Mathematical Methods, 18/06/13

Name

Note: Part B of the exam contains only exercises $1 \mathrm{~b}, 4,5$.

Exercise 1 [8 points]

- 1a Prove by the definition (not with the Theorem of residues) that for any loop $\alpha:[a, b] \rightarrow$ $\mathbb{C} \backslash\{0\}$ then

$$
\frac{1}{2 \pi i} \int_{\alpha} \frac{d z}{z} \in \mathbb{Z}
$$

- 1b State and prove the theorem on normal convergence of Fourier series. (Give a complete proof.) Show that if $\left(c_{k}\right)_{k \in \mathbb{Z}} \subset l^{2}(\mathbb{Z})$ then the sum of the trigonometric series

$$
\sum_{k \in \mathbb{Z}, k \neq 0} \frac{c_{k}}{k} e^{2 \pi k i t}
$$

is a continuous function.

Exercise 2 [5 points]

(i) For $m \in \mathbb{Z}$, classify the singularity at 0 of the function of complex variable

$$
f(z)=\frac{\sinh \left(\frac{1}{z}\right)}{z^{m}} .
$$

(ii) Find the Laurent series of f at $z=0$.
(iii) Compute for $m \in \mathbb{Z}$ the value of the integral

$$
\int_{\gamma} f(z) d z
$$

where $\gamma(t)=e^{i t}, t \in[0,2 \pi]$.

Exercise 3 [7 points]

(iv) Using the Theorem of residues, compute the integral

$$
\int_{0}^{2 \pi} \frac{d t}{1+\sin ^{2}(t)}
$$

Exercise 4 [5 points]

Find solutions $u \in C^{2}(\mathbb{R})$ and π-periodic of the differential equation

$$
u^{\prime \prime}(t)+u(t)=\sin ^{2}(t) .
$$

Exercise 5 [7 points]
Consider the function $f(t)=\left(t^{3}-t\right) \chi_{(-1,1)}(t)$.
(i) As a consequence of the theory, determine the function spaces containing $\Phi(f)$ and the speed of decay at infinity of the Fourier transform.
(ii) Compute the Fourier transform of $\chi_{(-1,1)}(t)$.
(iii) Based on (ii), compute the Fourier transform of $\left(3 t^{2}-1\right) \chi_{(-1,1)}(t)$.
(iv) Based on (iii), compute the Fourier transform of f. Does it correspond to what expected?

