:

(point inhabitance) >εα

In the following we call Pt(S) the collection of formal points of the formal
topology S. We can give Pt(S) the structure of a topological space if we mimic
the situation of a concrete topological space even if Pt(S) is a collection and not
a set. So, let us set, for any a ∈ S,

extPt(a) ≡ {α ∈ Pt(S) | aεα}

and use the set-indexed family (extPt(a))a∈S as a base for a topology on Pt(S).
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2.4 Continuous relations

In this section we report and explain the conditions defining continuous relations
between formal topologies. The notion of continuous relation essentially goes
back to the notion of frame morphism in [Sam87]. The explanations motivating
the definition of continuous relations are based on the work by Valentini and
Virgili [Vir90] in collaboration with Sambin and, later, with Gebellato.

A map between the topological space X and the topological space Y is a
function φ : X → Y such that, for any basic open subset B in Y, the subset
φ−1(B) ≡ {x ∈ X | φ(x) ∈ B} is an open set of X . If we write this condition for
the concrete topological spaces (X, S, ext1) and (Y, T, ext2) we obtain that the
condition for a function φ : X → Y to be continuous becomes

(∀b ∈ T )(∃U ⊆ S) φ−1(ext2(b)) = Ext1(U)

There is only one possible constructive meaning for this sentence, that is, there
exists a map

←
F : T → P(S) such that, for any b ∈ T , Ext1(

←
F (b)) is equal to

φ−1(ext2(b)). Since Ext1({a ∈ S | ext1(a) ⊆ φ−1(ext2(b))}) is always contained
in φ−1(ext2(b)), the continuity requirement rests in the fact that φ−1(ext2(b))
is contained in Ext1({a ∈ S | ext1(a) ⊆ φ−1(ext2(b))}). Hence, the best possible
definition is to state that

←
F (b) is the subset of all the basic opens a ∈ S such that

ext1(a) is contained in φ−1(ext2(b)), that is, the image through φ of any point in
the basic open ext1(a) is in the basic open ext2(b). Thus, the formal counterpart
of a continuous function φ between X and Y is a relation F between elements
of S and elements of T such that a F b holds if and only if aε

←
F (b). So to find a

completely formal characterization of the notion of continuous function between
topological spaces we have to express the condition above with no reference to
the elements of X and Y .

In solving this problem we will use also an equivalent formulation of con-
tinuity, namely, that a function φ between the concrete topological spaces
(X, S, ext1) and (Y, T, ext2) is continuous if and only if,

(∀b ∈ T )(∀x ∈ X) φ(x)εext2(b) →
(∃a ∈ S) xεext1(a) & (∀z ∈ X) zεext1(a) → φ(z)εext2(b)

that can by simplified in

(∀b ∈ T )(∀x ∈ X) φ(x)εext2(b) → (∃a ∈ S) xεext1(a) & aFb

provided that −F − is the relation associated to φ that we want to characterize.
Now we look for suitable conditions, that do not rely on the presence of the

set of concrete points in order to be formulated, and express that the relation
F is the formal counterpart of a continuous function. To achieve this result
we will proceed as follows. First, we will define a function φF from Pt(S) to
Pt(T ) associated with the relation F . Then, we will look for the conditions on
F which are both expressible in the language of formal topologies and allow to
prove that φF is a continuous function from Pt(S) to Pt(T ). And finally, we
will check the validity of such conditions in every concrete topological space.
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So, let us suppose that F is a relation between two formal topologies. Then
we want to define a continuous map φF from Pt(S) to Pt(T ) such that a F b
holds if and only if, for any formal point α ∈ Pt(S), if α ∈ extPt

1 (a) then
φF (α) ∈ extPt

2 (b).
An immediate consequence of this requirement is that if aFb and aεα then

φF (α) ∈ extPt
2 (b). Now, aεα means that α ∈ extPt

1 (a) and φF (α) ∈ extPt
2 (b)

means that bεφF (α). Hence, provided that we write
→
F (a) to mean the subset

{b ∈ T | aFb}, we have that ⋃
aεα

→
F (a) ⊆ φF (α)

On the other hand, the continuity of φF means that

(∀b ∈ T )(∀α ∈ Pt(X)) φF (α)εextPt
2 (b) → (∃a ∈ S) αεextPt

1 (a) & aFb

and hence if bεφF (α) then there exists aεα such that aFb, that is,

φF (α) ⊆
⋃
aεα

→
F (a)

Thus, we are forced to the following definition

φF (α) ≡
⋃
aεα

→
F (a)

Note that this definition guarantees that, if φF is a function from Pt(S) to
Pt(T ), then it is continuous. Hence, we only have to look for the conditions
which make φF be a function between formal points, that is, the image φF (α)
of a formal point α of S is a formal point of T .

To begin with, we have to prove that φF (α) is inhabited, namely, that there
exists b ∈ T such that, for some aεα, aFb holds. Now, we know that the point
α is inhabited and hence in order to obtain the result it is sufficient to require

(function totality) (∀a ∈ S)(∃b ∈ T ) aFb

Indeed, suppose cεα. Then (∀a ∈ S)(∃b ∈ T ) aFb yields trivially that there
exists b ∈ T such that cFb. Now, we have to check that function totality is
valid for any concrete topological space. So, let us assume that (X, S, ext1)
and (Y, T, ext2) are two concrete topological spaces, φ is a continuous map from
X to Y and F is a relation between S and T such that aFb if and only in
(∀x ∈ X) xεext1(a) → φ(x)εext2(b). Then we have to show that, for all a ∈ S,
there exists b ∈ T such that, for all x ∈ X, if xεext1(a) then φ(x)εext2(b). Since
we assumed that each base contains a top element, the easiest way to satisfy
function totality is by considering the top element of T . Indeed, for any element
y ∈ Y , yεext2(>T ), and hence in particular φ(x)εext2(>T ). Later we will show
an equivalent condition whose justification does not require the presence of the
top element.
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The second condition that we have to verify is that, supposing bεφF (α) and
dεφF (α), there exists kεb ↓ d such that kεφF (α). To obtain this result it is
sufficient to require the following two conditions:

(function weak-saturation)
a CS c cFb

aFb

(function convergence)
aFb aFd

a CS F−(b ↓ d)

where, for any subset V of T , F−(V ) ≡ {c ∈ S | (∃vεV ) cFv}. In fact bεφF (α)
and dεφF (α) yield that there are aεα and cεα such that aFb and cFd, and
hence by point convergence there is also eεa ↓ c, namely, e C a and e C c, such
that eεα. So, by using function weak-saturation, we obtain both eFb and eFd,
which, by function convergence, yield e C F−(b ↓ d). Then, by point splitness,
(∃hεF−(b ↓ d)) hεα, that is, there exists kεb ↓ d such that kεφF (α). Also in
this case it is necessary to check that the two required conditions are valid. In
fact, it is easy to check that the following generalization of weak-saturation

(function saturation)
a CS W (∀wεW ) wFb

aFb

is an immediate consequence, by intuitionistic logic, of the condition linking F
and φF . Thus, let us prove the validity of function convergence. Suppose x ∈ X
and xεext1(a), then aFb yields φ(x)εext2(b) and aFd yields φ(x)εext2(d); then,
by (B2), there exists kεb ↓ d such that φ(x)εext2(k). Finally, continuity of φ
yields that there exists h ∈ S such that xεext1(h) and hFk, that is, hεF−(b ↓ d).

The third condition for φF (α) being a formal point is that, if bεφF (α) and
b C V , then there exists vεV such that vεφF (α). The necessary condition is

(function continuity)
aFb b CT V

a CS F−(V )

Indeed, bεφF (α) yields that there is aεα such that aFb and hence function
continuity, together with point splitness, yields that there exists cεF−(V ) that
is also an element of α, i.e., there is vεV such that cFv and cεα. The proof
of validity of this condition is immediate. Indeed, suppose that both aFb and
b C V hold. Then, for all x ∈ X, xεext1(a) yields φ(x)εext2(b) and, for all
y ∈ Y , yεext2(b) yields that there exists vεV such that yεext2(v). Thus, for any
xεext1(a), there is vεV such that φ(x)εext2(v) and hence, by continuity of φ,
there is c ∈ S such that xεext1(c) and cFv.

So, we have finished to look for the conditions that make φF a well-defined
function between Pt(S) and Pt(T ). Hence, we can give the following definition
of continuous relation between formal topologies.

Definition 2.7 (Continuous relation) Suppose that S = (S,>S ,CS ,PosS)
and T = (T,>T ,CT ,PosT ) are two formal topologies. Then a continuous rela-
tion between S and T is a binary proposition aFb, for a ∈ S and b ∈ T , such
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that the following conditions are satisfied:

(function totality) (∀x ∈ S)(∃y ∈ T ) xFy

(function convergence)
aFb aFd

a CS F−(b ↓ d)

(function saturation)
a CS W (∀wεW ) wFb

aFb

(function continuity)
aFb b CT V

a CS F−(V )

Note that the definition of continuous relation above is obtained from the
definition of frame morphism expressed in terms of relation in [Sam87] by taking
the opposite relation and adapting the condition of function convergence to our
setting.

An immediate consequence of the definition is the following lemma.

Lemma 2.8 Let S and T be formal topologies and F be a continuous relation
between them. Then, if V CT W then F−(V ) CS F−(W ).

Proof. Suppose xεF−(V ). Then, there exists vεV such that xFv and hence
V C W yields immediately x C F−(W ) by function continuity.

Let us recall here also the following standard result on relation composition.

Lemma 2.9 Let S, T and U be three formal topologies, and F and G be rela-
tions between S and T and T and U respectively. Then, for any W ⊆ U ,

F−(G−(W )) = (G ◦ F )−(W )

where by G◦F we mean the operation of composition between relations, namely,
s G ◦ F u holds if and only if there exists t ∈ T such that s F t and t G u.

We want to prove now that formal topologies form a category with respect
to continuous relations. The main problem is to define a suitable operation
of composition between continuous relations. The first and naive idea is of
course to define composition of continuous relations as relation composition but
unfortunately relation composition of two continuous relations is not continuous
because in general it does not satisfy function saturation. Indeed, we can prove
only the following lemma.

Lemma 2.10 Given a continuous relation F between S and T and a contin-
uous relation G between T and U , G ◦ F satisfies function totality, function
convergence and function continuity.

Proof. Let us check that the various conditions hold.

• (function totality) Let x ∈ S. Then, by function totality for F , there exists
y ∈ T such that xF y holds. Then, by function totality for G, there exists
z ∈ U such that y G z holds. Hence, xG ◦ F z follows.
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• (function convergence) Suppose a G ◦ F c1 and a G ◦ F c2. Then, there
exist b1, b2 ∈ T such that a F b1 & b1 G c1 and a F b2 & b2 G c2.
Thus a C F−(b1 ↓ b2). So a C (G ◦ F )−(c1 ↓ c2) follows by transitivity
since F−(b1 ↓ b2) C (G ◦ F )−(c1 ↓ c2). Indeed, b1 ↓ b2 C G−(c1 ↓ c2)
holds because for every xεb1 ↓ b2 we get x G c1 and x G c2 by weak-
saturation from b1 G c1 and b2 G c2. Hence we can obtain F−(b1 ↓ b2) C
(G ◦ F )−(c1 ↓ c2) by applying first lemma 2.8 and then lemma 2.9.

• (function continuity) Suppose a G ◦ F c and c C W . Then there exists
y ∈ T such that a F y and y G c and hence y C G−(W ) by continuity
of G. But this yields a C (G ◦ F )−(W ) by continuity of F since for any
W ⊆ U , F−(G−(W )) = (G ◦ F )−(W ) by lemma 2.9.

The following proposition can be used to fix the problem of the missing
condition.

Proposition 2.11 Let S and T be two formal topologies and suppose that F is
a relation which satisfies all the conditions for a continuous relation except for
saturation which is replaced by weak-saturation. Then

aFCb ≡ a CS {c ∈ S | cFb}

is the minimal continuous relation which extends F .

Proof. In the proof we will often use the fact that, for any W ⊆ T ,

F−(W ) ⊆ (FC)−(W )

which can be proved as follows. Suppose that aFb, then aFCb follows because
aFb yields aε{c ∈ S | cFb} and hence a C {c ∈ S | cFb} follows by reflexivity.
Now, suppose sεF−(W ); then there exists wεW such that sFw and so sFCw
follows, that is, sε(FC)−(W ).

Now, let us check that all of the conditions for FC being a continuous relation
hold.

• (function totality) Let x ∈ S. Then, by function totality for F , there is
y ∈ T such that xFy. Hence the result follows immediately since xFy
yields xFCy.

• (function convergence) Let us suppose a FC b and a FC d. This means
that a C {c ∈ S | cFb} and a C {e ∈ S | eFd}. Then a C {c ∈ S | cFb} ↓
{e ∈ S | eFd}, that is,

a C {x ∈ S | ((∃c ∈ S) x C c & cFb) & ((∃e ∈ S) x C e & eFd)}

follows by ↓-right. So a C {x ∈ S | xFb & xFd} follows by weak-saturation
and hence we get a C {x ∈ S | x C F−(b ↓ d)} by convergence. Thus
a C F−(b ↓ d) follows by transitivity and hence a C (FC)−(b ↓ d).
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• (function saturation) Assume a C W and (∀wεW ) wFCb. Then, for all
wεW , w C {x ∈ S | xFb} and hence a C {x ∈ S | xFb}, that is aFCb,
follows by transitivity.

• (function continuity) Suppose aFCb and b C V . Then a C {x ∈ S | xFb}.
Now, for any x ∈ S such that xFb, x C F−(V ) follows by continuity for
F . Hence a C F−(V ) follows by transitivity and so a C (FC)−(V ).

Assume now that G is any continuous relation which contains F and suppose
that a FC b holds. Then a C {x ∈ S | x F b} and hence a C {x ∈ S | x G b}
follows since G contains F . Hence a G b follows by saturation for G. Thus FC

is the minimal continuous relation containing F .

Corollary 2.12 Let S, T and U be formal topologies and F be a continuous
relation between S and T and G be a continuous relation between T and U .
Then the relation F ∗G defined by setting, for any a ∈ S and c ∈ U ,

a G ∗ F c if and only if a (G ◦ F )C c

is a continuous relation between S and U .

Proof. After lemma 2.10 and proposition 2.11, we have only to prove that
relation composition satisfies weak-saturation. So, let us suppose a C e and
e G ◦ F c. Then there exists y ∈ T such that e F y and y G c; hence a F y
follows by weak-saturation for F and so a G ◦ F c.

The following lemmas will be useful in the following.

Lemma 2.13 Let S, T be formal topologies and F be a continuous relation
between S and T . Then

FC = F

Proof. Immediate. In fact, FC is the minimal continuous relation containing
F and hence it coincides with F when F is already a continuous relation.

Lemma 2.14 Let S, T be formal topologies and H and K be relations between
S and T such that H ⊆ K. Then HC ⊆ KC.

Proof. We only need to unfold the definitions. Indeed, for any a ∈ S and
b ∈ T , a HC b if and only if a C {w ∈ S | wHb}; then a C {w ∈ S | wKb},
that is, a KC b, follows by reflexivity and transitivity since H ⊆ K yields
{w ∈ S | wHb} ⊆ {w ∈ S | wKb}.

Lemma 2.15 Let S, T and U be formal topologies, F be a relation between S
and T which satisfies function continuity and G be a relation between T and U .
Then

(G ◦ FC)C = (G ◦ F )C and (GC ◦ F )C = (G ◦ F )C
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Proof. We already proved that, for any relation F , F ⊆ FC. But F ⊆ FC

yields immediately G ◦ F ⊆ G ◦ FC. And so (G ◦ F )C ⊆ (G ◦ FC)C follows by
lemma 2.14. The proof that (G ◦ F )C ⊆ (GC ◦ F )C is completely similar.

Let us prove now the other inclusions. Suppose a ∈ S and c ∈ U . Then

a (G ◦ FC)C c ↔ a C {w ∈ S | w G ◦ FC c}
↔ a C {w ∈ S | (∃y ∈ T ) w FC y & y G c}
↔ a C {w ∈ S | (∃y ∈ T ) w C {z ∈ S | z F y} & y G c}
→ a C {w ∈ S | w C {z ∈ S | z G ◦ F c}}

(by transitivity) → a C {z ∈ S | z G ◦ F c}
↔ a (G ◦ F )C c

and

a (GC ◦ F )C c ↔ a C {w ∈ S | w GC ◦ F c}
↔ a C {w ∈ S | (∃y ∈ T ) w F y & y GC c}
↔ a C {w ∈ S | (∃y ∈ T ) w F y & y C {z ∈ T | z G c}}

(by funct. cont.) → a C {w ∈ S | w C F−({z ∈ T | z G c})}
(by transitivity) → a C F−({z ∈ T | z G c})

↔ a C {w ∈ S | (∃y ∈ T ) w F y & y G c}
↔ a C {w ∈ S | w G ◦ F c}
↔ a (G ◦ F )C c

We can now prove the main theorem of this section.

Theorem 2.16 Formal topologies and continuous relations form a category
FTop where the operation of composition between continuous relations is − ∗ −
and the cover relation is its unit.

Proof. We only need to show that the operation − ∗ − between continuous
relations is associative. Recalling that relation composition is associative, we
obtain

(G ∗ F ) ∗H ≡ ((G ∗ F ) ◦H)C by definition of ∗
≡ ((G ◦ F )C ◦H)C by definition of ∗
≡ ((G ◦ F ) ◦H)C by lemma 2.15
≡ (G ◦ (F ◦H))C

≡ (G ◦ (F ◦H)C)C by lemma 2.15
≡ (G ◦ (F ∗H))C by definition of ∗
≡ G ∗ (F ∗H) by definition of ∗

Note that in the proof above we could apply lemma 2.15 because by lemma 2.10
we know that the composition of two continuous relations satisfies function
continuity.

It is now trivial to realize that the cover relation is a continuous relation and
we can use the previous lemma 2.12 to shorten the proof that the cover relation
is the identity with respect to the operation − ∗ −. Indeed, it is sufficient to
prove that F◦ C= F and C ◦F = F hold since such equalities yield

F∗ C= (F◦ C)C = FC = F

15



and
C ∗F = (C ◦F )C = FC = F

So, suppose a C ◦F c; then there exists y such that a F y and y C c; hence
a C {x | x F c} follows by continuity and it yields a F c by saturation. On
the other hand, if a F c then a C ◦F c is immediate since c C c holds by
reflexivity. Suppose now a F◦ C c; then, there exists y such that a C y and
y F c and hence a F c follows by weak-saturation; on the other hand if a F c
then a F◦ C c follows immediately since a C a holds by reflexivity.

Since the conditions on continuous relations do not concern the positivity
predicate the previous proofs show also the following result.

Theorem 2.17 Formal topologies without the positivity predicate and continu-
ous relations form a category FTop− where the operation of composition between
continuous relations is − ∗ − and the cover relation is its unit.

The category FTop is impredicatively equivalent to the category OpLoc of
open locales [JT84] (for a recent proof see [Neg02] but note that Pos is not
required to be a frame morphism) while FTop− is impredicatively equivalent to
the category Loc of locales (see [BS01]). To summarize in a diagram from an
impredicative point of view we have

FTop � � //

'

FTop−

'

OpLoc � � // Loc

2.4.1 Properties on top element and positivity predicate

In the definition of continuous relation the top element and the positivity pred-
icate are not involved, that is, the same definition works both in FTop and
FTop−. However, there are specific properties that depend on their presence.
We start by showing that by using explicitly the top element an equivalent but
simpler formulation of function totality is possible.

Lemma 2.18 Let S and T be formal topologies, and F be a continuous relation
between S and T . Then the following conditions are equivalent

1. (function totality) (∀a ∈ S)(∃b ∈ T ) aFb

2. (anti-image totality) S CS F−(T )

3. (top-element totality) (∀a ∈ S) a F >T

Proof. We will show the various implication one after the other.

• (1) ⇒ (2). Let a ∈ S. Then, by function totality, there is an element
b ∈ T such that aFb. Hence aεF−(T ) and so anti-image totality follows
by reflexivity.
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• (2) ⇒ (3). Let us assume that anti-image totality holds. Then, for any
a ∈ S, a C F−(T ). Now, by top-element, T C >T holds and hence
lemma 2.8 shows that F−(T ) C F−(>T ). So a C F−(>T ) follows by
transitivity. But, for any cεF−(>T ), cF>T holds and hence aF>T follows
by saturation.

• (3) ⇒ (1). Let a ∈ S. Then, by top-element totality, aF>T holds and
hence >T is the element that we are looking for.

A clear advantage of top-element totality with respect to the other two for-
mulations of the totality of a function is its simplicity, and this is the main
reason why we will often use it in the following. However, both function total-
ity and anti-image totality can be expressed with no reference to the element
>T and hence they can be used also in a context where the top element is
not included in the definition of formal topology (see for instance [CSSV03]).
Moreover, anti-image totality can also be justified with no reference to the top
element. Indeed, let us assume that (X, S, ext1) and (Y, T, ext2) are two concrete
topological spaces, φ is a continuous map from X to Y and F is a relation be-
tween S and T such that aFb if and only in (∀x ∈ X) xεext1(a) → φ(x)εext2(b).
Then, we have to show that, for all a ∈ S and all x ∈ X, if xεext1(a) then there
exists u ∈ S such that both xεext1(u) and uεF−(T ), that is, there exists t ∈ T
such that uFt. Now, by the condition (B1), xεext1(a) yields that there exists
some element t ∈ T such that φ(x)εt and hence, by continuity of φ, there exists
u ∈ S such that both xεext1(u) and uFt hold.

Now, let us show some consequence of the conditions defining continuous
relations which concern explicitly the positivity predicate.

Lemma 2.19 Let F be a continuous relation between S and T . Then, for any
a ∈ S and b ∈ T , F satisfies the following condition

(function monotonicity)
PosS(a) aFb

PosT (b)

Proof. Let us suppose aFb. Then, the positivity axiom b C b+ yields, by
function continuity, that a CS F−(b+). Hence, by monotonicity of the cover re-
lation, Pos(a) yields that there exists some element cεF−(b+) such that PosS(c)
holds. Therefore, there exists yεb+ such that cFy. But yεb+ yields that y = b
and PosT (y) hold and thus PosT (b) follows.

The condition of function monotonicity above was firstly part of the original
definition of continuous relation in [Vir90] as a consequence of its presence in
the definition of frame morphisms between formal topology in [Sam87], but it
was later recognized to be derivable in [Neg02].

Another important consequence of the conditions on a continuous relation is
a condition stating that two relations associated with the same function between
formal points do not differ on non-positive elements of S. Before stating it let
us prove the following lemma.
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Lemma 2.20 Let F be a continuous relation between S and T . Then, for any
a ∈ S and b ∈ T ,

Pos(a) → aFb if and only if (∀xεa+) xFb

Proof. To prove the left to right implication, suppose xεa+. Then x = a and
PosS(x) hold and hence PosS(a) follows. So, PosS(a) → aFb yields aFb and
hence x = a yields xFb. On the other hand, assuming PosS(a), aεa+ follows
and hence (∀xεa+) xFb yields aFb by logic.

Now, the following lemma is immediate.

Lemma 2.21 Let F be a continuous relation between S and T . Then, for any
a ∈ S and b ∈ T , F satisfies the following condition

(function positivity)
PosS(a) → aFb

aFb

Proof. After the previous lemma we know that PosS(a) → aFb yields that, for
all xεa+, xFb. Hence a C a+ yields aFb by function saturation.

The condition of function positivity was first used in [SVV96] to force the
faithfulness of the functor Pt(−) on Scott formal topologies. In that context
function saturation cannot be used and hence function positivity is part of the
definition of continuous relation together with function weak-saturation (see
proposition 2.49).

An the end of this section, let us recall that in the literature there are also
alternative presentations of the category of formal topologies (see for instance
[GS02]) where a continuous relation is defined by requiring all of the conditions
in definition 2.7 except for function saturation; of course, in this case one is
forced to state that two continuous relations F and G are equal if FC and GC

are equal. We prefer the approach presented here because we think that being
able to use an equality between continuous relations which does not depend
on the cover relation is more natural and allows a simpler technical treatment
which becomes crucial in dealing with exponentiation.

2.4.2 Formal points and continuous relations

In this section we show that there is a bijective correspondence between the
collection of the global elements of A and the collection Pt(A) of the formal
points of A. First of all, let us recall how to define a terminal object T in FTop.

Lemma 2.22 Let T ≡ (T,>,CT ,PosT ) be the formal topology such that T ≡
{>} is a one element set, the top element is >, the cover relation is defined by
setting, for any a ∈ {>} and any subset U of {>},

a CT U ≡ aεU

and the positivity predicate is defined by setting, for any a ∈ {>},

Pos(a) ≡ True

18



Then, T is a terminal object in FTop, that is, for any formal topology A, the
total relation defined by setting, for any a ∈ A, a !A>, is the only continuous
relation between A and T .

Proof. It is immediate to check that T is a formal topology. Indeed,

• (top-element) Immediate.

• (reflexivity) Let us suppose that a ∈ {>}, U ⊆ {>} and aεU . Thus, a C U
holds by definition.

• (transitivity) Let us suppose that a C U and U C V hold for some element
a ∈ {>} and subsets U, V ⊆ {>}. Then, a C U yields aεU and hence
U C V yields a C V .

• (↓-right) Let us suppose a C U and a C V . Then, by definition, aεU and
aεV and hence aεU ↓ V follows and it yields a C U ↓ V .

• (monotonicity) Immediate.

• (positivity) Any element a ∈ {>} is positive and hence positivity, namely
a C a+, trivially holds.

Moreover, it is easy to see that !A is a continuous relation. Indeed, function
saturation holds by definition while function totality, function convergence and
function continuity hold because the anti-image of any non empty subset of T
is equal to the whole set A and hence it covers any element in A by reflexivity.
Moreover, if R is any continuous relation between A and T and a ∈ A, then
aR> holds by function totality and hence !A ⊆ R. Thus R =!A since R ⊆!A
obviously holds.

We can now state the following theorem.

Theorem 2.23 Let A be a formal topology. Then there is a bijective correspon-
dence between the collection Pt(A) of the formal points of A and the continuous
relations between T and A.

Proof. Let us suppose that α is a formal point of the formal topology A. Then
the continuous relation between T and A associated with α is defined by setting,
for any u ∈ {>} and any a ∈ A,

uRαa ≡ aεα

Indeed, it is easy to prove that Rα is a continuous relation:

• (function totality) Let u ∈ {>}. Recall now that any formal point in
Pt(A) is inhabited and hence there is an element a ∈ A such that aεα,
namely, there is an element a ∈ A such that uRαa holds.
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• (function convergence) Let us suppose that uRαa and uRαc hold. Then,
aεα and cεα and hence, by point convergence, there exists eεα such that
e CA a and e CA c. Thus, uRαe holds, that is, uεR−α (a ↓ c), and hence
the result follows by reflexivity.

• (function saturation) Let us suppose that u CT W and (∀wεW )wRαa.
Then uεW holds by definition and hence uRαa follows by logic.

• (function continuity) Let us suppose that uRαa and a CA U . Then aεα
follows and hence, by point splitness, there exists and element eεα such
that eεU . Thus uRαe holds; hence uεR−α (U) and so the result follows by
reflexivity.

On the other hand, given any continuous relation R between T and A, we
can define a formal point αR of A by setting, for any a ∈ A,

aεαR ≡ >Ra

It is straightforward to check that αR is a formal point. Indeed,

• (point inhabitance) By function totality >Ra holds for some a ∈ A and
hence aεαR holds, that is, αR is inhabited.

• (point convergence) Let us suppose that aεαR and cεαR. Then >Ra and
>Rc hold and hence, by function convergence, > C R−(a ↓ c). Thus
>εR−(a ↓ c), that is, there exists yεa ↓ c such that >Ry, and hence
(∃yεa ↓ c) yεαR follows.

• (point splitness) Let us suppose that aεαR and a CA U . Then >Ra holds
and hence, by function continuity, > C R−(U). Thus >εR−(U), that is,
there exists yεU such that >Ry, and hence (∃yεU) yεαR follows.

It is now completely trivial to see that the two constructions are one the
inverse of the other.

2.5 Inductively generated formal topologies

One of the main tools in formal topology is the inductive generation of the cover
since this allows to develop proofs by induction. The problem of generating
inductively formal topologies has been dealt with and solved in [CSSV03]. We
recall here, without any proofs, only those results of [CSSV03] that we will use
in the next sections.

An inductive definition of a cover starts from some axioms, which at the
moment we assume to be given by means of any relation R(a, U) for a ∈ S
and U ⊆ S. We thus want to generate the least cover CR which satisfies the
following condition:

(axioms)
R(a, U)
a CR U
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The first naive idea for an inductive generation of a cover relation is to use the
conditions which appear in the definition of a formal topology like rules. But
such conditions, though written in the shape of rules, must be understood as
requirements of validity, that is, if the premises hold then also the conclusion
must hold. As they stand, they are by no means acceptable rules to generate
inductively a cover relation. For instance, the operation − ↓ − among sub-
sets, which occurs in the conclusion of ↓-right, is not even well defined unless
we already have a complete knowledge of the cover. Another problem is that
admitting transitivity as acceptable rule for an inductive definition is equiva-
lent to a fix-point principle, which does not have a predicative justification (see
[CSSV03] for a detailed discussion of this topic).

These are the reasons why we cannot accept all the possible infinitary propo-
sitions R(a, U) in the formation of an axiom and we have to impose some con-
straints. The solution proposed in [CSSV03] for the impredicativity problem
due to the transitivity condition is to generate a cover relation only when we
have an axiom-set, that is, a family I(a) of sets for a ∈ S and a family C(a, i) of
subsets of S for a ∈ S and i ∈ I(a), whose intended meaning is to state that, for
all i ∈ I(a), a C C(a, i). Indeed, in this case we can generate the cover relation
by using the following inductive rules:

(reflexivity)
a ε U

a C U
(infinity)

i ∈ I(a) C(a, i) C U

a C U

We can now strengthen the previous rules to new ones which allow to gen-
erate a cover relation which satisfies also top-element and ↓-right. In fact, to
satisfy ↓-right, a possibility is to add an extra primitive expressing what, in
the concrete case, is the inclusion relation between two basic open subsets, that
is, ext(a) ⊆ ext(b). We can obtain this result by adding directly a pre-order
relation a ≤ b. We will show that in this way it will be possible to satisfy also
the top-element condition.

Thus, we arrive at the following definition.

Definition 2.24 (≤-formal topology) A ≤-formal topology is a structure
(S,≤,>S ,C,Pos) where S is a set, ≤ is a pre-order relation between elements of
S, that is, ≤ is reflexive and transitive, >S is a distinguished element of S and
C is a relation between elements and subsets of S which satisfies top-element,
reflexivity, transitivity and the two following conditions

(≤-left)
a ≤ b b C U

a C U
(≤-right)

a C U a C V

a C U ↓≤ V

where U ↓≤ V ≡ {c ∈ S | (∃uεU) c ≤ u & (∃vεV ) c ≤ v}. Finally, Pos is a
predicate over elements of S which satisfies monotonicity and positivity.

It is straightforward to verify that the new conditions are valid in any con-
crete topological space under the intended interpretation. And only a bit more
work is required to prove that any ≤-formal topology is a formal topology.
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The proof that any formal topology is equivalent to a suitable ≤-formal
topology is even more trivial. Indeed, it is sufficient to define an order relation
between elements of S by setting a ≤ b if and only if a C {b} and it is obvious
that all of the required conditions are satisfied.

Thus, in order to be able to generate inductively a formal topology we need
only to be able to generate inductively a ≤-formal topology. So, let us suppose
that we have a set S, an order relation ≤ between elements of S, a distinguished
element > ∈ S and a given axiom-set I(−) and C(−,−) and that we want to
generate a ≤-formal topology over S. To this aim we can adapt the method
proposed in [CSSV03] and generate by induction a cover relation which respects
the given axiom-set, top-element, reflexivity, transitivity, ≤-left and ≤-right and
by co-induction a positivity predicate which satisfies monotonicity and positivity
with respect to such a cover relation.

The first modification is to extend the axiom-set I(−) and C(−,−) to a new
axiom-set such that it will be possible to obtain, for any a ∈ S,

(top-element axiom) a C {a} ↓≤ {>}

Thus, the new axiom-set is defined by setting, for any a ∈ S,

I ′(a) ≡ I(a) ∪ {∗} C ′(a, i) ≡
{
{a} ↓≤ {>} if i = ∗
C(a, i) otherwise

After this axioms are added, we can obtain a C > by first showing by ≤-left
that {a} ↓≤ {>} C > and then concluding by infinity. Moreover, it is clear
that the added axiom is valid in any ≤-formal topology since it is an immediate
consequence of the top element condition by ≤-right.

The second step consists in defining a suitable positivity predicate. To this
aim, let us say that a predicate Pos(−) satisfies ≤-monotonicity if, for any
a, b ∈ S,

(≤-monotonicity)
Pos(a) a ≤ b

Pos(b)

holds and that it satisfies axiom monotonicity if, for all the axioms in the axiom-
set I ′(−) and C ′(−,−) and for any a ∈ S,

(axiom monotonicity)
Pos(a) i ∈ I ′(a)

(∃cεC ′(a, j)) Pos(c)

holds.
Now, given any axiom-set I ′(−), C ′(−,−), we can use Tarski fixed-point

theorem to show that it is possible to define a predicate Pos(−) which satisfies
both ≤-monotonicity and axiom monotonicity by simply considering these two
conditions like co-inductive rules (see appendix A). Hence, given any axiom-set,
we will use such a predicate Pos(−) like a positivity predicate.

Finally, given any axiom-set I ′(−) and C ′(−,−) and any predicate enjoying
≤-monotonicity and axiom monotonicity, we can always force the validity of
the positivity condition by adding a single axiom schema stating that, for any
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a ∈ S, a is covered by the set a+, namely, we can define a new axiom-set by
setting, for any a ∈ S,

I ′′(a) ≡ I ′(a) ∪ {∗∗} C ′′(a, i) ≡
{

a+ if i = ∗∗
C ′(a, i) otherwise

Note that if axiom monotonicity holds for I ′(−) and C ′(−,−) then it continues
to hold also for I ′′(−) and C ′′(−,−) since Pos(a) clearly yields that there exists
an element xεa+ such that Pos(x) holds.

We are finally ready to use the method in [CSSV03]. The only constrain for
its applicability is that the following condition, which guarantees the validity of
≤-right, is satisfied.

Definition 2.25 (Localization condition) Let S be any set and I ′′(−) and
C ′′(−,−) be an axiom-set for a cover relation on S. Then such an axiom-set
satisfies the localization condition if, for any a ≤ c and for any i ∈ I ′′(c), there
exists j ∈ I ′′(a) such that C ′′(a, j) ⊆ {a} ↓≤ C ′′(c, i).

It is useful to note that if an axiom-set I(−) and C(−,−) enjoys the localiza-
tion condition then, for any positivity predicate Pos, also the axiom-set I ′′(−)
and C ′′(−,−) obtained by adding to the given one both the top-element axiom
and the positivity axiom satisfies such a condition. Indeed, suppose that a ≤ c
and that we are considering the top-element axiom for c. Then we have to show
that there exists an index j ∈ I ′′(a) such that C(a, j) ⊆ {a} ↓≤ {c} ↓≤ {>}.
The correct choice is of course the index for {a} ↓≤ {>} since it is trivial to see
that {a} ↓≤ {>} ⊆ {a} ↓≤ {c} ↓≤ {>}. We can provide a similar proof when
the considered axiom is the positivity axiom for c. In this case we have to show
that there exists an index j ∈ I ′′(a) such that C(a, j) ⊆ {a} ↓≤ c+. The correct
choice for j is now the index for a+ since we can prove that a+ ⊆ {a} ↓≤ c+.
Indeed, let us assume that xεa+. Then, both x = a and Pos(x) follow and hence
we first obtain Pos(a) by logic and then Pos(c) by ≤-monotonicity. So c+ = {c}
and hence both x ≤ a and x ≤ c hold since x = a, that is, xε{a} ↓≤ c+.

Now, the main result in [CSSV03] is that, provided we have an axiom-set
which satisfies the localization condition, we can define a relation between ele-
ments and subsets of S which satisfies all of the conditions for a cover by using
reflexivity, ≤-left and infinity like inductive rules. Moreover, given any pred-
icate which satisfies ≤-monotonicity and axiom monotonicity it is immediate
to prove by induction on the length of the proof of a C U that if Pos(a) and
a C U hold then there exists an element uεU such that Pos(u) holds, namely,
that monotonicity holds. Finally, the positivity condition clearly holds for such
cover relation and such a predicate since it is built in the axioms from which
the cover relation is generated.

2.5.1 Formal points of inductively generated formal topologies

If we restrict our attention to inductively generated ≤-formal topologies we can
simplify many of the definitions given in the previous sections. To begin with,
the definition of formal point can be simplified as follows.
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Definition 2.26 (Formal point) Let (S,≤,>,C,Pos) be an inductively gen-
erated ≤-formal topology. Then, an inhabited subset α of S is a formal point if,
for any a, b ∈ S and any U ⊆ S, it satisfies the following conditions:

(point ≤-convergence)
aεα bεα

(∃cεa ↓≤ b) cεα

(point left-closure)
aεα a ≤ b

bεα

(point inductive splitness)
aεα i ∈ I(a)

(∃yεC(a, i)) yεα

After observing that in the case of an inductively generated ≤-formal topol-
ogy, a ↓≤ b C a ↓ b and a ↓ b C a ↓≤ b, it is clear that the conditions in
the definition above are consequences of the ones in section 2.3. On the other
hand, it is possible to prove that a subset α which satisfies the conditions stated
here satisfies also point splitness, namely, aεα and a C U yield (∃yεU) yεα, by
developing a proof by induction on the length of the derivation of a C U .

2.5.2 Morphisms between inductively generated topologies

The general conditions on a continuous relation that we presented in section
2.4 can be simplified when we are dealing with morphisms between inductively
generated formal topologies. The first condition that can be adapted to the new
framework is function convergence.

Lemma 2.27 Let A be a formal topology, B be an inductively generated formal
topology and F be a continuous relation between A and B. Then, function
convergence is equivalent to

(function ≤-convergence)
aFb aFd

a C F−(b ↓≤ d)

Proof. We already proved that, for any inductively generated formal topology
B, if V1, V2 ⊆ B then V1 ↓ V2 CB V1 ↓≤ V2 and V1 ↓≤ V2 CB V1 ↓ V2.
Thus both F−(V1 ↓ V2) CA F−(V1 ↓≤ V2) and F−(V1 ↓≤ V2) CA F−(V1 ↓ V2)
follows by lemma 2.8 which uses only function continuity. Hence the equivalence
between function convergence and function ≤-convergence follows immediately
by transitivity.

We will see now that also function continuity can be simplified.

Lemma 2.28 Let A be a formal topology, B be an inductively generated formal
topology and F be a continuous relation between A and B. Then, continuity is
equivalent to

(axiom continuity)
aFb j ∈ J(b)

a C F−(C(b, j))
(≤-continuity)

aFb b ≤ d

aFd

where J(−) and C(−,−) is the axiom-set for the inductively generated formal
topology B.
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Proof. It is obvious that axiom continuity is an instance of function continuity
and ≤-continuity is an immediate consequences of ≤-left, function continuity
and saturation.

On the other hand, continuity can be derived from these conditions by rea-
soning by induction. Indeed, let us suppose aFb and b C V . Then, we can argue
according to the length of the derivation of b C V . Let us begin by supposing
that b C V has been derived by reflexivity from bεV . Then aεF−(V ) and hence
the result, that is, a C F−(V ), immediately follows by reflexivity. Moreover, if
b C V has been derived by infinity from C(b, j) C V we can use axiom conti-
nuity to obtain a C F−(C(b, j)). Then we can obtain a C F−(V ) by proving
that F−(C(b, j)) C F−(V ). To this aim let us assume that wεF−(C(b, j)), that
is, (∃vεC(b, j)) wFv, then C(b, j) C V yields, by inductive hypothesis, that
w C F−(V ). Finally, if ≤-left has been used, that is, we proved b C V from
b ≤ d and d C V , then we immediately obtain aFd by using ≤-continuity and
hence the result follows by inductive hypothesis.

In the following we will often use the following result.

Lemma 2.29 Let A be a formal topology, B be an inductively generated formal
topology and F be a continuous relation between A and B. Then the following
condition

(weak-continuity)
aFb b CB d

aFd

holds.

Proof. Immediate by function continuity and saturation.

In a similar way also saturation can be simplified.

Lemma 2.30 Let A be an inductively generated formal topology, B be a formal
topology and F be continuous relation between A and B. Then saturation is
equivalent to

(≤-saturation)
a ≤ c cFb

aFb
(axiom-saturation)

i ∈ I(a) (∀xεC(a, i)) xFb

aFb

where I(−) and C(−,−) is the axiom-set used to inductively generate A.

Proof. ≤-saturation and axiom saturation are obvious consequences of ≤-left
and saturation. Thus, let us show that also the other implication holds, namely,
that a C W and (∀xεW ) xFb yield aFb. The proof goes on by induction on the
length of the derivation of a C W .

First, let us assume that a C W has been obtained from aεW by reflexivity.
Then (∀xεW ) xFb yields aFb by logic.

Suppose now that a C W has been obtained from C(a, i) C W because
i ∈ I(a). Then, by inductive hypothesis, we obtain that, for any xεC(a, i), xFb
and hence aFb follows by axiom-saturation.

Finally, if a C W has been derived from a ≤ c and c C W by ≤-left then by
inductive hypothesis we obtain cFb and hence aFb follows by ≤-saturation.
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Let us now name the sub-categories of FTop and FTop− whose objects are
inductively generated formal topologies.

Definition 2.31 We call FTopi (FTopi
−) the full subcategory of FTop (respec-

tively FTop−) whose objects are inductively generated formal topologies.

Note that from the impredicative point of view FTopi is equivalent to FTop
and FTopi

− is equivalent to FTop−; indeed, in this case, every formal topology S
is inductively generated by the axiom-set obtained by considering all the cover
relation like axioms indexed on P(S). On the contrary, from a predicative point
of view, FTopi and FTop are not equivalent because there are formal topologies
which can not be generated by induction (see the last section of [CSSV03]).

2.6 Categorical product of formal topologies

In this section we recall some basic definitions about the categorical product
of two inductively generated formal topologies. First of all, it is immediate to
see that the terminal formal topology T that we introduced in section 2.4.2 is
inductively generated.

Lemma 2.32 Let T be the terminal formal topology defined in theorem 2.22.
Then T can be generated inductively by using the empty set of axioms and the
total order relation.

Proof. First of all, it is worth noting that we do not need to add the top-element
and the positivity axioms since they hold for T as a consequence of reflexivity.
Now, we have to show that in the formal topology inductively generated by
the empty set of axioms on the one element set {>}, for any a ∈ {>} and
U ⊆ {>}, aεU if and only if a C U . The implication from left to right is trivial
by reflexivity; on the other hand, since there is no axiom, the only rules that one
can use in the inductive generation are reflexivity and ≤-left and so the result
is straightforward.

Now, let us recall that at present it is still open the question whether FTop is
cartesian. Indeed, we are able to define the binary product of formal topologies
only by means of an inductive definition and thus only FTopi and FTopi

− are
known to be cartesian (see [CSSV03]). Since no proof appeared there we present
a full proof of this result here.

Definition 2.33 Let A and B be two inductively generated formal topologies
whose axiom-sets are respectively IA(−), CA(−,−) and IB(−), CB(−,−). Then
we call binary product of A and B the formal topology over the set A×B, with
order relation

(a1, b1) ≤ (a2, b2) ≡ (a1 ≤A a2) & (b1 ≤B b2),

top-element (>A,>B) and positivity predicate

PosA×B((a, b)) ≡ PosA(a) & PosB(b),
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inductively generated by the axiom-set

I((a, b)) ≡ IA(a) + IB(b)

C((a, b), i) ≡
{

CA(a, ia)× {b} if i ≡ inl(ia)
{a} × CB(b, ib) if i ≡ inr(ib)

One should note that in the previous definition we did not add the top-
element axiom and the positivity axiom. In fact, we will prove that they are not
necessary. Let us show first the following useful lemma.

Lemma 2.34 Let A and B be inductively generated formal topologies, a be an
element of A, b be an element of B, U be a subset of A and V be a subset of B.
Then the following conditions are valid:

(1)
a CA U

(a, b) CA×B U × {b}
(2)

b CB V

(a, b) CA×B {a} × V
(3)

a CA U b CB V

(a, b) CA×B U × V

Proof. The proof of validity of the first two conditions can be obtained by
arguing by induction on the derivation of a CA U and b CB V respectively.
Then, the last condition can be proved as follows. Assume a CA U . Then,
by the first condition we obtain that (a, b) CA×B U × {b}. But the second
condition shows that, for every uεU , b CB V yields (u, b) CA×B {u}× V . Now,
for every vεV , from (u, v)εU × V we get (u, v) CA×B U × V by reflexivity and
hence (u, b) CA×B U ×V follows by transitivity. Thus, again by transitivity, we
conclude (a, b) CA×B U × V .

As an immediate corollary of this lemma, the product of two inductively
generated formal topologies defined above is a formal topology.

Corollary 2.35 Let A and B be inductively generated formal topologies. Then
A× B is a formal topology.

Proof. First of all note that it is immediate to check that the positivity predi-
cate enjoys both ≤- monotonicity and axiom monotonicity and hence it is mono-
tone with respect to the inductively generated cover.

Moreover, by using the previous lemma it is not difficult to show that top-
element and positivity are satisfied for the product topology as a consequence
of its validity in the component topologies. Indeed,

• (top-element) Let (a, b) ∈ A × B. Then a CA >A and b CB >B yield
immediately (a, b) CA×B (>A,>B) by lemma 2.34.

• (positivity condition) for every a ∈ A, a CA a+ and, for every b ∈ B,
b CB b+. Then (a, b) CA×B a+ × b+ by the last condition in lemma 2.34
and hence (a, b) CA×B (a, b)+ follows since a+ × b+ = (a, b)+.

Thanks to this corollary in the following proofs by induction over the gener-
ation of the product cover we do not need to consider the case of the top-element
axiom or the positivity axiom in the inductive generation.

The pairing and the projection maps are now defined.
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Lemma 2.36 Let A, B and C be inductively generated formal topologies and
suppose that F is a continuous relation between C and A and G is a continuous
relation between C and B. Then the following relations

(pairing) c 〈F,G〉 (a, b) ≡ c F a & c G b
(first projection) (a, b) Π1 c ≡ (a, b) C {(x, y) ∈ A×B | x CA c}
(second projection) (a, b) Π2 d ≡ (a, b) C {(x, y) ∈ A×B | y CB d}

are continuous and the following equations hold

Π1 ∗ 〈F,G〉 = F
Π2 ∗ 〈F,G〉 = G
〈Π1 ∗H,Π2 ∗H〉 = H

for any continuous relation H between C and A× B.

Proof. Let us first prove that the relations we defined above are continuous.

• (pairing) We have to check that the pairing relation satisfies the required
conditions.

– (function totality) Let c ∈ C. Then, by function totality for F , there
exists a ∈ A such that cFa and, by function totality for G, there
exists b ∈ B such that cGb. Thus c〈F,G〉(a, b) follows, that is, we
proved that function totality holds for 〈F,G〉.

– (function convergence) Let c ∈ C and suppose c〈F,G〉(a1, b1) and
c〈F,G〉(a2, b2). Then cFa1, cFa2, cGb1 and cGb2 follow and hence
c C F−(a1 ↓ a2) and c C G−(b1 ↓ b2) follow by function convergence.
Thus,

c C F−(a1 ↓ a2) ↓ G−(b1 ↓ b2)

follows by ↓-right and hence we can conclude

c C 〈F,G〉−((a1, b1) ↓ (a2, b2))

by reflexivity and transitivity since

F−(a1 ↓ a2) ↓ G−(b1 ↓ b2) ⊆ 〈F,G〉−((a1, b1) ↓ (a2, b2))

Indeed, suppose wεF−(a1 ↓ a2) ↓ G−(b1 ↓ b2). Then there exists
uεF−(a1 ↓ a2) such that w C u and vεG−(b1 ↓ b2) such that w C v.
So, there is u ∈ C such that (∃hεa1 ↓ a2) w C u & uFh and there
is v ∈ C such that (∃kεb1 ↓ b2) w C v & vGk. Thus, by weak-
saturation for F and G respectively, both (∃hεa1 ↓ a2) wFh and
(∃kεb1 ↓ b2) wGk follow and hence w〈F,G〉(h, k) holds. But h C a1

and k C b1 yield (h, k) C (a1, b1) as well as h C a2 and k C b2 yield
(h, k) C (a2, b2) by lemma 2.34. Hence (h, k)ε(a1, b1) ↓ (a2, b2) and
thus we proved that wε〈F,G〉−((a1, b1) ↓ (a2, b2)).
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– (function saturation) Suppose that c is an element of C such that
c C W and (∀wεW ) w〈F,G〉(a, b). Then, for all wεW , both wFa and
wGb hold and hence we obtain cFa and cGb by function saturation
for F and G respectively and so c〈F,G〉(a, b) holds.

– (function axiom continuity) Suppose that c ∈ C, c〈F,G〉(a, b) and
j ∈ J((a, b)). Then we have to prove that c C 〈F,G〉−(C((a, b), j)).
Two cases must be considered according to the possible shape of an
axiom for the product topology.

∗ Suppose C((a, b), j) ≡ {a} × CB(b, j′). Then, from c F a and
c G b we get c C F−({a}) and c C G−(CB(b, j′)) by function
continuity. Thus c C F−({a}) ↓ G−(CB(b, j′)) follows by ↓-right
and hence we obtain that c C 〈F,G〉−({a} × CB(b, j′)) since
F−({a}) ↓ G−(CB(b, j′)) ⊆ 〈F,G〉−({a} × CB(b, j′)). Indeed,
let wεF−({a}) ↓ G−(CB(b, j′)). Then, there exist uεF−({a})
and vεG−(CB(b, j′)) such that w C u and w C v. Thus, we get
both that wFa by weak-saturation on F , and that there exists
hεCB(b, j′) such that wGh by weak-saturation on G. Finally, we
get w〈F,G〉(a, h) which yields wε〈F,G〉−({a} × CB(b, j′)).

∗ The case C((a, b), j) ≡ CA(a, j′) × {b} is completely analogous
to the previous one.

– (≤-continuity) Suppose both that c is an element of C such that
c〈F,G〉(a1, b1) and that (a1, b1) ≤ (a2, b2). Then, by definition,
c F a1 and c G b1. Moreover, (a1, b1) ≤ (a2, b2) yields both a1 ≤ a2

and b1 ≤ b2. Thus c F a2 and c G b2 follow by ≤-continuity for F
and G and hence c〈F,G〉(a2, b2) holds.

• (first projection) We have to check that the required conditions are satis-
fied.

– (function totality) Suppose that (a, b) ∈ A × B. Then (a, b)Π1a
trivially holds and hence Π1 enjoys function totality.

– (function convergence) Suppose that (a, b) Π1 c1 and (a, b) Π1 c2

hold. Then (a, b) C {(x, y) | x C c1} and (a, b) C {(x, y) | x C c2}
holds and hence

(a, b) C {(x, y) ∈ A×B | x C c1} ↓≤ {(x, y) ∈ A×B | x C c2}

follows by ≤-right. Thus, to conclude by reflexivity and transitivity
it is sufficient to prove that

{(x, y) ∈ A×B | x C c1} ↓≤ {(x, y) ∈ A×B | x C c2} ⊆ Π−1 (c1 ↓ c2)

To this aim, let us suppose that

(x, y)ε{(x, y) ∈ A×B | x C c1} ↓≤ {(x, y) ∈ A×B | x C c2}
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Then there exist both (x1, y1) ∈ A×B, such that x1 C c1 and (x, y) ≤
(x1, y1), and (x2, y2) ∈ A×B, such that x2 C c2 and (x, y) ≤ (x2, y2).
Thus, both x ≤ x1 and x ≤ x2 follow and hence we obtain x C c1 and
x C c2 by ≤-left and transitivity. Then xεc1 ↓ c2 follows by ↓-right
and hence there exists an element zεc1 ↓ c2, that is, x itself, such
that (x, y)ε{(s, t) | s C z} which yields (x, y) Π1 z by reflexivity. So,
(x, y)εΠ−1 (c1 ↓ c2).

– (function saturation) Suppose that (a, b) C W and that, for any
(x, y)εW , (x, y) Π1 c. Then, for any (x, y)εW , (x, y) C {(s, t) ∈
A×B | s CA c} and hence (a, b) C {(s, t) ∈ A×B | s CA c} follows
by transitivity. Thus, (a, b) Π1 c holds.

– (function continuity) Suppose that (a, b) Π1 c and c C U hold. Then
(a, b) C {(x, y) ∈ A×B | x CA c} and hence (a, b) C U×B follows by
transitivity since {(x, y) ∈ A×B | x CA c} C U×B. Indeed, suppose
(x, y)ε{(x, y) ∈ A × B | x CA c}. Then x CA c and hence x CA U
follows by transitivity. Moreover, y CB B holds by reflexivity and
hence we obtain (x, y) C U×B by lemma 2.34. Now, we can conclude
(a, b) C Π−1 (U) by reflexivity and transitivity since U × B ⊆ Π−1 (U).
Indeed, suppose (x, y)εU ×B. Then (x, y)ε{(s, t) ∈ A×B | s CA x}
and hence (x, y) Π1 x follows by reflexivity. Thus, there exists uεU
such that (x, y) Π1 u, that is, (x, y)εΠ−1 (U).

• (second projection) Completely analogous to the previous one.

The second part of the proof consists in showing that the three required
equations hold.

Let us first notice that, for any c ∈ C, a ∈ A and b ∈ B and for any
continuous relation H between C and A× B,

c Π1 ∗H a ⇒ c C H−({(x, y) ∈ A×B | x C a})
c Π2 ∗H b ⇒ c C H−({(x, y) ∈ A×B | y C b})

Indeed, c Π1 ∗H a if and only if c C {w ∈ C | w Π1 ◦H a}, that is,

c C {w ∈ C | (∃(x, y) ∈ A×B) wH(x, y) & (x, y) C {(x, y) | x C a}}

Thus, by function continuity we obtain c C {w ∈ C | w C H−({(x, y) | x C a})}
and hence c C H−({(x, y) | x C a}) follows by transitivity. The proof of the
other implication is completely similar.

We can now proceed with the proof of validity of the equations.

• We have to prove that Π1 ∗ 〈F,G〉 = F , namely, for any c ∈ C and a ∈ A,
c Π1 ∗ 〈F,G〉 a if and only if c F a. The right to left implication can be
proved as follows. Suppose that cFa holds. Then, by function totality for
G, there exists an element b ∈ B such that cGb. Thus c〈F,G〉(a, b) follows.
Moreover, (a, b)Π1a trivially holds and hence we obtain that c Π1◦〈F,G〉 a.
Thus the result is immediate since Π1 ◦ 〈F,G〉 ⊆ Π1 ∗ 〈F,G〉.
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Now, let us prove the other implication. Suppose that c Π1 ∗ 〈F,G〉 a.
Then, the observation above shows that c C 〈F,G〉−({(x, y) | x C a}) and
hence we obtain cFa by saturation since c C F−({a}) follows by reflexivity
and transitivity because we can prove that

〈F,G〉−({(x, y) | x C a}) ⊆ F−({a})

Indeed, suppose that wε〈F,G〉−({(x, y) | x C a}). Then, there exists
(x, y) ∈ A × B such that w〈F,G〉(x, y) and x C a. Thus wFx follows
and hence we obtain wFa by weak-continuity for F . So, we conclude
wεF−({a}).

• We have to prove that Π2 ∗ 〈F,G〉 = G. Completely analogous to the
previous point.

• We have to prove that for any continuous relation H between C and A×B,
〈Π1 ∗H,Π2 ∗H〉 = H.

It is immediate to check that if cH(a, b) then c 〈Π1 ∗ H,Π2 ∗ H〉 (a, b).
Indeed, (a, b)Π1a and (a, b)Π2b clearly hold and hence cH(a, b) yields both
c Π1 ◦ H a and c Π2 ◦ H b. So, c 〈Π1 ◦ H,Π2 ◦ H〉 (a, b) follows since
Π1 ◦H ⊆ Π1 ∗H and Π2 ◦H ⊆ Π2 ∗H.

To prove the other implication let us assume that c 〈Π1 ∗H,Π2 ∗H〉 (a, b)
holds. Then both c Π1 ∗ H a and c Π2 ∗ H b follows and hence by
the previous observation we obtain both c C H−({(x, y) | x C a}) and
c C H−({(x, y) | y C b}). Thus

c C H−({(x, y) | x C a}) ↓≤ H−({(x, y) | y C b})

follows by ≤-right. Now we can conclude cH(a, b) by saturation since
c C H−({(a, b)}) follows by transitivity because we can prove that

H−({(x, y) | x C a}) ↓≤ H−({(x, y) | y C b}) C H−({(a, b)})

Indeed, let us suppose that

wεH−({(x, y) | x C a}) ↓≤ H−({(x, y) | y C b})

Then, there is both an element w1 ∈ C such that w ≤ w1, w1H(x1, y1)
and x1 C a for some element (x1, y1) ∈ A×B and an element w2 ∈ C such
that w ≤ w2, w2H(x2, y2) and y2 C b for some element (x2, y2) ∈ A× B.
Hence wH(x1, y1) and wH(x2, y2) follow by ≤-saturation and hence, by
function ≤-convergence we obtain w C H−((x1, y1) ↓≤ (x2, y2)). Consider
now any element (s, t)ε(x1, y1) ↓≤ (x2, y2). Then (s, t) ≤ (x1, y1) and
(s, t) ≤ (x2, y2) and hence s ≤ x1 and t ≤ y2. So, by ≤-left we obtain
s C a and t C b which yield that (s, t) C (a, b) by lemma 2.34, that is, we
proved that (x1, y1) ↓≤ (x2, y2) C (a, b). Hence H−((x1, y1) ↓≤ (x2, y2)) C
H−((a, b)) follows by lemma 2.8 and thus we obtain w C H−({(a, b)}) by
transitivity.
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Thus, we proved the main theorem of this section.

Proposition 2.37 FTopi and FTopi
− are cartesian.

Indeed, we gave all the definitions and developed all of the proofs above
without using at all the positivity predicate of A×B and hence the same proofs
work both for FTopi and FTopi

−.

2.6.1 Properties on top element and positivity predicate

Note that all the proofs and definitions in the previous section do not require
the presence of the top-element. Thus such proofs apply also when one uses
a definition of formal topology which does not consider the top element as,
for instance, in [CSSV03]. But, note that function totality, which is crucial to
prove the validity of one of the equations, can be justified only by assuming the
existence of the top-element.

Moreover, some of the definitions can be simplified when the top element or
the positivity predicate are present. We will use such simplified definitions in
the following sections.

Lemma 2.38 Let A and B be inductively generated formal topologies. Then,
for any a, c ∈ A and b, d ∈ B,

(a, b) Π1 c iff (a, b) CA×B (c,>B)

(a, b) Π2 d iff (a, b) CA×B (>A, d)

Proof. We prove only the first of the two equivalences being the second com-
pletely similar. Let (a, b) ∈ A × B and c ∈ A and suppose that (a, b)Π1c
holds. Then (a, b) C {(x, y) ∈ A × B | x C c}. Now, we can conclude
(a, b) C (c,>B) by transitivity since {(x, y) ∈ A × B | x C c} C (c,>B).
Indeed, let (x, y)ε{(x, y) ∈ A× B | x C c}. Then x C c and y C >B and hence
(x, y) C (c,>B) by lemma 2.34.

On the other hand, (c,>B)ε{(x, y) ∈ A × B | x C c} and hence (a, b) C
(c,>B) yields (a, b) C {(x, y) ∈ A × B | x C c} by using first reflexivity and
hence transitivity.

We show now that the use of the positivity predicate allows to state and
prove some attended properties on the binary product of inductively generated
formal topologies.

Lemma 2.39 Let A and B be inductively generated formal topologies, a be a
positive element of A, b be a positive element of B and V be a subset of A×B and
suppose that (a, b) CA×B V holds. Then, a CA π1(V ) and b CB π2(V ), where
π1(V ) ≡ {a ∈ A | (∃b ∈ B) (a, b)εV } and π2(V ) ≡ {b ∈ B | (∃a ∈ A) (a, b)εV }.

Proof. Since the product topology of two inductively generated formal topolo-
gies is inductively generated too, we can develop a proof by induction on the
length of the derivation of (a, b) CA×B V .

32



• (reflexivity) Suppose (a, b) C V because (a, b)εV . Then aεπ1(V ) and
bεπ2(V ). Hence a C π1(V ) and b C π2(V ) follow by reflexivity.

• (infinity) Two cases have to be considered.

– Suppose (a, b) C V because j ∈ J(a) and C(a, j)× {b} C V , that is,
for every xεC(a, j), (x, b) C V . Then, for every element xεC(a, j)+

we have (x, b) C V . Hence, by inductive hypothesis we obtain both
x C π1(V ) and b C π2(V ). Thus, a C π1(V ) follows by transitivity,
since a C C(a, j)+, and b C π2(V ) follows because by monotonicity
PosA(a) yields that C(a, j)+ is inhabited.

– Suppose (a, b) C V because k ∈ K(b) and {a} × C(b, k) C V . The
proof of this case is completely similar to the previous one.

• (≤-left) Suppose (a, b) C V because (a′, b′) C V and (a, b) ≤ (a′, b′). Then,
by inductive hypothesis, a′ C π1(V ) and b′ C π2(V ). But (a, b) ≤ (a′, b′)
yields a ≤ a′ and b ≤ b′ and hence a C π1(V ) and b C π2(V ) follow by
≤-left.

The previous lemma allows to prove that there is still another equivalent for-
mulation of the projection maps. We wanted to recall it here since the following
ones are the definitions of projection maps used in [SVV96].

Lemma 2.40 Let A and B be inductively generated formal topologies. Then,
for any a, c ∈ A and b, d ∈ B,

(a, b) Π1 c iff PosB(b) → a CA c

(a, b) Π2 d iff PosA(a) → b CB d

Proof. Let us prove only the first of the two equivalences, being the second
completely analogous. So, let us suppose that (a, b) Π1 c and assume both
PosA(a) and PosB(b). Then, by lemma 2.39, a CA {x ∈ A | x CA c} and hence
a CA c follows by transitivity. Hence PosB(b) → a CA c follows by discharging
first PosA(a) by positivity and then PosB(b).

To prove the other implication let us assume that Pos((a, b)) holds. Then
PosB(b) follows and hence PosB(b) → a CA c yields a CA c. So, we obtain that
(a, b)ε{(x, y) ∈ A×B | x CA c} holds and hence (a, b) Π1 c follows by reflexivity
and positivity.

2.7 Unary topologies

The main result of this paper is a proof that unary topologies are exponentiable
over inductively generated formal topologies. So, let us recall here the definition
of unary topology.

Definition 2.41 A formal topology (S,>,C,Pos) is called unary if, for any
a ∈ S and U ⊆ S, a C U if and only if Pos(a) → (∃bεU) a C {b}.
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It is trivial to see that unary formal topologies form a full sub-category of
FTop; we will call unFTop such a sub-category. The definition of unary formal
topology needs to be slightly modified when we work in FTopi

−. Indeed, in this
case, there is no positivity predicate; so, we say that a formal topology (S,>,C)
is unary if, for any a ∈ S and U ⊆ S, a C U if and only if (∃bεU) a C {b}.

Unary topologies are distinguishable among formal topologies because the
collection of their formal points, when it is not empty, forms an algebraic dcpo
with a bottom element (see for instance [Sig90], [SVV96] or [Sam00]). In fact,
supposing that Alg0

⊥ is the category of algebraic dcpos with a bottom element
and Scott-continuous functions [AJ94] enriched with an initial object, we can
prove the following theorem.

Theorem 2.42 The category unFTop is impredicatively equivalent to Alg0
⊥.

Proof. The equivalence functor from unFTop to Alg0
⊥ is the functor Pt(−),

which associates to a unary formal topology A the collection Pt(A) of its formal
points and to a continuous relation F the induced continuous function φF as
defined in section 2.4 by setting φF (α) ≡

⋃
aεα

→
F (a). Let us prove that this

functor is well defined.
In order to check it on the objects, we have to prove that Pt(A) is an algebraic

dcpo with a bottom element. So, let A be a unary formal topology and suppose
that (αi)i∈I is a directed family of formal points of A. Then α ≡

⋃
i∈I αi is a

formal point. Indeed, α is clearly not empty and if aεα and bεα then there are
αi and αj such that aεαi and bεαj . But we assumed that the family I of formal
points is directed and thus there is a formal point αk such that αi ⊆ αk and
αj ⊆ αk. Hence, a, bεαk and so there exists cεαk, which yields cεα, such that
c C a and c C b. Finally, if aεα and a C U then there exists i ∈ I such that
aεαi. Thus, there exists uεU such that uεαi which yields uεα.

The second step in the proof is to notice that, in the case of unary formal
topologies, the subset ↑ a ≡ {c ∈ A | a C {c}} is a formal point for any positive
element a ∈ A. Indeed, ↑ a is clearly not empty and if b1, b2ε ↑ a, that is,
a C {b1} and a C {b2}, then aεb1 ↓ b2 and hence there exists cεb1 ↓ b2 such
that a C {c}, that is, cε ↑ a. Finally, if bε ↑ a and b C U then a C {b} and
hence a C U . But we are dealing within a unary topology and hence we obtain
that Pos(a) → (∃uεU) a C {u} and hence Pos(a) yields (∃uεU) a C {u}, that
is, (∃uεU) uε ↑ a.

Now, observe that, for any point β, β =
⋃

bεβ ↑ b and the union on the right
is directed since bεβ if and only if ↑ b ⊆ β and hence if ↑ b1 ⊆ β and ↑ b2 ⊆ β
then there exists c such that c C {b1}, that is, ↑ b1 ⊆↑ c, c C {b2}, that is,
↑ b2 ⊆↑ c and ↑ c ⊆ β.

Thus, the formal points whose shape is ↑ b, for bεPosA, are the compact
elements in the ordered structure (Pt(A),⊆). Indeed, if ↑ a ⊆

⋃
i∈I βi then

aε
⋃

i∈I βi; hence there exists i ∈ I such that aεβi and thus ↑ a ⊆ βi. On the
other hand, suppose that β is a compact formal point, then β ⊆

⋃
bεβ ↑ b yields

that there exists bεβ such that β ⊆↑ b and hence β =↑ b.
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So, any formal point β =
⋃

bεβ ↑ b is the directed supremum of all the
compact element smaller than it, that is, (Pt(A),⊆) is an algebraic dcpo.

Finally, it is clear that, provided PosA(>A) holds, the dcpo (Pt(A),⊆) has
a bottom element which is the formal point ↑ >A since such a formal point is
clearly contained in any other formal point because of point inhabitance and
point splitness.

Let us show now that Pt(−) is well defined also on morphisms. We have
to show that any continuous function φF induced by a continuous relation F is
Scott-continuous. But this result is immediate because the topology on Pt(A)
is a Scott topology. Indeed, the base for such a topology is the family

extPt(a) ≡ {α ∈ Pt(A) | aεα}

for a ∈ A. Thus, any open subset O is obtained as union of elements in the
base, namely,

O ≡
⋃
aεU

extPt(a)

Then we have to show that if α ⊆ β and α ∈ O then β ∈ O and that if⋃
i∈I βi ∈ O then there exists i ∈ I such that βi ∈ O. So, let us suppose that

α ⊆ β and α ∈ O. Then there exists aεU such that α ∈ extPt(a), that is,
aεα. Hence, aεβ follows and thus we trivially obtain β ∈ extPt(a) which yields
β ∈ O. Let us suppose now that

⋃
i∈I βi ∈ O. Then there exists aεU such that⋃

i∈I βi ∈ extPt(a), that is, aε
⋃

i∈I βi. Thus, there exists i ∈ I such that aεβi,
which yields βi ∈ extPt(a) and so βi ∈ O.

Viceversa, unary topologies allows to present all the algebraic dcpos with a
bottom element (provided that they have a set of compact elements). Indeed,
we can define a functor ↓ (−) from Alg0

⊥ to unFTop which maps an algebraic
dcpo with bottom element (D,�,⊥) to a formal topology KD on the set KD of
its compact elements, by setting

Pos(a) ≡ True
a C U ≡ (∃bεU) a w b

Then, KD is a unary formal topology whose top element is ⊥ and whose formal
points form an algebraic dcpo which is isomorphic to (D,�,⊥).

The functor ↓ (−) is extended to morphisms by mapping any continuous
function f from the algebraic dcpo D1 to the algebraic dcpo D2 to the continuous
relation defined by setting, for any a ∈ KD1 and b ∈ KD2 ,

a Rf b ≡ f(a) w b

It is clear that the functors Pt(−) and ↓ (−) establish an equivalence between
the categories unFTop and Alg0

⊥.
It is worth noting that we can obtain a category equivalent to the category

Alg⊥ of the algebraic dcpos with a bottom element if we restrict to unary formal
topologies whose top element is positive.
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2.7.1 Inductive generation of a unary topology

In this section we recall the fact that all the unary formal topologies are induc-
tively generated (see [CSSV03]). While it is obvious that this result trivially
holds from an impredicative point of view, it is interesting to note that a pred-
icative proof requires the use of the axiom of choice which is an immediate
consequence of the definition of Σ-type in Martin-Löf’s Type theory [Mar84].

Theorem 2.43 Let A be a unary formal topology in FTopi. Then A can be
inductively generated.

Proof. We have to furnish an axiom-set for A. Now, by definition, a C U holds
if and only if Pos(a) → (∃uεU) a C {u}. Thus, by the axiom of choice, there
exists f ∈ Pos(a) → A such that, for any x ∈ Pos(a), f(x)εU and a C {f(x)}.
It is now easy to check that the axiom-set that we are looking for is

I(a) ≡ {f : Pos(a) → A | (∀x ∈ Pos(a)) a C {f(x)}}
C(a, f) ≡ Im(f)

where Im(f) ≡ {c ∈ A | (∃x ∈ Pos(a)) c = f(x)}

The statement above concerns FTopi, but a completely similar result can
be proved within FTopi

− by just substituting the positivity predicate with an
always true proposition. In the rest of this section we will continue to present
our results within FTopi since it is usually more complex to obtain them in the
presence of the positivity predicate but it is easy to check that all we do can be
re-done within FTopi

−.
Given any formal topology (A,C,Pos) it is not difficult to obtain a unary

topology out of it.

Lemma 2.44 Let A ≡ (A,>,C,Pos) be a formal topology and set

a CUn U ≡ Pos(a) → (∃uεU) a C {u}

Then Un(A) ≡ (A,>,CUn,Pos) is a unary topology called the unary image of A.

Proof. First of all, we have to check that all the conditions for Un(A) being a
formal topology are satisfied.

• (top-element) We have to show that, for any a ∈ A, a CUn > but this is a
trivial consequence of the fact that a C >.

• (Reflexivity) Suppose aεU . Then a C a yields (∃uεU) a C u, which yields
immediately a CUn U .

• (Transitivity) Suppose a CUn U and U CUn V and assume that Pos(a)
holds. Then there exists uεU such that a C {u} and hence both Pos(u)
and u CUn V follow. Hence there exists vεV such that u C {v} and hence
a C {v} follows by transitivity. Thus, a CUn V follows by discharging the
assumption Pos(a).
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• (↓-right) Suppose a CUn U and a CUn V and assume that Pos(a) holds.
Then there exists uεU and vεV such that a C {u} and a C {v}. Then
aεU ↓ V and hence there exists zεU ↓ V such that a C {z}; thus we
obtain a CUn U ↓ V by discharging the assumption Pos(a).

• (monotonicity) Suppose that Pos(a) and a CUn U holds. Then there exists
uεU such that a C {u} and hence Pos(u) follows by monotonicity.

• (Positivity) Immediate, by logic.

It is now obvious that Un(A) is a unary formal topology.

2.7.2 Embedding in a unary topology

One can prove that any formal topology embeds continuously into its unary
image. This result follows easily after the next lemma.

Lemma 2.45 Let A1 ≡ (A,>1,C1,Pos1) and A2 ≡ (A,>2,C2,Pos2) be two
formal topologies on the same base A and suppose that, for any a, b ∈ A and
U ⊆ A,

(cover embedding)
a C2 U

a C1 U
(convergence embedding) a ↓1 b C1 a ↓2 b

Then >1 C1 >2 and, for any a ∈ A, Pos1(a) → Pos2(a). Moreover, C1 is a
continuos relation between A1 and A2 and, for any point α in Pt(A1), α is also
a point in Pt(A2).

Proof. By top element for A2, >1 C2 >2 and hence >1 C1 >2 follows immedi-
ately by cover embedding. Moreover, for any a ∈ A, a C2 a+2 . Then, by cover
embedding, a C1 a+2 and hence Pos1(a) yields that there exists xεa+2 such that
Pos1(x). But xεa+2 yields Pos2(a).

It is now straightforward to check that C1 is a continuous relation. Indeed,
function totality and function saturation hold trivially. Moreover, function con-
tinuity can be proved as follows. Suppose that a C1 b and b C2 V ; then
b C1 V follows by cover embedding and hence we obtain a C1 V by transitiv-
ity; thus a C1C

−
1 (V ) follows by reflexivity and transitivity since V ⊆C−1 (V ).

Finally, also function convergence holds. Indeed, if a C1 b and a C1 d then
aε C−1(b ↓1 d); now, b ↓1 d C1 b ↓2 d holds by convergence embedding and hence
C−1 (b ↓1 d) C1C

−
1 (b ↓2 d) follows by lemma 2.8 which only requires function

continuity of C1 that we already proved; so a C1C
−
1(b ↓2 d) follows by reflexivity

and transitivity.
Let us suppose now that α ∈ Pt(A1). Then α is obviously inhabited. More-

over if a, bεα then by point convergence there exists cεa ↓1 b such that cεα;
hence c C1 a ↓1 b and so c C1 a ↓2 b follows by convergence embedding and
thus, by point splitness, there exists dεa ↓2 b such that dεα. Finally, if aεα and
a C2 V then a C1 V follows by cover embedding and hence, by point splitness,
there exists an element cεV such that cεα.
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In the case of inductively generated formal topologies this lemma can be
simplified as follows.

Corollary 2.46 Let A1 ≡ (A,>1,≤,C1,Pos1) and A2 ≡ (A,>2,≤,C2,Pos2)
be two inductively generated formal topologies, on the same base A and with the
same pre-order relation ≤, whose axiom-sets are respectively I1(−), C1(−,−)
and I2(−), C2(−,−). Then, if, for any a ∈ A and i ∈ I2(a), a C1 C2(a, i) then
C1 is a continuous relation between A1 and A2.

Proof. After lemma 2.45, to prove the claim it is sufficient to prove that, for
any a, b ∈ A and U ⊆ A, a C2 U yields a C1 U and a ↓1 b C1 a ↓2 b.

So, let us suppose that a C2 U . Then we can prove a C1 U by induction
on the length of the derivation of a C2 U . Indeed, if a C2 U has been obtained
by reflexivity from aεU then a C1 U follows by reflexivity. If a C2 U has
been obtained by ≤-left from a ≤ c and c C2 U then, by inductive hypothesis,
we obtain c C1 U and hence a C1 U by ≤-left. Finally, if a C2 U has been
obtained by infinity from C2(a, i) C2 U then by inductive hypothesis we obtain
C2(a, i) C1 U and hence a C1 U follows by transitivity since a C1 C2(a, i) holds
by assumption.

As regard to the second condition, let us note that a ↓≤ b C2 a ↓2 b holds
and hence a ↓≤ b C1 a ↓2 b follows since we proved above that cover embedding
holds. Hence a ↓1 b C1 a ↓2 b follows by transitivity since a ↓1 b C1 a ↓≤ b
holds.

The following lemma follows immediately.

Lemma 2.47 (embedding) Let A be any formal topology. Then the cover
relation CA is a continuous relation between A and Un(A).

Proof. We have only to show that cover embedding and convergence embedding
hold. So, let us suppose that a CUn U and assume that Pos(a) holds; then there
exists an element uεU such that a C u holds. Then a C U follows by reflexivity
and transitivity and hence we can discharge the assumption Pos(a) by positivity,
that is, we proved that a CUn U yields a C U . Finally, for any w ∈ A, w C a
and w C b immediately yield w CUn a and w CUn b; hence a ↓ b ⊆ a ↓Un b and
so convergence embedding follows by reflexivity.

2.7.3 Binary product with a unary formal topology

We present now a lemma that characterizes the topological product of formal
topologies in the case one of them is unary.

Lemma 2.48 Consider the topological product of an inductively generated for-
mal topology C ≡ (C,>C ,≤C ,CC ,PosC) and a unary formal topology A ≡
(A,>A,≤A,CA,PosA) in FTopi and suppose that c ∈ C, a ∈ A and W ⊆ C×A.
Hence, if PosA(a) and (c, a) CC×A W hold then there exists a subset W1 of C
such that c CC W1 and, for every w1εW1 there exists w2 ∈ A such that a CA w2

and (w1, w2)εW .
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Proof. The statement is proved by induction on the length of the derivation of
(c, a) CC×A W .

If (c, a) CC×A W has been obtained from (c, a)εW by reflexivity then we
can simply set W1 ≡ {c} and w2 ≡ a and the result is obvious.

On the other hand, if (c, a) CC×A W follows by infinity then we have to
consider two cases.

• (c, a) CC×A W follows from {c}×CA(a, j) CC×A W . Then, since PosA(a)
holds and A is a unary formal topology, there exists a positive element
vεCA(a, j) such that a CA {v} and (c, v) CC×A W . Hence, by inductive
hypothesis, there exists a subset Wv of C such that c CC Wv and for
every w1εWv there exists w2 ∈ A such that v CA w2 and (w1, w2)εW .
Then, to satisfy the statement we put W1 = Wv and for every w1εW1 we
keep the same element w2 since from v CA {w2} and a CA {v} we obtain
a CA {w2} by transitivity.

• (c, a) CC×A W follows from CC(c, j)×{a} CC×A W . Then c CC CC(c, j)
and, for all uεCC(c, j), (u, a) CC×A W . Then, for every uεCC(c, j), by
inductive hypothesis there exists a subset Wu of C such that u CC Wu

and, for every w1εWu, there exists w2u ∈ A such that a CA w2u and
(w1, w2u)εW . Then, we set W1 ≡

⋃
uεCC(c,j) Wu and we obtain that, for

every w1εW1, there exists uεCC(c, j) such that w1εWu and then the result
follows.

Finally, suppose that (c, a) CC×A W follows by ≤-left from (c1, a1) CC×A W
and (c, a) ≤ (c1, a1). Then (c, a) ≤ (c1, a1) yields a ≤ a1 and hence PosA(a)
yields PosA(a1) by ≤-monotonicity. Hence, by inductive hypothesis, there exists
a subset W1 of C such that c1 CC W1 and for every w1εW1, there exists w2 ∈ A
such that a1 CA w2 and (w1, w2)εW . Thus, to obtain the result, we can simply
use the same subset W1. Indeed, (c, a) ≤ (c1, a1) yields c ≤ c1 and a ≤ a1 and
then, by using ≤-left on the formal topologies C and A respectively, we obtain
both that c CC W1 holds and that for every w1εW1 there exists w2 ∈ A such
that a CA w2 with (w1, w2)εW .

It is straightforward to check that a statement analogous to the one above
above holds also in FTopi

− by simply substituting the positivity predicate with
an always true predicate. The same holds for all of the statements in the fol-
lowing sections when it is a matter of working in FTopi

− instead that in FTopi.

2.7.4 Continuous relation of a unary formal topology

The definition of continuous relation between formal topologies can be substan-
tially simplified if we restrict our attention to the case of continuous relations
between a unary formal topology and a generic one. This simplification is the
key for the possibility to define the exponential of a unary topology over an
inductively generated one (see section 3.1).
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Proposition 2.49 Suppose A = (A,>A,CA,PosA) is a unary formal topology
and B = (B,>B ,CB ,PosB) is any formal topology. Then a continuous relation
between A and B is a binary proposition aFb between A and B which satisfies
function totality, function weak-saturation and function positivity, the following
special case of function convergence

(unary function convergence)
Pos(a) aFb aFd

(∃yεb ↓ d) aFy

and the following special case of function continuity

(unary function continuity)
Pos(a) aFb b CB V

(∃vεV ) aFv

Proof. We show that the conditions here are equivalent to the standard ones
when working with unary formal topologies. Indeed, we already observed that
function weak saturation and function positivity are consequences of function sat-
uration. As regard to the validity of unary function convergence, let us suppose
that Pos(a), aFb and aFd hold. Then, function convergence yield a C F−(b ↓ d)
and hence Pos(a) yields that there exists x ∈ A such that xεF−(b ↓ d) and
a C {x} since A is a unary formal topology. Thus, there exists yεb ↓ d such that
xFy and hence aFy follows by function weak-saturation. Finally, the validity of
unary function continuity can be proved as follows. Let us suppose that Pos(a),
aFb and b C V hold. Then we obtain a C {w | (∃vεV ) wFv} by function
continuity and hence Pos(a) → (∃w ∈ A)(∃vεV ) wFv & a C w follows since A
is a unary formal topology. And it yields (∃w ∈ A)(∃vεV ) wFv & a C w, since
we supposed that Pos(a) holds. Hence we can conclude that (∃vεV ) aFv by
function weak-saturation.

On the other hand, function saturation can be proved as follows: suppose
that a CA W ; then, assuming Pos(a), we obtain that there exists wεW such that
a C w, since A is a unary formal topology, and so (∀wεW ) wFb yields wFb and
hence aFb follows by weak saturation; thus, we can conclude aFb by function
positivity. Moreover, function convergence can be proved as follows. Suppose
that aFb and aFd and assume that Pos(a) holds. Then, by unary function
convergence there exists yεb ↓ d such that aFy holds. Hence aεF−(b ↓ d) holds
and it yields a C F−(b ↓ d) by first using reflexivity and then positivity which
allows to discharge the assumption Pos(a). Finally, also function continuity is
valid. Indeed, if aFb and b CB V then, under the assumption that Pos(a)
holds, we obtain, by unary continuity, that (∃vεV ) aFv and thus aεF−(V );
hence a C F−(V ) follows by reflexivity and positivity which allows to discharge
the assumption Pos(a).

Note that, even if the domain of a continuous relation is a unary formal
topology we cannot just simplify saturation by requiring only weak-saturation.
In fact, the latter is not sufficient, because it works only for positive elements.
Indeed, recalling that Pos(a) → aFb is equivalent to (∀xεa+) xFb, the premise
of the function positivity condition yields aFb by saturation. Hence saturation
yields both function positivity and weak-saturation and so it is clear that need
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to require both of them to obtain back saturation as we saw in the proof of the
previous lemma.

As we already did in lemma 2.28, the unary continuity condition can be
further simplified if the co-domain formal topology is inductively generated.

Lemma 2.50 Let A be a unary topology, B be an inductively generated formal
topology and F be a continuous relation between A and B. Then unary function
continuity is equivalent to

(unary axiom continuity)
Pos(a) aFb j ∈ J(b)

(∃vεC(b, j)) aFv

and

(unary ≤-continuity)
Pos(a) aFb b ≤ d

aFd

Proof. First of all, it is obvious that unary axiom continuity and unary ≤-
continuity are immediate consequences of unary function continuity and ≤-left.

Vice-versa, we can prove that function unary continuity is a consequence of
the conditions above. Let us suppose that Pos(a), aFb and b C V . Then unary
continuity can be derived from the conditions here by reasoning by induction
on the length of the derivation of b C V . So, let us assume that b C V has
been derived from bεV by reflexivity. Then it is clear that (∃vεV ) aFv holds
by logic. Moreover, if b C V has been derived from C(b, j) C V by infinity then
we can use unary axiom continuity to get that there exists wεC(b, j) such that
aFw. Then, by inductive hypothesis, w C V yields that there exists vεV such
that aFv. Finally if ≤-left was used, that is, we proved b C V from b ≤ d and
d C V then the result follows by induction because from Pos(a), aFb and b ≤ d
we obtain aFd by using unary ≤-continuity.

3 The construction of the exponential object

We are now ready to prove the main result of the paper, namely, the exponen-
tiation of unary topologies over inductively generated ones.

3.1 The exponential topology

In this section, given a unary formal topology A and an inductively generated
one B, we show how to build an inductively generated formal topology, that we
indicate by A → B, whose formal points are (in bijective correspondence with)
the continuous relations between A and B.

The basic neighbourhoods of A → B are lists whose elements are couples in
the set PosA ×B ≡ {(a, b) ∈ A×B | PosA(a)}. The intended meaning of a list
l ∈ A → B is to give a partial information on a continuous relation R between
A and B. To indicate that the list l approximates the continuous relation R we
introduce the following definition

R  l ≡ (∀(a, b)εl) aRb
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where the proposition xεl is defined by induction on the construction of l by
setting xεnil ≡ False and xε(a, b) · l ≡ (x = (a, b)) ∨ xεl.

The reason to consider only couples in PosA × B is that function positivity
guarantees that every non positive element of A is in relation with every element
of B and hence it is useless to keep the information on the non-positive elements
of A.

Since we want to obtain an inductively generated formal topology, in order
to apply the method in section 2.5, we have to introduce also a pre-order relation
among lists. The obvious choice is to set

l � m ≡ (∀(a, b) ∈ PosA ×B) (a, b)εm → (a, b)εl

stating that the list l is more precise, that is, it is contained into fewer continuous
relations, than the list m. This order relation is a refinement of the reverse sub-
list relation, which states that m is a sub-list of l, because − � − does not
consider the order among the elements in a list and their repetitions.

According to the explanation in section 2.5 we have now to find the axiom-
set that specifies the main properties of the cover relation for the exponential,
then we will add the top-element axiom, successively we will define the suitable
positivity predicate by co-induction, then we will add to the axiom-set so far
obtained the positivity axiom and finally we will generate the cover relation by
induction.

Now, the inspiring idea for the axiom-set is to look for those axioms which
will force a point of the exponential formal topology to be a continuous relation.
Thus, each axiom has to explain how an information l on a continuous relation
can be made more precise and still be part of a continuous relation. So, we add
a new axiom schema in correspondence with each of the conditions defining a
continuous relation. Meanwhile, we need to justify such axioms. According to
the intended meaning of the cover relation in section 2.2, given an axiom l C U ,
such a justification amounts to show that ext(l) ⊆ Ext(U), that is, every formal
point containing l also contains a basic neighbourhood of U . Recalling that
formal points are expected to be continuous relations, this means that we have
to prove that, for any continuous relation F , if F  l then there exists mεU
such that F  m.

So we have now a clear plan for finding our axiom-set. In order to keep
the exposition clear, we are not going to formalize the axiom-set completely by
specifying a set I(−) of indexes for every list l and a family C(−,−) of subsets
defining all of the subsets which cover l by axiom. In fact, we are just going to
write down which subsets have to appear in the family C(−,−). We hope that
it will be clear how such a formalization can be actually performed.

The first axiom schema that we require is the formalization of function to-
tality, namely, a F >B for any a ∈ A. It is expressed by stating that, for any
l ∈ A → B and any positive element a ∈ A, there is an index k ∈ I(l) such that

(totality axiom) C(l, k) ≡ {(a,>B) · l}

Now, if F is any continuous relation which contains l, that is, such that (a, b)εl
yields aFb, then it also contains (a,>B) · l, because of function totality.
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The second axiom schema is a formalization of unary function convergence.
This condition states that if Pos(a), aFb and aFd hold then there exists yεb ↓ d
such that aFy. The corresponding axiom states that, provided (a, b)εl and
(a, d)εl, there is an index k ∈ I(l) such that

(unary convergence axiom) C(l, k) ≡ {(a, y) · l | yεb ↓ d}

Now, if F is a continuous relation which contains l and (a, b)εl and (a, d)εl then
we get Pos(a), aFb and aFd; hence by unary convergence there exists yεb ↓ d
such that aFy; so F contains (a, y) · l.

The third required condition is weak-saturation, that is, if a C c and cFb
then aFb. The corresponding axiom states that, provided (c, b)εl, Pos(a) and
a C c, there is an index k ∈ I(l) such that

(weak-saturation axiom) C(l, k) ≡ {(a, b) · l}

Now, suppose that (c, b)εl, Pos(a) and a C c and that F is any continuous
relation containing l. Then cFb holds and hence a C c yields aFb by weak-
saturation; so F contains (a, b) · l.

Since we are considering the exponentiation of a unary formal topology A
over an inductively generated one B, we have to consider now axiom unary
continuity and unary ≤-continuity. The first condition states that if Pos(a),
aFb and j ∈ J(b), where J(b) is the axiom-indexing set for B, then there exists
yεC(b, j) such that aFy. The corresponding axiom states that, provided (a, b)εl
and j ∈ J(b), there is an index k ∈ I(l) such that

(unary continuity axiom) C(l, k) ≡ {(a, y) · l | yεC(b, j)}

Now, if F is any continuous relation which contains l then (a, b)εl yields both
Pos(a) and aFb and hence j ∈ J(b) yields that there exists yεC(b, j) such that
aFy; so F contains (a, y) · l.

Finally unary ≤-continuity states that Pos(a), aFb and b ≤ d yield aFd.
The corresponding axiom states that, provided (a, b)εl and b ≤ d, there is an
index k ∈ I(l) such that

(≤-continuity axiom) C(l, k) ≡ {(a, d) · l}

Now, if F is any continuous relation which contains l, then from (a, b)εl we get
Pos(a) and aFb and hence we conclude aFd by unary ≤-continuity since b ≤ d.
So F contains (a, d) · l.

It is not too difficult to show that the axioms above form an axiom-set.
However, it is interesting to note that to obtain this result it is necessary that
the formal topology B is inductively generated; indeed the continuity axiom for
a general topology would have required that, provided (a, b)εl and b C V , there
is an index in I(l) for all the subsets {(a, v) · l | vεV }. But, in general, this
cannot be possible since it would be necessary to quantify over the collection of
all the subsets of B.
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Now, we should add the top-element axiom, namely, for every list l, we
should add a new index for the subset {l} ↓� {nil}. But we can skip this step
here since, after the exponential formal topology will be generated, l C nil will
clearly holds as a consequence by �-left of l � nil which obviously holds.

Let us turn now our attention to the positivity predicate. As we already
explained, for its definition we follow the method suggested in section 2.5, that
is, we are going to use the following co-inductive rules:

(�-monotonicity)
Pos(l) l � m

Pos(m)

(totality positivity)
Pos(l) Pos(a)
Pos((a,>) · l)

(unary convergence positivity)
Pos(l) (a, b)εl (a, d)εl
(∃yεb ↓ d) Pos((a, y) · l)

(weak-saturation positivity)
Pos(l) Pos(a) a C c (c, b)εl

Pos((a, b) · l)

(unary continuity positivity)
Pos(l) (a, b)εl j ∈ J(b)
(∃yεC(b, j)) Pos((a, y) · l)

(≤-continuity positivity)
Pos(l) (a, b)εl b ≤ d

Pos((a, d) · l)

It is worth noting that we did not add the co-inductive rule for the top
element axiom since we did not to add such an axiom.

After the definition of the positivity predicate, in order to force positivity to
hold for the cover relation, for every list l, we have to add to the axiom-set so
far obtained a new index ∗ and a new subset, namely

(positivity axiom) C(l, ∗) ≡ {m ∈ A → B | m = l & Pos(m)}

Thus we completed the definition of the axiom-set for the formal topology
A → B and it is not too difficult to verify that such an axiom-set satisfies the
localization condition of section 2.5. So we can finally generate by induction the
formal topology A → B whose cover relation satisfies the following conditions:

(top-element axiom) l C nil

(totality axiom) l C (a,>B) · l
(unary convergence axiom) l C {(a, y) · l | yεb ↓ d}

if (a, b)εl and (a, d)εl

(weak saturation axiom) l C (a, b) · l
if (c, b)εl,Pos(a) and a CA c

(≤-continuity axiom) l C (a, d) · l
if (a, b)εl and b ≤ d

(unary continuity axiom) l C {(a, y) · l | yεC(b, j)}
if (a, b)εl, j ∈ J(b)
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3.1.1 Some immediate lemmas on the exponential

In this section we prove some lemmas which are immediate consequence of the
definition of exponential topology and that we will use in the following.

Lemma 3.1 Let l ∈ A → B, (c, b)εl, Pos(a) and a CA c. Then

l CA→B (a, b) · nil

Proof. From (c, b)εl, Pos(a) and a CA c, by weak-saturation axiom, we obtain
l CA→B (a, b) · l. Then we conclude l CA→B (a, b) · nil by transitivity since, by
≤-left, we get (a, b) · l CA→B (a, b) · nil from (a, b) · l � (a, b) · nil.

Lemma 3.2 Let l ∈ A → B, (a, b)εl and b ≤ d. Then

l CA→B (a, d) · nil

Proof. From (a, b)εl, and b ≤ d we obtain l CA→B (a, d) · l by ≤-continuity
axiom. Then we conclude l CA→B (a, d) · nil by transitivity since, by ≤-left, we
get (a, d) · l CA→B (a, d) · nil from (a, d) · l � (a, d) · nil.

Let us recall now the operation of appending two lists since we are going
to use it in the next lemmas: given two lists m1 and m2 in A → B we will
write m1 · m2 to mean the result of appending the list m1 to the list m2 and,
given two subsets U1, U2 ⊆ A → B, we will write U1 · U2 to mean the subset
U1 · U2 ≡ {m1 ·m2 | m1εU1 & m2εU2}.

Lemma 3.3 Let l ∈ A → B and U1, U2 ⊆ A → B. Then the following condi-
tion holds:

(·-right)
l C U1 l C U2

l C U1 · U2

Proof. The premises of ·-right yield l C U1 ↓� U2 by �-right. Then, we
conclude l C U1 · U2 by transitivity since U1 ↓� U2 C U1 · U2. Indeed, for any
lεU1 ↓� U2, there exist u1εU1 and u2εU2 such that l � u1 and l � u2. Thus,
l � u1 · u2 and hence l C u1 · u2 follows by �-left and hence l C U1 · U2.

Lemma 3.4 Let F be a continuous relation from C to A → B. Then the fol-
lowing condition holds, for any c ∈ C and any l1, l2 ∈ A → B,

c F l1 c F l2
c F l1 · l2

Proof. Since c F l1 and c F l2 we get c C {w ∈ C | (∃lεl1 ↓ l2) wFl} by
function convergence. Now, for any w ∈ C such that wFl and lεl1 ↓ l2, we get
l C l1 · l2 by lemma 3.3, since l C l1 and l C l2, and hence w F l1 · l2 follows by
weak-continuity. Thus, we conclude c F l1 · l2 by saturation.

Even if the axioms for the exponential topology A → B that we introduced
use directly the particular axiom-set used to generate the formal topology B,
the next two lemmas show that the resulting topology does not depend on these
particular axiom-set but on the cover of B.

45



Lemma 3.5 Let A be a unary formal topology and B an inductively generated
one. Then, for any list l ∈ A → B, the following condition holds

(generalized unary continuity positivity)
Pos(l) (a, b)εl b CB V

(∃yεV ) Pos((a, y) · l)

Proof. The proof goes on by induction on the generation of b CB V .

• If b CB V has been obtained by reflexivity, then the result follows imme-
diately by ≤-continuity positivity since b ≤ b.

• If b CB V has been obtained by ≤-left from b ≤ d and d CB V , then
Pos((a, d) · l) follows by ≤-continuity positivity. Then by inductive hy-
pothesis we obtain (∃yεV ) Pos((a, y) · (a, d) · l) and so we can conclude
(∃yεV ) Pos((a, y) · l) by �-monotonicity since (a, y) · (a, d) · l � (a, y) · l.

• If b CB V has been obtained by infinity from CB(b, j) CB V , then
(∃yεCB(b, j)) Pos((a, y) · l) holds by unary continuity positivity. Now, by
inductive hypothesis, from Pos((a, y) · l) we get (∃zεV ) Pos((a, z) · (a, y) · l)
and hence we conclude (∃zεV ) Pos((a, z) · l) by �-monotonicity since
(a, z) · (a, y) · l � (a, z) · l.

Lemma 3.6 Let A be a unary formal topology and B be an inductively generated
one. Then, for any list l ∈ A → B and any (a, b)εl, if b CB V then

(unary continuity cover) l CA→B {(a, y) · l | yεV }

Proof. The proof goes on by induction on the generation of b CB V .

• If b CB V has been obtained by reflexivity then (a, b) · lε{(a, y) · l | yεV }.
Hence (a, b) · l C {(a, y) · l | yεV } follows by reflexivity and hence we obtain
l CA→B {(a, y) · l | yεV } by transitivity since l � (a, b) · l yields l C (a, b) · l.

• If b CB V has been obtained by ≤-left from b ≤ d and d CB V , then, by
inductive hypothesis, we obtain (a, d)·l CA→B {(a, y)·(a, d)·l | yεV }. Now,
for any yεV , (a, y) · (a, d) · l � (a, y) · l yields (a, y) · (a, d) · l CA→B (a, y) · l
and hence (a, d) · l CA→B {(a, y) · l | yεV } follows by transitivity. But
b ≤ d yields l CA→B (a, d) · l by ≤-continuity axiom. So, we conclude
l CA→B {(a, y) · l | yεV } by transitivity.

• If b CB V has been obtained by infinity from CB(b, j) C V , then, for
every zεCB(b, j), (a, z) · l CA→B {(a, y) · (a, z) · l | yεV } holds by inductive
hypothesis. Observe now that, for any yεV , (a, y) ·(a, z) ·l � (a, y) ·l yields
(a, y)·(a, z)·l CA→B (a, y)·l. Hence (a, z)·l CA→B {(a, y)·l | yεV } follows
by transitivity. Now, (a, b)εl and hence, by unary continuity axiom, we get
l CA→B {(a, z)·l | zεCB(b, j)} and so we conclude l CA→B {(a, y)·l | yεV }
by transitivity.
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3.1.2 Embedding of exponential topologies

Thanks to the lemmas of the previous section we can prove the following em-
bedding lemma.

Proposition 3.7 The exponential A → B of a unary formal topology A over an
inductively generated formal topology B embeds into the exponential A → Un(B)
via the cover relation − CA→B −.

Proof. After corollary 2.46, the claim is a consequence of proving that, for
any l ∈ A → B and j ∈ IA→Un(B)(l), l CA→B CA→Un(B)(l, j) holds. This is
immediate for all the axioms in the axiom-set of A → Un(B), except for the
positivity axiom and unary continuity axiom.

To prove that the result holds for the positivity axiom, namely to prove that

l CA→B {m ∈ A → B | PosA→Un(B)(m) & m = l}

holds, it is enough to observe that PosA→B(l) yields PosA→Un(B)(l). Now, this
fact can be proved by co-induction by observing that Q(l) ≡ PosA→B(l) satisfies
all the co-inductive conditions defining PosA→Un(B)(l). Indeed, this result is
immediate for all of the conditions except for the unary continuity positivity
condition that can be proved as follows. First, observe that if IUn(B)(−) and
CUn(B)(−,−) is the axiom set of Un(B) then, for any b ∈ B and j ∈ IUn(B)(b),
b CB CUn(B)(b, j). Then unary continuity positivity follows by lemma 3.5.

Finally, observe that the validity in A → B of the unary-continuity axiom of
A → Un(B), that is,

l CA→B {(a, y) · l | yεCUn(B)(b, j)}

follows by lemma 3.6 since, for any b ∈ B and j ∈ IUn(B)(b), b CB CUn(B)(b, j).

After this proposition and lemma 2.45, it follows that the formal points of
A → B are also formal points of A → Un(B). Since in the next section we will
prove that the collection of the formal points of A → B is in bijection with the
collection of the continuous relations between A and B, this embedding means
that continuous relations between a unary formal topology A and any induc-
tively generated formal topology B form a subcollection of continuous relations
between A and Un(B), as expected.

3.2 Bijection between points and relations

In this section we prove that there is a bijective correspondence between the
continuous relations between a unary formal topology A and an inductively
generated one B and the formal points of the formal topology A → B. It is
clear that this result is an immediate consequence of the bijective correspondence
between the collection of the formal points of the formal topology A and the
morphisms between the terminal formal topology T and A that we proved in
section 2.4.2 and the proof that, for any unary formal topology A and any
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inductively generated formal topology B, the formal topology A → B is the
exponential of A and B that we will show in the next sections. However, we
decided to insert here a direct proof since we think that it is more straight and
perspicuous to understand how the axioms for the exponential have been found.

In order to simplify the proof of the next theorem 3.9, it is useful to observe
first that the following lemma holds. It suggests how to get rid of the positivity
predicate when we define the continuous relation associated with one formal
point of A → B, that is, it allows to use the same definition both in FTopi and
FTopi

−.

Lemma 3.8 Let A be a unary formal topology and B be any inductively gen-
erated formal topology. Suppose that a ∈ A, b ∈ B and Φ ∈ Pt(A → B). Then
Pos(a) → (a, b) · nilεΦ if and only if a C {c ∈ A | (c, b) · nilεΦ}.

Proof. One direction is trivial: if Pos(a) → (a, b) · nilεΦ then, assuming that
Pos(a) holds, we get aε{c ∈ A | (c, b)·nilεΦ} and hence a C {c ∈ A | (c, b)·nilεΦ},
with no assumption, follows by reflexivity and positivity. In order to prove the
other implication, let us suppose that a C {c ∈ A | (c, b) · nilεΦ} holds. Then,
supposing that Pos(a) holds, one deduces that there exists an element c ∈ A
such that both (c, b) · nilεΦ and a C c hold since A is a unary formal topology.
So, (c, b)ε(c, b) · nil, Pos(a) and a C c yield (c, b) · nil C (a, b) · nil by lemma 3.1.
Hence (c, b) · nilεΦ yields (a, b) · nilεΦ by point splitness.

Now we can prove the main theorem of this section.

Theorem 3.9 Let A be a unary formal topology and B be an inductively gen-
erated formal topology. Then there exists a bijective correspondence between the
collection of the formal points of A → B and the collection of the continuous
relations between A and B.

Proof. Let us begin by defining the continuous relation RΦ associated with the
formal point Φ ∈ Pt(A → B):

aRΦb ≡ a C {c ∈ A | (c, b) · nilεΦ}

Then we have to prove that RΦ is a continuous relation between A and B.

• (function totality) We have to prove that, for every a ∈ A, aRΦ>B holds.
So, let us assume that Pos(a) holds. Then the result is immediate since
(a,>B) · nilεΦ follows by point splitness because nilεΦ holds by point in-
habitance and nil C (a,>B) · nil by totality axiom.

• (unary function convergence) Suppose that aRΦb, aRΦd and Pos(a) hold.
Then we have to prove that there exists yεb ↓ d such that aRΦy. By
lemma 3.8, the assumptions yield (a, b) · nilεΦ and (a, d) · nilεΦ and hence,
by point ≤-convergence, there exists a list l such that both l � (a, b) · nil,
l � (a, d) · nil and lεΦ. Then (a, b)εl and (a, d)εl and hence l C {(a, y) · l |
yεb ↓ d} follows by unary convergence axiom. Then, by point splitness,

48



it follows that there exists yεb ↓ d such that (a, y) · lεΦ and thus also
(a, y)·nilεΦ since (a, y)·l C (a, y)·nil is a consequence of (a, y)·l � (a, y)·nil
by �-left. So, by lemma 3.8, aRΦy holds.

• (function weak saturation) Suppose that a CA c and cRΦb. Then we get
c C {x ∈ A | (x, b) · nilεφ} and hence a C {x ∈ A | (x, b) · nilεφ} follows by
transitivity, that is, aRΦb holds.

• (unary axiom continuity) Suppose that aRΦb, Pos(a) and j ∈ J(b) hold.
Then, by lemma 3.8, (a, b) · nilεΦ. Moreover, by unary continuity axiom,
(a, b) · nil C {(a, y) · (a, b) · nil | yεC(b, j)} holds and hence there exists
yεC(b, j) such that (a, y) · (a, b) · nilεΦ by point splitness. But then also
(a, y) · nilεΦ follows since (a, y) · (a, b) · nil C (a, y) · nil is a consequence of
(a, y) · (a, b) · nil � (a, y) · nil by �-left. So, by lemma 3.8, aRΦy holds.

• (unary function ≤-continuity) Suppose that aRΦb, Pos(a) and b ≤ d hold.
Then (a, b)·nilεΦ follows immediately by lemma 3.8. Hence, by lemma 3.2,
b ≤ d yields (a, b) · nil C (a, d) · nil since (a, b)ε(a, b) · nil. So, by point
splitness, (a, d) · nilεΦ follows, that is, aRΦd holds.

• (function positivity) Immediate by positivity for the cover.

The definition of the point ΦR associated to the continuous relation R is the
following:

lεΦR iff R  l

It is not difficult to prove that ΦR is indeed a formal point:

• (point inhabitance) nilεΦR because R  nil holds by logic.

• (point ≤-directness) Let us assume that lεΦR and mεΦR; then R  l and
R  m and hence there exists a list k, namely, l · m, such that k � l,
k � m and R  k which yields kεΦR.

• (point left-closure) Let us assume that lεΦR and l � m. Then, by hypoth-
esis R  l and hence R  m follows trivially by logic. Thus mεΦR.

• (point inductive splitness) Let us argue according to the shape of possible
axioms.

– (axiom totality) Suppose that lεΦR holds and that l C (a,>) · l.
Then R  l holds by definition and aR> holds by function totality
and hence R  (a,>) · l, that is, (a,>) · lεΦR, follows.

– (axiom unary convergence) Suppose lεΦR and l C {(a, y)·l | yεb ↓ d}
because (a, b)εl and (a, d)εl. Then R  l and so aRb and aRd hold.
Hence, there exists yεb ↓ d such that aRy by convergence. Thus
R  (a, y) · l and hence (a, y) · lεΦR.

– (weak-saturation axiom) Suppose lεΦR and l C (a, b) · l because
(c, b)εl, Pos(a) and a C c. Then R  l and hence cRb. So aRb follows
by weak-saturation and hence R  (a, b) · l, that is, (a, b) · lεΦR.
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– (unary continuity axiom) Suppose lεΦR and l C {(a, y)·l | yεC(b, j)}
because (a, b)εl and j ∈ J(b). Then R  l and hence aRb holds.
Moreover, Pos(a) holds since (a, b)εl, and hence j ∈ J(b) yields that
there exists yεC(b, j) such that aRy holds by unary continuity axiom.
So R  (a, y) · l holds and hence (a, y) · lεΦR.

– (≤-continuity axiom) Suppose lεΦR and l C (a, d) · l because (a, b)εl
and b ≤ d. Then R  l and hence aRb holds. But also Pos(a) holds
and hence b ≤ d yields aRd by unary ≤-continuity. So, R  (a, d) · l
holds and hence (a, d) · lεΦR.

– (positivity axiom) Suppose lεΦR. We have to prove that there exists
mεl+ such that mεΦR. To this aim we show by co-induction that
Pos(l) holds. Set Q(m) ≡ R  m. Then Q(m) satisfies all the
conditions for the positivity predicate. Indeed,

∗ (≤-monotonicity) If R  m and m � k then R  k trivially
follows.

∗ (totality positivity) Assume that R  m and Pos(a) hold. Now,
for any a ∈ A, a R > holds by function totality and hence R 
(a,>) ·m follows.

∗ (unary convergence positivity) Assume that R  m, (a, b)εm and
(a, d)εm. Then aRb, aRd and Pos(a) follows and hence, by unary
convergence, there exists yεb ↓ d such that aRy. Thus, by using
again R  m, we conclude that R  (a, y) ·m.

∗ (weak-saturation positivity) Assume that R  m, Pos(a), a C c
and (c, b)εm hold. Then, cRb follows and hence we can obtain
aRb by weak-saturation. We conclude R  (a, b) ·m since R  m
holds by hypothesis.

∗ (unary continuity positivity) Assume that R  m, (a, b)εm and
j ∈ J(b) hold. Then aRb and Pos(a) follows and hence, by
unary continuity, there exists yεC(b, j) such that aRy. Thus
R  (a, y) ·m follows by using again R  m.

∗ (≤-continuity positivity) Assume that R  m, (a, b)εm and b ≤ d
hold. Then, we get aRb and Pos(a) and so aRd follows by ≤-
continuity. Hence, we conclude R  (a, d) · m by using again
R  m.

Now lεΦR yields R  l, that is, Q(l) holds, and hence Pos(l) follows
by the maximality of Pos(−).

To conclude the proof we have only to show that the two constructions are one
the inverse of the other. Indeed

aRΦF
b iff a C {c ∈ A | (c, b) · nilεΦF }

by lemma 3.8 iff Pos(a) → (a, b) · nilεΦF

iff Pos(a) → F  (a, b) · nil
iff Pos(a) → aFb

by function positivity iff aFb
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Moreover,

lεΦRΨ iff RΨ  l
iff (∀(a, b)εl) aRΨb
iff (∀(a, b)εl) a C {c ∈ A | (c, b) · nilεΨ}

by lemma 3.8 iff (∀(a, b)εl) Pos(a) → (a, b) · nilεΨ
iff (∀(a, b)εl) (a, b) · nilεΨ
iff lεΨ

where the last but one step holds because the first component of each element
of l is positive while the last step is proved as follows. If lεΨ then, for each
(a, b)εl, (a, b) ·nilεΨ follows by point splitness because l C (a, b) ·nil follows from
l � (a, b) · nil by �-left. To prove the other implication observe that if, for all
i = 1, ..., length(l), (ai, bi)εl yields (ai, bi) ·nilεΨ; then by point convergence there
exists a list k such that kεΨ and, for any i = 1, ..., length(l), k � (ai, bi) · nil.
Then k � l and hence by �-left we obtain k C l and thus lεΨ follows by point
splitness.

3.3 Application and abstraction

In this section we show that the formal topology introduced in the previous
section is the exponential of a unary topology over an inductively generated
formal topology. From a categorical point of view this means that, for any
unary topology A the functor − ×A : FTopi ⇒ FTopi has got a right adjoint
A → − : FTopi ⇒ FTopi. Equivalently, this amounts to define, for any unary
topology A and any formal topology B in FTopi, an application relation Ap
between (A → B) ×A and B such that for any continuous relation F between
C × A and B there exists a continuous relation Λ(F ), called abstraction of F ,
between C and A → B such that, for any continuous relation G between C and
A → B, the following equations are satisfied

Ap ∗ 〈Λ(F ) ∗Π1,Π2〉 = F
Λ(Ap ∗ 〈G ∗Π1,Π2〉) = G

Let l ∈ A → B, a ∈ A and b ∈ B. Then, we propose the following definitions
for the application and the abstraction:

(l, a) Ap b ≡ Pos(a) → (l C (a, b) · nil)
c Λ(F ) l ≡ (∀(a, b)εl) (c, a)Fb

In the next sections we will prove that they are continuous relations and
that the required equations hold.

3.3.1 The application

The next lemma states that the candidate relation for application is a continuous
relation.
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Lemma 3.10 Let A be a unary topology and B be an inductively generated one.
Then Ap is a continuous relation.

Proof. We have to check that all of the required conditions hold.

• (function totality) Let a ∈ A and l ∈ A → B. Then, we need to prove
that (l, a)Ap>B , that is, Pos(a) → (l C (a,>B) · nil). Since l � nil, by
�-left we get l C nil. Then, supposing Pos(a), by axiom totality we obtain
nil C (a,>B) ·nil and hence l C (a,>B) ·nil follows by transitivity. Finally,
we conclude by discharging Pos(a).

• (function convergence) Suppose (l, a) Ap b and (l, a) Ap d. Then, we
have to show that (l, a) C Ap−(b ↓ d). To this aim let us assume that
Pos(a) holds. Then, we get both l C (a, b) · nil and l C (a, d) · nil. Hence,
l C {(a, b) · nil} ↓� {(a, d) · nil} follows by �-right and so, by lemma 2.34,
we obtain (a, l) C {a}×{(a, b) ·nil} ↓� {(a, d) ·nil}. Thus, we can conclude
by transitivity provided we prove that ({(a, b) · nil} ↓ {(a, d) · nil}) × {a}
is covered by Ap−(b ↓ d). To this aim, let us consider any couple (x, a) ∈
(A → B) × A such that x � (a, b) · nil and x � (a, d) · nil. Then, (a, b)εx
and (a, d)εx and thus x C {(a, y) · x | yεb ↓ d} by unary convergence
axiom. But, for any yεb ↓ d, (a, y) · x C (a, y) · nil follows by �-left
from (a, y) · x � (a, y) · nil. Then, x C {(a, y) · nil | yεb ↓ d} follows by
transitivity and hence we obtain (x, a) C {(a, y) · nil | yεb ↓ d} × {a} by
lemma 2.34. Observe now that any couple ((a, y) · nil, a) belongs to the
subset Ap−(b ↓ d), since (∃yεb ↓ d) Pos(a) → (a, y) · nil C (a, y) · nil clearly
holds, and hence (x, a) C Ap−(b ↓ d) follows by reflexivity and transitivity.

• (axiom continuity) Suppose (l, a) Ap b and j ∈ J(b). Then, after assuming
Pos(a), we obtain l C (a, b) · nil. Then, by unary continuity axiom we get
(a, b) · nil C {(a, y) · (a, b) · nil | yεC(b, j)}. Since, for any yεC(b, j), we
obtain (a, y) · (a, b) · nil C (a, y) · nil from (a, y) · (a, b) · nil � (a, y) · nil
by �-left, we conclude (a, b) · nil C {(a, y) · nil | yεC(b, j)} by transitivity.
So, we obtain l C {(a, y) · nil | yεC(b, j)} by transitivity and hence we
can deduce (l, a) C {((a, y) · nil, a) | yεC(b, j)} by lemma 2.34. Thus
(l, a) C Ap−(C(b, j)) follows by transitivity since {((a, y)·nil, a) | yεC(b, j)}
is a subset of Ap−(C(b, j)).

• (function ≤-continuity) Suppose (l, a) Ap b and b ≤ d and assume that
Pos(a) holds. Then, l C (a, b) · nil follows. Now, by lemma 3.2, b ≤ d
yields (a, b) · nil C (a, d) · nil and so we obtain l C (a, d) · nil by transitivity.
Finally, we conclude (l, a) Ap d by discharging the assumption Pos(a).

• (axiom saturation) We have to show that if k ∈ J((l, a)) is an index for
an axiom of the product topology and, for any yεC((l, a), k), y Ap b holds
then also (l, a) Ap b holds. We will argue according to the shape of the
considered axiom.

Axioms whose shape is (l, a) C C(l, j)× {a}:
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– (totality ax., weak-saturation ax., ≤-continuity ax.) Suppose that
(m,a) Ap b holds and that l C m has been obtained by applying one
of the considered axiom. Moreover, assume that Pos(a) holds. Then,
m C (a, b) · nil and hence l C (a, b) · nil follows by transitivity. Thus,
by discharging the assumption Pos(a), we obtain (l, a) Ap b.

– (unary convergence axiom) Suppose that l C {(c, y) · l | yεd1 ↓ d2)}
holds because (c, d1)εl and (c, d2)εl. Moreover, suppose that, for
every yεd1 ↓ d2, ((c, y) · l, a) Ap b holds and assume that Pos(a)
holds. Then, for any yεd1 ↓ d2, from ((c, y) · l, a) Ap b we obtain
(c, y) · l C (a, b) · nil. Hence, l C (a, b) · nil follows by transitivity.
Thus, we obtain (l, a) Ap b by discharging the assumption Pos(a).

– (unary continuity axiom) Suppose l C {(c, y) · l | yεC(d, j)} because
(c, d)εl and j ∈ J(d). Moreover, suppose that, for every yεC(d, j),
((c, y) · l, a) Ap b and assume that Pos(a) holds. Then, for any
yεC(d, j), from ((c, y)·l, a) Ap b we obtain (c, y)·l C (a, b)·nil. Hence,
l C (a, b) · nil follows by transitivity. Thus, we obtain (l, a) Ap b by
discharging the assumption Pos(a).

– (positivity axiom) Suppose (x, a) Ap b for every xεl+ and let us as-
sume that Pos(a) holds. Then, for any xεl+, we obtain x C (a, b) · nil
and so l C (a, b) · nil follows by transitivity since l C l+. Thus
(l, a) Ap b follows by discharging the assumption Pos(a).

Axioms whose shape is (l, a) C {l} × C(a, j):

– Let us assume that Pos(a) holds. Then there exists an element
cεC(a, j) such that a C c, since A is a unary formal topology, and
hence Pos(c) holds by monotonicity. Recalling now that (l, c) Ap b
holds by hypothesis we obtain that l C (c, b) · nil. But, a C c yields
(c, b) ·nil C (a, b) ·nil by lemma 3.1 and hence l C (a, b) ·nil follows by
transitivity. So, we obtain (l, a) Ap b by discharging the assumption
Pos(a).

• (≤-saturation) We have to prove that if (l, a) ≤ (m, c) and (m, c) Ap b then
(l, a) Ap b. First, note that (l, a) ≤ (m, c) yields a ≤ c and l � m. Now,
let us suppose that both Pos(a) and Pos(l) hold. Then, Pos(a) yields
Pos(c) by ≤-monotonicity and hence (m, c) Ap b yields m C (c, b) · nil.
Therefore, l C (c, b) · nil follows by �-left. Moreover, by lemma 3.1, a C c,
which is a consequence of a ≤ c, yields (c, b) · nil C (a, b) · nil and hence
we get l C (a, b) · nil by transitivity and we can discharge the assumption
Pos(l) by positivity. Finally, we conclude (l, a) Ap b by discharging also
the assumption Pos(a).

3.3.2 The abstraction

Now we have to prove that the abstraction of a continuous relation is a contin-
uous relation.
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Lemma 3.11 Let A be a unary formal topology and C and B be generated
formal topologies. Suppose that F is any continuous relation between C ×A and
B. Then Λ(F ) is a continuous relation between C and A → B.

Proof. Let us check that all of the required conditions are satisfied.

• (function totality) c Λ(F ) nil is immediate by intuitionistic logic.

• (function convergence) If c Λ(F ) l and c Λ(F ) m then (∀(a, b)εl) (c, a)Fb
and (∀(a, b)εm) (c, a)Fb. Thus, (∀(a, b)εl ·m) (c, a)Fb and so c Λ(F ) l ·m.
Hence, cε{w ∈ C | (∃kεl ↓ m) w Λ(F ) k}, since l · mεl ↓ m because
l ·m C l and l ·m C m follow by �-left from l ·m � l and l ·m � m. So,
c C {w ∈ C | (∃kεl ↓ m) w Λ(F ) k} follows by reflexivity.

• (continuity axiom) We have to check that if c Λ(F ) l and j ∈ J(l) then
c C Λ(F )−(C(l, j)) holds for all the possible axioms indexed by J(l).

– (totality axiom) We have to show that, for any positive element a of
A, c is covered by the subset {w ∈ C | w Λ(F ) (a,>B)·l}. This result
follows immediately by reflexivity since cε{w ∈ C | e Λ(F ) (a,>B) · l}
because, for all (x, y)ε(a,>B)·l, (c, x)Fy holds; indeed, for all (x, y)εl,
(c, x)Fy holds by assumption and (c, a)F>B holds by function total-
ity.

– (unary convergence axiom) We have to show that, provided (a, b)εl
and (a, d)εl hold, then c C Λ(F )−({(a, y) · l | yεb ↓ d}) follows, that
is, c C {w ∈ C | (∃yεb ↓ d) w Λ(F ) (a, y) · l}. Now, cΛ(F ) l yields
(c, a)F b and (c, a) F d and hence (c, a) C F−(b ↓ d) follows by unary
convergence. Note now that Pos(a) holds since (a, b)εl and A is a
unary formal topology. Thus, by lemma 2.48, we can find a subset
W1 of C such that c CC W1 and for any w1εW1 there exists an
element w2 ∈ A such that a CA w2 and (w1, w2)εF−(b ↓ d), that is,
(∃yεb ↓ d) (w1, w2)Fy. Then it is easy to see that W1 is a subset of
{w ∈ C | (∃yεb ↓ d) (w, a)Fy}; indeed, (w1, w2)Fy yields (w1, a)Fy
by weak-saturation, since a C w2 yields (w1, a) C (w1, w2).
Therefore, we know both that c C W1 and that W1 ⊆ {w ∈ C |
(∃yεb ↓ d) (w, a)Fy}. Hence, by reflexivity and transitivity, we get
c C {w ∈ C | (∃yεb ↓ d) (w, a)Fy}. Then, by ↓-right, we obtain
c C {c} ↓ {w ∈ C | (∃yεb ↓ d) (w, a)Fy}.
We will prove now that {c} ↓ {w ∈ C | (∃yεb ↓ d) (w, a)Fy} is a
subset of {w ∈ C | (∃yεb ↓ d) w Λ(F ) (a, y) · l}. Indeed, suppose
x C c and x C w for some w ∈ C such that (w, a)Fy for some
yεb ↓ d. Then (x, a)Fy follows by weak-saturation since x C w yields
(x, a) C (w, a) by lemma 2.34. Moreover, for any (s, t)εl, (c, s)Ft
holds, since by hypothesis c Λ(F ) l. Hence, (x, s)Ft follows by weak-
saturation since x C c yields (x, s) C (c, s) by lemma 2.34. Thus,
we proved that x Λ(F ) (a, y) · l, that is, we proved that xε{w ∈ C |
(∃yεb ↓ d) w Λ(F ) (a, y) · l}.
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Now, we can finally conclude. Indeed, by transitivity, we get c C
{w ∈ C | (∃yεb ↓ d) w Λ(F ) (a, y) · l}, that is, c C Λ(F )−({(a, y) · l |
yεb ↓ d}).

– (weak-saturation axiom) We have to show that, if (a2, b)εl, Pos(a1)
and a1 C a2 then c C Λ(F )−((a1, b) · l) holds. Now, (a2, b)εl and
cΛ(F )l yield (c, a2)Fb and hence (c, a1)Fb follows by weak-saturation
since a1 C a2 yields (c, a1) C (c, a2) by lemma 2.34. Therefore, for
all (x, y)ε(a1, b) · l we have (c, x)Fy, that is, cεΛ(F )−((a1, b) · l) and
hence the result follows by reflexivity.

– (unary continuity axiom) We have to show that, supposing (a, b)εl
and j ∈ J(b), c C Λ(F )−({(a, y) · l | yεC(b, j)}) follows, that is,
c C {w ∈ C | (∃yεC(b, j)) w Λ(F ) (a, y) · l} holds. Now, cΛ(F ) l
yields that (c, a) F b and hence (c, a) C F−(C(b, j)) follows by unary
continuity for F . Note now that Pos(a) holds since (a, b)εl and A
is a unary formal topology. Thus, we can apply lemma 2.48 to find
a subset W1 of C such that c CC W1 and for any w1εW1 there
exists w2 ∈ A such that a CA w2 and (w1, w2)εF−(C(b, j)), that is,
(∃yεC(b, j)) (w1, w2)Fy.
Then it is easy to see that W1 ⊆ {w ∈ C | (∃yεC(b, j)) (w, a)Fy};
indeed, (w1, w2)Fy yields (w1, a)Fy by weak-saturation, since a C w2

yields (w1, a) C (w1, w2) by lemma 2.34. So, we know that c C W1

and W1 ⊆ {w ∈ C | (∃yεC(b, j))(w, a)Fy} holds and hence, by re-
flexivity and transitivity c C {w ∈ C | (∃yεC(b, j)) (w, a)Fy} follows.
Then, by ↓-right, we get c C {c} ↓ {w ∈ C | (∃yεC(b, j))(w, a)Fy}.
We will prove now that {c} ↓ {w ∈ C | (∃yεC(b, j)) (w, a)Fy} is a
subset of {w ∈ C | (∃yεC(b, j)) w Λ(F ) (a, y) · l}. Indeed, let x C c
and x C w for some w ∈ C such that (w, a)Fy for some yεC(b, j).
Then (x, a)Fy follows by weak-saturation since x C w yields (x, a) C
(w, a) by lemma 2.34. Moreover, for any (s, t)εl, (c, s)Ft holds, since
by hypothesis c Λ(F ) l, and hence (x, s)Ft follows by weak-saturation
since x C c yields (x, s) C (c, s) by lemma 2.34. Thus, we proved that
x Λ(F ) (a, y) · l, that is, xε{w ∈ C | (∃yεC(b, j)) w Λ(F ) (a, y) · l}.
Now, we can finally conclude. Indeed, by transitivity, we obtain c C
{w ∈ C | (∃yεC(b, j)) w Λ(F ) (a, y) · l}, that is, c C Λ(F )−({(a, y) · l |
yεC(b, j)}).

– (≤-continuity axiom) We have to show that, if both c Λ(F ) l and
l C (a, d) · l because (a, b)εl and b ≤ d, then c C Λ(F )−((a, d) · l)
holds. Actually, we show that for all (x, y)ε(a, d) · l, (c, x)Fy holds,
and from this fact the result follows by reflexivity. To this purpose,
it is enough to observe that cΛ(F )l yields (c, a)Fb since (a, b)εl and
hence (c, a)Fd follows by function ≤-continuity.

– (positivity axiom) We have to prove that c Λ(F ) l yields c C Λ(F )−(l+).
To obtain this result let us prove first that function monotonicity
holds for Λ(F ). To this aim let us suppose that Pos(c) and c Λ(F ) l
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hold. Then we have to prove that Pos(l) holds. We obtain this re-
sult by co-inductive reasoning. Indeed, let us consider the following
predicate over elements of A → B:

Q(k) ≡ (∃x ∈ C) Pos(x) & x Λ(F ) k

Then, it is trivial to see that Q(l) holds since Pos(c) and c Λ(F ) l
hold. We show now that Q(−) satisfies all of the conditions to be a
positivity predicate and hence Pos(l) will follow by the maximality
of Pos.
∗ (order positivity) The proof that Q(k) and k � m yield Q(m)

is immediate. Indeed, Q(k) means that there exists a positive
element x ∈ C such that, for all (s, t)εk, (x, s)Ft, which imme-
diately yields that, for all (s, t)εm, (x, s)Ft since k � m. Hence
xΛ(F )m holds.

∗ (totality positivity) Suppose that Q(k) holds. Then there exists
a positive element x ∈ C such that, for all (s, t)εk, (x, s)Ft
holds. But, for all a ∈ A, (x, a) F >B holds by function totality
and hence, for all (y, z)ε(a,>B) · k, (x, y)Fz follows, that is,
x Λ(F ) (a,>B) · k holds and hence Q((a,>B) · k) follows.

∗ (unary convergence positivity) Suppose that Q(k), (a, b)εk and
(a, d)εk hold. Then, we have to show that there exists an element
yεb ↓ d such that Q((a, y)·k). Now, Q(k) means that there exists
a positive element x ∈ C such that, for all (s, t)εk, (x, s) F t.
Hence, we get both that (x, a) F b and (x, a) F d hold and
thus (x, a) C {(w1, w2) | (∃yεb ↓ d) (w1, w2) F y} follows by
function convergence. Note now that Pos(a) holds since (a, b)εk
and hence, by lemma 2.48, there exists a subset W1 of C such
that x C W1 and, for any w1εW1, there exists w2 ∈ A such
that both a C w2 and (∃yεb ↓ d) (w1, w2) F y hold. Then
(∃yεb ↓ d) (w1, a) F y follows by weak-saturation since a C w2

yields (w1, a) C (w1, w2). Moreover, x C W1 yields x C {x} ↓ W1

by ↓-right and hence, by monotonicity of Pos, there exists z ∈ C
such that z C x, (∃w1εW1) z C w1 and Pos(z) hold. Thus, we
immediately obtain that (∃yεb ↓ d) (z, a) F y holds by weak-
saturation since, for any w1 such that z C w1, (z, a) C (w1, a)
follows by lemma 2.34. Moreover, for any (s, t)εk, (x, s) F t holds
and hence also (z, s) F t follows by weak-saturation since (z, s) C
(x, s) is a consequence of z C x by lemma 2.34. Therefore, we
get (∃yεb ↓ d) z Λ(F ) (a, y) · k and so we conclude (∃yεb ↓
d) Q((a, y) · k) since Pos(z) holds.

∗ (weak-saturation positivity) Suppose that Q(k), Pos(a1), a1 C a2

and (a2, b)εk hold. Then, there exists a positive element x ∈ C
such that, for all (s, t)εk, (x, s) F t holds. Hence (x, a2) F b fol-
lows. Observe now that a1 C a2 yields (x, a1) C (x, a2) and
hence (x, a1) F b follows by weak-saturation. Thus, for any
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(s, t)ε(a1, b) · k, (x, s) F k follows. Therefore, xΛ(F )(a1, b) · k
and hence we conclude Q((a1, b) · k).

∗ (unary continuity positivity) Suppose that Q(k), (a, b)εk and
j ∈ J(b) hold. Then we have to show that there exists an el-
ement yεC(b, j) such that Q((a, y) · k). Now, Q(k) means that
there exists a positive element x ∈ C such that, for all (s, t)εk,
(x, s) F t holds. So we deduce that (x, a) F b holds and hence
(x, a) C {(w1, w2) | (∃yεC(b, j)) (w1, w2) F y} follows by conti-
nuity. Note now that Pos(a) holds since (a, b)εk and hence, by
lemma 2.48, there exists a subset W1 of C such that both x C W1

and, for any w1εW1, there exists w2 ∈ A such that a C w2 and
(∃yεC(b, j)) (w1, w2) F y. Now, by lemma 2.34, from a C w2 we
get (w1, a) C (w1, w2) and hence (∃yεb ↓ d) (w1, a) F y follows
by weak-saturation. Moreover, x C W1 yields x C {x} ↓ W1 by
↓-right and hence, by monotonicity of Pos, there exists z ∈ C
such z C x, (∃w1εW1) z C w1 and Pos(z) hold. Thus, we imme-
diately obtain that (∃yεC(b, j)) (z, a) F y by weak-saturation
since (z, a) C (w1, a). Moreover, for any (s, t)εk, (x, s) F t
holds and hence also (z, s) F t follows by weak-saturation since
(z, s) C (x, s) is a consequence of z C x by lemma 2.34. There-
fore, we get (∃yεC(b, j)) z Λ(F ) (a, y) · k and hence we conclude
(∃yεC(b, j)) Q((a, y) · k) since Pos(z) holds.

∗ (≤-continuity positivity) Suppose that both Q(k), (a, b)εk and
b ≤ d hold. Then, there exists a positive element x ∈ C such
that, for all (s, t)εk, (x, s)Ft. Hence, we deduce (x, a) F b and
hence (x, a) F d follows by ≤-continuity since b ≤ d. Thus, we
conclude that, for all (s, t)ε(a, d)·k, (x, s)Ft holds and hence also
Q((a, d) · k) follows since Pos(x) holds.

This finishes the proof that Q(k) satisfies all of the conditions defining
Pos on A → B. Now, we can conclude the proof that c Λ(F ) l
yields c C Λ(F )−(l+). Assuming Pos(c), by function monotonicity
we obtain that Pos(l) holds and hence l+ = {l}. Then, c Λ(F ) l
yields cεΛ(F )−(l+) and hence, c C Λ(F )−(l+) follows by applying
first reflexivity and then positivity to discharge the assumption Pos(c).

• (function ≤-continuity) We have to show that c Λ(F ) l and l � m yields
c Λ(F ) m. The result is immediate. Indeed, let (x, y)εm. Then (x, y)εl,
since l � m, and hence (c, x) F y follows, since c Λ(F ) l. So, c Λ(F ) m
holds.

• (≤-saturation) We have to show that if c1 ≤ c2 and c2 Λ(F ) l then
c1 Λ(F ) l. Now, c2 Λ(F ) l yields that, for all (a, b)εl, (c2, a)Fb holds.
But, for all (a, b)εl, c1 ≤ c2 yields (c1, a) ≤ (c2, a), and hence, for all
(a, b)εl, (c1, a)Fb, that is, c1 Λ(F ) l, follows by ≤-saturation of F .

• (axiom saturation) Suppose c ∈ C and j ∈ J(c), that is, c CC C(c, j) is an
axiom of the inductively generated formal topology C, and suppose that
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y Λ(F ) l holds for every yεC(c, j). Then, we want to show that c Λ(F ) l
holds. Now, for every (a, b)εl we have (c, a) CC×A C(c, j) × {a} and for
every (y, a)εC(c, j) × {a}, (y, a)Fb is a consequence of the fact that for
every yεC(c, j), y Λ(F ) l holds. Then, (c, a)Fb follows by saturation of F
and hence, we obtain c Λ(F ) l by universal quantification.

Thus, we have finished with the proof that, for any continuos relation F ,
Λ(F ) is also a continuous relation. In the next section we will prove that the
required equations hold.

3.3.3 The equations

To finish the proof that the formal topology A → B is the exponential of A
over B we have to show that the adjunction equations hold with respect to
application and abstraction.

Proposition 3.12 Let A be a unary formal topology and C and B be inductively
generated formal topologies. Then

1. for every continuous relation F between C × A and B,

Ap ∗ 〈Λ(F ) ∗Π1,Π2〉 = F

2. for every continuous relation G between C and A → B,

Λ(Ap ∗ 〈G ∗Π1,Π2〉) = G

Proof. We prove the two implications of the considered equations one after the
other.

• (1. Right to left) We have to prove that, for any c ∈ C, a ∈ A and
b ∈ B, if (c, a)Fb then (c, a) Ap ∗ 〈Λ(F ) ∗ Π1,Π2〉 b. Now, (c, a)Fb yields
c Λ(F ) (a, b) ·nil and hence (c, a)〈Λ(F ) ∗Π1,Π2〉((a, b) ·nil, a) follows since
(c, a) Π2 a holds. Then, we conclude (c, a) Ap ◦ 〈Λ(F ) ∗ Π1,Π2〉 b since
((a, b) · nil, a) Ap b holds.

• (1. Left to right) We have to prove that (c, a) Ap ∗ 〈Λ(F ) ∗Π1,Π2〉 b yields
(c, a)Fb. The proof will have the following structure.

1. First, for any positive element (x, y) ∈ C ×A such that

(x, y) Ap ◦ 〈Λ(F ) ∗Π1,Π2〉 b

that is, such that there exist l(x,y) ∈ A → B and a(x,y) ∈ A such that
(x, y) Λ(F ) ∗Π1 l(x,y) and (x, y) Π2 a(x,y) and (l(x,y), a(x,y)) Ap b, we
will prove that

(x, y) C {(x′, y′)εPosC×A | (x′, y′) Λ(F ) ◦Π1 l(x,y)} ↓≤ {(>C , a(x,y))}

holds.
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2. Then, we will prove that

{(x′, y′)εPosC×A | (x′, y′) Λ(F ) ◦Π1 l(x,y)} ↓≤ {(>C , a(x,y))} C
{(x′′, y′′)εPosC×A | (x′′, y′′)Fb}

3. Finally, from (c, a) Ap ∗ 〈Λ(F ) ∗Π1,Π2〉 b we get

(c, a) C {(x, y) ∈ C ×A | (x, y) Ap ◦ 〈Λ(F ) ∗Π1,Π2〉 b}

and hence by positivity we obtain

(c, a) C {(x, y)εPosC×A | (x, y) Ap ◦ 〈Λ(F ) ∗Π1,Π2〉 b}

Thus, by transitivity, we will get

(c, a) C {(x′′, y′′)εPosC×A | (x′′, y′′)Fb}

and hence we will conclude (c, a) F b by saturation.

So, let us prove now points (1) and (2):

1. (x, y) Λ(F ) ∗Π1 l(x,y) means that

(x, y) C {(x′, y′) ∈ C ×A | (x′, y′) Λ(F ) ◦Π1 l(x,y)}

and hence by positivity we obtain

(x, y) C {(x′, y′)εPosC×A | (x′, y′) Λ(F ) ◦Π1 l(x,y)}

Moreover, (x, y) Π2 a(x,y) yields that (x, y) C (>C , a(x,y)) and hence

(x, y) C {(x′, y′)εPosC×A | (x′, y′) Λ(F ) ◦Π1 l(x,y)} ↓≤ {(>C , a(x,y))}

follows by ≤-right.

2. Let (x′′, y′′) be an element in C ×A such that

(x′′, y′′)ε{(x′, y′)εPosC×A | (x′, y′) Λ(F )◦Π1 l(x,y)} ↓≤ {(>C , a(x,y))}

Therefore there exists a positive element (x′, y′) in C × A such that
both (x′′, y′′) ≤ (x′, y′) and (x′, y′) Λ(F ) ◦ Π1 l(x,y) hold and also
(x′′, y′′) ≤ (>C , a(x,y)). Now, (x′, y′) Λ(F )◦Π1 l(x,y) yields that there
exists an element c(x,y) ∈ C such that both (x′, y′) C (c(x,y),>A) and
c(x,y) Λ(F ) l(x,y) hold. Moreover, (x′′, y′′) ≤ (x′, y′) and (x′, y′) C
(c(x,y),>A) yields (x′′, y′′) C (c(x,y),>A) by ≤-left and transitivity.
Finally, (x′′, y′′) C (>C , a(x,y)) follows from (x′′, y′′) ≤ (>C , a(x,y))
by ≤-left and hence we get (x′′, y′′) C (c(x,y),>A) ↓≤ (>C , a(x,y)) by
≤-right. Now, we can conclude

(x′′, y′′) C (c(x,y), a(x,y))
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by transitivity since (c(x,y),>A) ↓≤ (>C , a(x,y)) C (c(x,y), a(x,y)). In-
deed, for any (s, t) ∈ C × A such that (s, t) ≤ (c(x,y),>A) and
(s, t) ≤ (>C , a(x,y)) we get immediately that (s, t) ≤ (c(x,y), a(x,y))
and hence (s, t) C (c(x,y), a(x,y)) follows by ≤-left.
Recall now that (l(x,y), a(x,y)) Ap b. Then, by definition, we obtain
Pos(a(x,y)) → l(x,y) C {(a(x,y), b) · nil}. But (x, y) Π2 a(x,y) holds and
(x, y) is a positive element of C ×A and hence Pos(a(x,y)) follows by
function positivity for Π2. Thus we get l(x,y) C {(a(x,y), b) · nil}.
Recall also that c(x,y) Λ(F ) l(x,y). Then l(x,y) C {(a(x,y), b) · nil}
yields c(x,y) Λ(F ) (a(x,y), b) · nil by weak-continuity of Λ(F ), and
hence we obtain that (c(x,y), a(x,y))Fb. Then, by weak-continuity
of F , from (x′′, y′′) C (c(x,y), a(x,y)) we obtain (x′′, y′′)Fb and so
(x′′, y′′)ε{(x′′, y′′)εPosC×A | (x′′, y′′)Fb}. Thus

(x′′, y′′) C {(x′′, y′′)εPosC×A | (x′′, y′′)Fb}

follows by reflexivity.

• (2. Right to left) We have to prove that, for any c ∈ C and for any
l ∈ A → B, if c G l holds then also c Λ(Ap ∗ 〈G ∗Π1,Π2〉) l holds, that is,
for any (a, b)εl, (c, a) Ap ∗ 〈G ∗ Π1,Π2〉 b. So, suppose (a, b)εl. Then, we
get c G {(a, b) · nil} by weak-continuity of G since l C {(a, b) · nil} follows
by ≤-left from l � {(a, b) · nil}. Now, (c, a) Π1 c and (c, a) Π2 a clearly
hold and hence we get (c, a) 〈G ∗Π1,Π2〉 ((a, b) · nil, a). Finally, we obtain
(c, a) Ap ∗ 〈G ∗Π1,Π2〉 b since ((a, b) · nil, a) Ap b obviously holds.

• (2. Left to right) We have to prove that, for every c ∈ C and l ∈ A → B,
c Λ(Ap∗〈G∗Π1,Π2〉) l yields c G l. So, suppose that c Λ(Ap∗〈G∗Π1,Π2〉) l
holds. Then, for every (a, b)εl, (c, a) Ap ∗ 〈G ∗Π1,Π2〉 b and hence

(c, a) C {(x, y)εPosC×A | (x, y) Ap ◦ 〈G ∗Π1,Π2〉 b}

follows by positivity. Now, the proof of this point will go on as follows:

1. First, for every positive element (x, y) ∈ C ×A such that

(x, y) Ap ◦ 〈G ∗Π1,Π2〉 b

that is, such that there exist l(x,y) ∈ A → B and a(x,y) ∈ A such
that (l(x,y), a(x,y)) Ap b and (x, y) 〈G ∗Π1,Π2〉 (l(x,y), a(x,y)), we will
prove that

(x, y) C {(x′, y′)εPosC×A | (x′, y′) G ◦Π1 l(x,y)} ↓≤ (>C , a(x,y))

holds.

2. Then, we will prove that

{(x′, y′)εPosC×A | (x′, y′) G ◦Π1 l(x,y)} ↓≤ (>C , a(x,y)) C
{(x′′, y′′)εPosC×A | x′′ G (a, b) · nil}
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3. So, by transitivity, we obtain

(c, a) C {(x′′, y′′)εPosC×A | x′′ G (a, b) · nil}

and hence by lemma 2.48, that we can apply since a is positive be-
cause (a, b)εl, there exists a subset W1 of C such that c CC W1

and for every w1εW1 there exists w2 ∈ A such that a CA w2 and
w1 G (a, b) · nil. Hence, by saturation of G, we conclude c G (a, b) · nil
from c CC W1.

Since c G (a, b) · nil holds for every (a, b)εl, by successive applications of
lemma 3.4 we conclude c G l. So, let us prove the points (1) and (2) above.

1. (x, y) 〈G ∗ Π1,Π2〉 (l(x,y), a(x,y)), yields both (x, y)G ∗ Π1 l(x,y) and
(x, y) Π2 a(x,y). Now, (x, y) is positive and hence (x, y)Π2 a(x,y) yields
that a(x,y) is positive by function monotonicity for Π2.
Hence (l(x,y), a(x,y)) Ap b yields l(x,y) C {(a(x,y), b) · nil}. Moreover,
(x, y) G ∗Π1 l(x,y) yields

(x, y) C {(x′, y′)εPosC×A | (x′, y′) G ◦Π1 l(x,y)}

by positivity and so, by ≤-right, we obtain

(x, y) C {(x′, y′)εPosC×A | (x′, y′) G ◦Π1 l(x,y)} ↓≤ (>C , a(x,y))

2. Then, we prove that

{(x′, y′)εPosC×A | (x′, y′) G ◦Π1 l(x,y)} ↓≤ (>C , a(x,y)) C
{(x′′, y′′)εPosC×A | x′′ G (a, b) · nil}

Indeed, suppose

(x′′, y′′)ε{(x′, y′)εPosC×A | (x′, y′)G ◦Π1 l(x,y)} ↓≤ (>C , a(x,y))

Then, there exists a positive element (x′, y′) ∈ C × A such that
(x′′, y′′) ≤ (x′, y′) and (x′, y′) G◦Π1 l(x,y) and (x′′, y′′) ≤ (>C , a(x,y)).
Now, (x′, y′)G ◦Π1 l(x,y) yields that there exists c(x,y) ∈ C such that
(x′, y′) C (c(x,y),>A) and c(x,y) G l(x,y).
Recall now that (l(x,y), a(x,y)) Ap b. Then, by definition, we obtain
Pos(a(x,y)) → l(x,y) C {(a(x,y), b) · nil}. But (x, y) Π2 a(x,y) holds and
(x, y) is a positive element of C ×A and hence Pos(a(x,y)) follows by
function positivity for Π2. Thus we get l(x,y) C {(a(x,y), b) · nil}. So,
from c(x,y) G l(x,y) by weak-continuity of G we obtain

c(x,y) G (a, b) · nil

Now, (x′′, y′′) ≤ (x′, y′) and (x′, y′) C (c(x,y),>A) yield (x′′, y′′) C
(c(x,y),>A) by ≤-left.
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Moreover, again by ≤-left, (x′′, y′′) ≤ (>C , a(x,y)) yields (x′′, y′′) C
(>C , a(x,y)). So, by ≤-right, (x′′, y′′) C (c(x,y),>A) ↓≤ (>C , a(x,y))
follows and hence we conclude

(x′′, y′′) C (c(x,y), a(x,y))

by transitivity since (c(x,y),>A) ↓≤ (>C , a(x,y)) C (c(x,y), a(x,y)).
Since (x′′, y′′) is positive, by lemma 2.48 there exists a subset W1 of C
such that x′′ CC W1 and for every w1εW1 there exists w2 ∈ A such
that y′′ CA w2 and (w1, w2)ε{(c(x,y), a(x,y))}. So, w1 = c(x,y) and
hence x′′ C c(x,y). Therefore, c(x,y) G (a, b) · nil yields x′′G (a, b) · nil
by weak saturation of G.
Thus, (x′′, y′′)ε{(x′′, y′′)εPosC×A | x′ G (a, b) · nil} and hence by ap-
plying reflexivity we get

{(x′, y′)εPosC×A | (x′, y′) G ◦Π1 l} ↓≤ (>, a′) C
{(x′′, y′′)εPosC×A | x′′ G (a, b) · nil}

So, we are arrived at the main theorem of the paper.

Theorem 3.13 Unary topologies are exponentiable in FTopi.

Let us remark that the proof of this theorem is valid also intuitionistically
since no use of the axiom of choice is required in an impredicative approach.

4 Concluding remarks

We add here some observations that can be useful for a more complete under-
standing of the topic of the paper and which are immediate consequences of our
work.

4.1 Why our result is limited to unary formal topologies

We showed that all the conditions on a continuous relation F between a unary
formal topology A and an inductively generated one B have in general one of
the following shapes, for a, a′ ∈ A, b, b′ ∈ B and V ⊆ B:

a R b P (a, b, a′, b′)
a′ R b′

a R b Q(a, b, V )
(∃yεV ) a R y

Now, in section 3.1 we showed how to obtain an axiom out of each kind of
condition. In fact, to any condition whose shape is

a R b P (a, b, a′, b′)
a′ R b′

corresponds the axiom
l C (a′, b′) · l
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for any l ∈ A → B such that (a, b)εl and P (a, b, a′, b′) hold, and to any condition
whose shape is

a R b Q(a, b, V )
(∃yεV ) a R y

corresponds the axiom
l C {(a, y) · l | yεV }

for any l ∈ A → B such that (a, b)εl and Q(a, b, V ) hold.
Thus, we can define the exponential formal topology of an inductively gener-

ated formal topology over another one provided that we can express the general
conditions on a continuous relation by using one of the shapes above. At present,
we have obtained this result only in the case of having a unary formal topology
as exponent.

4.2 Exponentiation without the positivity predicate

The exponentiation of unary topologies in FTopi clearly yields the exponentia-
tion of unary topologies in FTopi

−.

Theorem 4.1 Unary topologies are exponentiable in the category FTopi
−.

Proof. It is sufficient to observe that all the proofs work as in the case of FTopi

by simply substituting Pos with an always true predicate.

Note that in this case the proof of our main theorem becomes entirely pred-
icative since there is no need to justify the definition of the positivity predicate
by co-induction. In fact, this result constitutes a partial but completely pred-
icative version of [Hyl81, Joh84, Sig95]. Indeed, in these papers, if A is a locally
compact locale and B is any locale then the cover for A → B is generated from
axioms on a new proposition, denoted, for instance in [Hyl81], for a ∈ A and
b ∈ B by a � f∗b, which represents the collection of locale morphisms f such
that a is way-below f∗b. Now, when A is a locale representing an algebraic
dcpo, this proposition corresponds exactly to our extPt((a, b) · nil) since the
latter represents the collection of all the continuous relations R such that a R b.

4.3 Unary topologies are not closed under exponentiation

It is known that algebraic dcpos with bottom element lack function spaces, that
is, the category of algebraic dcpos is not cartesian closed [AJ94]. Our work
makes explicit where the problem is. Indeed, it is clear that all of the axioms of
the exponential topology between unary topologies satisfy the unary conditions
except for the axiom on unary convergence since we can not limit it to a single
element. This is to be contrasted with what happens in the case of the category
of unary formal topologies equipped with a monoid operation on the elements
of the base which expresses intersection of open subsets. Indeed, this category
turns out to be equivalent to the category of Scott Domains [SVV96] and it can
be proved to be predicatively cartesian closed [Val03].
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Löf ’s Type Theory. Clarendon Press, Oxford, 1990.

64



[Sam87] G. Sambin. Intuitionistic formal spaces - a first communication. Math-
ematical logic and its applications, pages 187–204, 1987.

[Sam00] G. Sambin. Formal Topology and Domains. Electronic Notes in The-
oretical Computer Science, 35:15, 2000.

[Sam03] G. Sambin. Some points in formal topology. Theoretical Computer
Science, 2003.

[Sig90] I. Sigstam. On formal spaces and their effective presentations. PhD
thesis, Department of Mathematics, University of Uppsala, 1990.

[Sig95] I. Sigstam. Formal spaces and their effective presentations. Arch. Math.
Logic, 34:211–246, 1995.

[SV97] G. Sambin and S. Valentini. Building up a tool-box for Martin-Löf’s
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A On the definition by co-induction

It is not difficult to realize that we can formalize the problem of defining the
positivity predicate by expressing it as the problem of finding the maximal
subset K of a set S satisfying the following conditions

xεK A(x, y)
yεK

xεK yεB(x)
(∃vεC(x, y)) vεK

for some propositions A(x, y), B(x) and C(x, y).
Now, it is easy to see that one can use Tarski fixed point theorem in order to

solve them in an impredicative way. Indeed, the map τ : P(S) → P(S) defined
by setting

τ(X) ≡ {x ∈ S | (∀y ∈ S) A(x, y) → yεX}
∩ {x ∈ S | (∀yεB(x))(∃vεC(x, y)) vεX}

is clearly monotone and hence it admits a maximal fixed point which obviously
satisfies the required conditions.
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