Mathematical Methods, 15/07/13

Name

Note: Part B of the exam contains only exercises $1 \mathrm{~b}, 4,5$.

Exercise 1 [8 points]

- 1a Define a pole for an holomorphic function. State and prove equivalent properties to characterize poles.
- 1b Given functions $f, g \in L^{1}(\mathbb{R})$ define the product of convolution $f * g$. Which is the function space of $f * g$? Prove the statement.

Exercise 2 [8 points]

Consider the function $f: \mathbb{R} \rightarrow \mathbb{C}, f(t)=\frac{\sin (t)}{(t-i)^{2}}$.

- (i) Prove that $f \in L^{1}(\mathbb{R})$;
- (ii) As a consequence of the theory, determine the function spaces containing $\Phi(f)$ and the speed of decay at infinity of the Fourier transform.
- (iii) Compute the Fourier transform of f. (Use the Theorem of residues).

Exercise 3 [4 points]

Determine an holomorphic function $f: \mathbb{C} \backslash\{3,-i, 2+i\} \rightarrow \mathbb{C}$ such that: f has at 3 a pole of order 2 , an essential singularity at $-i$, a removable singularity at $2+i$ and satisfies $\int_{\gamma_{4}} f(z) d z=1$, where $\gamma_{4}(t)=4 e^{i t}, t \in[0,2 \pi]$.

Exercise 4 [6 points]

Suppose that $u \in C^{3}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ is a solution of the differential equation

$$
u^{\prime \prime \prime}(t)-u^{\prime}(t)-t u(t)=0 .
$$

- (i) Find the Fourier transform \hat{u}; (\hat{u} solves a differential equation)
- (ii) prove that such u exists (many of them) and $u \in C^{\infty} \cap C_{o}$;
- (iii) can we impose to u the condition $\int_{-\infty}^{+\infty} u(t) d t=1$?
- (iv) Write a formula for such u.

Exercise 5 [6 points]
Consider the function

$$
f(t)= \begin{cases}1, & t \in(-\pi,-\pi / 2) \\ 0, & t \in(-\pi / 2, \pi / 2) \\ 1, & t \in(\pi / 2, \pi)\end{cases}
$$

(i) Determine the Fourier coefficients of f.
(ii) Find the sum of the series $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{2 k+1}$;
(iii) Find the sum of the series $\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}$.

