
1 Holomorphic maps

1.1 The field C of Complex Numbers

The topology on C is the usual one, namely the Euclidean structure inherited from the vector
space identification C ∼ IR2 . This identifications is nothing but the one induced by the
IR-isomorphism x + iy → (x, y). Hereinafter a subset E ⊂ C, will be sometimes regarded as
a subset of IR2, confusion being clearly avoided by the context. On the other hand C has
an extra structure, namely the field structure given, together with the sum, by the product
operation: (x + iy) · (a + ib) = (xa − yb) + i(xb + ya). (notice that this is just the formal
extension of the usual product in IR and the product rule i2 = −1). Hence the norm of
z = x+ iy ∈ C is given by

|z| =
√
x2 + y2 =

√
zz̄,

where z̄
.
= x − iy is the conjugate of z. As for the division, let us remind that that if

z = x+ iy ∈ C, z 6= 0, 1
z

= z̄
zz̄

= z̄
|z|2 = x−iy

x2+y2
.

1.2 Complex derivative

Let Ω ⊆ C be an open set and let f : Ω→ C be a map. Let z0 = x0 + iy0 ∈ Ω (x0, y0 ∈ IR).
Proceeding as in the case of real functions, one can consider the limit of the difference quotient

f(z)− f(z0)

z − z0

. (1.1)

Definition 1.1 If the there exists the limit of the differential quotient (1.1) for z going to z0

then it is called the (complex) derivative of f at z0 and is denoted by f ′(z0) or
df

dz
(z0):

df

dz
(z0) = f ′(z0)

.
= lim

z→z0

f(z)− f(z0)

z − z0

(1.2)

As in the case of the real variable, a complex map f has complex derivative f ′(z0) at z0 if
and only if f is (complex) differentiable at z0 with, which means

f(z)− f(z0) = f ′(z0)(z − z0) + o(z − z0).

Definition 1.2 If the derivative f ′(z0) exists at every z0 ∈ Ω and is continuous, f is called
a holomorphic function.

Remark 1.1 Though practically useful, the requirement that the complex derivative f ′ is
continuous is, in fact, redundant. Indeed, it can be proved that the only existence of f ′ at
each point of Ω is sufficient in order f ′ to be continuous, i.e., f to be of class C1. As a matter
of fact, much stronger regularity holds true (see [1]: f turns out to be C∞ and analytic,
i.e., locally equal to the sum of its (convergent) Taylor’s series. For this reason, referring to
complex variable functions, someone utilizes the term analytic, instead of holomorphic.).
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1.3 Relation with partial derivatives: the Cauchy-Riemann equa-
tions

The fact that the limit involves z approaching z0 from any direction has strong geometrical
consequences. Actually one has:

Proposition 1.1 If f ′(z0) exists, then

ux = vy uy = −vx , (1.3)

where we mean that the partial derivatives are computed in (x0, y0). Identities (1.3) are called
the Cauchy-Riemann conditions.

Proof. Let us set z = x + iy, z0 = x0 + iy0, f(z) = u(x, y) + iv(x, y). If f ′(z0) exists, the
limit in (1.2) must be valid, in particular, for z = z0 + h = (x0 + h) + iy with h ∈ R h→ 0.
So

f ′(z0) = lim
h→0

f(z0 + h)− f(z0

h
= fx(z0) =

lim
h→0

(
u(x0 + h, y)− u(x0, y0)

h
+ i

v(x0 + h, y)− v(x0, y0)

h

)
=

ux(x0, y0) + ivx(x0, y0)

(1.4)

Similarly, the limit in (1.2) must be valid for z = z0 + ih = x0 + i(y + h) with h ∈ IR h→ 0:

f ′(z0) = lim
h→0

f(z0 + ih)− f(z0

ih
= fy(z0) =

lim
h→0

(
u(x0, y + h)− u(x0, y0)

ih
+ lim

h→0
i
v(x0, y + h)− v(x0, y0)

ih

)
=

−iuy(x0, y0) + vy(x0, y0)

(1.5)

By (1.4),(1.5) one gets
ux = vy uy = −vx,

so the proof is concluded.

In particular, if f is holomorphic the Cauchy-Riemann conditions (1.3) are verified at each
z0 = x0 + iy0 ∈ Ω.

A natural question is now whether or not the Cauchy-Riemann conditions are also suffi-
cient for the derivative f ′(z0) to exist. Actually this is the case:

Proposition 1.2 Assume that u and v (as real maps defined on Ω ⊂ IR2) are (real-) differ-
entiable at (x0, y0) and that Cauchy-Riemann conditions (1.3) are verified. Then f ′(z0) exists.
Furthermore,
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(i) one has

f ′(z0) = ux(x0, y0) + ivx(x0, y0) = i−1(uy(x0, y0) + ivy(x0, y0)) = vy(x0, y0)− iuy(x0, y0);
(1.6)

(ii) the map (u, v) : Ω ⊂ IR2 → IR2 is IR-differentiable, i.e.,(
u(x, y)
v(x, y)

)
=

(
u(x0, y0)
v(x0, y0)

)
+

(
ux(x0, y0) uy(x0, y0)
vx(x0, y0) vy(x0, y0)

)
·
(
x− x0

y − y0

)
+ o(|(x− x0, y − y0)|) =

(
u(x0, y0)
v(x0, y0)

)
+

(
ux(x0, y0) uy(x0, y0)
−uy(x0, y0) ux(x0, y0)

)
·
(
x− x0

y − y0

)
+ o(|(x− x0, y − y0)|)

(1.7)

Proof. See [1] for a proof that f ′(z0) does exist (or try it by exercise). To prove (ii) is
equivalent to show that(

ux(x0, y0) uy(x0, y0)
−uy(x0, y0) ux(x0, y0)

)
·
(
h1

h2

)
= f ′(z0) · (h1 + ih2)

as soon as the complex number on the right hand-side is identified with the corresponding
vector in IR2. This is trivial, as

f ′(z0) · (h1 + ih2) = (ux − iuy)(h1 + ih2) = (uxh1 − uyh2) + i(uxh2 + uyh1).

1.4 Geometric interpretation

When f ′(z0) 6= 0, Cauchy-Riemann conditions, which , as we have seen, characterize the
existence of the complex derivative, have a nice geometrical interpretation. Indeed, suppose
that f is holomorphic and f ′(z0) 6= 0. By

f ′(z0) = −iuy(x0, y0) + vy(x0, y0) = ux(x0, y0) + ivx(x0, y0)

one has ∇u(x0, y0) 6= 0 and ∇u(x0, y0) 6= 0. So, near (x0, y0) the level sets (in Ω) u = u(x0, y0)
and v = v(x0, y0) are in fact C1 lines. In particular, the Cauchy-Riemann conditions

(vx, vy) = (−uy, ux)

say that:

(A) |∇u| = |∇v|, which can be interpreted as the fact that locally u and v grow at the same
rate along the directions of maximal rate, which coincide with the directions of ∇u and
∇v, respectively.

(B) ∇u is orthogonal to ∇v. Since ∇u and ∇v are orthogonal to the level line of u and v,
respectively, this means that these level lines intersect each other orthogonally.
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(C) Interpreting 1(∈ C) and i as the IR2 vectors (1, 0) and (0, 1), respectively, and regarding
f as a map from Ω to IR2, Cauchy-Riemann conditions can also be written in the form

(vx + ivy) = i(ux + iuy) (1.8)

Again, this shows that ∇v is obtained by a counter-clockwise rotation of π/2 of ∇u.
Actually, multiplication by i can be interpreted as counter-clockwise rotation of π/2,
(namely, if complex numbers are interpreted as column vectors, multiplication by i is

equivalent to left multiplication by the matrix

(
0 −1
1 0

)
. Indeed,

iz = i(x+ iy) = −y + ix =

(
−y
x

)
=

(
0 −1
1 0

)
·
(
x
y

)
(D) Actually (A)-(C) are consequences of the following fact:

The multiplication by f ′(z0) is equivalent, when C is identified with IR2, with the left
multiplication by the matrix (

ux(x0, y0) uy(x0, y0)
−uy(x0, y0) ux(x0, y0)

)
Moreover, this matrix is a rotation (= special orthogonal matrix =orthogonal matrix
with determinant equal to 1) times a positive constant. More precisely,(

ux(x0, y0) uy(x0, y0)
−uy(x0, y0) ux(x0, y0)

)
= ρ

(
cosφ − sinφ
sinφ cosφ

)
where (ρ, φ) are the modulus and and the argument of f ′(z0), namely f ′(z0) = ρeiφ.
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1.5 Operations, compositions, and inversion of holonomic func-
tions

.

Proposition 1.3 Let f, g : Ω → C have complex derivative at z0 ∈ Ω differentiable. Then
f + g, fg have complex derivative at z0, and

(f + g)(z0) = f(z0) + g(z0), (fg)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0) (1.9)

. If g(z0) 6= 0 then
f

g
has complex derivative and(

f

g

)′
(z0) =

f ′(z0)g(z0)− f(z0)g′(z0)

g2(z0)
.

Proof. The proof does not differ anyhow from the proof in the real case. In particular one
can use the fact that f the derivative f ′(z0) if and only if

f(z) = f(z0) + f ′(z0)(z − z0) + o(z − z0) (1.10)

For instance, the equality,

f(z)g(z) = [f(z0) + f ′(z0)(z − z0) + o(z − z0)] · [g(z0) + g′(z0)(z − z0) + o(z − z0)] =

f(z0)g(z0) + (f ′(z0)g(z0)− f(z0)g′(z0))(z − z0) + o(z − z0)

implies the existence of (fg)′(z0) and the formula in (1.9).

Proposition 1.4 If f : Ω → A ⊂ C has derivative at a point z0 ∈ Ω and g : A → C has
derivative at w0

.
= f(z0), then g ◦ f has derivative at z0, and

(g ◦ f)′(z0) = g′(w0)f ′(z0).

In particular, a composition of holomorphic maps is holomorphic.

Proof. Again the proof is a straightforward application of the differentiability relation
(1.10):

lim
z→z0

g ◦ f(z)− g ◦ f(z0)

z − z0

= lim
z→z0

g′(w0)(f(z)− f(z0)) + o(f(z)− f(z0))

z − z0

=

lim
z→z0

g′(w0)(f ′(z0)(z − z0) + o(z − z0)) + o(f ′(z0)(z − z0))

z − z0

= g′(w0)f ′(z0)

Examples

• The identity z 7→ is holomorphic, and f ′(z) = 1 for all z ∈ C.
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• Every power z 7→ zn, n ∈ Z is holomorphic (on C if n ≥ 0, and on C\0 if n < 0.).
Moreover

d(zn)

dz
= nzn−1

For instance, z2 = (x2 − y2) + i2xy is holomorphic on C and its derivative is equal to
the holomorphic function 2z = 2x+ i2y. Similarly,

z3 = (x+ iy)[(x2 − y2) + i2xy] = (x3 − 3xy2) + i(−y3 + 3x2y)

(z3)′ = 3z2 = 3(x2 − y2) + i6xy(= (z3)x)

1

z
=

z̄

|z|2
=

x

x2 + y2
− i y

x2 + y2
.

• We have already claimed that every holomorphic function is in fact of class C∞. In par-
ticular its derivative is a holomorphic function. For instance, on the subset IR2\{(x, 0), x ≤
0}, the (holomorphic map)

1

z
is the derivative of the holomorphic function

log z
.
= log(x2 + y2)

1
2 + iθ(x, y),

where the argument function θ(x, y) is defined by

θ(x, y) =


arctan y

x
for all x > 0

− arctan x
y

+ π/2 for all y > 0

− arctan x
y
− π/2 for all y < 0.

Notice that θ(x, y) is well defined and continuous on the domain A
.
= R2\{(x, 0), x ≤ 0}

, and θ(A) =]− π, π[.

The map log : A → IR×] − π, π[ is called the ”principal branch” of the (multi-valued)
log-function. Actually it is the unique inverse of the restriction to IR + i]− π, π[ of the
complex exponential map

ez
.
= ex(cosx+ i sinx) = exeiy

.

• We know by (complex) power series theory that every convergent power series can be
differentiated term to term, so its sum has a complex derivative. This is the case, e.g.,
of ez, sin z, cos z, sinh z cosh z (defined as power series).

• As we have seen composition of holomorphic functions is holomorphic. For instance
e−z

2
= e(−x2+y2)[cos(2xy) + i sin(2xy)] is holomorphic.

• While the exponential map

ρ+ iθ → eρ(cos θ + i sin θ(= eρ+iθ)
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is holomorphic, the polar coordinates map

ρ+ iθ → ρ(cos θ + i sin θ(= ρeiθ)

IS NOT holomorphic, for Riemann-Cauchy conditions are not verified. Notice however
that the level lines of the real and the imaginary parts are orthogonal at each point.
Yet, their gradients have different norm. As a direct consequence of this fact (see next
subsection), the Laplace equation is not invariant by passing from Euclidean coordinates
to polar coordinates. Actually, it is a matter of straightforward computation to verify
that a C2 map (x, y)→ u(x, y) is harmonic, namely

∆u = uxx + uyy = 0

, if and only if the function U(ρ, θ) = u(ρ cos θ, ρ sin θ) solves the equation

Urr +
Urθ
r

+
Uθθ
r2

= 0. (1.11)

Equation (1.11) is called the Laplace equation in polar coordinates.

1.6 Holomorphic functions and harmonic maps

We have already claimed (without proving it) that holomorphic functions are in fact of class
C∞. In particular they have second derivatives. It turns out that both the real and the
imaginary part are harmonic, that is they solve Laplace equation:

Proposition 1.5 If f : Ω ∈ C is holomorphic then (u and v are indefinitely differentiable)
and

∆u = 0 ∆v = 0 on Ω
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Proof. By the Cauchy-Riemann conditions and Schwarz Theorem one has:

uxx = vyx = vyx = −uyy, vxx = −uyx = −uxy = −vyy

A map like v is called a conjugate harmonic of u (see below).

For instance,

• z2 = (x2 − y2) + i2xy is holomorphic, so u(x, y) = x2 + y2 and v(x, y) = 2xy are both
harmonic (and 2xy is a conjugate harmonic of x2 − y2).

Let us try to ”invert” Proposition 1.5. Clearly, it is not true that if u = u(x, y) and
v = v(x, y) are harmonic functions then f = u+ iv is holomorphic. For instance, if u(x, y) =
v(x, y) = x then both u and v are harmonic but f

.
= u + iv = x + ix is not holomorphic:

ux = 1 6= 0 = vy = 0 . However, instead of v = x we considered the (harmonic) map
v = y, things would work: indeed in this case ux = 1 = vy, and uy = 0 = −vx. In fact,
f(x+ iy) = x+ iy is the identity map.

So there is hope that starting from a harmonic map u one can find a (necessarily harmonic)
v such that f = u + iv is holomorphic. Such a map u is called a harmonic conjugate to v.
Clearly, if Ω is connected, v is a conjugate harmonic to u if and only if for every c ∈ IR v+c is
a conjugate harmonic to u. Indeed, if f = u+ iv is holomorphic the first derivatives of v are
determined by the Cauchy-Riemann conditions: (vx, vy) = (−uy, ux). In other words, v is a
primitive of the form ω

.
= −uydx+ vxdy —in the language of vector fields: v is a potential of

of the vector field (−uy, vx). On the other hand primitives of a form (=potentials of a vector
field) on a connected domain are determined up to a real constant.

Actually, a conjugate harmonic v does exist as soon as the set Ω is simply connected:

Theorem 1.1 Let Ω ⊂ C be a simply connected open subset, and let u : Ω → IR be a
harmonic map. Then there exists a map v which is conjugate harmonic to u.

Proof. Since u is harmonic, the C1 vector field F
.
= (−uy, ux) is irrotational:

F1y = −uyy = uxx = F2x.

Therefore F is conservative, for Ω is simply connected. Hence there exists a C2 map v such
that ∇v = (vx, vy) = (F1, F2) = (−uy, ux), so f

.
= u + iv verifies the Cauchy-Riemann

conditions, i.e., it is holomorphic.
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2 Incompressible potential fluids and holomorphic func-

tions

If v(x) = (v1, v2, v3)(x1, x2, x3) is the velocity of a homogeneous (=with constant density) fluid
in a region D ⊂ IR3 we can express the property of being incompressible by assuming that

div v =
3∑
i=1

∂vi
∂xi

= 0 (2.12)

(If the density ρ = ρ(t, x) depends on time and space, then (2.12) must be replaced by
∂ρ
∂t

+ div (ρv) = 0). This is indeed equivalent, via Gauss’ Divergence Theorem, to imposing
that the flow of the velocity through the boundary of any open subset A ⊂ D be equal to
zero (respectively, to the rate of change in time of the mass of A).

If the circulation (i.e. the line-integral) of v along γ∫
γ

v
.
=

∫ b

a

〈v · γ(t)〉dt (2.13)

is equal to zero for any piece-wise closed loop γ : [a, b]→ D , the fluid is called irrotational.
The notion of irrotationality is equivalent to the fluid to be potential.

Definition 2.1 A stationary fluid of velocity v ∈ C(A) is called potential if there exists a
(necessarily C1) potential function Φ : A→ IR, which means

∇Φ(x) = v(x) for all x ∈ A (2.14)

eeq (In the frame-work of 1-forms one says that the form ω = v1dx1 + v2dx2 + v3dx3 is exact
and that Φ is a primitive)

Theorem 2.1 Let A be open and let v ∈ C(A) be a velocity fields. Then

• v is irrotational if and only if it is potential;

• if v is potential (i.e., irrotational) and of class C1, then the vector curl v vanishes ev-
erywhere, i.e.1

curl v(x) = 0 for all x ∈ A. (2.15)

In coordinates, this means

v2z − v3y = 0 v3x − v1z = 0 v1x − v2x = 0 2 (2.16)

1The ”curl” of v is often denoted as ∇× v, and sometimes, as rot v

2In the 1-forms’s framework this reads ”the form ω
.
=

i∑
i=1

vidx3 is closed”, or dω = 0 where d denotes

external differentiation, see e.g. [1] or [2]
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• If A is simply connected 3 then condition (2.15) is also sufficient for v to be irrotational.
Namely, iv v is C1 and A is simply connected

curl v ≡ 0⇔ v is irrotational (2.17)

It is trivial to verify that:

Proposition 2.1 If a fluid has velocity v of class C1, irrotational (=potential) and incom-
pressible, then any potential Φ of v is a harmonic function.

Proof. It is a trivial computation:

∆Φ = div (∇u) = div (v) = 0.

2.1 Streamlines and the Complex potential

We have seen that a two dimensional irrotational (potential) incompressible fluid has a poten-
tial Φ 4 which is an harmonic function on A. Hence (see ...) there exists a conjugate harmonic
Ψ : A→ IR to Ψ, i.e. the complex valued map

F
.
= Φ + iΨ (2.18)

is a holomorphic map (as soos as A is regarded as a subset of C).
The holomorphic map F is called a complex potential of the fluid. How F is actually

related to the fluid kinematics?

Proposition 2.2 Let us consider a irrotational, incompressible, two dimensional fluid with
C1 velocity field v. Let F = Φ + iΨ be a complex potential for this fluid, constructed as above.
Then

(1) v = ∇Ψ;

(2) The level set of the (harmonic) function Ψ are the streamlines of the fluid, run with
velocity |F ′| = |∇Φ| = |∇Ψ| in the direction of ∇Φ (which coincides with the direction
which ”sees ∇Ψ pointing on the left”).

(3) The complex derivative of the conjugate F̄ = Φ− iΨ, coincides with the velocity vector
field:

F̄ ′ = Φx + iΦy = v1 + iv2.

Proof. There is nothing to prove for (1). As for (2), assume that ∇Φ(x, y) 6= 0 (which
implies that ∇Ψ(x, y) 6= 0 as well) . Then v = ∇Φ is orthogonal to ∇Ψ(x, y) which in turn is
orthogonal to the level sets of Ψ. Hence the latter are tangent to v = ∇Φ, i.e. they coincide
with streamlines. The other statements are nothing the repetitions of what we have already
proved for the real and imaginary parts of every holomorphic function. Finally, (3) is just a
consequence of Cauchy-Riemann conditions:

v1 + iv2 = Φx + iΦy = Φx − iΨx = F̄ ′.

3i.e. every curve is homotopic to every point
4If A is connected, the potential is defined up to addition of a real number
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3 Harmonic invariance via holomorphic maps

Theorem 3.1 Let Ω, A ⊂ C be open subset, and let f : Ω → C be a holomorphic function
such that A ⊂ f(Ω). Let u : A→ IR be a harmonic map. Then the composed map U

.
= u ◦ f :

Ω→ IR is harmonic as well.

Proof. There is a direct way of proving this result, as done in the textbook [?]. It simply
consists in verifying that U is a harmonic function, i.e. ∆U = 0. equations. (In particular
one uses the fact that if f = α + iβ is holomorphic then ∇α and ∇β are orthogonal, and
|∇α| = |∇β| = |f ′(z0)|).

Alternatively, one can argue as follows. Let z0 ∈ Ω and w0
.
= f(z0), so the harmonic map u

is defined in a whole disc Dr
.
= {w | |w−w0| < r} for an enough small r > 0. In particular, Dr

is convex, hence simply connected. Hence by Theorem 1.1 there exists a conjugate harmonic
v : D → IR to u. This means that the complex valued map g

.
= u+iv : D → C is holomorphic.

Let δ > 0 be so small that f(Dδ(z0)) ⊂ Dr. Therefore the map G = U + iV : Dδ → C defined
as

G(x+ iy) = U(x, y) + iV (x, y)
.
= g ◦ f(x+ iy) = u ◦ f(x+ iy) + iv ◦ f(x+ iy)

is holomorphic (recall that compositions of holomorphic functions are holomorphic, see Propo-
sition 1.4). Hence U = u ◦ f is harmonic on Dδ, in that it is the real part of a holomorphic
map (see Proposition 1.5).

3.1 Application to Dirichlet problems for the Laplace equation

The above result can be useful in the solution of boundary value problem. Indeed assume that
f : Ω → A is holomorphic and such that boundary ∂Ω is mapped in to ∂A : f(∂Ω) = ∂A.
Let u : A→ IR be a solution of 

∆u = 0 on A

u = φ in ∂A
(3.19)

Then the map U = u ◦ f is a solution of the boundary value problem
∆U = 0 on Ω

U = φ ◦ f in ∂Ω
(3.20)

It might happen that problem (3.19) is easier then problem (3.20), e.g. because the form of
A is particularly simple (say, A is a rectangle), and that one is able to find a solution u of
(3.19). Then U = u ◦ f is a solution of problem (3.20).

Example. Let Ω ⊂ C be the intersection the external of the unit circle with the first
quadrant, namely Ω

.
= {z = x+ iy |z| ≥ 1 x > 0, y > 0}. Moreover, set

∂Ω = Γ1 ∪ Γ2 ∪ Γ3

Γ1
.
= ei[0,π/2], Γ2

.
= [1,+∞[, Γ3

.
= i[1,+∞[,
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and consider the Dirichlet problem
∆U = 0 on Ω

U = 0 in Γ2

U = 17 in Γ3

(3.21)

Let f(z) = log(z) denote the principle value of the logarithm. We know that it is holomor-
phicthat it maps Ω onto the strip A =]0,+∞[+i]0, π/2[. Furthermore, one has f(∂Ω) = ∂A.
More closely,

f(Γ1) = G1
.
= 1 + i[0, π/2], f(Γ2) = G2

.
= [1,+∞[, f(Γ2) = G3

.
= [1,+∞[+iπ/2.

In view of Theorem 3.1, problem (3.21) is transformed by the holomorphic map f into the
new boundary value problem 

∆u = 0 on A

u = 0 in G2

u = 17 in G3.

(3.22)

Now, it is trivial to verify that the linear map u(α, β) =
34β

π
is a solution of (3.22). It follows

that

U(x, y) = u ◦ f(x+ iy) = u ◦ (log
√
x2 + x2 + arctan

(y
x

)
) =

34 arctan
(
y
x

)
π

is a solution of the boundary value problem (3.21).

3.2 Application to Neumann problems for the Laplace equation

A Neumann Boundary Value problem consists in specifying the value of the normal derivative
of the solution on the boundary of the domain. If n(x) is the outer normal at a point x ∈ ∂Ω,
the the normal derivative of a function u is nothing but the directional derivative ∂nu(x) of
u in the direction of n. If u is differentiable:

∂nu(x) = ∇u(x)× n.

There is an important feature of normal derivatives:

Lemma 3.1 Let f : Ω→ A be holomorphic, and suppose that Ω has a regular boundary ∂Ω.
Let z0 = x0 + iy0 ∈ ∂Ω such that f ′(z0) 6= 0. Then:

• w0
.
= f(z0) ∈ ∂A

• The normal N(w0) to A at w0 is given by

N(w0) =
f ′(x0)

|f ′(x0)|
n(z0)
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This result can be useful in the solution of boundary value problem of Neumann type.

Theorem 3.2 Assume that f : Ω→ A is a holomorphic conformal 5 and such that boundary
∂Ω is mapped into ∂A : f(∂Ω) = ∂A. Let u : A→ IR be a solution of

∆u = 0 on A

∂nu = η in ∂A
(3.23)

Then the map U = u ◦ f is a solution of the boundary value problem
∆U = 0 on Ω

∂NU = η · f ′ in ∂Ω
(3.24)

In particular, it is interesting, e.g. in aerodynamics, the case when η = 0, meaning that in the
orthogonal direction to the boundary the derivative of u must be zero. In fluid dynamics this
means that the velocity v = ∇u has to be tangential to the boundary. In view of Theorem
3.2, one can study the problem on the domain A (supposed ”simpler”) and then transfer the
results on the ”more complicated” domain Ω. This is what done, for instance in the design
of airfoils -in absence of viscosity-, where the airfoil shape C\Ω is obtained as the image of a
circle C\A. See...

5This assumptions ensures that f ′ 6= 0 everywhere.
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